JP4125179B2 - Single focus lens for visible and near infrared light - Google Patents

Single focus lens for visible and near infrared light Download PDF

Info

Publication number
JP4125179B2
JP4125179B2 JP2003154239A JP2003154239A JP4125179B2 JP 4125179 B2 JP4125179 B2 JP 4125179B2 JP 2003154239 A JP2003154239 A JP 2003154239A JP 2003154239 A JP2003154239 A JP 2003154239A JP 4125179 B2 JP4125179 B2 JP 4125179B2
Authority
JP
Japan
Prior art keywords
lens
positive
visible light
rear group
cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003154239A
Other languages
Japanese (ja)
Other versions
JP2004354829A (en
JP2004354829A5 (en
Inventor
博規 田口
敬志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to JP2003154239A priority Critical patent/JP4125179B2/en
Publication of JP2004354829A publication Critical patent/JP2004354829A/en
Publication of JP2004354829A5 publication Critical patent/JP2004354829A5/ja
Application granted granted Critical
Publication of JP4125179B2 publication Critical patent/JP4125179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、可視光近赤外光用単焦点レンズに関する。さらに詳しくは、本発明は、可視光波長域(400〜700mm程度)と近赤外光波長域(700〜1000mm)まで実用可能な単焦点レンズであり、監視カメラ、CCTV、ビデオカメラ等に好適に使用できる可視光近赤外光用単焦点レンズに関する。
【0002】
【従来の技術】
従来の可視光に使用できる単焦点レンズとしては、比較的大口径なものが提案されている(例えば、特許文献1及び特許文献2参照)。
特許文献1に開示された非球面レンズを用いた超広角レンズ系は、物体側より順に、負のパワ−の前群レンズと、正のパワーの後群レンズとからなるレトロフォーカスタイプの超広角レンズ系において、全群レンズが、物体側に凸面を向けた負のメニスカス第1レンズと、少なくとも一面が非球面の第2レンズとを有し、この非球面の第2レンズは、光軸中心付近では両凹レンズで、周縁では物体側に凸の負メニスカスレンズとなる形状をなしているものである。この特許文献1のレンズは、超広角で明るいが、可視光波長域(400〜700mm程度)についてのみ収差補正し、近赤外光波長域(700〜1000mm)については何ら補正していない。
【0003】
特許文献2に記載のレトロフォーカス型大口径レンズは、小型で大口径比で、かつバックフォーカスを長くしたものであるが、これも可視光波長域(400〜700nm程度)についてのみ収差補正し、近赤外光波長域(700〜1000nm)については何ら補正していない。
【0004】
【特許文献1】
特開平10−115778号
【特許文献2】
特許第3255490号
【0005】
【発明が解決しようとする課題】
日中は可視光、夜間は近赤外光を用いて監視する昼夜兼用カメラは、利用可能時間が長く投資効率が高いことから普及し始めている。しかし、従来技術のレンズについては、特に夜間に使用する近赤外光について収差補正がなされておらず、像の鮮明さが十分でなかった。そのため、特に夜間に十分な監視活動ができ難い等の問題があった。
【0006】
近年、前記昼夜兼用カメラの普及により、可視光波長域〜近赤外光波長域(400〜1000nm)までの軸上の色収差を補正した単焦点レンズが開発されはじめている。しかし、可視光波長域(400〜700mm)のピント位置と近赤外光波長域(700〜1000mm)のピント位置の差がまだ大きい。そのため、可視光波長域(400〜700mm)でピント合わせした状態での近赤外光波長域(700〜1000mm)のみの投光をした時の解像力は、可視光波長域の解像力に較べて満足できるものではなかった。
【0007】
【発明の目的】
従来技術の監視カメラ、CCTV、ビデオカメラ等に好適に使用できる明るい単焦点レンズの特に近赤外光像に関する上述した問題点に鑑みてなされたものであって、小型で大口径であり、可視光波長域(400〜700mm程度)と近赤外光波長域(700〜1000mm)まで良好に収差補正し、監視カメラ、CCTV、ビデオカメラ等に好適に使用できる可視光近赤外光用単焦点レンズを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、絞りを挟んで、負の屈折力を有する前群レンズと、正の屈折力を有する後群レンズとで構成され、後群レンズは少なくとも4枚以上で、正レンズと負レンズの接合レンズを含み、前記接合レンズは、
部分分散比を

Figure 0004125179
t線二次スペクトルを
Figure 0004125179
とした時、
条件式 Δ≦0.0038・・・・・・・・・・・(1)
νdn< 30・・・・・・・・・・・・(2)
νdp > 60 ・・・・・・・・・・・・(3)
0.85 <|R/fr|<1.2 ・・・・・・・(4)
C:C線(波長656.27nm)の屈折率、
F:F線(波長486.13nm)の屈折率、
t:t線(波長1013.98nm)の屈折率
θctp:後群接合レンズの正レンズの部分分散比、
θctn:後群接合レンズの負レンズの部分分散比
νdp:後群接合レンズの正レンズのアッべ数、
νdn:後群接合レンズの負レンズのアッべ数
R:後群接合レンズの接合面の曲率半径、
fr:後群レンズの焦点距離
を満足することを特徴とする可視光近赤外光用単焦点レンズである。
【0009】
本発明の実施態様は以下のとおりである。
前記後群レンズが、物体側から正レンズ、負レンズと正レンズの接合で正の接合レンズ、及び正レンズで構成されたことを特徴とする。
【0010】
絞りから像面までの距離が以下の条件式
条件式
7.0 < L / Y < 8.5 ・・・・・(5)
L:絞りから像面までの距離(ただし、バックフォーカスは、Cを空気中に換算した時の距離)、C:フィルターに相当する平行平面ガラス、Y:対角線の像高(Y=f×tanW(1+DIST/100)、w:半画角、DIST(%):w時の歪曲収差、f:全系の焦点距離)
を満足することを特徴とする。
【0011】
【発明の作用】
請求項1に記載の条件式の範囲内にあると、近赤外域(700〜1000nm)の軸上色収差が抑えられ、Fナンバーが1.1程度にもかかわらず、諸収差が補正できる。このため、可視光域(400〜700nm)と近赤外域(700〜1000nm)とのMTFベスト位置すなわちピント位置を近づけることができる。従って、昼は可視光域(400〜700nm)、夜は近赤外投光を使用する監視レンズとして用いた場合に日中と夜間でピント合わせ直しの必要がなくなる。また、可視光域(400〜700nm)でピント合わせした状態で、近赤外光のみ投光したときの解像力を可視光と同等にすることができる。
【0012】
条件式(1)、(2)、(3)、(4)は、後群レンズ中の接合レンズの構成を規定するものである。
条件式(1)、(2)、(3)は、接合レンズの近赤外域の二次スペクトルと接合レンズの負レンズ、正レンズのアッべ数を規定することにより、接合レンズの正レンズのガラスに近赤外域(700〜1000nm)で、異常分散性を要求するものである。
これにより、レンズ系全体での近赤外域(700〜1000nm)の二次スペクトルを小さく抑えることができ、可視光域(400〜700nm)と近赤外域(700〜1000nm)の軸上色収差の差を小さくできる。
条件式(2)、(3)は、条件式(4)の接合面曲率半径の規定とともに軸上色収差、球面収差、コマ収差を良好に補正する条件でもある。
【0013】
条件式(1)の上限より大きくなると、接合レンズの正レンズに異常分散性の効果が減少するため、可視光域(400〜700nm)と近赤外域(700〜1000nm)の軸上色収差の差が大きくなる。
条件式(2)の上限より小さく、また、条件式(3)の下限より大きくなると、色収差補正に屈折力が要求され、接合面の曲率半径が小さくなるため、可視光域(400〜700nm)と近赤外域(700〜1000nm)の軸上色収差、球面収差、コマ収差を小さく抑えることが困難となる。
【0014】
条件式(4)の下限より小さくなると、接合面の曲率半径が小さくなりすぎ、加工が困難となる。また、大口径であるため、球面収差とコマ収差を補正することが非常に困難となる。
条件式(4)の上限より大きくなると、可視光域(400〜700nm)と近赤外域(700〜1000nm)の軸上色収差が良好に保てなくなる。
【0015】
請求項2に記載の発明に関し、この構成のレンズ系のとき、Fナンバーが1.1程度でも、非球面を使わずに球面収差、コマ収差が良好に補正できる。また、可視光域(400〜700nm)と近赤外域(700〜1000nm)の軸上色収差が良好に補正できる。
【0016】
請求項3に関し、条件式(5)は、絞りの位置から撮像面までの距離に関するもので、Fナンバー1.1程度の大口径の標準、広角の絞りの共通化を可能にするためのものである。条件式(5)の下限より小さくなると、後群レンズの厚みが小さくなり、大口径を得ることができなくなる。条件式(5)の上限より大きくなると、絞り位置が撮像面より大きく離れ、レンズ全長及び後群レンズの外径が増大する。また、標準から広角までの絞り径の共通化ができなくなる。
【0017】
【実施の形態】
(実施例1)
実施例1の可視光近赤外光用単焦点レンズは、f=1mm、F/1.1、w=42.4°であり、図1に示すように、絞りAを挟んで、負の屈折力を有する前群レンズ10と、正の屈折力を有する後群レンズ20とで構成される。前群レンズ10は、物体側から順に、負の屈折力の第1レンズL1、正の屈折力の第2レンズL2、負の屈折力の第3レンズL3である。後群レンズ20は、物体側から順に、正の屈折力の第4レンズL4、負の屈折力の第5レンズL5、正の屈折力の第6レンズL6、正の屈折力の第7レンズL7であり、第5レンズL5と第6レンズL6は接合されている6群7枚のレンズ系である。
【0018】
実施例1に可視光近赤外光用単焦点レンズは、レンズ系タイプを前群レンズに負の屈折力、後群レンズに正の屈折力であるレトロフォーカスとすることによって、バックフォーカスを長くしている。また、上記4枚構成の後群レンズ内の正レンズと負レンズの接合レンズが、条件内Δ=0.0037、νdn=23.8、νdp=63.4、|R/fr|=1.02の構成であることにより、可視光域(400〜700nm)から近赤外域(700〜1000nm)までの軸上色収差、球面収差、コマ収差が良好に補正されている。
【0019】
実施例1の可視光近赤外光用単焦点レンズの光学データは、以下の表1に示すとおりである。
【表1】
Figure 0004125179
【0020】
実施例1の可視光近赤外光用単焦点レンズの収差は、図2に球面収差及び色収差を示し、図3に非点収差を示し、図4に歪曲収差を示し、図5にMTF特性を示す。これらから、本発明の可視光近赤外光用単焦点レンズが、図5に示すように、可視光及び近赤外光において、可視光のMTFピーク位置における近赤外光のMTF値を、可視光の時のMTF値程度、すなわち同じMTFレベルにすることで、ほぼ同一の鮮明な画像を形成することが理解できる。
【0021】
(実施例2)
実施例2の可視光近赤外光用単焦点レンズは、f=1mm F/1.1 w=31.1°であり、図6に示すように、絞りAを挟んで、負の屈折力を有する前群レンズ110と、正の屈折力を有する後群レンズ120とで構成される。前群レンズ110は、物体側から順に、正の屈折力の第1レンズL11、負の屈折力の第2レンズL12である。後群レンズ120は、物体側から順に、正の屈折力の第3レンズL13、負の屈折力の第4レンズL14、正の屈折力の第5レンズL15、正の屈折力の第6レンズL16であり、第4レンズL14と第5レンズL15は接合されている5群6枚のレンズ系である。
【0022】
実施例2の可視光近赤外光用単焦点レンズは、レンズ系タイプを、前群レンズ110に負の屈折力、後群レンズ120に正の屈折力であるレトロフォーカスとすることにより、バックフォーカスを長くしている。また、上記4枚構成の後群レンズ120内の正の第4レンズL14と負の第5レンズL15の接合レンズが条件内Δ=0.0037、νdn=23.8、νdp=63.4、|R/fr|=1.08の構成であることにより、可視光域(400〜700nm)から近赤外域(700〜1000nm)までの軸上色収差、球面収差、コマ収差が良好に補正されている。
【0023】
実施例2の可視光近赤外光用単焦点レンズの光学データは、以下の表2に示すとおりである。
【表2】
Figure 0004125179
【0024】
実施例2の可視光近赤外光用単焦点レンズの収差は、図7に球面収差及び色収差を示し、図8に非点収差を示し、図9に歪曲収差を示し、図10にMTF特性を示す。これらから、本発明の可視光近赤外光用単焦点レンズが、図10に示すように、可視光及び近赤外光において、可視光のMTFピーク位置における近赤外光のMTF値を、可視光の時のMTF値程度、すなわち同じMTFレベルにすることで、ほぼ同一の鮮明な画像を形成することが理解できる。
【0025】
【発明の効果】
本発明によれば、監視カメラ、CCTV、ビデオカメラ等に好適に使用できる明るい単焦点レンズの特に近赤外光像において、小型で大口径であり、可視光波長域(400〜700mm程度)と近赤外光波長域(700〜1000mm)まで良好に収差補正し、監視カメラ、CCTV、ビデオカメラ等に好適に使用できる可視光近赤外光用単焦点レンズを構成する効果を有する。
【図面の簡単な説明】
【図1】 本発明の可視光近赤外光用単焦点レンズの実施例1の光学図である。
【図2】 本発明の実施例1の球面収差色収差図である。
【図3】 本発明の実施例1の非点収差図である。
【図4】 本発明の実施例1の歪曲収差図である。
【図5】 本発明の実施例1のMTF特性図である。
【図6】 本発明の可視光近赤外光用単焦点レンズの実施例1の光学図である。
【図7】 本発明の実施例1の球面収差色収差図である。
【図8】 本発明の実施例1の非点収差図である。
【図9】 本発明の実施例1の歪曲収差図である。
【図10】 本発明の実施例1のMTF特性図である。
【符号の説明】
A 絞り
C フィルターに相当する平行平面ガラス
10 前群レンズ
20 後群レンズ
110 前群レンズ
120 後群レンズ
L1、L11 第1レンズ
L2、L12 第2レンズ
L3、L13 第3レンズ
L4、L14 第4レンズ
L5、L15 第5レンズ
L6、L16 第6レンズ
L7 第7レンズ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single focus lens for visible light near infrared light. More specifically, the present invention is a single focus lens that can be practically used in a visible light wavelength range (about 400 to 700 mm) and a near-infrared light wavelength range (700 to 1000 mm), and is suitable for surveillance cameras, CCTVs, video cameras, and the like. The present invention relates to a single-focus lens for visible light near infrared light that can be used in the field.
[0002]
[Prior art]
As a conventional single focus lens that can be used for visible light, a lens having a relatively large aperture has been proposed (see, for example, Patent Document 1 and Patent Document 2).
The super wide-angle lens system using an aspherical lens disclosed in Patent Document 1 is a retrofocus type super wide-angle lens composed of a negative power front group lens and a positive power rear group lens in order from the object side. In the lens system, the entire lens group includes a negative meniscus first lens having a convex surface directed toward the object side, and a second lens having at least one aspheric surface. The lens has a biconcave lens in the vicinity and a negative meniscus lens convex toward the object side at the periphery. Although the lens of Patent Document 1 is super wide and bright, it corrects aberrations only in the visible light wavelength range (about 400 to 700 mm) and does not correct anything in the near infrared wavelength range (700 to 1000 mm).
[0003]
The retrofocus type large-aperture lens described in Patent Document 2 is a compact lens having a large aperture ratio and a long back focus, but this also corrects aberrations only in the visible light wavelength region (about 400 to 700 nm). No correction is made for the near-infrared light wavelength region (700 to 1000 nm).
[0004]
[Patent Document 1]
JP-A-10-115778 [Patent Document 2]
Japanese Patent No. 3255490
[Problems to be solved by the invention]
Day and night cameras that use visible light during the day and near-infrared light at night are becoming popular because of their long availability and high investment efficiency. However, the lens of the prior art is not corrected for aberrations especially for near-infrared light used at night, and the image is not clear. For this reason, there have been problems such as difficulty in performing sufficient monitoring activities especially at night.
[0006]
In recent years, with the widespread use of the day / night combined use camera, single focus lenses in which axial chromatic aberration from the visible light wavelength region to the near infrared light wavelength region (400 to 1000 nm) is corrected have been developed. However, the difference between the focus position in the visible light wavelength range (400 to 700 mm) and the focus position in the near infrared wavelength range (700 to 1000 mm) is still large. Therefore, the resolving power when only the near-infrared light wavelength range (700-1000 mm) is focused in the visible light wavelength range (400-700 mm) is more satisfactory than the resolving power in the visible light wavelength range. It wasn't possible.
[0007]
OBJECT OF THE INVENTION
A bright single-focus lens that can be suitably used in conventional surveillance cameras, CCTVs, video cameras, etc., in particular, has been made in view of the above-mentioned problems relating to near-infrared light images, and is small, large-diameter, and visible. A single focal point for visible light near-infrared light that can be suitably used for surveillance cameras, CCTVs, video cameras, etc., with good aberration correction in the light wavelength range (about 400-700 mm) and near-infrared light wavelength range (700-1000 mm) The object is to provide a lens.
[0008]
[Means for Solving the Problems]
The present invention includes a front group lens having negative refractive power and a rear group lens having positive refractive power with a stop interposed therebetween, and the rear group lens includes at least four lenses, and includes a positive lens and a negative lens. A cemented lens, the cemented lens comprising:
Partial dispersion ratio
Figure 0004125179
t-line secondary spectrum
Figure 0004125179
When
Conditional expression Δ ≦ 0.0038 (1)
νdn <30 (2)
νdp> 60 (3)
0.85 <| R / fr | <1.2 (4)
N C : refractive index of C line (wavelength 656.27 nm),
N F : Refractive index of F line (wavelength 486.13 nm),
N t : refractive index of t-line (wavelength 1013.98 nm) θ ctp : partial dispersion ratio of positive lens of rear group cemented lens,
θ ctn : partial dispersion ratio of negative lens of rear group cemented lens νdp: Abbe number of positive lens of rear group cemented lens,
νdn: Abbe number of the negative lens of the rear group cemented lens
R: radius of curvature of the cemented surface of the rear group cemented lens,
fr: A single-focus lens for visible light near infrared light that satisfies the focal length of the rear lens group.
[0009]
Embodiments of the present invention are as follows.
The rear group lens includes a positive lens from the object side, a positive cemented lens by joining a negative lens and a positive lens, and a positive lens.
[0010]
Conditional expression with the following distance from the aperture to the image plane
7.0 <L / Y <8.5 (5)
L: Distance from the diaphragm to the image plane (where the back focus is the distance when C is converted into the air), C: Parallel plane glass corresponding to the filter, Y: Image height of the diagonal (Y = f × tanW) (1 + DIST / 100), w: half angle of view, DIST (%): distortion at w, f: focal length of the entire system)
It is characterized by satisfying.
[0011]
[Effects of the Invention]
Within the range of the conditional expression described in claim 1, axial chromatic aberration in the near-infrared region (700 to 1000 nm) is suppressed, and various aberrations can be corrected regardless of the F-number being about 1.1. For this reason, the MTF best position, that is, the focus position in the visible light region (400 to 700 nm) and the near infrared region (700 to 1000 nm) can be brought closer. Accordingly, when used as a monitoring lens using visible light range (400 to 700 nm) at daytime and near-infrared light projection at night, there is no need to refocus between daytime and nighttime. Further, the resolution when only near-infrared light is projected in a state of focusing in the visible light region (400 to 700 nm) can be made equal to that of visible light.
[0012]
Conditional expressions (1), (2), (3), and (4) define the configuration of the cemented lens in the rear group lens.
Conditional expressions (1), (2), and (3) are obtained by defining the secondary spectrum in the near-infrared region of the cemented lens and the Abbe number of the cemented lens and the positive lens of the cemented lens. The glass requires anomalous dispersibility in the near infrared region (700 to 1000 nm).
Thereby, the secondary spectrum in the near-infrared region (700 to 1000 nm) in the entire lens system can be kept small, and the difference in axial chromatic aberration between the visible light region (400 to 700 nm) and the near-infrared region (700 to 1000 nm). Can be reduced.
Conditional expressions (2) and (3) are conditions for satisfactorily correcting axial chromatic aberration, spherical aberration, and coma aberration together with the definition of the radius of curvature of the joint surface in conditional expression (4).
[0013]
When the value exceeds the upper limit of conditional expression (1), the effect of anomalous dispersion on the positive lens of the cemented lens is reduced, so that the difference in axial chromatic aberration between the visible light region (400 to 700 nm) and the near infrared region (700 to 1000 nm). Becomes larger.
When it is smaller than the upper limit of conditional expression (2) and larger than the lower limit of conditional expression (3), refractive power is required for chromatic aberration correction, and the radius of curvature of the joint surface becomes smaller, so the visible light region (400 to 700 nm). It is difficult to suppress axial chromatic aberration, spherical aberration, and coma aberration in the near infrared region (700 to 1000 nm).
[0014]
If it becomes smaller than the lower limit of the conditional expression (4), the radius of curvature of the joint surface becomes too small, and machining becomes difficult. In addition, since the aperture is large, it is very difficult to correct spherical aberration and coma.
When the upper limit of conditional expression (4) is exceeded, axial chromatic aberration in the visible light region (400 to 700 nm) and the near infrared region (700 to 1000 nm) cannot be maintained well.
[0015]
According to the second aspect of the present invention, in the lens system having this configuration, even when the F number is about 1.1, spherical aberration and coma can be favorably corrected without using an aspherical surface. In addition, axial chromatic aberration in the visible light region (400 to 700 nm) and the near infrared region (700 to 1000 nm) can be favorably corrected.
[0016]
Regarding the third aspect, the conditional expression (5) relates to the distance from the position of the diaphragm to the imaging surface, and enables standardization of a large aperture standard of about F number 1.1 and a wide-angle diaphragm. It is. If the lower limit of conditional expression (5) is not reached, the thickness of the rear lens group becomes small, and a large aperture cannot be obtained. When the upper limit of conditional expression (5) is exceeded, the aperture position is far away from the imaging surface, and the total lens length and the outer diameter of the rear lens group are increased. In addition, it becomes impossible to standardize the aperture diameter from standard to wide angle.
[0017]
Embodiment
(Example 1)
The single-focus lens for visible light near infrared light of Example 1 has f = 1 mm, F / 1.1, and w = 42.4 °, and has a negative refractive power across the stop A as shown in FIG. And a rear group lens 20 having a positive refractive power. The front lens group 10 is, in order from the object side, a first lens L1 having a negative refractive power, a second lens L2 having a positive refractive power, and a third lens L3 having a negative refractive power. The rear lens group 20 includes, in order from the object side, a fourth lens L4 having a positive refractive power, a fifth lens L5 having a negative refractive power, a sixth lens L6 having a positive refractive power, and a seventh lens L7 having a positive refractive power. The fifth lens L5 and the sixth lens L6 are a 6-group 7-lens system that is cemented.
[0018]
The single focus lens for visible light near infrared light in Example 1 has a long back focus by using a lens system type with a retrofocus that has a negative refractive power for the front lens group and a positive refractive power for the rear lens group. is doing. In addition, the cemented lens of the positive lens and the negative lens in the rear group lens having the four-lens configuration has the following conditions: Δ = 0.0003, νdn = 23.8, νdp = 63.4, | R / fr | = 1. With the configuration of 02, axial chromatic aberration, spherical aberration, and coma from the visible light region (400 to 700 nm) to the near infrared region (700 to 1000 nm) are corrected well.
[0019]
The optical data of the single-focus lens for visible light near infrared light of Example 1 is as shown in Table 1 below.
[Table 1]
Figure 0004125179
[0020]
The aberration of the single-focus lens for visible light near infrared light of Example 1 shows spherical aberration and chromatic aberration, FIG. 3 shows astigmatism, FIG. 4 shows distortion, and FIG. 5 shows MTF characteristics. Indicates. From these, the single focus lens for visible light near infrared light of the present invention, as shown in FIG. 5, in the visible light and near infrared light, the MTF value of the near infrared light at the MTF peak position of the visible light, It can be understood that substantially the same clear images are formed by setting the MTF value at the time of visible light, that is, the same MTF level.
[0021]
(Example 2)
The single-focus lens for visible light near infrared light according to Example 2 has f = 1 mm F / 1.1 w = 31.1 °, and has negative refractive power with the aperture A interposed therebetween as shown in FIG. It is composed of a front group lens 110 and a rear group lens 120 having a positive refractive power. The front lens group 110 is, in order from the object side, a first lens L11 having a positive refractive power and a second lens L12 having a negative refractive power. The rear lens group 120 includes, in order from the object side, a third lens L13 having a positive refractive power, a fourth lens L14 having a negative refractive power, a fifth lens L15 having a positive refractive power, and a sixth lens L16 having a positive refractive power. The fourth lens L14 and the fifth lens L15 are a five-group six-lens lens system that is cemented.
[0022]
The single-focus lens for visible light near-infrared light according to the second embodiment uses the lens system type as a retrofocus that has a negative refractive power for the front group lens 110 and a positive refractive power for the rear group lens 120. The focus is extended. In addition, the cemented lens of the positive fourth lens L14 and the negative fifth lens L15 in the rear group lens 120 having the four-lens configuration is within the conditions Δ = 0.0003, νdn = 23.8, νdp = 63.4, With the configuration of | R / fr | = 1.08, axial chromatic aberration, spherical aberration, and coma from the visible light region (400 to 700 nm) to the near infrared region (700 to 1000 nm) are corrected well. Yes.
[0023]
The optical data of the single focus lens for visible light near infrared light of Example 2 is as shown in Table 2 below.
[Table 2]
Figure 0004125179
[0024]
FIG. 7 shows spherical aberration and chromatic aberration, FIG. 8 shows astigmatism, FIG. 9 shows distortion, and FIG. 10 shows MTF characteristics. Indicates. From these, the single focus lens for visible light near infrared light of the present invention, as shown in FIG. 10, in the visible light and near infrared light, the MTF value of the near infrared light at the MTF peak position of the visible light, It can be understood that substantially the same clear images are formed by setting the MTF value at the time of visible light, that is, the same MTF level.
[0025]
【The invention's effect】
According to the present invention, a bright single-focus lens that can be suitably used for surveillance cameras, CCTVs, video cameras, etc., particularly in the near-infrared light image, has a small size, a large aperture, and a visible light wavelength range (about 400 to 700 mm). Aberration correction is satisfactorily corrected up to the near-infrared light wavelength region (700 to 1000 mm), and it has the effect of constructing a single-focus lens for visible light near-infrared light that can be suitably used for surveillance cameras, CCTVs, video cameras and the like.
[Brief description of the drawings]
FIG. 1 is an optical diagram of Example 1 of a single focus lens for visible light near infrared light according to the present invention.
FIG. 2 is a spherical aberration chromatic aberration diagram of Example 1 of the present invention.
FIG. 3 is an astigmatism diagram of Example 1 of the present invention.
FIG. 4 is a distortion diagram of Example 1 of the present invention.
FIG. 5 is an MTF characteristic diagram of Example 1 of the present invention.
FIG. 6 is an optical diagram of Example 1 of a single focus lens for visible light and near infrared light according to the present invention.
FIG. 7 is a spherical aberration chromatic aberration diagram of Example 1 of the present invention.
FIG. 8 is an astigmatism diagram of Example 1 of the present invention.
FIG. 9 is a distortion diagram of Example 1 of the present invention.
FIG. 10 is an MTF characteristic diagram of Example 1 of the present invention.
[Explanation of symbols]
A Aperture C Parallel plane glass corresponding to filter 10 Front lens group 20 Rear lens group 110 Front lens group 120 Rear lens group L1, L11 First lens L2, L12 Second lens L3, L13 Third lens L4, L14 Fourth lens L5, L15 5th lens L6, L16 6th lens L7 7th lens

Claims (3)

絞りを挟んで、負の屈折力を有する前群レンズと、正の屈折力を有する後群レンズとで構成され、後群レンズは少なくとも4枚以上で、正レンズと負レンズの接合レンズを含み、前記接合レンズは、
部分分散比を
Figure 0004125179
t線二次スペクトルを
Figure 0004125179
とした時、
条件式 Δ≦0.0038・・・・・・・・・・・(1)
νdn< 30・・・・・・・・・・・・(2)
νdp > 60 ・・・・・・・・・・・・(3)
0.85 <|R/fr|<1.2 ・・・・・・・(4)
C:C線(波長656.27nm)の屈折率、
F:F線(波長486.13nm)の屈折率、
t:t線(波長1013.98nm)の屈折率
θctp:後群接合レンズの正レンズの部分分散比、
θctn:後群接合レンズの負レンズの部分分散比
νdp:後群接合レンズの正レンズのアッべ数、
νdn:後群接合レンズの負レンズのアッべ数
R:後群接合レンズの接合面の曲率半径、
fr:後群レンズの焦点距離
を満足することを特徴とする可視光近赤外光用単焦点レンズ。
Consists of a front group lens having a negative refractive power and a rear group lens having a positive refractive power across the stop, and includes at least four rear group lenses including a cemented lens of a positive lens and a negative lens. The cemented lens is
Partial dispersion ratio
Figure 0004125179
t-line secondary spectrum
Figure 0004125179
When
Conditional expression Δ ≦ 0.0038 (1)
νdn <30 (2)
νdp> 60 (3)
0.85 <| R / fr | <1.2 (4)
N C : refractive index of C line (wavelength 656.27 nm),
N F : Refractive index of F line (wavelength 486.13 nm),
N t : refractive index of t-line (wavelength 1013.98 nm) θ ctp : partial dispersion ratio of positive lens of rear group cemented lens,
θ ctn : partial dispersion ratio of negative lens of rear group cemented lens νdp: Abbe number of positive lens of rear group cemented lens,
νdn: Abbe number of the negative lens of the rear group cemented lens
R: radius of curvature of the cemented surface of the rear group cemented lens,
fr: a single-focus lens for visible light near infrared light, which satisfies the focal length of the rear lens group.
前記後群レンズが、物体側から正レンズ、負レンズと正レンズの接合で正の接合レンズ、及び正レンズで構成されたことを特徴とする請求項1に記載の可視光近赤光用単焦点レンズ。  The single lens for visible light near red light according to claim 1, wherein the rear group lens includes a positive lens from the object side, a positive cemented lens formed by cementing a negative lens and a positive lens, and a positive lens. Focus lens. 絞りから像面までの距離が以下の条件式
条件式
7.0 < L / Y < 8.5 ・・・・・(5)
L:絞りから像面までの距離(ただし、バックフォーカスは、Cを空気中に換算した時の距離)、C:フィルターに相当する平行平面ガラス、Y:対角線の像高(Y=f×tanW(1+DIST/100)、w:半画角、DIST(%):w時の歪曲収差、f:全系の焦点距離)
を満足することを特徴とする請求項1又は2に記載の可視光近赤外光用単焦点レンズ。
Conditional expression with the following distance from the aperture to the image plane
7.0 <L / Y <8.5 (5)
L: Distance from the aperture to the image plane (where the back focus is the distance when C is converted into the air), C: Parallel flat glass corresponding to the filter, Y: Image height of the diagonal line (Y = f × tanW) (1 + DIST / 100), w: half angle of view, DIST (%): distortion at w, f: focal length of the entire system)
The single-focus lens for visible light near infrared light according to claim 1 or 2, wherein:
JP2003154239A 2003-05-30 2003-05-30 Single focus lens for visible and near infrared light Expired - Fee Related JP4125179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154239A JP4125179B2 (en) 2003-05-30 2003-05-30 Single focus lens for visible and near infrared light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154239A JP4125179B2 (en) 2003-05-30 2003-05-30 Single focus lens for visible and near infrared light

Publications (3)

Publication Number Publication Date
JP2004354829A JP2004354829A (en) 2004-12-16
JP2004354829A5 JP2004354829A5 (en) 2005-09-15
JP4125179B2 true JP4125179B2 (en) 2008-07-30

Family

ID=34048960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154239A Expired - Fee Related JP4125179B2 (en) 2003-05-30 2003-05-30 Single focus lens for visible and near infrared light

Country Status (1)

Country Link
JP (1) JP4125179B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351663C (en) * 2005-03-16 2007-11-28 富士能株式会社 Telephotolens
US7548385B2 (en) 2006-11-06 2009-06-16 Hoya Corporation Wide-angle lens system
KR101026111B1 (en) 2009-04-15 2011-04-05 주식회사 웰텍 Interchangeable lenses for quasi-expert camera
JP5320163B2 (en) * 2009-05-26 2013-10-23 富士フイルム株式会社 Imaging lens and imaging apparatus
JP5286495B2 (en) * 2010-08-02 2013-09-11 株式会社コーヤル LENS DEVICE AND IMAGING DEVICE
TWI452332B (en) * 2012-08-08 2014-09-11 Largan Precision Co Ltd Optical photographing lens system
JP6783549B2 (en) 2016-05-19 2020-11-11 キヤノン株式会社 Optical system and imaging device with it
CN109298507B (en) * 2017-07-25 2021-01-08 宁波舜宇车载光学技术有限公司 Optical lens
KR102326952B1 (en) 2019-01-04 2021-11-16 엘지이노텍 주식회사 Optical system and camera module for comprising the same
JP7208033B2 (en) * 2019-01-28 2023-01-18 キヤノン株式会社 OPTICAL LENS AND IMAGING DEVICE HAVING THE SAME
CN113253427B (en) * 2021-05-27 2022-11-15 天津欧菲光电有限公司 Optical system, camera module and electronic equipment
CN116256874B (en) * 2023-05-15 2023-09-15 江西联创电子有限公司 optical lens

Also Published As

Publication number Publication date
JP2004354829A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US7173776B2 (en) Fisheye lens system
US7948691B2 (en) Optical system and optical device including the same
JP3255490B2 (en) Retrofocus large aperture lens
JP3753842B2 (en) Super wide-angle lens system
US8970968B2 (en) Photographing lens system
JPH1152228A (en) Wide angle lens
JP2008040033A (en) Wide-angle lens
US20170336607A1 (en) Optical system and image pickup apparatus including the same
CN114675402B (en) Optical lens
JP4125179B2 (en) Single focus lens for visible and near infrared light
JP4565262B2 (en) Fisheye lens
US6549344B2 (en) Retro focus type wide-angle lens apparatus using the same
JP7148153B2 (en) Imaging optical system and imaging device
JP3925747B2 (en) Large aperture lens for low-light shooting
JP3376137B2 (en) Photographing lens and camera having the same
JP3295027B2 (en) Retrofocus type large aperture ratio wide-angle lens
JP4709411B2 (en) Retro focus type super wide angle lens
JP2000019393A (en) Single focus lens
JP2021004998A (en) Imaging lens
US7057804B2 (en) Ultraviolet imaging system
JPH0677102B2 (en) Wide-angle lens
JP5006627B2 (en) Optical system and optical apparatus having the same
JP2001174701A (en) Wide angle photographic lens system
JP2011199714A (en) Imaging apparatus
JP4374505B2 (en) Wide angle conversion lens

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees