JP2021004998A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2021004998A
JP2021004998A JP2019119180A JP2019119180A JP2021004998A JP 2021004998 A JP2021004998 A JP 2021004998A JP 2019119180 A JP2019119180 A JP 2019119180A JP 2019119180 A JP2019119180 A JP 2019119180A JP 2021004998 A JP2021004998 A JP 2021004998A
Authority
JP
Japan
Prior art keywords
lens
θir
νir
equation
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019119180A
Other languages
Japanese (ja)
Inventor
和彦 梶山
Kazuhiko Kajiyama
和彦 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019119180A priority Critical patent/JP2021004998A/en
Publication of JP2021004998A publication Critical patent/JP2021004998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

To provide a Gaussian type lens having good imaging performance for light between a visible range and a short wavelength infrared range (about 400-1700 nm wavelength).SOLUTION: An imaging lens comprises, in order from an object side, a first lens group, an aperture diaphragm and a second lens group. A configuration at front and rear sides of the diaphragm includes, in order from the object side, a positive lens LS1 having a convex surface on the object side, a negative lens LS2 having a concave surface on an image side, an aperture diaphragm, a negative lens LS3 having a concave surface on the object side and a positive lens LS4 having a convex surface on the image side. The two positive lenses and the two negative lenses at front and rear sides of the diaphragm satisfy the following conditional expressions: (θIR_LS2+θIR_LS3)/2+0.0124×(νIR_LS2+νIR_LS3)/2-0.967<-0.01...(1), (νd_LS2+νd_LS3)/2<50...(2), |(θIR_LS1-θIR_LS2)/(νIR_LS1-νIR_LS2)|<0.003...(3) and |(θIR_LS3-θIR_LS4)/(νIR_LS3-νIR_LS4)|<0.003...(4).SELECTED DRAWING: Figure 1

Description

本発明は、可視域から短波長赤外域(SWIR:Short−wavelength infrared)までの広い波長域(波長400〜1700nm程度)で使用可能なガウスタイプの単焦点レンズに関する。 The present invention relates to a Gaussian type single focus lens that can be used in a wide wavelength range (wavelength of about 400 to 1700 nm) from the visible range to the short wavelength infrared range (SWIR: Short-wavelength infrared).

近年、主に防犯を目的として、昼夜兼用で使用可能な監視カメラが開発されている。一般的に監視カメラは、昼間の撮影には可視光を使用し、一方で夜間の場合は近赤外光(NIR:Near−infrared)を用いて撮影を行う。また、近赤外光は、視界の悪い濃霧時においても可視光よりも散乱の影響を受けにくい特徴がある。そのため、監視カメラに使用されるレンズは、可視域から近赤外域までの波長域(波長400〜1000nm程度)で収差補正されたレンズが使用される。さらに、近年では、監視用途においても高画素のカメラが現れ、これまでよりも良好な光学性能を有する光学系が求められている。 In recent years, surveillance cameras that can be used both day and night have been developed mainly for the purpose of crime prevention. In general, a surveillance camera uses visible light for daytime photography, while it uses near-infrared light (NIR) for nighttime photography. In addition, near-infrared light is less susceptible to scattering than visible light even in dense fog with poor visibility. Therefore, as the lens used for the surveillance camera, a lens whose aberration is corrected in the wavelength range from the visible region to the near infrared region (wavelength of about 400 to 1000 nm) is used. Further, in recent years, high-pixel cameras have appeared even in surveillance applications, and an optical system having better optical performance than before is required.

従来の可視波長域から近赤外波長域の単焦点レンズとして、特許文献1〜3が知られている。特許文献1と特許文献2は画像読み取り用の光学系で、絞り前後に正レンズと負レンズを対称に配置したガウスタイプで、可視から近赤外域まで補正された単焦点レンズを開示している。また、特許文献3は可視から近赤外域まで補正されたガウスタイプの撮像レンズを開示している。 Patent Documents 1 to 3 are known as conventional single focus lenses in the visible wavelength range to the near infrared wavelength range. Patent Document 1 and Patent Document 2 disclose an optical system for reading an image, which is a Gaussian type in which a positive lens and a negative lens are symmetrically arranged before and after the aperture, and a single focus lens corrected from the visible to the near infrared region. .. Further, Patent Document 3 discloses a Gauss-type imaging lens corrected from the visible to the near-infrared region.

特許第4278756号公報Japanese Patent No. 4278756 特許第4869813号公報Japanese Patent No. 4869813 特許第5450028号公報Japanese Patent No. 5450028

照明を用いない夜間の撮影には、近赤外光が利用されるが、新月近くで月明かりが非常に少ない場合、月が雲に隠れている場合等、十分な光量を得られないことがある。一方で、太陽光によって大気中の水酸化イオンが励起された後、ナイトグローと呼ばれる光(ピーク波長1.6μm)が放出される。この光を照明光として利用することで、月明かりがない場合でも撮影が可能となる。 Near-infrared light is used for nighttime photography without lighting, but it may not be possible to obtain a sufficient amount of light, such as when there is very little moonlight near the new moon or when the moon is hidden by clouds. is there. On the other hand, after the hydroxide ions in the atmosphere are excited by sunlight, light called night glow (peak wavelength 1.6 μm) is emitted. By using this light as illumination light, it is possible to take pictures even when there is no moonlight.

しかしながら、上記の特許文献1、2、3に記載のガウスタイプの単焦点レンズにおいては、可視域から近赤外域である波長約1μmまでの色収差は補正されているものの、波長1.6μmの短波長赤外域まで収差補正が十分ではない。 However, in the Gaussian type single focus lens described in Patent Documents 1, 2 and 3, although the chromatic aberration from the visible region to the near infrared region with a wavelength of about 1 μm is corrected, the wavelength is as short as 1.6 μm. Aberration correction is not sufficient up to the wavelength infrared region.

本発明は、以上を鑑みてなされるものであり、可視域から短波長赤外域までの広い波長域(波長400〜1700nm程度)の光に対して良好な結像性能を備えたガウスタイプの単焦点レンズを提供することを目的とする。 The present invention has been made in view of the above, and is a Gaussian type single lens having good imaging performance for light in a wide wavelength range (wavelength 400 to 1700 nm) from the visible region to the short wavelength infrared region. It is an object of the present invention to provide a focal lens.

上記の目的を達成するために、本発明に係る撮像レンズは、
物体側から順に配置された、第1レンズ群と、開口絞りと、第2レンズ群とからなり、絞り前後の構成が、物体側から順に物体側が凸面の正レンズLS1、像側が凹面の負レンズLS2、開口絞り、物体側が凹面の負レンズLS3、像側が凸面の正レンズLS4で構成され、前記絞り前後2枚の正レンズと2枚の負レンズが、下記条件式を満たすことを特徴とする。
(θIR_LS2+θIR_LS3)/2+0.0124×(νIR_LS2+νIR_LS3)/2−0.967<−0.01 ・・・式1
(νd_LS2+νd_LS3)/2<50・・・式2
|(θIR_LS1−θIR_LS2)/(νIR_LS1−νIR_LS2)|<0.003 ・・・式3
|(θIR_LS3−θIR_LS4)/(νIR_LS3−νIR_LS4)|<0.003 ・・・式4
ただし、
νは波長587.6nmに対するアッベ数
νIR=(N1050−1)/(N400−N1700)
θIR=(N400−N1050)/(N400−N1700)
ν_LS2〜3はレンズLS2〜3のν
νIR_LS1〜4はレンズLS1〜4のνIR
θIR_LS1〜4はレンズLS1〜4のθIR
N400は波長400nmでの屈折率
N1050は波長1050nmでの屈折率
N1700は波長1700nmでの屈折率
In order to achieve the above object, the imaging lens according to the present invention is
It consists of a first lens group, an aperture aperture, and a second lens group arranged in order from the object side. The configuration before and after the aperture is a positive lens LS1 with a convex surface on the object side and a negative lens with a concave surface on the image side. It is composed of an LS2, an aperture diaphragm, a negative lens LS3 having a concave surface on the object side, and a positive lens LS4 having a convex surface on the image side. ..
(ΘIR_LS2 + θIR_LS3) / 2 + 0.0124 × (νIR_LS2 + νIR_LS3) /2-0.967 <−0.01 ・ ・ ・ Equation 1
(Νd_LS2 + νd_LS3) / 2 <50 ... Equation 2
| (ΘIR_LS1-θIR_LS2) / (νIR_LS1-νIR_LS2) | <0.003 ... Equation 3
| (ΘIR_LS3-θIR_LS4) / (νIR_LS3-νIR_LS4) | <0.003 ... Equation 4
However,
ν is the Abbe number for a wavelength of 587.6 nm νIR = (N1050-1) / (N400-N1700)
θIR = (N400-N1050) / (N400-N1700)
ν_LS2-3 is ν of lenses LS2-3
νIR_LS1-4 is νIR of lenses LS1-4
θIR_LS1-4 is θIR of lenses LS1-4
N400 is the refractive index at a wavelength of 400 nm N1050 is the refractive index at a wavelength of 1050 nm N1700 is the refractive index at a wavelength of 1700 nm

本発明によれば、可視域から短波長赤外域の広い波長域に亘って収差を低減した、ガウスタイプの単焦点レンズを提供することができる。 According to the present invention, it is possible to provide a Gauss type single focus lens in which aberrations are reduced over a wide wavelength range from the visible region to the short wavelength infrared region.

実施例1の単焦点レンズにおけるレンズ断面図Cross-sectional view of the lens in the single focus lens of Example 1. 実施例1の単焦点レンズにおける諸収差図Aberration diagram in the single focus lens of Example 1 実施例2の単焦点レンズにおけるレンズ断面図Cross-sectional view of the lens in the single focus lens of Example 2 実施例2の単焦点レンズにおける諸収差図Aberration diagram in the single focus lens of Example 2 実施例3の単焦点レンズにおけるレンズ断面図Cross-sectional view of the lens in the single focus lens of Example 3 実施例3の単焦点レンズにおける諸収差図Aberration diagram in the single focus lens of Example 3 実施例4の単焦点レンズにおけるレンズ断面図Cross-sectional view of the lens in the single focus lens of Example 4 実施例4の単焦点レンズにおける諸収差図Aberration diagram in the single focus lens of Example 4

図1は、本発明の形態に係る実施例1の単焦点レンズにおけるレンズ断面図である。 FIG. 1 is a cross-sectional view of a lens in the single focus lens of the first embodiment according to the embodiment of the present invention.

図2(A)及び(B)はそれぞれ、実施例1の単焦点レンズにおける物体距離が無限遠と至近1000mmの収差図である。収差補正された波長域は400〜1700nmである。 2 (A) and 2 (B) are aberration diagrams of the single focus lens of Example 1 at an object distance of infinity and a close distance of 1000 mm, respectively. The aberration-corrected wavelength range is 400 to 1700 nm.

図3は、本発明の形態に係る実施例2の単焦点レンズにおけるレンズ断面図である。 FIG. 3 is a cross-sectional view of a lens in the single focus lens of the second embodiment according to the embodiment of the present invention.

図4(A)及び(B)はそれぞれ、実施例2の単焦点レンズにおける物体距離が無限遠と至近750mmの収差図である。収差補正された波長域は400〜1700nmである。 4 (A) and 4 (B) are aberration diagrams of the single focus lens of the second embodiment at an object distance of infinity and a close proximity of 750 mm, respectively. The aberration-corrected wavelength range is 400 to 1700 nm.

図5は、本発明の形態に係る実施例3の単焦点レンズにおけるレンズ断面図である。 FIG. 5 is a cross-sectional view of a lens in the single focus lens of the third embodiment according to the embodiment of the present invention.

図6(A)及び(B)はそれぞれ、実施例3の単焦点レンズにおける物体距離が無限遠と至近2000mmの収差図である。収差補正された波長域は400〜1700nmである。 6 (A) and 6 (B) are aberration diagrams in which the object distances of the single focus lens of Example 3 are infinity and close to 2000 mm, respectively. The aberration-corrected wavelength range is 400 to 1700 nm.

図7は、本発明の形態に係る実施例4の単焦点レンズにおけるレンズ断面図である。 FIG. 7 is a cross-sectional view of a lens in the single focus lens of the fourth embodiment according to the embodiment of the present invention.

図8(A)及び(B)はそれぞれ、実施例4の単焦点レンズにおける物体距離が無限遠と至近1000mmの収差図である。収差補正された波長域は400〜1700nmである。 8 (A) and 8 (B) are aberration diagrams of the single focus lens of Example 4 at an object distance of infinity and a close distance of 1000 mm, respectively. The aberration-corrected wavelength range is 400 to 1700 nm.

各レンズ断面図において、左方が被写体側(物体側)、右方が像側である。DPはダイクロプリズム、CGは光学フィルター等に相当する光学ブロックである。IMGは像面であり、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)が配置される。収差図はミリメートル単位で示しており、球面収差図においては、1700nm、1050nm、587nm、435nmに関する収差を示し、非点収差図においては、mとsはメリディオナル像面、サジタル像面を表している。以下、断りがない限り、レンズ構成は物体側から像側へ順に配置されている順に説明する。 In each lens cross-sectional view, the left side is the subject side (object side) and the right side is the image side. DP is an optical block corresponding to a dichroic prism and CG is an optical filter or the like. The IMG is an image plane, and a solid-state image sensor (photoelectric conversion element) such as a CCD sensor or a CMOS sensor is arranged. The aberration diagram is shown in millimeters. In the spherical aberration diagram, aberrations related to 1700 nm, 1050 nm, 587 nm, and 435 nm are shown, and in the astigmatism diagram, m and s represent the meridional image plane and the sagittal image plane. .. Hereinafter, unless otherwise specified, the lens configurations will be described in the order in which they are arranged in order from the object side to the image side.

本発明の撮像レンズは、物体側から順に配置された、第1レンズ群と、開口絞りと、第2レンズ群とからなり、絞り前後の構成が、物体側から順に物体側が凸面の正レンズLS1、像側が凹面の負レンズLS2 、開口絞り、物体側が凹面の負レンズLS3、像側が凸面の正レンズLS4で構成され、前記絞り前後2枚の正レンズと2枚の負レンズが、下記条件式を満たすことを特徴としている。
(θIR_LS2+θIR_LS3)/2+0.0124×(νIR_LS2+νIR_LS3)/2−0.967<−0.01 ・・・式1
(νd_LS2+νd_LS3)/2<50・・・式2
|(θIR_LS1−θIR_LS2)/(νIR_LS1−νIR_LS2)|<0.003 ・・・式3
|(θIR_LS3−θIR_LS4)/(νIR_LS3−νIR_LS4)|<0.003 ・・・式4
ただし、
νdは波長587.6nmに対するアッベ数
νIR=(N1050−1)/(N400−N1700)
θIR=(N400−N1050)/(N400−N1700)
νd_LS2〜3はレンズLS2〜3のν
νIR_LS1〜4はレンズLS1〜4のνIR
θIR_LS1〜4はレンズLS1〜4のθIR
N400は波長400nmでの屈折率
N1050は波長1050nmでの屈折率
N1700は波長1700nmでの屈折率
式1の左辺の値は波長400nmから波長1700nmまで考慮したときのアッベ数と部分分散比の関係式であり、絞りの前後に配置された負レンズLS2とLS3のガラスの異常分散性を表している。式1を満たすことで、波長400nmから波長1700nmまで広い波長領域で色収差を補正できる。
The imaging lens of the present invention is composed of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side, and the configuration before and after the diaphragm is a positive lens LS1 having a convex surface on the object side in order from the object side. The image side is composed of a concave negative lens LS2, an aperture aperture, an object side is a concave negative lens LS3, and an image side is a convex positive lens LS4. The two positive lenses before and after the aperture and the two negative lenses have the following conditional expression. It is characterized by satisfying.
(ΘIR_LS2 + θIR_LS3) / 2 + 0.0124 × (νIR_LS2 + νIR_LS3) /2-0.967 <−0.01 ・ ・ ・ Equation 1
(Νd_LS2 + νd_LS3) / 2 <50 ... Equation 2
| (ΘIR_LS1-θIR_LS2) / (νIR_LS1-νIR_LS2) | <0.003 ... Equation 3
| (ΘIR_LS3-θIR_LS4) / (νIR_LS3-νIR_LS4) | <0.003 ... Equation 4
However,
νd is the Abbe number for a wavelength of 587.6 nm νIR = (N1050-1) / (N400-N1700)
θIR = (N400-N1050) / (N400-N1700)
νd_LS2-3 is ν of lenses LS2-3
νIR_LS1-4 is νIR of lenses LS1-4
θIR_LS1-4 is θIR of lenses LS1-4
N400 is the refractive index at a wavelength of 400 nm N1050 is the refractive index at a wavelength of 1050 nm N1700 is a refractive index at a wavelength of 1700 nm This represents the abnormal dispersibility of the glasses of the negative lenses LS2 and LS3 arranged before and after the aperture. By satisfying Equation 1, chromatic aberration can be corrected in a wide wavelength region from a wavelength of 400 nm to a wavelength of 1700 nm.

また、式2は絞りの前後に配置された負レンズLS2とLS3のd線に対する可視域のアッベ数平均値であり、上限を上回ると色消しする際の負レンズのパワーを大きくする必要があり、球面収差やコマ収差が多く発生するため好ましくない。 In addition, Equation 2 is the average Abbe number in the visible range with respect to the d-line of the negative lenses LS2 and LS3 arranged before and after the aperture, and if it exceeds the upper limit, it is necessary to increase the power of the negative lens when achromatic. , It is not preferable because a lot of spherical aberration and coma are generated.

また、式3は絞りの直前に配置した正レンズLS1と負レンズLS2で波長400nmと波長1700nmの軸上色収差を補正し、その際に発生する波長1050nmの軸上色収差(2次スペクトル)量を推定するため指標である。 Further, in Equation 3, the positive lens LS1 and the negative lens LS2 arranged immediately before the aperture correct the axial chromatic aberration (secondary spectrum) having a wavelength of 400 nm and 1700 nm, and the amount of axial chromatic aberration (secondary spectrum) having a wavelength of 1050 nm generated at that time is calculated. It is an index for estimation.

また、式4は絞りの直後に配置した負レンズLS3と正レンズLS4で波長400nmと波長1700nmの軸上色収差を補正し、その際に発生する波長1050nmの軸上色収差(2次スペクトル)量を推定するため指標である。 Further, in Equation 4, the negative lens LS3 and the positive lens LS4 arranged immediately after the aperture correct the axial chromatic aberration (secondary spectrum) having a wavelength of 400 nm and 1700 nm, and the amount of axial chromatic aberration (secondary spectrum) having a wavelength of 1050 nm generated at that time is corrected. It is an index for estimation.

式3と式4を同時に満たすことで軸上色収差を低減し、ガウスタイプによる絞り前後の対称性によって色コマ収差や倍率色収差を補正することができる。また、式3を満たしていると正レンズLS1と負レンズLS2の間に空気間隔を設けて非点収差を補正する場合、色非点収差の発生を低減することができる。 By satisfying Equations 3 and 4 at the same time, axial chromatic aberration can be reduced, and chromatic coma and chromatic aberration of magnification can be corrected by the symmetry before and after the aperture by the Gauss type. Further, when the equation 3 is satisfied, the occurrence of color astigmatism can be reduced when an air gap is provided between the positive lens LS1 and the negative lens LS2 to correct the astigmatism.

さらに、本発明の撮像レンズは、絞り前後の負レンズLS2、LS3が以下の式5を満たすことが好ましい
(Nd_LS2+Nd_LS3)/2<1.7・・・式5
ただし、
Ndは波長587.6nmに対する屈折率
Nd_LS2〜3はレンズLS2〜3のNd
式5において上限を上回ると、ペッツバール和が大きくなり像面湾曲の補正が困難となるため好ましくない。
Further, in the imaging lens of the present invention, it is preferable that the negative lenses LS2 and LS3 before and after the aperture satisfy the following equation 5 (Nd_LS2 + Nd_LS3) / 2 <1.7 ... Equation 5
However,
Nd is the refractive index for a wavelength of 587.6 nm Nd_LS2-3 is the Nd of lenses LS2-3.
If the upper limit is exceeded in Equation 5, the Petzval sum becomes large and it becomes difficult to correct curvature of field, which is not preferable.

さらに、本発明の撮像レンズは、絞り前後の負レンズLS2、LS3が以下の式6を満たすことが好ましい
|νd_LS2−νd_LS3|<15・・・式6
式6において上限を上回ると、絞り前後での対称性が崩れ、色収差の補正が困難となるため好ましくない。
Further, in the imaging lens of the present invention, it is preferable that the negative lenses LS2 and LS3 before and after the aperture satisfy the following equation 6 | νd_LS2-νd_LS3 | <15 ... Equation 6
If the upper limit is exceeded in Equation 6, the symmetry before and after the aperture is broken, and it becomes difficult to correct the chromatic aberration, which is not preferable.

さらに、本発明の撮像レンズは、絞り前後の負レンズLS2、LS3の少なくとも1枚が、以下の式7、8、9を満たすことが好ましい。
θIR+0.0124×νIR−0.967<−0.015・・・式7
νd<47.5・・・式8
Nd<1.65・・・式9
式7、8、9を満たすような硝材を絞り前後の負レンズLS2、LS3の少なくとも1枚に適用することで、色収差や像面湾曲を補正しやすくなる。
Further, in the image pickup lens of the present invention, it is preferable that at least one of the negative lenses LS2 and LS3 before and after the aperture satisfies the following formulas 7, 8 and 9.
θIR + 0.0124 × νIR −0.967 <−0.015 ・ ・ ・ Equation 7
νd <47.5 ... Equation 8
Nd <1.65 ... Equation 9
By applying a glass material satisfying Equations 7, 8 and 9 to at least one of the negative lenses LS2 and LS3 before and after the aperture, it becomes easy to correct chromatic aberration and curvature of field.

さらに、本発明の撮像レンズは、近距離への合焦には第2レンズ群を物体側へ移動し、第2レンズ群が以下の式7を満たすことが好ましい。
0.5<fG2/f<1.5・・・式10
ただし、
fG2は第2レンズ群の焦点距離
fは全系の焦点距離
式7において上限を上回ると、第2レンズ群のパワーが小さく、移動量が大きくなるため好ましくない。また、下限を下回ると、第2レンズ群のパワーが大きく、撮影距離による収差変動が大きくなるため好ましくない。
Further, in the imaging lens of the present invention, it is preferable that the second lens group is moved to the object side in focusing at a short distance, and the second lens group satisfies the following equation 7.
0.5 <fG2 / f <1.5 ... Equation 10
However,
fG2 is the focal length of the second lens group. If f exceeds the upper limit in the focal length equation 7 of the entire system, the power of the second lens group is small and the amount of movement is large, which is not preferable. Further, if it is below the lower limit, the power of the second lens group is large and the aberration fluctuation due to the shooting distance is large, which is not preferable.

更に好ましくは式3、4、6の数値を次の如く設定するのが良い。
|(θIR_LS1−θIR_LS2)/(νIR_LS1−νIR_LS2)|<0.002 ・・・式3a
|(θIR_LS3−θIR_LS4)/(νIR_LS3−νIR_LS4)|<0.002 ・・・式4a
|νd_LS2−νd_LS3|<10・・・式6a
また、波長400nmから波長1700nmまで補正されたレンズを用いて撮像する際に、前記波長全域に感度を持った撮像素子は非常に高価であるため、第2レンズ群と像面の間に波長分岐用のダイクロプリズムを配置し、可視域を含む波長領域と短波長赤外域を含む波長領域に分けて、2つの撮像素子を用いて撮像することが望ましい。
More preferably, the numerical values of Equations 3, 4 and 6 are set as follows.
| (ΘIR_LS1-θIR_LS2) / (νIR_LS1-νIR_LS2) | <0.002 ... Equation 3a
| (ΘIR_LS3-θIR_LS4) / (νIR_LS3-νIR_LS4) | <0.002 ... Equation 4a
| Νd_LS2-νd_LS3 | <10 ... Equation 6a
Further, when an image pickup is performed using a lens corrected from a wavelength of 400 nm to a wavelength of 1700 nm, an image sensor having sensitivity over the entire wavelength range is very expensive, so that the wavelength is branched between the second lens group and the image plane. It is desirable to arrange a dichroic prism for use and divide it into a wavelength region including a visible region and a wavelength region including a short wavelength infrared region for imaging using two image sensors.

以上説明したように本発明によれば、可視域から短波長赤外域の広い波長域に亘って収差を低減した、単焦点の撮像レンズを提供することができる。 As described above, according to the present invention, it is possible to provide a single focus imaging lens in which aberrations are reduced over a wide wavelength range from the visible region to the short wavelength infrared region.

実施例1の単焦点レンズについて図1、2を用いて詳細に説明する。 The single focus lens of the first embodiment will be described in detail with reference to FIGS. 1 and 2.

図1に示すように、実施例1に記載の単焦点レンズは、物体側から第1レンズ群G1と、所定の口径を決める開口絞りSTOと、第2レンズ群G2より構成され、至近の合焦には第2レンズ群G2を物体側へ移動する。第2レンズ群G2と像面IMGの間には波長分岐用のダイクロプリズムDPが配置される。波長分岐された一方の光は、像面IMG1上に結像し、他方は像面IMG2上で像を形成する。 As shown in FIG. 1, the single focus lens according to the first embodiment is composed of a first lens group G1 from the object side, an aperture diaphragm STO that determines a predetermined aperture, and a second lens group G2, and is a close-up lens. The second lens group G2 is moved to the object side for focusing. A dichroic prism DP for wavelength branching is arranged between the second lens group G2 and the image plane IMG. One of the wavelength-branched lights forms an image on the image plane IMG1, and the other forms an image on the image plane IMG2.

第1レンズ群G1は、負の屈折力を有するレンズL1と、正の屈折力を有するレンズL2と、物体側が凸面で正の屈折力を有するレンズL3(LS1)と、像側が凹面で負の屈折力を有するL4(LS2)により構成され、負レンズL1と正レンズL2は接合されている。 The first lens group G1 includes a lens L1 having a negative refractive power, a lens L2 having a positive refractive power, a lens L3 (LS1) having a convex surface on the object side and a positive refractive power, and a concave surface on the image side. It is composed of L4 (LS2) having an optical power, and the negative lens L1 and the positive lens L2 are joined.

第2レンズ群G2は、物体側が凹面で負の屈折力を有するレンズL5(LS3)と、像側が凸面で正の屈折力を有するレンズL6(LS4)と、正の屈折力を有するレンズL7により構成され、負レンズL5と正レンズL6は接合されている。 The second lens group G2 is composed of a lens L5 (LS3) having a concave surface on the object side and having a negative refractive power, a lens L6 (LS4) having a convex surface on the image side and having a positive refractive power, and a lens L7 having a positive refractive power. The negative lens L5 and the positive lens L6 are joined to each other.

実施例1の単焦点レンズは図2の収差図に示す様に、可視域から短波長赤外域の広い波長域に亘って収差を低減しており、撮影距離によって収差が大きく変動していないことが分かる。 As shown in the aberration diagram of FIG. 2, the single focus lens of Example 1 reduces the aberration over a wide wavelength range from the visible region to the short wavelength infrared region, and the aberration does not fluctuate significantly depending on the shooting distance. I understand.

実施例2の単焦点レンズについて図3、4を用いて詳細に説明する。 The single focus lens of the second embodiment will be described in detail with reference to FIGS. 3 and 4.

図3に示すように、実施例2に記載の単焦点レンズは、物体側から第1レンズ群G1と、所定の口径を決める開口絞りSTOと、第2レンズ群G2より構成され、至近の合焦には第2レンズ群G2を物体側へ移動する。第2レンズ群G2と像面IMGの間には光学ブロックCGが配置される。この光学ブロックCGに関しては、必要のない場合は省略可能である。 As shown in FIG. 3, the single focus lens according to the second embodiment is composed of a first lens group G1 from the object side, an aperture diaphragm STO that determines a predetermined aperture, and a second lens group G2, and is a close-up lens. The second lens group G2 is moved to the object side for focusing. An optical block CG is arranged between the second lens group G2 and the image plane IMG. The optical block CG can be omitted if it is not necessary.

第1レンズ群G1は、正の屈折力を有するレンズL1と、物体側が凸面で正の屈折力を有するレンズL2(LS1)と、像側が凹面で負の屈折力を有するL3(LS2)により構成され、負レンズL2と正レンズL3は接合されている。 The first lens group G1 is composed of a lens L1 having a positive refractive power, a lens L2 (LS1) having a convex surface on the object side and having a positive refractive power, and an L3 (LS2) having a negative refractive power on the image side. The negative lens L2 and the positive lens L3 are joined.

第2レンズ群G2は、物体側が凹面で負の屈折力を有するレンズL4(LS3)と、像側が凸面で正の屈折力を有するレンズL5(LS4)と、正の屈折力を有するレンズL6と、負の屈折力を有するL7と、正の屈折力を有するL8により構成され、負レンズL4と正レンズL5及び正レンズL6と負レンズL7は接合されている。 The second lens group G2 includes a lens L4 (LS3) having a concave surface on the object side and having a negative refractive power, a lens L5 (LS4) having a convex surface on the image side and having a positive refractive power, and a lens L6 having a positive refractive power. It is composed of L7 having a negative refractive power and L8 having a positive refractive power, and the negative lens L4 and the positive lens L5 and the positive lens L6 and the negative lens L7 are joined.

実施例2の単焦点レンズは図4の収差図に示す様に、可視域から短波長赤外域の広い波長域に亘って収差を低減しており、撮影距離によって収差が大きく変動していないことが分かる。 As shown in the aberration diagram of FIG. 4, the single focus lens of Example 2 reduces the aberration over a wide wavelength range from the visible region to the short wavelength infrared region, and the aberration does not fluctuate significantly depending on the shooting distance. I understand.

実施例3の単焦点レンズについて図5、6を用いて詳細に説明する。 The single focus lens of the third embodiment will be described in detail with reference to FIGS. 5 and 6.

図5に示すように、実施例3に記載の単焦点レンズは、物体側から第1レンズ群G1と、所定の口径を決める開口絞りSTOと、第2レンズ群G2より構成され、至近の合焦には第2レンズ群G2を物体側へ移動する。第2レンズ群G2と像面IMGの間には波長分岐用のダイクロプリズムDPが配置される。波長分岐された一方の光は、像面IMG1上に結像し、他方は像面IMG2上で像を形成する。 As shown in FIG. 5, the single focus lens according to the third embodiment is composed of a first lens group G1 from the object side, an aperture diaphragm STO that determines a predetermined aperture, and a second lens group G2, and is a close-up lens. The second lens group G2 is moved to the object side for focusing. A dichroic prism DP for wavelength branching is arranged between the second lens group G2 and the image plane IMG. One of the wavelength-branched lights forms an image on the image plane IMG1, and the other forms an image on the image plane IMG2.

第1レンズ群G1は、負の屈折力を有するレンズL1と、正の屈折力を有するレンズL2と、物体側が凸面で正の屈折力を有するレンズL3(LS1)と、像側が凹面で負の屈折力を有するL4(LS2)により構成され、負レンズL1と正レンズL2は接合されている。 The first lens group G1 includes a lens L1 having a negative refractive power, a lens L2 having a positive refractive power, a lens L3 (LS1) having a convex surface on the object side and a positive refractive power, and a concave surface on the image side. It is composed of L4 (LS2) having an optical power, and the negative lens L1 and the positive lens L2 are joined.

第2レンズ群G2は、物体側が凹面で負の屈折力を有するレンズL5(LS3)と、像側が凸面で正の屈折力を有するレンズL6(LS4)と、正の屈折力を有するレンズL7と、負の屈折力を有するL8により構成され、負レンズL5と正レンズL6は接合されている。 The second lens group G2 includes a lens L5 (LS3) having a concave surface on the object side and having a negative power, a lens L6 (LS4) having a convex power on the image side and having a positive power, and a lens L7 having a positive power. , L8 having a negative refractive power, and the negative lens L5 and the positive lens L6 are joined.

実施例3の単焦点レンズは図6の収差図に示す様に、可視域から短波長赤外域の広い波長域に亘って収差を低減しており、撮影距離によって収差が大きく変動していないことが分かる。 As shown in the aberration diagram of FIG. 6, the single focus lens of Example 3 reduces the aberration over a wide wavelength range from the visible region to the short wavelength infrared region, and the aberration does not fluctuate significantly depending on the shooting distance. I understand.

実施例4の単焦点レンズについて図7、8を用いて詳細に説明する。 The single focus lens of the fourth embodiment will be described in detail with reference to FIGS. 7 and 8.

図7に示すように、実施例4に記載の単焦点レンズは、物体側から第1レンズ群G1と、所定の口径を決める開口絞りSTOと、第2レンズ群G2より構成され、至近の合焦には第2レンズ群G2を物体側へ移動する。第2レンズ群G2と像面IMGの間には波長分岐用のダイクロプリズムDPが配置される。波長分岐された一方の光は、像面IMG1上に結像し、他方は像面IMG2上で像を形成する。 As shown in FIG. 7, the single focus lens according to the fourth embodiment is composed of a first lens group G1 from the object side, an aperture diaphragm STO that determines a predetermined aperture, and a second lens group G2, and is a close-up lens. The second lens group G2 is moved to the object side for focusing. A dichroic prism DP for wavelength branching is arranged between the second lens group G2 and the image plane IMG. One of the wavelength-branched lights forms an image on the image plane IMG1, and the other forms an image on the image plane IMG2.

第1レンズ群G1は、正の屈折力を有するレンズL1と、負の屈折力を有するレンズL2と、物体側が凸面で正の屈折力を有するレンズL3(LS1)と、像側が凹面で負の屈折力を有するL4(LS2)により構成され、負レンズL2と正レンズL3は接合されている。 The first lens group G1 includes a lens L1 having a positive refractive power, a lens L2 having a negative refractive power, a lens L3 (LS1) having a convex surface on the object side and a positive refractive power, and a concave surface on the image side. It is composed of L4 (LS2) having an optical power, and the negative lens L2 and the positive lens L3 are joined.

第2レンズ群G2は、物体側が凹面で負の屈折力を有するレンズL5(LS3)と、像側が凸面で正の屈折力を有するレンズL6(LS4)と、正の屈折力を有するレンズL7により構成され、負レンズL5と正レンズL6は接合されている。 The second lens group G2 is composed of a lens L5 (LS3) having a concave surface on the object side and having a negative refractive power, a lens L6 (LS4) having a convex surface on the image side and having a positive refractive power, and a lens L7 having a positive refractive power. The negative lens L5 and the positive lens L6 are joined to each other.

実施例4の単焦点レンズは図8の収差図に示す様に、可視域から短波長赤外域の広い波長域に亘って収差を低減しており、撮影距離によって収差が大きく変動していないことが分かる。 As shown in the aberration diagram of FIG. 8, the single focus lens of Example 4 reduces the aberration over a wide wavelength range from the visible region to the short wavelength infrared region, and the aberration does not fluctuate significantly depending on the shooting distance. I understand.

以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。例えば、本実施例では400〜1700nmの波長範囲を補正した単焦点レンズを示したが、補正波長範囲を限定するものではなく上記補正波長範囲を狭くあるいは広くした単焦点レンズにも適用可能である。 Although the preferred examples of the present invention have been described above, it goes without saying that the present invention is not limited to these examples, and various modifications and changes can be made within the scope of the gist thereof. For example, in this embodiment, a single focus lens having a corrected wavelength range of 400 to 1700 nm is shown, but the correction wavelength range is not limited, and the present invention can be applied to a single focus lens having a narrowed or widened corrected wavelength range. ..

以下、各実施例の数値実施例を示す。面番号は物体面から像面まで数えた光学面の順である。rは第i番目の光学面の曲率半径である。dは第i番目と第i+1番目の間隔である(符号は物体側から像面側へ測ったときを(光が近行するときを)正、逆方向を負としている)。 Hereinafter, numerical examples of each example will be shown. The plane numbers are in the order of the optical planes counted from the object plane to the image plane. r is the radius of curvature of the i-th optical surface. d is the interval between the i-th and the i + 1-th (the sign is positive when measured from the object side to the image plane side (when the light approaches), and negative in the reverse direction).

Nd、νdは波長587.6nmに対する材料の屈折率とアッベ数をそれぞれ示している。また、前述した各条件式と数値実施例との関係を表−1に示す。 Nd and νd indicate the refractive index and Abbe number of the material with respect to the wavelength of 587.6 nm, respectively. Table 1 shows the relationship between the above-mentioned conditional expressions and the numerical examples.


(数値実施例1)
(数値実施例2)
(数値実施例3)
(数値実施例4)
表−1

(Numerical Example 1)
(Numerical Example 2)
(Numerical Example 3)
(Numerical Example 4)
Table-1

G1 第1レンズ群、G2 第2レンズ群、STO 絞り、
IMG 像面、DP ダイクロプリズム、L1〜L7 レンズ
G1 1st lens group, G2 2nd lens group, STO aperture,
IMG image plane, DP dichroic prism, L1 to L7 lenses

Claims (7)

物体側から順に配置された、第1レンズ群と、開口絞りと、第2レンズ群とからなり、絞り前後の構成が、物体側から順に物体側が凸面の正レンズLS1、像側が凹面の負レンズLS2、開口絞り、物体側が凹面の負レンズLS3、像側が凸面の正レンズLS4で構成され、前記絞り前後2枚の正レンズと2枚の負レンズが、下記条件式を満たすことを特徴とする撮像レンズ。
(θIR_LS2+θIR_LS3)/2+0.0124×(νIR_LS2+νIR_LS3)/2−0.967<−0.01 ・・・式1
(νd_LS2+νd_LS3)/2<50・・・式2
|(θIR_LS1−θIR_LS2)/(νIR_LS1−νIR_LS2)|<0.003 ・・・式3
|(θIR_LS3−θIR_LS4)/(νIR_LS3−νIR_LS4)|<0.003 ・・・式4
ただし、
νは波長587.6nmに対するアッベ数
νIR=(N1050−1)/(N400−N1700)
θIR=(N400−N1050)/(N400−N1700)
ν_LS2〜3はレンズLS2〜3のν
νIR_LS1〜4はレンズLS1〜4のνIR
θIR_LS1〜4はレンズLS1〜4のθIR
N400は波長400nmでの屈折率
N1050は波長1050nmでの屈折率
N1700は波長1700nmでの屈折率
It consists of a first lens group, an aperture aperture, and a second lens group arranged in order from the object side. The configuration before and after the aperture is a positive lens LS1 with a convex surface on the object side and a negative lens with a concave surface on the image side in order from the object side. It is composed of an LS2, an aperture diaphragm, a negative lens LS3 having a concave surface on the object side, and a positive lens LS4 having a convex surface on the image side. Imaging lens.
(ΘIR_LS2 + θIR_LS3) / 2 + 0.0124 × (νIR_LS2 + νIR_LS3) /2-0.967 <−0.01 ・ ・ ・ Equation 1
(Νd_LS2 + νd_LS3) / 2 <50 ... Equation 2
| (ΘIR_LS1-θIR_LS2) / (νIR_LS1-νIR_LS2) | <0.003 ... Equation 3
| (ΘIR_LS3-θIR_LS4) / (νIR_LS3-νIR_LS4) | <0.003 ... Equation 4
However,
ν is the Abbe number for a wavelength of 587.6 nm νIR = (N1050-1) / (N400-N1700)
θIR = (N400-N1050) / (N400-N1700)
ν_LS2-3 is ν of lenses LS2-3
νIR_LS1-4 is νIR of lenses LS1-4
θIR_LS1-4 is θIR of lenses LS1-4
N400 is the refractive index at a wavelength of 400 nm N1050 is the refractive index at a wavelength of 1050 nm N1700 is the refractive index at a wavelength of 1700 nm
前記絞り前後の負レンズLS2、LS3が以下の式5を満たすことを特徴とする請求項1に記載の撮像レンズ。
(Nd_LS2+Nd_LS3)/2<1.7・・・式5
ただし、
Ndは波長587.6nmに対する屈折率
Nd_LS2〜3はレンズLS2〜3のNd
The imaging lens according to claim 1, wherein the negative lenses LS2 and LS3 before and after the aperture satisfy the following equation 5.
(Nd_LS2 + Nd_LS3) / 2 <1.7 ... Equation 5
However,
Nd is the refractive index for a wavelength of 587.6 nm Nd_LS2-3 is the Nd of lenses LS2-3.
前記絞り前後の負レンズLS2、LS3が以下の式6を満たすことを特徴とする請求項1に記載の撮像レンズ。
|νd_LS2−νd_LS3|<15・・・式6
The imaging lens according to claim 1, wherein the negative lenses LS2 and LS3 before and after the aperture satisfy the following equation 6.
| Νd_LS2-νd_LS3 | <15 ... Equation 6
前記絞り前後の負レンズLS2、LS3の少なくとも1枚が、以下の式7、8、9を満たすことを特徴とする請求項1に記載の撮像レンズ。
θIR+0.0124×νIR−0.967<−0.015・・・式7
νd<47.5 ・・・式8
Nd<1.65 ・・・式9
The imaging lens according to claim 1, wherein at least one of the negative lenses LS2 and LS3 before and after the aperture satisfies the following equations 7, 8 and 9.
θIR + 0.0124 × νIR −0.967 <−0.015 ・ ・ ・ Equation 7
νd <47.5 ・ ・ ・ Equation 8
Nd <1.65 ・ ・ ・ Equation 9
近距離への合焦には前記第2レンズ群を物体側へ移動し、第2レンズ群が以下の式7を満たすことを特徴とする請求項1に記載の撮像レンズ。
0.5<fG2/f<1.5・・・式10
ただし、
fG2は第2レンズ群の焦点距離
fは全系の焦点距離
The imaging lens according to claim 1, wherein the second lens group is moved to the object side for focusing on a short distance, and the second lens group satisfies the following equation 7.
0.5 <fG2 / f <1.5 ... Equation 10
However,
fG2 is the focal length of the second lens group f is the focal length of the entire system
前記第2レンズ群と像面の間に波長分岐用のダイクロプリズムを配置し、可視域を含む波長領域と短波長赤外域を含む波長領域に分けて、2つの撮像素子を用いて撮像することを特徴とする請求項1に記載の撮像レンズ。 A dichroic prism for wavelength branching is arranged between the second lens group and the image plane, divided into a wavelength region including a visible region and a wavelength region including a short wavelength infrared region, and imaging is performed using two image sensors. The image pickup lens according to claim 1. 請求項1乃至請求項6の何れか一項に記載の撮像レンズを搭載した監視用撮像装置。 A surveillance imaging device equipped with the imaging lens according to any one of claims 1 to 6.
JP2019119180A 2019-06-27 2019-06-27 Imaging lens Pending JP2021004998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019119180A JP2021004998A (en) 2019-06-27 2019-06-27 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119180A JP2021004998A (en) 2019-06-27 2019-06-27 Imaging lens

Publications (1)

Publication Number Publication Date
JP2021004998A true JP2021004998A (en) 2021-01-14

Family

ID=74097646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119180A Pending JP2021004998A (en) 2019-06-27 2019-06-27 Imaging lens

Country Status (1)

Country Link
JP (1) JP2021004998A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116449542A (en) * 2023-06-15 2023-07-18 武汉大学 Large-view-field high-precision ultraviolet imaging lens
WO2024070754A1 (en) * 2022-09-29 2024-04-04 ソニーグループ株式会社 Optical system, imaging device, and endoscope system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070754A1 (en) * 2022-09-29 2024-04-04 ソニーグループ株式会社 Optical system, imaging device, and endoscope system
CN116449542A (en) * 2023-06-15 2023-07-18 武汉大学 Large-view-field high-precision ultraviolet imaging lens
CN116449542B (en) * 2023-06-15 2023-09-15 武汉大学 Large-view-field high-precision ultraviolet imaging lens

Similar Documents

Publication Publication Date Title
JP5749865B2 (en) Imaging lens and imaging apparatus
CN107632377B (en) Optical imaging system
JP6418893B2 (en) Zoom lens and imaging apparatus having the same
US10620409B2 (en) Optical system and image pickup apparatus including the same
JP6219189B2 (en) Teleconverter lens and imaging device
JP5795692B2 (en) Imaging lens and imaging apparatus provided with the same
US20160147048A1 (en) Zoom lens and image pickup apparatus including the same
CN109416459B (en) Endoscope objective optical system
JP2016080975A5 (en)
US20190391364A1 (en) Converter lens, interchangeable lens, and image pickup apparatus
JP5974101B2 (en) Wide angle lens and imaging device
WO2017221949A1 (en) Image-capturing optical system and image-capturing device
CN108267839B (en) Optical imaging system
JP2014197129A (en) Lens device and imaging apparatus including the same
JP2006003569A (en) Large aperture wide angle lens and camera equipped with same
US9488800B2 (en) Wide angle lens and imaging apparatus
US11194136B2 (en) Optical system for image pickup and image pickup apparatus
JP4125179B2 (en) Single focus lens for visible and near infrared light
JP2010134347A (en) Taking lens, and image capturing apparatus
JP2021004998A (en) Imaging lens
KR102369803B1 (en) Fisheye lens system
JP3925747B2 (en) Large aperture lens for low-light shooting
KR20160048540A (en) Photographic lens optical system
JP5723071B2 (en) Wide angle lens and imaging device
US9829685B2 (en) Optical system and image pickup apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191125