JP4125050B2 - Powder and particle feeder - Google Patents

Powder and particle feeder Download PDF

Info

Publication number
JP4125050B2
JP4125050B2 JP2002178843A JP2002178843A JP4125050B2 JP 4125050 B2 JP4125050 B2 JP 4125050B2 JP 2002178843 A JP2002178843 A JP 2002178843A JP 2002178843 A JP2002178843 A JP 2002178843A JP 4125050 B2 JP4125050 B2 JP 4125050B2
Authority
JP
Japan
Prior art keywords
granular material
auger screw
opening
auger
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002178843A
Other languages
Japanese (ja)
Other versions
JP2004018073A (en
Inventor
朗 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Automatic Machinery Works Ltd
Original Assignee
Tokyo Automatic Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Automatic Machinery Works Ltd filed Critical Tokyo Automatic Machinery Works Ltd
Priority to JP2002178843A priority Critical patent/JP4125050B2/en
Publication of JP2004018073A publication Critical patent/JP2004018073A/en
Application granted granted Critical
Publication of JP4125050B2 publication Critical patent/JP4125050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply Of Fluid Materials To The Packaging Location (AREA)
  • Basic Packing Technique (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粉体や粒体等を含む粉粒体を計量して容器に充填する等の供給を行う粉粒体供給装置に関する。
【0002】
【従来の技術】
従来、この種の粉体充填装置として、特許第2728129号公報や特開平10−278901号公報等に記載されたものがある。特許第2728129号公報では、粉体を収容するファンネル(ホッパ)の先端側に計量用の円筒部を配して、円筒部の内部にオーガースクリューを回転可能に配設し、オーガースクリューの回転によって粉体を計量しつつ円筒部の先端から吐出させ、容器内に充填することになる。この円筒部の先端開口には略網目状の抵抗体を取り付け、オーガースクリューを回転させると抵抗体の網目状の開口部から粉体を吐出でき、オーガースクリューの回転停止時には抵抗体の網目に粉体を付着させてブリッジさせて落下を防止させるようにしている。
尚、抵抗体として径方向及び周方向に網目部を有する菊座と、同心円状の1または複数のリング状開口部を設けたスピナーとがある。
また特開平10−278901号公報では、ファンネルと円筒部(ノズル)を備えた粉体充填装置において、円筒部の先端開口部に間隙をおいて閉止板を対向させて取り付け、円筒部内に設けたオーガースクリューを回転させて閉止板と円筒部の先端開口部との間隙から計量された粉体を吐出し、充填するようにしている。しかも円筒部の外側に環状リブと鍔部を設けると共に鍔部の先端には筒状の開閉シャッターが配設されている。そして開閉シャッターは鍔部を押圧するスプリングの付勢力によって閉止板に当接して円筒部を閉鎖するとともに、鍔部と環状リング間を防塵シートで覆う内部空間が吸引装置で負圧に制御されることで、開閉シャッターがスプリングの付勢力に抗して閉止板から離間し、間隙から粉体を吐出して容器に充填することができる。
そのため、吸引装置の制御によって開閉シャッターを閉止板に対して開閉操作して粉体の吐出充填と停止を行う。
【0003】
【発明が解決しようとする課題】
しかしながら、上述した従来の粉体充填装置のうち前者の装置では、粉体の吐出停止時に際してオーガスクリューを停止し、抵抗体に粉体を付着させてブリッジさせることで粉体の粉落ちを停止するものであるため、粉体の粒子の大きさや粘度や流動性、充填量等の充填条件に合わせて、好適な抵抗体をその都度選定し、交換する必要がある。そのため、粉体の特性による抵抗体の交換作業が煩雑であるという欠点がある。
しかも充填が終了してオーガースクリューを停止させた後でも、抵抗体には複数の開口があるために抵抗体の開口部からブリッジされた粉体の一部が落下する、いわゆる粉体の後ダレを生じてしまい、この後ダレ時間が長くなって充填量のバラツキや周囲への飛散等を生じることになる。
また後者の粉体充填装置を用いた場合、前者の場合のように充填条件によって抵抗体を交換して装着する必要がないという利点を有する。しかしながら、粉体充填停止時に開閉シャッターをスプリングの弾性力で移動させて閉止板に当接させて開口を閉鎖させるため、開閉シャッターが閉止板に衝突する際の衝撃で閉止板に付着していた粉体が不規則に落下してしまう欠点がある。しかも、充填停止後に粉体の粉落ちが収まるまでの時間が安定せず、容器への充填量がばらついてしまい、充填時間を充填停止後に長くとらないと粉体が周囲に飛散することになる。
【0004】
本発明は、このような実情に鑑みて、粉粒体の後ダレが少ない上に後ダレ時間が短く、安定した粉粒体の供給を行えるようにした粉粒体供給装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明による粉粒体供給装置は、粉粒体を収容するホッパの先端側に筒状部を設け、この筒状部の内部にオーガスクリューを配設し、該オーガスクリューの回転によって粉粒体を計量して筒状部の開口から供給するようにした粉粒体供給装置において、オーガスクリューの先端側にシャッタ部を取り付けると共にオーガスクリューを進退可能とし、シャッタ部はオーガスクリューに対して回動自在に取り付けられており、該オーガスクリューの進退によってシャッタ部で筒状部の開口を開閉するようにしたことを特徴とする。
粉粒体の吐出開始時にはオーガスクリューを筒状部に対して進出させることで、シャッタ部を筒状部の開口から離間させ、オーガスクリューの回転によって粉粒体を計量して開口から吐出させることになる。そして、供給停止時にはオーガスクリューを筒状部に対して後退させることでシャッタ部を強制的に引き上げて筒状部の開口に当接させて粉粒体の吐出を停止させるために、粉粒体の慣性による吐出を防止できる共に当接時の衝撃が小さいから粉粒体の後ダレを抑制できる。
またシャッタ部はオーガスクリューに対して回動自在に取り付けられているから、粉粒体の供給時にオーガスクリューの回転によって吐出する粉粒体は慣性によってらせん状に回転しつつ落下しシャッタ部に衝突して更に落下するために、シャッタ部は回転方向に負荷を受けてオーガスクリューに対して相対回転し粉粒体を滑らかに拡散しつつ放出することができる。その際、シャッタ部の表面を鏡面仕上げしておけば、粉粒体の衝突時に粒子破壊を防止でき、シャッタ部での抵抗が小さいのでオーガスクリュー1回転当たりの吐出量が多くなる。
【0006】
またオーガスクリューはオーガ駆動軸に連結され、オーガ駆動軸はスプライン軸を構成するようにしてもよい。
スプライン軸でオーガ駆動軸を構成したためにオーガスクリューの進退移動がスムーズである上に進出移動等に際してオーガスクリューを回転作動させることも可能であり、粉粒体の加速吐出を行え、粉粒体の供給効率が向上する。
またシャッタ部は筒状部の開口に対向する面がテーパ状に形成されており、オーガスクリューを後退させた際にシャッタ部で筒状部の開口を閉鎖するようにしてもよい。
オーガスクリューを停止させて後退させると、シャッタ部は慣性で相対回転するためにテーパ部に付着した粉粒体を遠心力で振り払いつつ上昇し、後ダレ時間が短くて済む。そしてシャッタ部が筒状部の開口に接触した際に両者は全体にリング状に接触して摺り切りながら閉止するので、粉粒体の特性が変わっても当接部への粉粒体の噛み込みを生じない。
【0007】
また筒状部の開口から供給する粉粒体の詰まりを検出する検出手段が付加されていてもよい。
オーガスクリューの進出位置即ち粉粒体の供給位置を検出すると共に、オーガスクリューに過負荷がかかって進出位置即ち粉粒体の供給位置から微小距離移動すると、検出手段でこれを素早く検出してオーガスクリューを緊急停止させ、好ましくは後退させる方向へ移動させる。そのため、粉粒体詰まりの検出が直接的で迅速であり、装置を破損することを防止できる。
【0008】
【発明の実施の形態】
次に本発明の実施の形態による粉粒体充填装置を図1乃至4により説明する。
図1は粉粒体充填装置の概略構成図、図2は図1に示す粉粒体充填装置のオーガスクリュー部分の拡大図、図3は粉粒体充填装置の先端部における閉弁状態の拡大図、図4は図3と同じく開弁状態の拡大図である。
図1及び図2において、本実施の形態による粉粒体充填装置1(粉粒体供給装置)は、例えば中挽きコーヒー粉等の粉粒体を収容するホッパ2の先端に筒状部として例えば略円筒状のノズル部3が連結されており、ホッパ2からノズル部3にかけて内部に略同軸にオーガスクリュー4が回転可能に収容されている。オーガスクリュー4の基端側にカップリング5を介して連結されたオーガ駆動軸6はスプライン軸で構成されていて、オーガ駆動軸6は上下動エアシリンダ8に連結されており、エアシリンダ8の作動によってオーガ駆動軸6及びオーガスクリュー4を上下動させることになる。
またオーガ駆動軸6は例えば第一のベアリング軸受9aで回転可能及び軸方向移動可能に支持されていると共にオーガ軸モータM1に連結されて回転可能とされている。第二のベアリング軸受9bはオーガ駆動軸6と同軸に配設されていてアジテータ10を連結した円環状の支持部11をオーガ駆動軸6とは別個に回転可能に支持しており、アジテータモータM2によってアジテータ10を支持部11を介してオーガ駆動軸6と同軸に旋回させる。これによってアジテータ10はホッパ2内の粉粒体を適宜かき混ぜることができて見かけ比重の増大を抑制できる。
【0009】
図3及び4において、ノズル部3の先端領域の外周面には略円筒状のスリーブ14(筒状部)が螺合等の手段で装着されており、その下端部はノズル部3よりも先端側に突き出すと共に段差部を介してノズル部3の中心軸O側に若干縮径した開口14aが形成されている。またオーガスクリュー4の先端にはシャッタ部15がオーガスクリュー4に対して回転自在に取り付けられている。
シャッタ部15は開口14aに対向する面が例えばノズル部3及び開口14aと同軸をなす略円錐周面形状のテーパ面15aを形成しており、このテーパ面15aは例えばバフ研磨等で鏡面仕上げされており、その最大外径は開口14aの内径よりも大きく設定されている。シャッタ部15はエアシリンダ8の作動に連動してオーガ駆動軸6及びオーガスクリュー4と一体に上下動し、上方へ引き上げられた位置でテーパ面15aがスリーブ14の開口14aの内側角部14bに当接し、下方へ引き出された位置で開口14aとテーパ面15aとの間に間隙sを形成し、この間隙sから粉粒体を吐出することになる。
換言すれば、シャッタ部15はこの間隙sの長さをストロークとして上下動(進退移動)することになる。
またスリーブ14の開口14aにおいて、少なくともシャッタ部15が当接する内側角部14b付近はスリーブ14の材質である金属を焼き入れすることで強度を向上させて耐久性を上げている。
【0010】
図1に示す粉粒体充填装置1には、エアシリンダ8とオーガ駆動軸6との連結部材16の上下移動を検出する検出手段17が設けられている。エアシリンダ8によってオーガ駆動軸6が上昇位置(開口14aの閉鎖位置)と下降位置(開口14aの開口位置)とを移動すると、連結部材16も一体に移動するため、これを検出手段17で検出することになる。そして、オーガスクリュー4によってノズル部3内の粉粒体を計量しつつ開口14aから充填吐出する際、ノズル部3内やホッパ2内で粉粒体の詰まりが発生すると、螺旋状に形成されているオーガ翼4aの回転が抑えられ、オーガスクリュー4によってオーガ軸6にはエアシリンダ8の圧力を越える上昇力が発生する。オーガ軸6はスプライン軸であるから、この上昇力を受けて上昇することになり、これを検出手段17で検出して粉粒体充填装置1を緊急停止させることができる。
【0011】
本実施の形態による粉粒体充填装置1は上述の構成を有しており、次にその作用について説明する。
図1及び図3に示す粉粒体充填装置1において、ホッパ2内に粉粒体が収容され、オーガスクリュー3は上方向に引き上げられた位置にあり、この状態でオーガスクリュー3の先端に取り付けたシャッタ部15はスリーブ14の開口14aに当接した閉鎖状態にある。この状態からエアシリンダ8に開放信号を入力させてエアシリンダ8を作動させると共にオーガ軸モータM1を作動させる。
するとオーガ駆動軸6はスプライン軸を構成するためにオーガスクリュー4と一体に長手方向の下方に降下つつ中心軸O周りに回転する。オーガスクリュー4の降下と一体にシャッタ部15がスリーブ14の開口14aから離間する方向へ降下しながら粉粒体の吐出圧力によって摩擦で従動回転し、開口14aとシャッタ部15との間に間隙sを形成する。
そのため、オーガスクリュー4のスクリュー翼4a内の粉粒体には降下運動に回転運動が加わり、下降加速して間隙sから落下する。粉粒体はオーガスクリュー4の回転に伴ってらせん運動を描いて例えば約0.35m/秒で降下し、シャッタ部15のテーパ面15aに衝突してテーパ面15aに同一方向の回転力を付与して滑らかに拡散放出されて間隙sから落下し、図示しない容器内に加速充填される。
【0012】
らせん方向に回動しつつ落下する粉粒体が当接すると、シャッタ部15は回転力を付与され、オーガスクリュー4に対して相対回転する。シャッタ部15のテーパ面15aは鏡面仕上げされていて斜面を粉粒体が流出するために粉粒体に圧力をかけないから、粉粒体の粒子破壊を生じない。しかもオーガスクリュー4が加速降下しつつ回動するために吐出圧力が小さく、オーガスクリュー1回転当たりの粉粒体吐出量が従来の充填装置と比較して増大する。
間隙sを形成する所定距離だけ降下した位置でオーガスクリュー4は降下動作を終了して、その後はオーガ軸モータM1による回転作動を行い、短時間で所要量の粉粒体を容器内に充填できる。或いは間隙s間の下降動作終了までに所要回転することで容器への充填を完了するように制御してもよい。例えばオーガスクリュー4の下降工程で1ショットの充填を行うべく3回転(3ピッチ)するようにしてもよい。またオーガスクリュー4の降下動作終了後に所要の3回転を行うことで1ショット分の吐出を行うようにしてもよい。
そして、粉粒体の容器内への充填が完了するとオーガ軸モータM1を停止させてオーガスクリュー4の回転を停止させる。この時、シャッタ部15はオーガスクリュー4に対して慣性で回転し続けるためにテーパ面15aに付着した粉粒体は遠心力で飛散させて振り払われる。
【0013】
次にオーガスクリュー4はエアシリンダ8の上昇作動によって上昇し、シャッタ部15もオーガスクリュー14で引っ張られて粉粒体を遠心力によってテーパ面15aから振り払いつつ上昇する。そのため、オーガスクリュー4のスクリュー翼4aで強制的に粉粒体を上昇させ、オーガスクリュー4の停止後に慣性で粉粒体がノズル部3内から吐出するのを阻止する。オーガスクリュー4の上昇に連動してシャッタ部15のテーパ面15aがスリーブ14の開口14aに当接すると、オーガスクリュー4の上昇が終了する。
この時、開口14aの内側角部14bにはシャッタ部15のテーパ面15aが全周に当接した状態で慣性によって滑りつつ摺動するために、テーパ面15aが内側角部14bを摺り切りつつ開口14aを閉止し、粉粒体の性状に関わらず当接部での噛み込みを生じない。
特にオーガスクリュー4を上方に引き上げてシャッタ部15で開口14aを閉鎖させることで、閉鎖後に粉粒体がノズル部3内からこぼれ落ちるのを防止でき、テーパ面15aからの後ダレを抑制でき、しかもテーパ面15aは慣性回転によって振り払い回転しながら上昇するので後ダレ時間を短くできる。
【0014】
またシャッタ部15の下降位置でオーガスクリュー4を回転させて粉粒体を間隙sから吐出させる際、粉粒体の詰まり等によってオーガスクリュー4に過負荷がかかるとオーガ翼4aが螺旋状であるためにオーガスクリュー4が上昇する。これを検出手段17で検出し、粉粒体充填装置1を緊急停止させて詰まり事故を防止する。そしてオーガスクリュー4を上昇させて開口14aを閉鎖させることで粉粒体の無駄な吐出を抑制できる。特に本実施の形態によれば、オーガ軸6の下降位置からの微小な距離の上昇移動を検出することで、充填動作の変化を直接検出できて応答が迅速になり、粉粒体詰まりによるノズル部3内での固化による粉粒体充填装置1の作動不能状態や、部品や機構の破損等を確実に防止できる。
これに対し、従来の粉粒体充填装置ではオーガ駆動モータM1の回転トルクの変化を監視し、過負荷等により設定値を越えたら停止させるようになっている。そのため、充填動作の変化を間接的に検出して緊急停止させるから、異常検出が1テンポ遅れる欠点がある。この間に、オーガスクリュー4間の粉粒体は圧縮され固化してしまい、装置が動かなくなったり、部品等の破損事故を起こしやすい欠点がある。
【0015】
上述のように本実施の形態の粉粒体充填装置1によれば、粉粒体の後ダレが少なく、また後ダレ時間が短く安定しているので、高精度な粉粒体の充填を行える。また粉粒体の吐出充填時にオーガスクリュー4の下降加速を行うことで1回転当たりの粉粒体吐出量を増大させることができて高速充填が可能であり、充填効率と設備効率がよい。また粉粒体の後ダレ量と後ダレ時間が少なく安定しているために、粉粒体の飛散が少なく衛生的であり、歩留まりもよい。また下降位置でのオーガ軸6の微小移動を検出するために充填動作の変化を直接検出できて応答が迅速になり、粉粒体充填装置1の破損等を確実に防止できる。
【0016】
【実施例】
▲1▼ 試験1
次に本発明の実施例について、図5乃至図8と表1乃至表3により説明する。
実施例として図1乃至図4に示す実施の形態による粉粒体充填装置1を用い、従来例として上述した円筒部に抵抗体を備えた粉体充填装置を用いるものとした。従来例では抵抗体としてリング状の粉粒体通過用穴部(内径17mm、外径37mmのリング状開口部)を備えたリング&ドリップからなるスピナーを円筒部の先端に取り付けた。
試験1:充填率
粉粒体として中挽きコーヒーを用いた。
そして1つの容器への中挽きコーヒーからなる粉粒体の規定充填量を1ショットとして、オーガスクリューを3回転(3ピッチ)させることで1ショット分の粉粒体を充填することとした。
試験1は、実施例と従来例について各92ショット繰り返して各ショットの充填量を順次測定し、1ピッチ毎の平均供給重量(g)を計算で求めた。その結果は下記表1に示されている。
【0017】
【表1】

Figure 0004125050
【0018】
表1からオーガスクリュー1ピッチ当たりの粉粒体充填量は実施例で22.4g、従来例で20.7gであった。両者の差は
(22.4−20.7)/20.7×100=8(%)
となった。実施例の方が1ピッチ当たり8%充填量が多かった。これは充填時の粉粒体の流れ抵抗が小さいためと下降加速するためであり、充填時における粉粒体のダメージが小さい上に1ピッチ(回転)当たり、そして1ショット当たりの粉粒体供給量を増大できることを認識できた。
【0019】
▲2▼試験2:充填重量誤差
試験2では、粉粒体はホッパ内やノズル部内または円筒部内でブリッジする等して内部に空間が形成されることがあり、そのために見かけ比重が変動することがある。そのため上述した実施例と従来例について粉粒体1ショット当たりの充填重量の誤差(%)と標準偏差(g)をそれぞれ測定して対比観察した。
試験結果は下記表2と図5に示す通りになった。
【0020】
【表2】
Figure 0004125050
【0021】
表2及び図5では、実施例と従来例について1ショットあたりの充填重量をそれぞれ92サンプル測定した。
1ショット当たりの平均充填重量は従来例(63.6g)よりも実施例(69g)の方が多かった。定められた規定の充填重量に対する充填誤差は最大で実施例±0.45%、従来例±0.85%であった。標準偏差についても実施例0.21、従来例0.33となり、いずれも実施例の方が従来例よりも充填精度が高かった。
【0022】
▲3▼試験3:充填後ダレ平均時間
実施例と従来例についてオーガスクリュー停止後における粉粒体の後ダレ時間をそれぞれ22サンプル測定した。
下記表3をを見ると充填した後の後ダレ時間はそれぞれ平均87msec(ミリ秒)でほぼ同じであったが、図6に見るように従来例は後ダレ時間の変動が激しく、これを表3の標準偏差で比較すると実施例が9.7msec(ミリ秒)であったのに対して従来例では24msec(ミリ秒)となり、実施例は従来例と比較して非常にバラツキが小さく充填精度が良いことを認識できた。
【0023】
【表3】
Figure 0004125050
【0024】
▲4▼試験4:乖離値
実施例と従来例について各20ショットづつ容器に充填し、各ショット後の後ダレ時間と各ショットの充填重量を測定した。そして各測定値から、隣り合う前後のショットにおける後ダレ時間の差と充填重量の差を演算して乖離値として図7及び図8にそれぞれプロットした。
図7において、後ダレ時間の乖離値の平均値は、実施例では13.8msec(ミリ秒)であるのに対して従来例では33.5msec(ミリ秒)であり、実施例の方がはるかにバラツキが少なかった。
また図8において、充填重量の乖離値の平均値は、実施例では0.24gであるのに対して従来例では0.36gであり、実施例の方がはるかにバラツキが少なかった。
【0025】
上述した試験1〜4により、実施例は1ショット当たりの充填量が多く且つ充填重量のバラツキが少ないために充填効率がよく、少ないピッチ回数で精度良く充填できる。また後ダレ時間についても全体の平均値では差は見られなかったが、バラツキの度合いは実施例の方がはるかに小さく充填精度がよいことを確認できた。
【0026】
尚、上述の実施の形態ではノズル部3の先端側外周部にスリーブ14を装着して、スリーブ14の開口14aにシャッタ部15を当接させるようにしたが、スリーブ14は必ずしも備えていなくてもよく、ノズル部3の開口に直接シャッタ部15を着脱させて開口を開閉操作するするようにしてもよい。尚、ノズル部3とスルー部14は筒状部を構成する。
またシャッタ部15は開口14a等への当接面を略円錐周面状のテーパ面15aとしたが、必ずしも当接面は円錐周面状である必要はなく、例えば球面状や平面状等適宜の形状を選択できる。
また上述の実施の形態では、粉粒体充填装置1は図示しない容器へオーガスクリュー4の回転によって粉粒体を計量して充填するための装置としたが、本発明はこれに限定されることなく、要するに供給すべき粉粒体をオーガスクリュー4とその外周に位置するノズル部3によって計量して容器やそれ以外の部材等の外部へ供給する粉粒体供給装置であればよい。
【0027】
【発明の効果】
上述したように本発明による粉粒体供給装置は、オーガスクリューの先端側にシャッタ部を取り付けると共にオーガスクリューを進退可能とし、オーガスクリューの進退によってシャッタ部で筒状部の開口を開閉するようにしたから、粉粒体を計量して開口から吐出させると共に、供給終了後にはシャッタ部を強制的に筒状部の開口に当接させて粉粒体の供給を終了させるために、精度良く粉粒体を供給できると共に供給後の粉粒体の後ダレを抑制できる。
またシャッタ部はオーガスクリューに対して回動自在に取り付けられているから、供給される粉粒体はシャッタ部に衝突して従動回転させることで滑らかに拡散放出することができ、閉鎖後の後ダレ量と後ダレ時間を減少できる。
【0028】
またオーガスクリューはオーガ駆動軸に連結され、オーガ駆動軸はスプライン軸を構成するようにしたから、オーガスクリューの進退移動がスムーズである上に粉粒体の加速供給を行えて粉粒体の供給効率が向上する。
またシャッタ部は筒状部の開口に対向する面がテーパ状に形成されており、オーガスクリューを後退させた際にシャッタ部で筒状部の開口を閉鎖するようにしたから、シャッタ部は閉鎖作動時に慣性で回転してテーパ部に付着した粉粒体を遠心力で振り払い上昇するために後ダレ時間が短く、筒状部の開口に当接した際に全周に亘って摺り切りつつ閉止するので、粉粒体の性状が変わっても当接部への粉粒体の噛み込みを生じない。
また筒状部の開口から供給する粉粒体の詰まりを検出する詰まり検出手段が付加されているため、粉粒体詰まりの検出が直接的で迅速であり、装置を破損することを防止できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態による粉粒体供給装置の概略構成図である。
【図2】 図1に示す粉粒体供給装置の先端側部分の拡大図である。
【図3】 ノズル部に設けたスリーブの開口に対するシャッタ部の閉鎖状態を示す図である。
【図4】 ノズル部に設けたスリーブの開口に対するシャッタ部の開放状態を示す図である。
【図5】 実施例と従来例の各ショットにおける充填重量誤差を示す図である。
【図6】 実施例と従来例の各ショットにおける充填後の後ダレ時間を示す図である。
【図7】 実施例と従来例の各ショットにおける後ダレ時間の乖離値を示す図である。
【図8】 実施例と従来例の各ショットにおける充填重量精度の乖離値を示す図である。
【符号の説明】
1 粉粒体充填装置(粉粒体供給装置)
3 ノズル部(筒状部)
4 オーガスクリュー
6 オーガ駆動軸(スプライン軸)
14 スリーブ(筒状部)
14a 開口
15 シャッタ部
15a テーパ面
17 検出手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a granular material supply apparatus that performs supply such as weighing and filling a container including powder and granular material.
[0002]
[Prior art]
Conventionally, as this kind of powder filling apparatus, there are those described in Japanese Patent No. 2728129, Japanese Patent Laid-Open No. 10-278901, and the like. In Japanese Patent No. 2728129, a measuring cylindrical part is arranged on the tip side of a funnel (hopper) for storing powder, and an auger screw is rotatably arranged inside the cylindrical part. The powder is discharged from the tip of the cylindrical portion while weighing and filled into the container. A substantially mesh-like resistor is attached to the end opening of this cylindrical portion, and when the auger screw is rotated, the powder can be discharged from the mesh-like opening of the resistor, and when the rotation of the auger screw is stopped, the powder is applied to the resistor mesh. The body is attached and bridged to prevent falling.
Note that there are a chrysanthemum having a mesh portion in the radial direction and the circumferential direction as a resistor, and a spinner provided with one or more concentric ring-shaped openings.
In JP-A-10-278901, in a powder filling apparatus having a funnel and a cylindrical portion (nozzle), a closing plate is attached to face the opening at the front end of the cylindrical portion with a gap, and is provided in the cylindrical portion. The auger screw is rotated to discharge and fill the weighed powder from the gap between the closing plate and the tip opening of the cylindrical portion. In addition, an annular rib and a flange portion are provided outside the cylindrical portion, and a cylindrical opening / closing shutter is disposed at the tip of the flange portion. The open / close shutter is brought into contact with the closing plate by the urging force of the spring that presses the collar portion to close the cylindrical portion, and the internal space covering the space between the collar portion and the annular ring with the dustproof sheet is controlled to a negative pressure by the suction device. Thus, the opening / closing shutter can be separated from the closing plate against the biasing force of the spring, and powder can be discharged from the gap to fill the container.
Therefore, the opening / closing shutter is opened / closed with respect to the closing plate under the control of the suction device to discharge and fill the powder.
[0003]
[Problems to be solved by the invention]
However, in the former device among the above-described conventional powder filling devices, the powder dropping of the powder is stopped by stopping the auger screw when the discharge of the powder is stopped and causing the powder to adhere to the resistor to be bridged. Therefore, it is necessary to select and replace a suitable resistor each time according to the filling conditions such as the particle size, viscosity, fluidity, and filling amount of the powder. Therefore, there exists a fault that the replacement | exchange operation | work of a resistor by the characteristic of powder is complicated.
Moreover, even after the filling is completed and the auger screw is stopped, since the resistor has a plurality of openings, a part of the bridged powder falls from the opening of the resistor, so-called post-sagging of the powder. After that, the sag time becomes longer, resulting in variations in the filling amount, scattering to the surroundings, and the like.
Further, when the latter powder filling apparatus is used, there is an advantage that it is not necessary to replace and install the resistor depending on the filling conditions as in the former case. However, when the powder filling is stopped, the opening / closing shutter is moved by the elastic force of the spring and brought into contact with the closing plate to close the opening. Therefore, the opening / closing shutter is attached to the closing plate due to an impact when it collides with the closing plate. There is a drawback that the powder falls irregularly. Moreover, the time until the powder fall off after the filling is stopped is not stable, the amount of filling into the container varies, and if the filling time is not long after the filling is stopped, the powder will be scattered around. .
[0004]
In view of such circumstances, the present invention provides a granular material supply apparatus that has a small amount of subsequent sag and has a short post sag time and can supply a stable granular material. Objective.
[0005]
[Means for Solving the Problems]
The granular material supply apparatus according to the present invention is provided with a cylindrical portion on the tip side of a hopper that accommodates the granular material, an auger screw is disposed inside the cylindrical portion, and the granular material is rotated by rotation of the auger screw. In the granular material supply device that measures and supplies the powder from the opening of the cylindrical part, the shutter part is attached to the distal end side of the auger screw and the auger screw can be moved forward and backward , and the shutter part rotates with respect to the auger screw. It is freely attached, and the opening of the cylindrical part is opened and closed by the shutter part by the advance and retreat of the auger screw.
The auger screw is moved forward with respect to the cylindrical part at the start of discharging the granular material, so that the shutter part is separated from the opening of the cylindrical part, and the granular material is measured and discharged from the opening by the rotation of the auger screw. become. When the supply is stopped, the auger screw is moved backward with respect to the cylindrical part to forcibly pull up the shutter part and contact the opening of the cylindrical part to stop the discharge of the granular substance. In addition to preventing the discharge due to inertia, the impact at the time of contact is small, so that the sag of the granular material can be suppressed.
In addition, since the shutter unit is pivotally attached to the auger screw, the granular material discharged by the rotation of the auger screw during the supply of the granular material falls while rotating helically due to inertia and collides with the shutter unit. In order to further fall, the shutter portion receives a load in the rotational direction and can rotate relative to the auger screw to discharge the powder particles while smoothly diffusing. At that time, if the surface of the shutter part is mirror-finished, particle breakage can be prevented at the time of collision of powder particles, and since the resistance at the shutter part is small, the discharge amount per rotation of the auger screw increases.
[0006]
The auger screw may be connected to the auger drive shaft, and the auger drive shaft may constitute a spline shaft.
Since the auger drive shaft is composed of a spline shaft, the auger screw can be moved forward and backward smoothly, and the auger screw can be rotated during advance movement. Supply efficiency is improved.
The shutter portion may have a tapered surface facing the opening of the cylindrical portion, and the shutter portion may close the opening of the cylindrical portion when the auger screw is retracted.
When the auger screw is stopped and moved backward, the shutter portion rotates relative to the inertia, so that the granular material adhering to the tapered portion is lifted while being swung away by centrifugal force, and the post-sag time can be shortened. When the shutter part comes into contact with the opening of the cylindrical part, both contact with each other in a ring shape and close while sliding, so even if the characteristics of the granular substance change, the granular part bites into the contact part. There is no confusion.
[0007]
Moreover, the detection means which detects the clogging of the granular material supplied from opening of a cylindrical part may be added.
While detecting the auger screw advance position, that is, the powder supply position, and when the auger screw is overloaded and moved a minute distance from the advance position, that is, the powder supply position, this is quickly detected by the detection means. The screw is brought to an emergency stop and preferably moved in a direction to retract. Therefore, the detection of clogging of the granular material is direct and quick, and the apparatus can be prevented from being damaged.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, a powder and particle filling apparatus according to an embodiment of the present invention will be described with reference to FIGS.
1 is a schematic configuration diagram of the granular material filling device, FIG. 2 is an enlarged view of an auger screw portion of the granular material filling device shown in FIG. 1, and FIG. 3 is an enlarged view of a valve closing state at a tip portion of the granular material filling device. FIG. 4 and FIG. 4 are enlarged views of the valve open state as in FIG.
1 and 2, the powder filling device 1 (powder supply device) according to the present embodiment is, for example, as a cylindrical portion at the tip of a hopper 2 that contains powder such as medium ground coffee powder. A substantially cylindrical nozzle portion 3 is connected, and an auger screw 4 is rotatably accommodated from the hopper 2 to the nozzle portion 3 in a substantially coaxial manner. The auger drive shaft 6 connected to the base end side of the auger screw 4 via a coupling 5 is configured as a spline shaft, and the auger drive shaft 6 is connected to a vertically moving air cylinder 8. The auger drive shaft 6 and the auger screw 4 are moved up and down by the operation.
The auger drive shaft 6 is supported by a first bearing bearing 9a so as to be rotatable and movable in the axial direction, and is connected to an auger shaft motor M1 to be rotatable. The second bearing bearing 9b is disposed coaxially with the auger drive shaft 6 and supports an annular support portion 11 connected to the agitator 10 so as to be rotatable separately from the auger drive shaft 6, and an agitator motor M2 Thus, the agitator 10 is rotated coaxially with the auger drive shaft 6 via the support portion 11. As a result, the agitator 10 can appropriately stir the powder particles in the hopper 2 and suppress an increase in apparent specific gravity.
[0009]
3 and 4, a substantially cylindrical sleeve 14 (cylindrical portion) is attached to the outer peripheral surface of the tip region of the nozzle portion 3 by means of screwing or the like, and the lower end thereof is the tip of the nozzle portion 3. An opening 14 a that protrudes toward the side and is slightly reduced in diameter on the central axis O side of the nozzle portion 3 through a stepped portion is formed. A shutter portion 15 is attached to the tip of the auger screw 4 so as to be rotatable with respect to the auger screw 4.
The surface of the shutter portion 15 facing the opening 14a is formed with a tapered surface 15a having a substantially conical circumferential surface that is coaxial with the nozzle portion 3 and the opening 14a. The tapered surface 15a is mirror-finished by, for example, buffing or the like. The maximum outer diameter is set larger than the inner diameter of the opening 14a. The shutter portion 15 moves up and down integrally with the auger drive shaft 6 and the auger screw 4 in conjunction with the operation of the air cylinder 8, and the taper surface 15 a is formed on the inner corner portion 14 b of the opening 14 a of the sleeve 14 at a position where it is pulled upward. A gap s is formed between the opening 14a and the taper surface 15a at the position where they abut and are drawn downward, and the powder particles are discharged from the gap s.
In other words, the shutter unit 15 moves up and down (advance and retreat) using the length of the gap s as a stroke.
Further, in the opening 14a of the sleeve 14, at least the vicinity of the inner corner portion 14b where the shutter portion 15 abuts is made by quenching the metal which is the material of the sleeve 14, thereby improving the strength and improving the durability.
[0010]
The granular material filling apparatus 1 shown in FIG. 1 is provided with detection means 17 for detecting the vertical movement of the connecting member 16 between the air cylinder 8 and the auger drive shaft 6. When the auger drive shaft 6 is moved between the raised position (closed position of the opening 14a) and the lowered position (opened position of the opening 14a) by the air cylinder 8, the connecting member 16 also moves together, and this is detected by the detecting means 17. Will do. And when clogging of the granular material occurs in the nozzle portion 3 or the hopper 2 when filling and discharging from the opening 14a while measuring the granular material in the nozzle portion 3 by the auger screw 4, it is formed in a spiral shape. The rotation of the auger blade 4 a is suppressed, and the auger screw 4 generates a rising force exceeding the pressure of the air cylinder 8 on the auger shaft 6. Since the auger shaft 6 is a spline shaft, the auger shaft 6 is lifted by receiving this lifting force, and this can be detected by the detection means 17 and the powder filling device 1 can be urgently stopped.
[0011]
The granular material filling device 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
1 and FIG. 3, the granular material is accommodated in the hopper 2, and the auger screw 3 is in a position where it is lifted upward. In this state, it is attached to the tip of the auger screw 3. The shutter portion 15 is in a closed state in contact with the opening 14 a of the sleeve 14. From this state, an open signal is input to the air cylinder 8 to operate the air cylinder 8 and to operate the auger shaft motor M1.
Then, the auger drive shaft 6 rotates around the central axis O while being lowered downward in the longitudinal direction integrally with the auger screw 4 to constitute a spline shaft. As the auger screw 4 is lowered, the shutter portion 15 is driven to rotate by friction by the discharge pressure of the granular material while descending in a direction away from the opening 14 a of the sleeve 14, and a gap s is formed between the opening 14 a and the shutter portion 15. Form.
Therefore, a rotational motion is added to the descending motion to the granular material in the screw blade 4a of the auger screw 4, and the descending acceleration is performed to fall from the gap s. The granular material draws a spiral motion as the auger screw 4 rotates and descends at, for example, about 0.35 m / sec, collides with the taper surface 15a of the shutter portion 15 and applies a rotational force in the same direction to the taper surface 15a. Then, it is smoothly diffused and released, falls from the gap s, and is accelerated and filled in a container (not shown).
[0012]
When the granular material falling while rotating in the spiral direction comes into contact, the shutter portion 15 is given a rotational force and rotates relative to the auger screw 4. Since the taper surface 15a of the shutter portion 15 is mirror-finished and the granular material flows out of the inclined surface, pressure is not applied to the granular material, so that particle destruction of the granular material does not occur. Moreover, since the auger screw 4 rotates while accelerating and lowering, the discharge pressure is small, and the amount of discharged granular material per rotation of the auger screw is increased as compared with the conventional filling device.
The auger screw 4 finishes the descent operation at a position lowered by a predetermined distance forming the gap s, and then rotates by the auger shaft motor M1 so that a required amount of powder particles can be filled in the container in a short time. . Or you may control so that filling to a container may be completed by carrying out required rotation by the end of the descent | fall operation | movement between the gap | interval s. For example, the rotation of the auger screw 4 may be performed three rotations (three pitches) so as to fill one shot. Alternatively, one shot may be discharged by performing the required three rotations after the auger screw 4 has been lowered.
Then, when the filling of the granular material into the container is completed, the auger shaft motor M1 is stopped and the rotation of the auger screw 4 is stopped. At this time, since the shutter portion 15 continues to rotate with inertia with respect to the auger screw 4, the powder particles adhering to the taper surface 15a are scattered by the centrifugal force and shaken off.
[0013]
Next, the auger screw 4 is raised by the raising operation of the air cylinder 8, and the shutter portion 15 is also pulled by the auger screw 14, and is raised while the granular material is shaken off from the tapered surface 15a by centrifugal force. Therefore, the granular material is forcibly raised by the screw blades 4 a of the auger screw 4, and the granular material is prevented from being discharged from the nozzle portion 3 due to inertia after the auger screw 4 is stopped. When the taper surface 15a of the shutter portion 15 comes into contact with the opening 14a of the sleeve 14 in conjunction with the ascent of the auger screw 4, the ascent of the auger screw 4 is finished.
At this time, since the tapered surface 15a of the shutter portion 15 slides on the inner corner portion 14b of the opening 14a while sliding with inertia, the tapered surface 15a slides through the inner corner portion 14b. The opening 14a is closed, and the biting at the contact portion does not occur regardless of the properties of the granular material.
In particular, by pulling up the auger screw 4 and closing the opening 14a with the shutter portion 15, it is possible to prevent the granular material from spilling from the nozzle portion 3 after closing, and to suppress the back sag from the tapered surface 15a, Moreover, the taper surface 15a rises while being swung off by inertial rotation, so that the rear sag time can be shortened.
[0014]
When the auger screw 4 is rotated at the lowered position of the shutter portion 15 to discharge the powder particles from the gap s, if the auger screw 4 is overloaded due to clogging of the powder particles, the auger blade 4a is spiral. Therefore, the auger screw 4 is raised. This is detected by the detection means 17, and the powder filling device 1 is stopped urgently to prevent a clogging accident. And the useless discharge of a granular material can be suppressed by raising the auger screw 4 and closing the opening 14a. In particular, according to the present embodiment, by detecting an ascending movement of a minute distance from the lowered position of the auger shaft 6, a change in the filling operation can be directly detected and the response becomes quick, and the nozzle due to clogging of the granular material It is possible to reliably prevent the inoperable state of the powder filling device 1 due to solidification in the portion 3, damage to parts and mechanisms, and the like.
On the other hand, in the conventional granular material filling device, the change in the rotational torque of the auger drive motor M1 is monitored and stopped when the set value is exceeded due to overload or the like. For this reason, since the change in the filling operation is indirectly detected and the emergency stop is performed, there is a disadvantage that the abnormality detection is delayed by one tempo. During this time, the granular material between the auger screws 4 is compressed and solidified, and there is a defect that the apparatus becomes difficult to move or a component or the like is easily damaged.
[0015]
As described above, according to the granular material filling apparatus 1 of the present embodiment, since there is little sag after the granular material and the sag time is short and stable, high-precision granular material filling can be performed. . In addition, when the auger screw 4 is accelerated while the powder is discharged and filled, the amount of discharged powder per rotation can be increased, so that high-speed filling is possible, and the charging efficiency and equipment efficiency are good. In addition, since the amount of sag after powder and the amount of sag after sag are stable, the particles are less scattered and hygienic, and the yield is good. Further, since the change of the filling operation can be directly detected to detect the minute movement of the auger shaft 6 at the lowered position, the response becomes quick and the breakage of the powder filling device 1 can be surely prevented.
[0016]
【Example】
▲ 1 ▼ Test 1
Next, examples of the present invention will be described with reference to FIGS. 5 to 8 and Tables 1 to 3. FIG.
As an example, the powder filling apparatus 1 according to the embodiment shown in FIGS. 1 to 4 is used, and as the conventional example, the powder filling apparatus provided with the resistor in the cylindrical portion described above is used. In the conventional example, a spinner composed of a ring and drip provided with a ring-shaped powder particle passage hole (a ring-shaped opening having an inner diameter of 17 mm and an outer diameter of 37 mm) as a resistor is attached to the tip of the cylindrical portion.
Test 1: Medium ground coffee was used as a filling granule.
Then, it was decided that one shot of the granular material was filled by rotating the auger screw three times (three pitches) with the specified filling amount of the powder of medium ground coffee in one container as one shot.
Test 1 was repeated for 92 shots for each of the example and the conventional example, and the filling amount of each shot was measured sequentially, and the average supply weight (g) for each pitch was calculated. The results are shown in Table 1 below.
[0017]
[Table 1]
Figure 0004125050
[0018]
From Table 1, the filling amount of the granular material per pitch of the auger screw was 22.4 g in the example and 20.7 g in the conventional example. The difference between the two is (22.4-20.7) /20.7×100=8 (%)
It became. In the example, the 8% filling amount per pitch was larger. This is because the flow resistance of the granular material during filling is small and because it accelerates downward, the granular material damage during filling is small, and the granular material is supplied per pitch (rotation) and per shot. It was recognized that the amount could be increased.
[0019]
(2) Test 2: In the filling weight error test 2, a space may be formed inside the granular material by, for example, bridging in the hopper, nozzle part or cylindrical part, and the apparent specific gravity fluctuates accordingly. There is. For this reason, the error (%) and the standard deviation (g) of the filling weight per shot of the granular material were respectively measured and compared for the above-described example and the conventional example.
The test results were as shown in Table 2 below and FIG.
[0020]
[Table 2]
Figure 0004125050
[0021]
In Table 2 and FIG. 5, 92 samples of the filling weight per shot were measured for each of the example and the conventional example.
The average filling weight per shot was higher in the example (69 g) than in the conventional example (63.6 g). The maximum filling error with respect to the prescribed filling weight was ± 0.45% for the example and ± 0.85% for the conventional example. The standard deviation was also Example 0.21 and Conventional Example 0.33, and both Examples had higher filling accuracy than the Conventional Example.
[0022]
(3) Test 3: Average sag time after filling For the example and the conventional example, 22 samples of the sag time of the granular material after the auger screw was stopped were measured.
Looking at Table 3 below, the post-sag time after filling was approximately the same at an average of 87 msec (milliseconds), but as shown in FIG. When compared with the standard deviation of 3, the example was 9.7 msec (milliseconds), whereas in the conventional example, it was 24 msec (milliseconds). Was able to recognize that it was good.
[0023]
[Table 3]
Figure 0004125050
[0024]
{Circle around (4)} Test 4: Deviation Values For the example and the conventional example, the container was filled with 20 shots each, and the post-sag time after each shot and the filled weight of each shot were measured. Then, from each measured value, the difference in the post-sag time and the difference in the filling weight in the adjacent shots before and after were calculated and plotted as divergence values in FIGS. 7 and 8, respectively.
In FIG. 7, the average value of the divergence value of the post-sag time is 13.8 msec (milliseconds) in the embodiment, whereas it is 33.5 msec (milliseconds) in the conventional example. There was little variation.
Moreover, in FIG. 8, the average value of the deviation value of the filling weight was 0.24 g in the example, but 0.36 g in the conventional example, and the example was much less varied.
[0025]
According to the tests 1 to 4 described above, the embodiment has a large filling amount per shot and a small variation in the filling weight, so that the filling efficiency is good and the filling can be performed accurately with a small number of pitches. Also, no difference was found in the overall average value of the post-sag time, but it was confirmed that the degree of variation was much smaller in the example and the filling accuracy was better.
[0026]
In the above-described embodiment, the sleeve 14 is mounted on the outer peripheral portion on the front end side of the nozzle portion 3 and the shutter portion 15 is brought into contact with the opening 14a of the sleeve 14. However, the sleeve 14 is not necessarily provided. Alternatively, the opening / closing operation may be performed by attaching / detaching the shutter portion 15 directly to / from the opening of the nozzle portion 3. The nozzle part 3 and the through part 14 constitute a cylindrical part.
The shutter 15 has a tapered surface 15a having a substantially conical circumferential surface as a contact surface with the opening 14a and the like. However, the contact surface does not necessarily have a conical circumferential surface shape, for example, a spherical shape or a planar shape. Can be selected.
Moreover, in the above-mentioned embodiment, although the granular material filling apparatus 1 was set as the apparatus for measuring and filling a granular material by rotation of the auger screw 4 to the container which is not shown in figure, this invention is limited to this. In short, any powder supply device may be used as long as the powder to be supplied is weighed by the auger screw 4 and the nozzle portion 3 located on the outer periphery thereof and supplied to the outside of the container or other members.
[0027]
【The invention's effect】
As described above, the granular material supply apparatus according to the present invention attaches the shutter portion to the distal end side of the auger screw and allows the auger screw to advance and retreat, and opens and closes the opening of the cylindrical portion at the shutter portion by the advancement and retraction of the auger screw. Therefore, the powder particles are measured and discharged from the opening, and after the supply is finished, the shutter part is forcibly brought into contact with the opening of the cylindrical part to finish the supply of the powder particles. The granular material can be supplied and the post-sag of the granular material after the supply can be suppressed.
In addition, since the shutter part is rotatably attached to the auger screw, the supplied granular material can be smoothly diffused and released by colliding with the shutter part and driven to rotate. The amount of sag and the post-sag time can be reduced.
[0028]
Also, since the auger screw is connected to the auger drive shaft, and the auger drive shaft forms a spline shaft, the auger screw can smoothly move forward and backward, and the powder can be accelerated and supplied. Efficiency is improved.
Also, the shutter part has a tapered surface facing the opening of the cylindrical part, and when the auger screw is retracted, the shutter part closes the opening of the cylindrical part. During operation, the granular material that rotates due to inertia and adheres to the taper part is swung up by centrifugal force, so the rear sag time is short, and when it contacts the opening of the cylindrical part, it slides over the entire circumference Since it closes, even if the properties of the granular material change, the biting of the granular material into the contact portion does not occur.
In addition, since clogging detection means for detecting clogging of the granular material supplied from the opening of the cylindrical portion is added, detection of clogging of the granular material is direct and quick, and the apparatus can be prevented from being damaged.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a granular material supply apparatus according to an embodiment of the present invention.
FIG. 2 is an enlarged view of a tip side portion of the granular material supply apparatus shown in FIG.
FIG. 3 is a diagram illustrating a closed state of the shutter portion with respect to an opening of a sleeve provided in the nozzle portion.
FIG. 4 is a diagram illustrating an open state of the shutter portion with respect to an opening of a sleeve provided in the nozzle portion.
FIG. 5 is a diagram showing a filling weight error in each shot of an example and a conventional example.
FIG. 6 is a diagram showing post-sag time after filling in each shot of an example and a conventional example.
FIG. 7 is a diagram illustrating a divergence value of a rear sag time in each shot of an example and a conventional example.
FIG. 8 is a diagram illustrating a deviation value of filling weight accuracy in each shot of an example and a conventional example.
[Explanation of symbols]
1 Powder filling device (powder supply device)
3 Nozzle part (tubular part)
4 auger screw 6 auger drive shaft (spline shaft)
14 Sleeve (cylindrical part)
14a Opening 15 Shutter 15a Tapered surface 17 Detection means

Claims (4)

粉粒体を収容するホッパの先端側に筒状部を設け、この筒状部の内部にオーガスクリューを配設し、該オーガスクリューの回転によって粉粒体を計量して筒状部の開口から供給するようにした粉粒体供給装置において、
前記オーガスクリューの先端側にシャッタ部を取り付けると共にオーガスクリューを進退可能とし、前記シャッタ部はオーガスクリューに対して回動自在に取り付けられており、
該オーガスクリューの進退によって前記シャッタ部で筒状部の開口を開閉するようにしたことを特徴とする粉粒体供給装置。
A cylindrical portion is provided on the tip side of the hopper that accommodates the granular material, an auger screw is disposed inside the cylindrical portion, and the granular material is measured by rotation of the auger screw to be measured from the opening of the cylindrical portion. In the powder and granule supply apparatus designed to supply,
The shutter part is attached to the distal end side of the auger screw and the auger screw can be advanced and retracted, and the shutter part is rotatably attached to the auger screw,
An apparatus for supplying granular material, wherein the opening of the cylindrical portion is opened and closed by the shutter portion by the advancement and retraction of the auger screw.
前記オーガスクリューはオーガ駆動軸に連結され、該オーガ駆動軸はスプライン軸を構成することを特徴とする請求項1記載の粉粒体供給装置。  The granular material supply apparatus according to claim 1, wherein the auger screw is connected to an auger drive shaft, and the auger drive shaft forms a spline shaft. 前記シャッタ部は筒状部の開口に対向する面がテーパ状に形成されており、前記オーガスクリューを後退させた際にシャッタ部で筒状部の開口を閉鎖するようにしたことを特徴とする請求項1または2に記載の粉粒体供給装置。The shutter portion has a tapered surface facing the opening of the cylindrical portion, and the shutter portion closes the opening of the cylindrical portion when the auger screw is retracted. The granular material supply apparatus according to claim 1 or 2 . 前記筒状部の開口から供給する粉粒体の詰まりを検出する検出手段が付加されていることを特徴とする請求項1乃至3のいずれか記載の粉粒体供給装置。4. The granular material supply apparatus according to claim 1, further comprising detection means for detecting clogging of the granular material supplied from the opening of the cylindrical portion.
JP2002178843A 2002-06-19 2002-06-19 Powder and particle feeder Expired - Fee Related JP4125050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178843A JP4125050B2 (en) 2002-06-19 2002-06-19 Powder and particle feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178843A JP4125050B2 (en) 2002-06-19 2002-06-19 Powder and particle feeder

Publications (2)

Publication Number Publication Date
JP2004018073A JP2004018073A (en) 2004-01-22
JP4125050B2 true JP4125050B2 (en) 2008-07-23

Family

ID=31176443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178843A Expired - Fee Related JP4125050B2 (en) 2002-06-19 2002-06-19 Powder and particle feeder

Country Status (1)

Country Link
JP (1) JP4125050B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582467B1 (en) * 2004-04-01 2007-08-29 Robert Bosch Gmbh Apparatus for the dosed filling of bulk material.
EP1931950B1 (en) * 2005-10-03 2012-09-19 Mettler-Toledo AG Dosing device for powerdy or pasty substances
PL1931952T3 (en) * 2005-10-03 2014-11-28 Mettler Toledo Gmbh Dosing device for powdery or pasty substances
JP5428043B2 (en) * 2009-03-03 2014-02-26 アルファ株式会社 Powder and particle feeder
CN102633001A (en) * 2012-05-02 2012-08-15 无锡市耐特机电一体化技术有限公司 Material bagging apparatus provided with stirring mechanism
JP5877619B1 (en) * 2015-08-09 2016-03-08 アムコン株式会社 Powder melting device
EP3339817B1 (en) * 2016-12-22 2022-06-01 Mettler-Toledo GmbH Metering device for powdery substances
CN113581545A (en) * 2021-08-04 2021-11-02 铜仁学院 Small-size mechanical type traditional chinese medicine superfine pulverizer

Also Published As

Publication number Publication date
JP2004018073A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4125050B2 (en) Powder and particle feeder
JP5637523B2 (en) Powder and particle feeder
US20090159153A1 (en) Laboratory instrument with a dosage material funneling device
CN106742111B (en) Conical discharging powder packaging machine and discharging method
US20110147280A1 (en) Automatic gelatin capsule sorting machine
JP5073443B2 (en) Rotary powder compression molding method and apparatus
CN108686968B (en) Weight defect capsule selection shell and medicine separation mechanism and detection selection shell and medicine separation method
CN116692081B (en) Quantitative split charging device
CN110806361B (en) Hardness tester for granular tablets
JPH0122807B2 (en)
CN112557462B (en) Feeding anti-blocking device of resistance type grain moisture detector
CN213193604U (en) Wet granulator
JP5234478B2 (en) Method and apparatus for reproducing sponge blast medium
JP2004155452A (en) Powder/granule charging apparatus
JP5794904B2 (en) Cleaning unit and weighing device
JP2011116376A (en) Tablet cushioning injection system
CN220519243U (en) Low-crushing and high-yield elevator
CN218774899U (en) Sulfuric acid process titanium white powder titanium ore deposit feed arrangement
CN215139563U (en) Horizontal real mineral varnish agitator tank throws material mechanism
CN211768545U (en) Automatic picking device for food spot inspection
JP3480025B2 (en) Granulation status monitoring device for dish granulator
CN221189191U (en) Quantitative discharging storage vat for antioxidant master batch
CN215206906U (en) Powder feeding device at uniform speed
JP4431670B2 (en) Sphere feeding device
CN208613086U (en) The counting device of block type assembled toy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees