JP4124555B2 - 周波数安定化半導体レーザ装置 - Google Patents
周波数安定化半導体レーザ装置 Download PDFInfo
- Publication number
- JP4124555B2 JP4124555B2 JP2000263983A JP2000263983A JP4124555B2 JP 4124555 B2 JP4124555 B2 JP 4124555B2 JP 2000263983 A JP2000263983 A JP 2000263983A JP 2000263983 A JP2000263983 A JP 2000263983A JP 4124555 B2 JP4124555 B2 JP 4124555B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- signal
- laser
- output
- master
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の属する技術分野】
本発明は、スレーブレーザの発振周波数をマスターレーザの発振周波数にオフセットロックすることで、出力する光の発振周波数を安定化する周波数安定化半導体レーザ装置に関する。
【0002】
【従来の技術】
半導体レーザ(LD)を用いて周波数安定化光源を得る周波数安定化半導体レーザ装置の従来技術としては、例えば、図1〜図4に示す構成のものがある。
図1及び図2に示す装置は、原子や分子の吸収線(遷移)を周波数基準に用いるもの、つまり、半導体レーザ1からの出力光を吸収セル3,4(特定の気体を封入した容器)に入射すると上記気体に固有の周波数を有する光が吸収されることを利用して、半導体レーザ1からの出力光が上記気体に固有の周波数に一致するように、半導体レーザ1をフィードバック制御することで、出力する光の周波数の安定化を図るものである。
【0003】
すなわち、図1に示す装置では、半導体レーザ1が、発振器2からの位相基準信号によって周波数変調された光を発振する。発振された光は、線形吸収セル3を透過する際に固有の周波数の光が吸収された後に、受光器5(光検波手段)に入力され、該受光器5で電気信号に変換される。その電気信号は、ロックインアンプ6によって上記位相基準信号を基準に同期検波されて、フィードバック回路7に出力される。フィードバック回路7は、その同期検波された信号が一定になるように、上記半導体レーザ1の駆動電流等を制御する。発振周波数の安定化された半導体レーザ1の光は、不図示の分岐手段を介して出力される。
【0004】
図2の装置は、上記線形吸収セル3の代わりに、非線形吸収セル4を利用したものであり、原理は図1の装置と同様である。ここで、符号8は偏光ビームスプリッタを、符号9はλ/4板を、符号10はミラーを示す。
また、図3の装置は、上記吸収セル3の代わりに、ファブリペロー干渉計やリング共振器等の光共振器11を周波数基準としたものである。すなわち、光共振器11が有する光学特性の極値に対応する特定の周波数を基準とし、当該特定の周波数に半導体レーザ1の発振周波数を安定化させるものである。
【0005】
また、図4の装置は、マスターレーザ12の発振周波数にスレーブレーザ13の発振周波数を追従させて周波数を安定化させるものである。すなわち、周波数基準となるマスターレーザ12からの出力光と、スレーブレーザ13からの出力光とをビームスプリッタ14で合波させ、その合波させた光を受光器15に入力する。該受光器15は、両出力光の周波数の差の周波数を有するビート信号(電気信号)を周波数弁別器16を介してフィードバック回路7に出力し、上記ビート信号に基づき、スレーブレーザ13からの出力光の周波数を、マスターレーザ12からの出力光の周波数に追従制御して、スレーブレーザ13からの出力光の周波数の周波数を、マスターレーザ12からの出力光の周波数から所定周波数だけオフセットした周波数に安定化させる。なお、基準周波数から一定の周波数だけずらした発振周波数に安定化する上記制御方法をオフセットロック法と呼んでいる。
【0006】
ここで、周波数基準自体の安定度、あるいはその中心周波数は、図1及び図2以外の装置では温度や機械的な環境条件によって一定ではない。つまり、図1や図2の装置が絶対周波数への安定化を目指しているのに対し、図3や図4の装置構成では、相対的な基準周波数への追従度の向上を図っている。
また、図1〜図3の装置では、すべて周波数基準近傍で周波数弁別特性を得るため、半導体レーザ1の中心周波数に微少な周波数変調を施す直接周波数変調方式を採用した例であるが、図5〜図7に示すように、外部変調器17を使用して半導体レーザ1の出力光に変調を加えても良い。図5〜図7では、外部変調器17として、音響光学素子(AO)、電気光学素子(EO)を用いた場合の例を示している。また、図8に示すように、マスターレーザ12は、半導体レーザ1に限定されない。なお、外部共振器型半導体レーザは外部鏡による変調が可能であることから、敢えて図8におけるマスターレーザの対象となる。
【0007】
上記全ての装置において、周波数安定化で不可欠な条件は、レーザの発振周波数が、図9に示すように、周波数基準の中心周波数fc を零点とする帰還周波数幅内で、好ましくはハッチングで示した領域にある周波数弁別幅内で一致していなければならないということである。
ここで、上記図3の装置では、干渉計のミラー間隔や光路長などで容易に周波数基準の中心周波数を変えることができ、図4の装置ではマスターレーザ12自体の発振周波数を変更することで基準周波数を変えることができるが、図1の装置及び図2の装置では、縮退準位における電磁場スプリッティングがなければ変更できない。
【0008】
すなわち、図1や図2の装置では、絶対周波数に安定化でき当該絶対周波数で発振するレーザ光は得られるものの、限られた原子や分子の吸収線における離散的な周波数にしか安定化させることができないという問題がある。
これに対して、図3や図4の装置では、上述のように周波数基準の中心周波数をレーザの発振周波数に近づけることが可能なので、レーザの発振周波数領域内でありさえすれば、原理的にはどの周波数にもレーザの発振周波数を安定化することができる。
【0009】
【発明が解決しようとする課題】
しかしながら、図3や図4の装置であっても、あくまでもレーザの発振周波数は、周波数基準の周波数に追従するように制御されるだけであり、追従の安定化が高精度に達成されたとしても、周波数の安定度は、周波数基準の安定度に影響し当該周波数基準の安定度に応じたふらつきを取り除くことはできない。
【0010】
また、図3の装置では周波数基準で決定されている限られた周波数間隔の各々の中心周波数でしか安定化ができないという問題がある。
また、図4の装置では、マスターレーザ12とスレーブレーザ13との発振周波数の差が、受光器15の周波数帯域内に収まり、かつ周波数弁別器16の零点周波数fc に一致する周波数でしか安定化できないという欠点をもっている。すなわち、受光器15の周波数帯域などによってマスターレーザ12の発振周波数からの周波数のオフセット量が制限され、且つ、周波数弁別器16の零点周波数fc にオフセット周波数が限定されてしまい。任意のオフセット周波数に設定してオフセットロックを行うことができないという問題がある。
【0011】
なお、周波数安定化に用いるフィードバック回路の信号は、フィードバックの対象が半導体レーザ1であれば直接注入電流とともに負帰還が可能になる。また、外部共振器型の半導体レーザや他のレーザをフィードバックの対象とする場合には、共振器を構成するミラーやグレーティング、あるいは共振器内に設置されたガラスブロック、干渉計、変調器、フィルタなど、光路長や光の位相に変調がかけられるものにフィードバック信号が負帰還される。これにより、周波数の安定化が達成されることになる。
【0012】
本発明は、以上のような点に着目してなされたもので、従来では限られた周波数でしか行えなかった周波数安定化を、任意の周波数で行うことを可能とする周波数安定化半導体レーザ装置を提供することを課題としている。
これによって、等周波数間隔で同時安定化が可能な半導体レーザ装置を実現可能となったり、多波長一括周波数安定化法を供給し、WDM用のコム周波数安定化光源を実現可能となったりする。
【0013】
【課題を解決するための手段】
上記課題を解決するために、本発明のうち請求項1に記載した発明は、第1マスターレーザと、複数の第2マスターレーザと、複数のスレーブレーザと、光共振器からなる2次周波数基準と、2次周波数基準の光学特性の極値を示す複数の周波数のいずれか一つを第1マスターレーザの発振周波数に安定化する2次周波数基準安定化手段と、上記複数の第2マスターレーザの出力光の発振周波数を、上記2次周波数基準の光学特性の極値を示す複数の周波数のそれぞれに安定化する2次基準複数出力光安定化手段と、上記複数の第2マスターレーザの出力光と上記複数のスレーブレーザの出力光とをそれぞれ合波する複数の光合波手段と、各光合波手段からビート信号に基づき対応するスレーブレーザの発振周波数を対応する第2マスターレーザの発振周波数に追従制御する複数の追従制御手段とを備え、
上記各追従制御手段は、それぞれ、オフセット周波数信号を出力する基準発振器と、基準発振器からの信号と上記ビート信号とを入力する周波数変換器と、周波数変換器の出力を入力する周波数弁別器と、周波数弁別器が出力する誤差信号をスレーブレーザにフィードバックする第1のフィードバック回路とを備え、上記周波数弁別器が、ミキサと遅延回路と方向性結合器からなり、入力した信号を上記方向性結合器により分岐し、一方の信号をそのまま上記ミキサに入力するとともに分岐した他方の信号は上記遅延回路を介して上記ミキサに入力する構成を備えて、上記周波数変換器から入力される信号をFM−AM変換して上記誤差信号として出力するものであり、
上記2次基準複数出力光安定化手段は、上記複数の第2マスターレーザの出力光を合波する第1のAWG波長合分波器と、上記第1のAWG波長合分波器の出力光を周波数変調または位相変調して上記2次周波数基準の中心周波数近傍で微小変調させて上記2次周波数基準に出力する外部変調器と、上記外部変調器から出力されて上記2次周波数基準を透過した光を分波する第2のAWG波長合分波器と、上記第2のAWG波長合分波器で分波された光をそれぞれ受光する複数の受光器と、上記複数の受光器の出力する信号をそれぞれ上記外部変調器を駆動する信号を基準に同期検波する同期検波手段と、同期検波された各信号をそれぞれ対応する上記第2マスターレーザにフィードバックする複数の第2のフィードバック回路とを備えることを特徴とする周波数安定化半導体レーザ装置を提供するものである。
【0018】
次に、請求項2に記載した発明は、第1マスターレーザと、複数の第2マスターレーザと、複数のスレーブレーザと、上記複数の第2マスターレーザからの出力光を合波する第1のAWG波長合分波器と、第1のAWG波長合分波器の出力を入力し2次周波数基準を構成する第2のAWG波長合分波器と、上記第1のAWG波長合分波器の出力を入力する第3のAWG波長合分波器と、上記第2のAWG波長合分波器の透過周波数を第1マスターレーザの発振周波数に安定化する合分波器安定化手段と、上記第2のAWG波長合分波器の複数の透過周波数に基づき上記各第2マスターレーザの出力光の発振周波数を安定化させる第2の2次基準複数出力光安定化手段と、上記第3のAWG波長合分波器から出力される複数の出力光と対応するスレーブレーザからの出力光とをそれぞれ合波する複数の光合波手段と、各光合波手段からビート信号に基づき対応するスレーブレーザの発振周波数を対応する第2マスターレーザの発振周波数に追従制御する複数の追従制御手段とを備え、
上記各追従制御手段は、それぞれ、オフセット周波数信号を出力する基準発振器と、基準発振器からの信号と上記ビート信号とを入力する周波数変換器と、周波数変換器の出力を入力する周波数弁別器と、周波数弁別器が出力する誤差信号をスレーブレーザにフィードバックする第1のフィードバック回路とを備え、上記周波数弁別器が、ミキサと遅延回路と方向性結合器からなり、入力した信号を上記方向性結合器により分岐し、一方の信号をそのまま上記ミキサに入力するとともに分岐した他方の信号は上記遅延回路を介して上記ミキサに入力する構成を備えて、上記周波数変換器から入力される信号をFM−AM変換して上記誤差信号として出力するものであり、
上記第2の2次基準複数出力光安定化手段は、上記第1のAWG波長合分波器の出力光を周波数変調または位相変調して上記2次周波数基準の中心周波数近傍で微小変調させて上記2次周波数基準に出力する外部変調器と、上記外部変調器から出力されて上記第2のAWG波長合分波器で分波された光をそれぞれ受光する複数の受光器と、上記複数の受光器の出力する信号をそれぞれ上記外部変調器を駆動する信号を基準に同期検波する複数の同期検波手段と、同期検波された各信号をそれぞれ対応する上記第2マスターレーザにフィードバックする複数の第2のフィードバック回路とを備えることを特徴とする周波数安定化半導体レーザ装置を提供するものである。
【0019】
本発明によれば、周波数変換器及び周波数弁別器を設けることで、オフセットロックする周波数を、周波数弁別器の零点周波数と一致しない任意の周波数とすることが可能となる。
すなわち、周波数変換器により、ビート信号を基準発振器からの信号を用いて周波数弁別器の零点周波数近傍に周波数変換してから周波数弁別器に入力するようにしたので、その周波数変換器からの誤差信号が周波数弁別器の零点周波数に安定化するように、周波数弁別器の出力が一定となるようにフィードバック制御されることで、任意のオフセット周波数で安定化が可能となる。
【0020】
ここで、基準発振器から出力するオフセット周波数信号の周波数が、マスターレーザの周波数からオフセットするオフセット周波数となる。
このとき、上記マスターレーザの発振周波数を、原子や分子の遷移を利用した1次周波数基準に安定化する基準出力光安定化手段を備えることを特徴とすると、直接変調、外部変調を問わず周波数変調(あるいは位相変調)された光を、周波数1次基準としての原子や分子の吸収線を介して位相検波することにより得られる周波数誤差信号をフィードバック信号として用いて絶対周波数に安定化されたマスターレーザの発振周波数を基準として、スレーブレーザの発振周波数を追従させてオフセットロックすることになる。すなわち、基準となるマスターレーザの発振周波数が安定化する。
ここで、上記原子や分子の遷移を利用した1次周波数基準とは、例えば公知の吸収セルにおける吸収線である。
【0021】
また、上記周波数1次基準の使用できる周波数が少数の場合であっても、その1次周波数基準に安定化された第1マスターレーザの出力光で安定化した2次周波数基準を得ることができる。光共振器からなる2次周波数基準は、周期的に複数の基準となる周波数を有するので、所望の広い周波数帯域全体に亘って、スレーブレーザを安定化するための安定した複数の周期的な基準周波数を得ることができる。
【0022】
ここで、分子や原子の遷移によって、絶対周波数基準からなる周波数基準が所望の広い周波数帯域全体に渡って多数得られる場合(A)と、絶対周波数基準からなる周波数基準が1本ないし数本といった少数しかないような場合(B)の双方がある。
このとき、周波数基準が多数得られる場合(A)であっても、従来にあっては、周波数弁別器の零点周波数を、これまでは任意の周波数にできず、限られた周波数でしか安定化ができなかった。
【0023】
これに対して、図10に示したように原子や分子の吸収線のように周波数基準が多数得られる場合には、これらのうちの一つの周波数に安定化された絶対周波数に安定化したマスターレーザの出力を多数入手できると同時に、請求項1に記載した作用により、隣り合う周波数基準の間で当該所定の周波数基準から任意にオフセットさせた周波数でスレーブレーザの発振周波数をオフセットロックすることが可能となる。これによって、隣り合う周波数基準の間隔が設定可能なオフセット周波数内であれば、いずれの周波数においても安定化が可能になる。
【0024】
また、周波数基準が少数しか得られない場合(B)には、周波数基準とマスターレーザの発振周波数との周波数差に応じて、空白の周波数を埋める2次周波数基準が必要となる。この状態を図13に示した。
【0025】
すなわち、まず、絶対周波数に安定化されたマスターレーザの出力光を2次周波数基準に入力し、この2次周波数基準をマスターレーザに安定化する。第2マスターレーザをこの2次周波数基準に入力し、2次基準の一定間隔の透過あるいは反射特性の極点のうちの所望の周波数に安定化する。この段階で、2次周波数基準の使用波長帯で、一定の周波数間隔での第2マスターレーザの発振周波数の安定化が達成できる。次にスレーブレーザを準備し、第2マスターレーザとのビートをとり、このビートと基準発振器の信号とで周波数変換を行い、周波数弁別器の使用周波数においてFM−AM変換を行い、スレーブレーザの第2マスターレーザに対する周波数誤差信号をフィードバック帯域にまで低周波化する。この低周波化された誤差信号をスレーブレーザにフィードバックすることにより、任意周波数でオフセットロックが実現できる。
【0026】
以上を周波数基準の中心周波数とレーザの発振周波数との関係で図示したのが、上述の図13である。
ここで、第2マスターレーザの安定化に関して、2次周波数基準への安定化の前にビート信号を利用した安定化を行うこともできるが、2次基準の安定化に関して、所望の安定化周波数が厳密になればなる程、周波数の微調整が必要になる。この場合は、スレーブレーザを2次基準に安定化した後にも新たに安定化を施した第2のスレーブレーザが必要となる場合がある。
【0027】
以上のように、これまで限られた周波数でしか実現できなかった周波数安定化半導体レーザ装置を、絶対周波数で発振するマスターレーザに2次周波数基準や基準発振器からの信号を介してスレーブレーザをオフセットロックすることにより、所望の周波数での絶対周波数からのオフセットロックした周波数安定化半導体レーザ装置が実現できる。
【0028】
第1マスターレーザの発振周波数は、原子、分子の吸収線を用いた絶対周波数に安定化され、第2マスターレーザの発振周波数は、第1マスターレーザの発振周波数から、25GHz、50GHz、100GHz程度の2次周波数基準で決まる一定間隔の制限で利用できる任意周波数にオフセットロックされる。
ここで、スレーブレーザの発振周波数は、基準発振器を利用することにより任意の周波数に設定できるが、スレーブレーザのフィードバック回路に必要なビート信号の周波数変換器の帯域と、第2マスターレーザとスレーブレーザのビートを観測する受光器の周波数帯域で制限されることになる。しかしながら、受光器の周波数帯域は60GHz程度が可能なので、周波数変換器や周波数弁別器に用いるミキサーの帯域がむしろ現実には問題となる。ミキサー帯域が一般には20GHz程度なので、2次周波数基準の選定を考慮すれば、文字どおり任意周波数でのオフセットロックが実現できる。
【0029】
勿論、それぞれのレーザの出力光は、分岐をしてやりさえすれば独立に使用できる。したがって、各々のレーザの組み合わせは、そのままDWM通信に不可欠なコム周波数光源となる。請求項1または請求項2の発明を使用することで、コム周波数各々が絶対周波数からオフセットロックされることにより、従来得られなかった周波数精度、確度が実現されることになる。
【0030】
また、LiNbO3に代表されるような疑似位相整合(QPM)波長変換素子を用いてコム周波数を構成することも可能であるが、この場合、励起光と信号光の周波数安定化が不可欠となる。本発明はこの要求にも答えることになる。
ちなみに、マスターレーザを光スイーパにしたい場合は、オフセットロックがかかる状態ではスレーブレーザはマスターレーザに追随するだけになる。勿論、オフセットロック時に使用する基準発振器の発振周波数を掃引しても同様の結果が得られる。むしろこの場合にはオフセットロックの周波数が変化するだけで、周波数基準は絶対周波数から発生させていることになる。
【0031】
【発明の実施の形態】
次に、参考例1について図面を参照しつつ説明する。なお、上記従来例と同様な部品については同一の符号を付して説明する。
図11は、本参考例の周波数安定化半導体レーザ装置の構成を示す図であり、マスターレーザ12の出力光を安定化する基準出力光安定化手段Aと、スレーブレーザ13の出力光を、マスターレーザ12の出力光に追従させてオフセットロックする追従制御手段Bとを備える。
【0032】
マスターレーザ12の出力光は、ビームスプリッタ21によって分光され、一部がスレーブレーザ13側の追従制御手段Bに入力されると共に、残りの光が基準出力光安定化手段Aに入力される。
基準出力光安定化手段Aは、発振器2、外部変調器17、1次周波数基準を構成する線形吸収セル3、受光器5、ロックインアンプ6、フィードバック回路7を備える。
【0033】
上記外部変調器17は、音響光学変調器(AO)や電気光学変調器(EO)等から構成される。その外部変調器17は、発振器2からの位相基準信号に基づき、入力したマスターレーザ12の出力光を、周波数変調あるいは位相変調して周波数基準の中心周波数近傍で微少変調させ、その変調させた変調信号を、線形吸収セル3に出力する。外部変調器17からの光は、線形吸収セル3を透過する際に固有の周波数の光が吸収された後に、受光器5(光検波器)に入力され、該受光器5で電気信号に変換される。その電気信号は、ロックインアンプ6によって上記位相基準信号を基準に同期検波されて、フィードバック回路7に出力される。フィードバック回路7は、その同期検波された信号が一定になるように、PID制御(比例:P、積分:l、微分:D)を行い上記マスターレーザ12の駆動電流等を制御する。これによって、マスターレーザ12の出力光は、線形吸収セル3で特定される所定の絶対周波数に安定化される。
【0034】
ここで、上記説明では、ロックインアンプ6を使用した例であるが、ミキサーとフィルタを用いて位相検波器を構成しても良い(T.Yanagawa,S.Saito,S.Machida,Y.Yamamoto,and Y.Noguchi,Appl.Phys.Lett.47,1036(1985)参照)。
【0035】
また、上記吸収セル3の気体としては、吸収線が多数とれるもの、つまり周波数基準が多数得られる気体を採用すると良い。周波数基準が多数得られると、これらのうちの所望の一つの周波数に安定化することで周波数安定化用のマスターレーザ12の出力光を多数入手できる。この結果、隣り合う周波数基準の間でスレーブレーザ13のオフセットロックができれば、いずれの周波数においても安定化が可能になる。
【0036】
上記のような吸収セル用の気体としては、例えばアセチレンガス(12C2 H2 )や同位体置換アセチレンガス(13C2 H2 )が例示できる。
表1に、セル長10cm、ガス圧1333Paの条件下で実測したアセチレンガス(12C2 H2 )及び同位体置換アセチレンガス(13C2 H2 )の吸収線の値(測定波長領域は、1535.0〜1535.5nmである)を示す。また、表2に、1.55μm帯における13C2 H2 の吸収線を示す。
【0037】
【表1】
【0038】
【表2】
【0039】
これら吸収線毎の周波数差は、後述の周波数変換器22や周波数弁別器16を構成するミキサーとして帯域20GHzのミキサーを用いる場合は、40GHzまでの間隔までであるなら、任意周波数でオフセットロックが可能である。20−21、22−23、23−24、24−25、25−26間は40GHzを越える周波数差があるので、これらの間については、その間隔に対応する広さの帯域を有するミキサーを採用するか、そうでなければ、後述の参考例2の装置を採用するか、本実施形態の基準周波数の安定化の手法を繰り返さざるを得ない。また、これらの波長より長波側では、12C2H2や13C2H2の吸収がないため、アセチレンを基本にするシステムでは後述の参考例2の装置に頼らざるを得ない。
【0040】
なお、シアンガス(H12CN、H13CN)も1.5μm帯(1.5198〜1.5674μm)に多数の吸収量の大きい吸収線を有しており(H.Sasada and K.Yamada,App1.Opt.24,3535(1990)参照)、本参考例の手法に使用可能である。したがって、後述の参考例2で述べるWDM用コム周波数安定化光源に好適のガスであるが、毒性の強いガスであるので、取扱いには注意を要する。
【0041】
次に、追従制御手段Bについて説明すると、マスターレーザ12からの出力光とスレーブレーザ13の出力光を合波するビームスプリッタ14(光合波手段)と、ビームスプリッタ14が合波した光して電気信号(ビート信号)に変換(検波)する受光器15(検波手段)と、オフセット周波数信号を発振する基準発振器24と、上記受光器15が検波したビート信号と基準発振器24からのオフセット周波数信号と入力する周波数変換器22と、周波数変換器22の出力をバンドパスフィルタ25を介して入力する周波数弁別器16と、周波数弁別器16の出力を入力し当該入力値に応じたフィードバックをスレーブレーザ13に行うフィードバック回路20とから構成される。
【0042】
本参考例の上記周波数変換器22は、ミキサー22aから構成されて、周波数誤差信号Δf( =fBEAT −fSY)を出力する。すなわち、周波数変換器22は、基準発振器24の基準周波数(基準周波数からのオフセット量)を用いて、ビート信号を周波数弁別器16の零点周波数fC 近傍の周波数に周波数変換する。
【0043】
ここで、
マスターレーザ12の発振周波数:fMA
スレーブレーザ13の発振周波数:fSL
ビート信号の周波数 :fBEAT=|fMA −fSL|
周波数弁別器16の零点周波数 :fC
基準発振器24の発振周波数 :fSY
である。
【0044】
周波数弁別器16は、周波数変換器22からの周波数誤差信号を、FM−AM変換する。変換したAM誤差信号は、フィードバック回路20を介してスレーブレーザ13にフィードバックされる。
本参考例の周波数弁別器16は、ミキサ16a及び遅延回路16c(遅延線)を備え、入力した信号を方向性結合器16bにより分岐し、一方の信号をそのままミキサ16aに入力すると共に分岐した他の信号は遅延回路16cを介して上記ミキサ16aに入力する構成となっている。
【0045】
ここで、上記各受光器5,15としては、例えば当該受光器のフォトダイオード(PD)の帯域が60GHz程度のものを使用する。
上記追従制御手段Bでは、基準発振器24からのオフセット周波数信号に基づきビート信号fBEATを周波数変換した周波数誤差信号Δfを周波数弁別器16に入力することにより、任意の周波数へのオフセットロックを容易に実現することができる。
【0046】
そして、オフセットロックされたスレーブレーザ13の発振周波数は上述の式に従う。つまり、マスターレーザ12及びスレーブレーザ13の各発振周波数の差周波信号であるビート信号fBEATの周波数と基準発振器24の発振周波数(基準信号)との差である周波数誤差信号△fを周波数変換器22から発生させ、周波数弁別器16の零点周波数fcに安定化させてやることで、スレーブレーザ13の発振周波数は、絶対周波数に安定化されたマスターレーザ12の発振周波数から、オフセット周波数だけオフセットした任意の周波数で安定化できる。
【0047】
ただし、各々の周波数fMA、fSL、fBEAT、fSYの関係で、周波数弁別特性の極性を変えねばならない。図9に示す特性では、(1)fSL>fMA、且つfBEAT>fSY、若しくは(2)fSL<fMA、且つfBEAT<fSYの場合に有効である。これ以外では、図9の逆特性が必要になる。すなわち、(3)fSL<fMA、且つfBEAT>fSY、若しくは(4)fSL>fMA、且つfBEAT<fSYの場合には、図17に示す実測値のような周波数弁別特性を有するダブルバランスドミキサからなる周波数弁別器16が必要となる。
【0048】
ここで、上記ミキサ16a及び遅延回路16cを使用した周波数弁別器16の動作について説明する。
周波数変換器22から出力され、周波数弁別器16に入力される信号を
cos(ω0・t)とすると、遅延回路16cを用いる場合のミキサ16a動作は、遅延位相をφとして低周波側のみの出力を利用し、かつ周波数弁別器16の出力をVとすると、
V=cos(ω0・t)・cos(ω0・t+φ)
=[cos(2ω0・t+φ)+cosφ]/2〜(cosφ)/2
となる。
【0051】
ここで、温度と電流を変化させて1.551μmで発振する半導体レーザ1を2つ準備し、一方を吸収線に安定化させてマスターレーザ12とし、他のレーザをスレーブレーザ13とした。これによりアラン分散の平方根の値がマスターレーザ12では〜10-11 となり、これにスレーブレーザ13を安定化させてみると〜10-10 が得られた。1.550μmにおいてもほぼ同様の結果が得られた。
【0052】
この場合、零点周波数fc は方向性結合器16bの帯域に合わせており、変更は可能である。利用可能なビート周波数の帯域は、ミキサ16a、基準発振器24、受光器15の帯域に制限されることになり、現状ではミキサ16aで決定され、20GHz程度までである。
表1および表2では、1,532μm帯、1.55μm帯での吸収線実測値を示したが、12C2 H2 の吸収線は1.51〜1.54μmで、13C2 H2 の吸収線は1.52〜1.55μmで各々50数本が同じ条件で観測された。
【0053】
それぞれの周波数で安定化されたマスターレーザ12に、本参考例で示した手法でスレーブレーザ13をオフセットロックすると、1.51〜1.55μmの任意周波数で周波数安定化光源が実現できる。
なお、吸収線の間隔が、ミキサ16aの帯域を越える場合は、スレーブレーザ13にオフセットロックする別のスレーブレーザ13を用いる。簡便にはこれを繰り返してもよいが、むしろ後に示す2次周波数基準を用いるのが望ましい。
【0054】
ここで、上記参考例の基準出力光安定化手段Aでは、線形吸収セル3の吸収線の周波数にマスターレーザ12の出力光を安定化する場合で例示しているが、図12に示すような構成で基準出力光安定化手段Aを構成して、非線形吸収セル4の吸収線の周波数にマスターレーザ12の出力光を安定化するようにしても良い。
【0055】
また、上記参考例では、外部変調器17で変調しているが、マスターレーザ12の中心周波数に微小な周波数変調を施す直接周波数変調を施す直接周波数変調方式を採用しても良い。
また、上記参考例では、マスターレーザ12の出力光を基準出力光安定化手段Aで安定化させているが、基準出力光安定化手段Aで安定化させなくても良い。但し、基準出力光安定化手段Aで安定化させないと、その分、スレーブレーザ13の出力光の安定度が悪くなる。
【0056】
次に、参考例2を図面を参照しつつ説明する。なお、上記参考例等と同様な部品などについては同一の符号を付して説明する。
本参考例は、図13に示したような、吸収セル3による絶対周波数基準が多数得られない場合や、多数の絶対周波数基準が得られても当該絶対周波数基準間隔が広くその位置における周波数の離れた位置で安定化光源が必要な場合に好適な装置である。
【0057】
図14は、本参考例の装置構成を示す図であって、マスターレーザ12が第1マスターレーザ30と第2マスターレーザ31とから構成され、第1マスターレーザ30の出力光を安定化させる基準出力光安定化手段Aと、ファブリペロ干渉計やリング共振器などの光共振器から構成される2次周波数基準39と、2次周波数基準安定化手段Cと、2次基準出力光安定化手段Dと、スレーブレーザ13の出力光をマスターレーザ12の出力光に追従させてオフセットロックする追従制御手段Bとを備える。
【0058】
基準出力光安定化手段Aは、上記参考例1と同様の構成であって、発振器2、外部変調器17、線形吸収セル3、受光器5、ロックインアンプ6、フィードバック回路7を備える。
外部変調器17は、音響光学変調器(AO)や電気光学変調器(EO)等から構成されて、発振器2からの基準信号に基づき、入力した第1マスターレーザ30の出力光を、周波数変調あるいは位相変調して周波数基準の中心周波数近傍で微少変調させ、その変調させた変調信号を参照信号として、線形吸収セル3に出力する。外部変調器17からの光は、線形吸収セル3を透過する際に固有の周波数の光が吸収された後に、受光器5(光検波器)に入力され、該受光器5で電気信号に変換される。その電気信号は、ロックインアンプ6によって上記位相基準信号を基準に同期検波されて、フィードバック回路7に出力される。フィードバック回路7は、その同期検波された信号が一定になるように、PID制御(比例:P、積分:l、微分:D)を行い上記第1マスターレーザ30の駆動電流等を制御する。これによって、第1マスターレーザ30の出力光は、線形吸収セル3で特定される周波数基準(原子や分子の吸収線など絶対周波数に準じるもの)に安定化される。
【0059】
次に、2次周波数基準安定化手段Cについて説明する。
2次周波数基準安定化手段Cは、受光器36、ロックインアンプ32及び、2次周波数基準39である光共振器のミラー間隔若しくは光路長をフィードバック制御するフィードバック回路33、及び上記第1マスターレーザ30の出力光の一部を2次周波数基準39に入力にする光路を備える。そして、上記光路によって、第1マスターレーザ30の出力光を2次周波数基準39に入射し、該2次周波数基準39からの透過光を受光器36によって電気信号に変換してロックインアンプ32に出力する。ロックインアンプ32は、上記電気信号を上記発振器2からの位相基準信号を基準に同期検波してフィードバック回路33に出力される。フィードバック回路33では、その同期検波された信号が一定となるように2次周波数基準39のミラー間隔若しくは光路長をフィードバック制御して、2次周波数基準39の基準周波数の一つを第1マスターレーザ30の周波数に安定化させる。
【0060】
上記光共振器からなる2次周波数基準39は、光を透過する透過周波数が周期的に存在する透過特性を有し、その周期的に存在する透過周波数が周波数基準となるもので、上記のように、2次周波数基準39の周波数基準(透過周波数)の一つが第1マスターレーザ30の周波数に安定化することで、2次周波数基準39の全ての周波数基準(透過周波数)が安定化する。
【0061】
次に、2次基準出力光安定化手段Dについて説明する。
2次基準出力光安定化手段Dは、上記安定化された2次周波数基準39の複数の基準周波数の一つに第2マスターレーザ31の出力光を安定化させるものであって、発振器35、外部変調器34、上記2次周波数基準39、受光器40、ロックインアンプ37、フィードバック回路38とを備える。
【0062】
外部変調器34は、音響光学変調器(AO)や電気光学変調器(EO)等から構成されて、発振器35からの基準信号に基づき、入力した第2マスターレーザ31の出力光を、周波数変調あるいは位相変調して2次周波数基準39の中心周波数近傍で微少変調させ、その変調させた変調信号を参照信号として、2次周波数基準39に出力する。2次周波数基準39からの透過光は受光器40(光検波器)に入力され、該受光器40で電気信号に変換される。その電気信号は、ロックインアンプ37によって上記位相基準信号を基準に同期検波されて、フィードバック回路38に出力される。フィードバック回路38は、その同期検波された信号が一定になるように、PID制御(比例:P、積分:l、微分:D)を行い上記第2マスターレーザ31の駆動電流等を制御する。これによって、第2マスターレーザ31の出力光は、2次周波数基準39の周期的に存在する複数の周波数基準のうちの所望の周波数基準に安定化される。
【0063】
上記2次基準出力光安定化手段Dによって安定化された第2マスターレーザ31の出力光は、ビームスプリッタ41で分光され、その一部が追従制御手段Bに入射される。
追従制御手段Bは、上記参考例1で説明した構成と同じ構成であって、安定化された第2マスターレーザ31の出力光とスレーブレーザ13の出力光との合波によるビート信号fBEAT及び基準発振器24からの基準信号に基づいて、第2マスターレーザ31の出力光に対して基準発振器24のオフセット周波数分だけオフセットした周波数に、スレーブレーザ13の発振周波数をオフセットロックして安定化する。
【0064】
すなわち、第2マスターレーザ31とスレーブレーザ13との間の安定化は、上記参考例1と同様に、受光帯域内(ミキサ22aの帯域)に存在する程度の周波数差のものに限り、ビート信号fBEATを周波数変換器22(ミキサ22a)に入力し、基準発振器24を用いて周波数弁別器16の零点周波数近傍にビート信号fBEATを周波数変換する。これを、例えば上述のミキサ16aに遅延回路16c(遅延線)を設けて構成される周波数弁別器16に入力すると、周波数誤差信号がFM−AM変換される。
【0065】
この変換されたAM誤差信号をスレーブレーザ13にフィードバックしてやると、スレーブレーザ13は周波数弁別器16の零点周波数で安定化されることになる。つまり、スレーブレーザ13の周波数を所望の値にすると、第2マスターレーザ31とスレーブレーザ13との間の周波数差、つまりビート周波数が決定されるが、基準発振器24の信号周波数の設定によってはビート信号fBEATの中心周波数を周波数弁別器16の零点周波数に一致させることができるため、AM誤差信号をスレーブレーザ13にフィードバックした段階で任意の周波数におけるオフセットロックが実現できる。
【0066】
したがって、2次周波数基準39に誘電体薄膜製品を用いる場合、受光する信号のS/Nにも依存するが、わずかな反射、透過の特性を利用して複数の周波数帯域(むしろ波長帯域と述べるべきかも知れない)での安定化が可能になる。これにより、任意の波長帯域、周波数帯域でのオフセットロックが光学部品の選定しだいで実現できることになる。なお、このような周波数安定化手法は、これまでに前例がない。
【0067】
ここで、上記参考例では、第1及び第2マスターレーザ30,31の出力光の安定化に外部変調器17、34を使用しているが、図15に示すように、マスターレーザ12を直接周波数変調して第1及び第2マスターレーザ31の出力光を安定化する構成としても良い。
また、図16に示すように、第1マスタレーザの出力光の安定化に、マスターレーザ12の周波数安定度向上に向け、線形吸収セル3の代わりに飽和吸収分光を応用した非線形吸収セル4を用いた場合であっても良い。
【0068】
いずれも第1マスターレーザ30の出力光の安定化において、吸収線近傍での微少変調を用いて位相検波し、吸収線の中心周波数に安定化される。そして、それぞれ一部が2次周波数基準39の安定化に使用される。
なお、図13は、2次周波数基準39にキャビティーの透過特性をイメージした図を示しているが、反射特性でも同様に使用できる。反射特性の場合は、透過特性と上下反転対称になり、透過特性極大値が反射特性極小側になり、周波数基準にはこの極点が周波数確度からも望ましい。また、当然のことながらそれぞれのレーザの出力光は独立に使用可能であり、2次周波数基準39の周波数設定の確度で充分な場合は、特にスレーブレーザ13が不要になることもあり得る。
【0069】
ここで、2次周波数基準39として、透過、反射周波数間隔を比較的簡単に調整できるファブリペロ干渉計の場合について説明する。
透過、反射周波数間隔はフリースペクトラルレンジ(FSR)で表され、
FSR=c/2nL
となる。
【0070】
ここで、cは光速、Lはミラー間隔、nはミラー間の屈折率である。
FSRが25GHzの場合、ミラー間隔は6nm、50GHzの場合は3mm、100GHzの場合は1.5mm、200GHzの場合は0.75mmとなり、簡側に調整できるサイズとなっている。リング共振器の場合も同様に利用可能となるが、
FSR=c/nL
となる。
【0071】
これは反射部の間隔でFSRが決定されることを考えれば理解しやすい。なお、コンフォーカルキャビティーの場合、FSRはc/4nLとなる。当然のことながら、コンフォーカルキャビティーも使用可能であるが、このサイズでは調整上、やや使いにくい。
本実施形態の装置構成を採用すると、いずれかの周波数で第1マスターレーザ30の発振周波数が安定化すると、その第1マスターレーザ30の安定化周波数を含み、2次周波数基準39の光の周波数特性が確保されれば、任意の周波数でのオフセットロックが実現される。
【0072】
このため、本参考例の周波数安定化半導体レーザ装置を使用することで、WDM用コム周波数安定化光源が実現できるという利点が生じる。
周波数コムに関しては、アンカー周波数を、エルビウムドープファイバ増幅器(EDFA)のフラットゲイン帯域(幅は約2THzで25nmに相当)の中央193100GHz(1552.5nm)とし、周波数グリッドを25GHzに設定することが提案されている(例えば、M.Teshima,M.Koga,andK.Sato,Opt.Lett.22,126(1997)参照)。周波数グリッドに関しては、他に50GHz、100GHz、200GHzが提案されている。
【0073】
次に、参考例3について図面を参照しつつ説明する。なお、上記参考例等と同様な部品などについては同一の符号を付して説明する。
本参考例は、参考例1に基づくコム周波数安定化用の周波数安定化半導体レーザ装置の例である。本参考例では、50〜100波程度の安定化が容易となる。
【0074】
図18が、本参考例に係る周波数安定化半導体レーザ装置を示す構成図である。
図12に示されるように、マスターレーザ12とスレーブレーザ13との組を複数組有し、各組におけるマスターレーザ12の出力光とスレーブレーザ13の出力光とが個別の光ファイバカップラ50(光合波手段)で合波されて個別の受光器15(検波手段)で検波され、各受光器15で検波されたビート信号fBEATは、個別の追従制御手段Bによって各スレーブレーザ13の出力光の発振周波数が、それぞれ個別に各マスターレーザ12の出力光の発振周波数にオフセットロックして安定化される。
【0075】
各追従制御手段Bは、上記参考例1で説明した構成となっている。
また、各マスターレーザ12の出力光についても、参考例1で説明した基準出力光安定化手段Aで安定化することで、各スレーブレーザ13の安定化が向上する。
このとき、吸収セルのガスとして、アセチレンガス(12C2 H2 、13C2 H2)やシアンガス(H12CN、H13CN)を用い、これらの吸収線にレーザを安定化すれば、前述のEDFAフラットゲイン周波数近傍でのマスターレーザ12群が得られる。これにスレーブレーザ13をオフセットロックすれば、WDM用のコム周波数安定化光源が実現できる。得られる周波数安定度はそれぞれ前述のとおりである。
【0076】
ちなみにこの場合は、周波数基準の数にコム周波数の数が制限されることになるが、前述のように、第1マスターレーザ30に複数の第2マスターレーザ31を複数オフセットロックすれば、この問題はある程度回避できる。また、各マスターレーザ12単位に周波数基準となる吸収セルを異ならしても良い。
また、次に述べるよう第1実施形態のように、第2周波数基準を用いれば、この問題からは解放される。
【0077】
次に、第1実施形態について図面を参照しつつ説明する。
本実施形態は、上記参考例2をコム周波数安定化用の周波数安定化半導体レーザ装置に適用した実施例である。この方法では、図13の周波数関係が成り立つ。
図19が本実施形態を示す構成図であって、2つのAWG波長合分波器51,53(Arrayed Waveguide Gratings)を2次周波数基準39の前後に挿入することにより、多波長一括周波数安定化光源を実現可能とするものである。
【0078】
すなわち、1個の第1マスターレーザ30と、一群の複数の第2マスターレーザ31と、光共振器からなる2次周波数基準39、2次周波数基準39を第1マスターレーザ30の出力光に安定化する2次周波数基準安定化手段Cと、上記一群の複数の第2マスターレーザ31の発振周波数を上記2次周波数基準39に安定化させる2次基準複数出力光安定化手段Eと、一群のスレーブレーザ13と、上記2次周波数基準39の前後の光路に介挿されて上記2次基準複数出力安定化手段の一部である2つのAWG波長合分波器51,53と、AWG波長合分波器51で合波された一群の第2マスターレーザ31の出力光を分波する第3のAWG波長合分波器54と、光ファイバカップラ50と、各スレーブレーザ13を対応する第2マスターレーザ31の出力光にオフセットロックする複数の追従制御手段Bと、を備える。
【0079】
上記2次周波数基準安定化手段Cは、上記参考例で説明した構成と同じ構成となっていて、第1マスターレーザ30の発振周波数に2次周波数基準39の基準周波数の一つを安定化させる。
また、2次基準複数出力光安定化手段Eは、上記安定化された2次周波数基準39の複数の基準周波数の各々に一群の第2マスターレーザ31の出力光をそれぞれ安定化させるものであって、2つのAWG波長合分波器51,53、発振器35、外部変調器34、上記2次周波数基準39、受光器40、ロックインアンプ37、フィードバック回路38とを備える。
【0080】
一群の第2マスターレーザ31の出力光は、全て第1のAWG波長合分波器51に入力する。AWG波長合分波器51からの出力は、光ファイバカップラ52で分光され、その一部は外部変調器34を介して2次周波数基準39に透過させて当該2次周波数基準39の光学特性(透過あるいは反射特性)のおのおの異なる極値に安定化する。
【0081】
すなわち、外部変調器34は、音響光学変調器(AO)や電気光学変調器(EO)等から構成されて、発振器35からの基準信号に基づき、入力した出力光を、周波数変調あるいは位相変調して2次周波数基準39の中心周波数近傍で微少変調させ、その変調させた変調信号を参照信号として、2次周波数基準39に出力する。2次周波数基準39からの透過光は、第2のAWG波長合分波器53で分波され、その各出力光は、それぞれ受光器40(光検波器)に入力され、該受光器40で電気信号に変換される。その各電気信号は、ロックインアンプ37によって上記位相基準信号を基準に同期検波されて、フィードバック回路38に出力される。フィードバック回路38は、その同期検波された信号が一定になるように、PID制御(比例:P、積分:l、微分:D)を行い、それぞれ対応する第2マスターレーザ31の駆動電流等を制御する。これによって、第2マスターレーザ31の出力光は、それぞれ2次周波数基準39の周期的に存在する複数の周波数基準の光学特性(透過あるいは反射特性)のおのおの異なる極値に安定化される。
【0082】
ここで、2次周波数基準39の極値を示す周波数は、コム周波数間隔に一致させておく。
また、上記一群の第2マスターレーザ31の出力光をカップラ52で分光した他方は、第3のAWG波長合分波器54に入力し、一群の第2マスターレーザ31の出力光に分波される。その分波した各出力光は、それぞれ光ファイバカップラ50によって各スレーブレーザ13の出力光と合波された後に個別の受光器15で電気信号(ビート信号fBEAT)に変換されて、それぞれ個別の追従制御手段Bによって任意の周波数にオフセットロックされる。
【0083】
各追従制御装置Bの構成は、上記参考例と同様である。
なお、一群の第2マスターレーザ31の出力光だけを、周波数安定化半導体レーザ装置の出力として使用することも可能であるが、WDM用光源にするためには、それぞれ周波数の微調整が必要であり、上述のようなオフセットロックが不可欠となる。これがスレーブレーザ13を必要とする理由である。第2周波数基準の光学特性が観測できさえすれば、どの周波数であろうと任意の場所にオフセットロックが可能になる。
【0084】
ちなみに、このような構成をとると、2次周波数基準39の光耐性内での100波入力でないと、系そのものが実現困難となることが懸念されるが、それぞれの光のパワーが−20〜−10dBmで充分動作することが確認できているので、問題はない。
また、AWG波長合分波器の透過中心周波数の調整は、3dBパスバンド幅が0.3〜1.3nmと広く、透過中心周波数の温度依存性が〜10-5mm/℃であるため、使用前の温度設定だけで充分機能する。
【0085】
なお、第1マスターレーザ30の出力光は、上述の基準出力安定化手段で周波数を安定化しておく。
次に、第2実施形態について図面を参照しつつ説明する。
図20は、本実施形態に係る周波数安定化半導体レーザ装置を示す構成図である。
【0086】
本実施形態は、上記第1実施形態の簡易版であって、光共振器の代わりに、第2のAWG波長合分波器53そのものを2次周波数基準とするものである。AWG波長合分波器は、3dBパスバンド幅が広いため、安定度は低くなってしまうが、ファブリペロ干渉計など、2次周波数基準としてのキャビティの使用を省略できる利点がある。
【0087】
第1マスターレーザ30の出力光を、一群の第2マスターレーザ31と同様に第1のAWG波長合分波器51に入力した後、その出力光を光ファイバカップラ52で分光し、その2つの出力光を次段の2つのAWG波長合分波器53,54にそれぞれ入力する。
上記AWG波長合分波器51の出力の一方は、外部変調器34で周波数(位相)変調した後に第2のAWG波長合分波器53に入力し、上記出力の他方は、無変調で第3のAWG波長合分波器54に入力するものとする。
【0088】
変調が施された出力光は位相検波し、第2のAWG波長合分波器53の温度制御に用い、第1マスターレーザ30の発振周波数に第2AWG波長合分波器53の透過周波数の一つを安定化する。なお、本実施形態では、第2マスターレーザ31の安定化のための光路と、2次周波数基準としての第2のAWG波長合分波器53の安定化のための光路を同一としているが、別光路としても良い。
【0089】
第2マスターレーザ31の周波数安定化は、第1マスターレーザ30がAWG波長合分波器53の安定化を行ったのと同様に位相検波し、その出力をレーザの電流にフィードバックして実現する。
ここで、第1のAWG波長合分波器51、発振器35、ロックインアンプ6、受光器5、フィードバック回路60が合分波器安定手段Fを構成し、第1及び第2のAWG波長合分波器51,53、発振器35、及び、各第2マスターレーザ31に対応するロックインアンプ37、受光器40、フィードバック回路38が、第2の2次基準複数出力光安定化手段Gを構成している。
【0090】
一方、第3のAWG波長合分波器54から出力される無変調の出力光はスレーブレーザ13のオフセットロックに利用される。スレーブレーザ13のオフセットロック、つまり追従制御手段Bは、上記第1実施形態と同様であるので省略する。
これにより得られる安定度は10−9程度である。
【0091】
ちなみに、第2のAWG波長合分波器以外のAWG波長合分波器は、使用前の温度設定だけでよい。
【0092】
【発明の効果】
以上説明してきたように、本発明によれば、任意の発振周波数にスレーブレーザをオフセットロックすることが可能となる。
このとき、原子や分子の絶対周波数を基準とした高精度な周波数安定度が得られる。
【0093】
また、25GHz、50GHz、100GHz、200GHzといった一定の周波数間隔で周波数安定化光源が得られるため、WDM用のコム周波数安定化光源が実現できる。
また、マスターレーザと波長が倍程、異なるスレーブレーザ13についても、何の差し障りもなくオフセットロックが実現できる。
【0094】
さらに、単独の周波数安定化のみならず、50〜100波長の一括周波数安定化が可能となる。
光の周波数スイーパにオフセットロックされて追従する光源や、所望の光の周波数を、絶対周波数基準にオフセットロックし、すべて、あるいは一部の光源を用いて、コム周波数を構成することが可能になる。特に、波長多重通信(WDM)用の周波数安定化光源に密接に関わり、エルビウムドープファイバ増幅器(EDFA)に代表される光ファイバ増幅器(OFA)と共に用いることができる。
【0095】
例えば、EDFAゲインフラット周波数の中央から、高周波、低周波の双方で等周波数間隔で発振するコム周波数光源が簡単に実現できる。
また、周期分極反転(PPLN)技術を用いた波長変換技術が注目されているが、光源の安定度が変換光にそのまま影響するため、波長多重度が増せば増す程、安定度に要求される精度は厳しくなる。励起光と信号光を独立した光源から供給する場合には、特に本発明が有効となる。
【図面の簡単な説明】
【図1】 従来の周波数安定化半導体レーザ装置を示す構成図であって、線形吸収セルを使用すると共に、半導体レーザを直接変調方式の図である。
【図2】 従来の周波数安定化半導体レーザ装置を示す構成図であって、非線形吸収セル4を使用すると共に、半導体レーザを直接変調方式の図である。
【図3】 従来の周波数安定化半導体レーザ装置を示す構成図であって、光共振器を使用すると共に、半導体レーザを直接変調方式の図である。
【図4】 従来の周波数安定化半導体レーザ装置を示す構成図であって、マスターレーザを周波数基準として使用する図である。
【図5】 従来の周波数安定化半導体レーザ装置を示す構成図であって、線形吸収セルを使用すると共に、半導体レーザを外部変調器で変調する方式の図である。
【図6】 従来の周波数安定化半導体レーザ装置を示す構成図であって、非線形吸収セルを使用すると共に、半導体レーザを外部変調器で変調する方式の図である。
【図7】 従来の周波数安定化半導体レーザ装置を示す構成図であって、光共振器を使用すると共に、半導体レーザを外部変調器で変調する方式の図である。
【図8】 従来の周波数安定化半導体レーザ装置を示す構成図であって、マスターレーザを周波数基準として使用する図である。
【図9】 周波数弁別特性の模式及び帰還周波数幅を示す図である。
【図10】 周波数基準の中心周波数とレーザ安定化後の発振周波数を説明する図である。
【図11】 参考例1に係る周波数安定化半導体レーザ装置の構成図である。
【図12】 参考例1に係る周波数安定化半導体レーザ装置の別の構成図である。
【図13】 周波数基準の中心周波数とレーザ安定化後の発振周波数を説明する図である。
【図14】 参考例2に係る周波数安定化半導体レーザ装置の構成図である。
【図15】 参考例2に係る周波数安定化半導体レーザ装置の別の構成図である。
【図16】 参考例2に係る周波数安定化半導体レーザ装置の別の構成図である。
【図17】 ダブルバランスドミキサを使用した周波数弁別器における周波数弁別特性の実測例を示す図である。
【図18】 参考例3に係る多波長一括周波数用の安定化半導体レーザ装置の構成図である。
【図19】 本発明に基づく第1実施形態に係る多波長一括周波数用の安定化半導体レーザ装置の構成図である。
【図20】 本発明に基づく第2実施形態に係る多波長一括周波数用の安定化半導体レーザ装置の構成図である。
【符号の説明】
1 半導体レーザ1
2 発振器
3 線形吸収セル
4 非線形吸収セル
5 受光器
6 ロックインアンプ
7 フィードバック回路
8 偏光ビームスプリッタ
9 1/4波長板
10 ミラー
11 光共振器
12 マスターレーザ
13 スレーブレーザ
14 ビームスプリッタ
15 受光器
16 周波数弁別器
16a ミキサ
16b 方向性結合器
16c 遅延回路
17 外部変調器
20 フィードバック回路
21 ビームスプリッタ
22 周波数変換器
22a ミキサ
23 スペクトラムアナライザ
24 基準発振器
25 バンドパスフィルタ(またはローパスフィルタ)
30 第1マスターレーザ
31 第2マスターレーザ
32 ロックインアンプ
33 フィードバック回路
34 外部変調器
35 発振器
36 受光器
37 ロックインアンプ
38 フィードバック回路
39 2次周波数基準
40 受光器
41 ビームスプリッタ
50 光ファイバカップラ
51 第1のAWG波長合分波器
52 光ファイバカップラ
53 第2のAWG波長合分波器
54 第3のAWG波長合分波器
A 基準出力光安定化手段
B 追従制御手段
C 2次周波数基準安定化手段
D 2次基準出力光安定化手段
E 2次基準複数出力光安定化手段
F 合分波器安定化手段
G 第2の2次基準複数出力光安定化手段
fMA マスターレーザの発振周波数
fSL スレーブレーザの発振周波数
fBEAT ビート信号の周波数
fC 周波数弁別器の零点周波数
fSY 基準発振器の発振周波数
Claims (2)
- 第1マスターレーザと、複数の第2マスターレーザと、複数のスレーブレーザと、光共振器からなる2次周波数基準と、2次周波数基準の光学特性の極値を示す複数の周波数のいずれか一つを第1マスターレーザの発振周波数に安定化する2次周波数基準安定化手段と、上記複数の第2マスターレーザの出力光の発振周波数を、上記2次周波数基準の光学特性の極値を示す複数の周波数のそれぞれに安定化する2次基準複数出力光安定化手段と、上記複数の第2マスターレーザの出力光と上記複数のスレーブレーザの出力光とをそれぞれ合波する複数の光合波手段と、各光合波手段からビート信号に基づき対応するスレーブレーザの発振周波数を対応する第2マスターレーザの発振周波数に追従制御する複数の追従制御手段とを備え、
上記各追従制御手段は、それぞれ、オフセット周波数信号を出力する基準発振器と、基準発振器からの信号と上記ビート信号とを入力する周波数変換器と、周波数変換器の出力を入力する周波数弁別器と、周波数弁別器が出力する誤差信号をスレーブレーザにフィードバックする第1のフィードバック回路とを備え、上記周波数弁別器が、ミキサと遅延回路と方向性結合器からなり、入力した信号を上記方向性結合器により分岐し、一方の信号をそのまま上記ミキサに入力するとともに分岐した他方の信号は上記遅延回路を介して上記ミキサに入力する構成を備えて、上記周波数変換器から入力される信号をFM−AM変換して上記誤差信号として出力するものであり、
上記2次基準複数出力光安定化手段は、上記複数の第2マスターレーザの出力光を合波する第1のAWG波長合分波器と、上記第1のAWG波長合分波器の出力光を周波数変調または位相変調して上記2次周波数基準の中心周波数近傍で微小変調させて上記2次周波数基準に出力する外部変調器と、上記外部変調器から出力されて上記2次周波数基準を透過した光を分波する第2のAWG波長合分波器と、上記第2のAWG波長合分波器で分波された光をそれぞれ受光する複数の受光器と、上記複数の受光器の出力する信号をそれぞれ上記外部変調器を駆動する信号を基準に同期検波する同期検波手段と、同期検波された各信号をそれぞれ対応する上記第2マスターレーザにフィードバックする複数の第2のフィードバック回路とを備えることを特徴とする周波数安定化半導体レーザ装置。 - 第1マスターレーザと、複数の第2マスターレーザと、複数のスレーブレーザと、上記複数の第2マスターレーザからの出力光を合波する第1のAWG波長合分波器と、第1のAWG波長合分波器の出力を入力し2次周波数基準を構成する第2のAWG波長合分波器と、上記第1のAWG波長合分波器の出力を入力する第3のAWG波長合分波器と、上記第2のAWG波長合分波器の透過周波数を第1マスターレーザの発振周波数に安定化する合分波器安定化手段と、上記第2のAWG波長合分波器の複数の透過周波数に基づき上記各第2マスターレーザの出力光の発振周波数を安定化させる第2の2次基準複数出力光安定化手段と、上記第3のAWG波長合分波器から出力される複数の出力光と対応するスレーブレーザからの出力光とをそれぞれ合波する複数の光合波手段と、各光合波手段からビート信号に基づき対応するスレーブレーザの発振周波数を対応する第2マスターレーザの発振周波数に追従制御する複数の追従制御手段とを備え、
上記各追従制御手段は、それぞれ、オフセット周波数信号を出力する基準発振器と、基準発振器からの信号と上記ビート信号とを入力する周波数変換器と、周波数変換器の出力を入力する周波数弁別器と、周波数弁別器が出力する誤差信号をスレーブレーザにフィードバックする第1のフィードバック回路とを備え、上記周波数弁別器が、ミキサと遅延回路と方向性結合器からなり、入力した信号を上記方向性結合器により分岐し、一方の信号をそのまま上記ミキサに入力するとともに分岐した他方の信号は上記遅延回路を介して上記ミキサに入力する構成を備えて、上記周波数変換器から入力される信号をFM−AM変換して上記誤差信号として出力するものであり、
上記第2の2次基準複数出力光安定化手段は、上記第1のAWG波長合分波器の出力光を周波数変調または位相変調して上記2次周波数基準の中心周波数近傍で微小変調させて上記2次周波数基準に出力する外部変調器と、上記外部変調器から出力されて上記第2のAWG波長合分波器で分波された光をそれぞれ受光する複数の受光器と、上記複数の受光器の出力する信号をそれぞれ上記外部変調器を駆動する信号を基準に同期検波する複数の同期検波手段と、同期検波された各信号をそれぞれ対応する上記第2マスターレーザにフィードバックする複数の第2のフィードバック回路とを備えることを特徴とする周波数安定化半導体レーザ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000263983A JP4124555B2 (ja) | 2000-08-31 | 2000-08-31 | 周波数安定化半導体レーザ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000263983A JP4124555B2 (ja) | 2000-08-31 | 2000-08-31 | 周波数安定化半導体レーザ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002076507A JP2002076507A (ja) | 2002-03-15 |
JP4124555B2 true JP4124555B2 (ja) | 2008-07-23 |
Family
ID=18751463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000263983A Expired - Fee Related JP4124555B2 (ja) | 2000-08-31 | 2000-08-31 | 周波数安定化半導体レーザ装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4124555B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2333483B1 (en) * | 2009-12-13 | 2019-02-20 | Honeywell International Inc. | System and method for reducing laser phase noise in a resonator fiber optic gyroscope |
US8009296B2 (en) * | 2009-12-13 | 2011-08-30 | Honeywell International Inc. | Light-phase-noise error reducer |
JP5537174B2 (ja) * | 2010-01-29 | 2014-07-02 | 株式会社四国総合研究所 | ガス濃度測定装置 |
DE102010022585B4 (de) | 2010-06-03 | 2012-03-08 | Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt | Verfahren zum Erzeugen von phasenkohärenten Lichtfeldern mit vorgebbarem Wert ihrer Frequenz und optischer Frequenz-Synthesizer |
CN111834866B (zh) * | 2020-07-09 | 2024-07-19 | 中国科学院精密测量科学与技术创新研究院 | 一种即插式稳频装置 |
CN117394136A (zh) * | 2023-11-09 | 2024-01-12 | 深圳知能精仪科技有限公司 | 一种激光器频率锁定装置和方法 |
CN117937224B (zh) * | 2024-01-24 | 2024-07-09 | 中国计量科学研究院 | 一种稳频激光器的自动化pid整定方法及系统 |
-
2000
- 2000-08-31 JP JP2000263983A patent/JP4124555B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002076507A (ja) | 2002-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Broadband RF channelizer based on an integrated optical frequency Kerr comb source | |
WO2020026347A1 (ja) | 光伝送装置及び光伝送システム | |
US7257142B2 (en) | Semi-integrated designs for external cavity tunable lasers | |
US5173794A (en) | Wavelength division multiplexing using a tunable acousto-optic filter | |
US7835643B2 (en) | Optical waveform measuring apparatus and optical waveform measuring method | |
US9528875B2 (en) | Optical frequency tracking and stabilization based on extra-cavity frequency | |
US4955026A (en) | Frequency locking radiation beam | |
JPH0553314B2 (ja) | ||
CN111934162B (zh) | 基于微波光子滤波器的宇称时间对称光电振荡器倍频系统 | |
KR19990085753A (ko) | 광섬유 마하젠더 간섭계 광필터 | |
Adams et al. | A novel broadband photonic RF phase shifter | |
JP4124555B2 (ja) | 周波数安定化半導体レーザ装置 | |
US20030142320A1 (en) | Method and apparatus for measuring a frequency of an optical signal | |
JP6604580B2 (ja) | 周波数安定化レーザ | |
JP4928779B2 (ja) | ミリ波発生用光源 | |
JP7234805B2 (ja) | 波長変換装置及び波長変換方法 | |
JP2564622B2 (ja) | 半導体レーザの発振周波数安定化方法及び装置 | |
KR20130104541A (ko) | 파장가변 레이저 모듈 | |
JP2501484B2 (ja) | 波長安定化レ―ザ装置 | |
JP2009016396A (ja) | 波長走査型ファイバレーザ光源 | |
Wang et al. | All optical multi-wavelength single-sideband modulated WDM radio-over-fiber systems by introducing a Sagnac loop filter | |
JP2006208656A (ja) | 光周波数コム発生方法、光周波数コム発生装置及び高密度波長多重送信システム | |
JPH1197791A (ja) | 外部共振器型半導体レーザ光源 | |
WO2021016966A1 (zh) | 一种多波长光源以及光芯片 | |
JP7540055B1 (ja) | 光周波数の遠隔校正システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060307 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060501 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060519 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060623 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060731 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080325 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080502 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |