JP4121197B2 - freezer - Google Patents

freezer Download PDF

Info

Publication number
JP4121197B2
JP4121197B2 JP29790798A JP29790798A JP4121197B2 JP 4121197 B2 JP4121197 B2 JP 4121197B2 JP 29790798 A JP29790798 A JP 29790798A JP 29790798 A JP29790798 A JP 29790798A JP 4121197 B2 JP4121197 B2 JP 4121197B2
Authority
JP
Japan
Prior art keywords
temperature
cooler
fan
internal
cooling fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29790798A
Other languages
Japanese (ja)
Other versions
JP2000121228A (en
Inventor
誠 桑原
朗 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29790798A priority Critical patent/JP4121197B2/en
Publication of JP2000121228A publication Critical patent/JP2000121228A/en
Application granted granted Critical
Publication of JP4121197B2 publication Critical patent/JP4121197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0654Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0664Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/30Quick freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an inner side of a refrigerator to be cooled in a substantially uniform manner. SOLUTION: There is provided a fast freezer 10 comprised of a thermal insulating box 11 forming an inner side 12 of a freezer, a partition plate 16 spaced apart from one inner wall 15 of the thermal insulating box so as to form a cooling chamber 17, a cooler 18 mounted within the cooling chamber, an inner upside fan 19 and an inner downside fan 20 each of which is mounted at a refrigerant inlet region 18A and a refrigerant outlet region 18B of the cooler within the cooling chamber, a suction port 23 arranged at a position corresponding to the cooler at the partition plate, an upper blowing-out port 24 and a lower blowing-out port 25 arranged at positions corresponding to each of an inner upside fan and an inner downside fan at the partition plate. The number of rotation of the inner downside fan mounted at the refrigerant outlet side region of the cooler within the cooling chamber can be set to be higher than the number of rotation of the inner upside fan installed at the refrigerant inlet side region of the cooler within the cooling chamber.

Description

【0001】
【発明の属する技術分野】
本発明は、庫内に冷気を強制循環させて保存物を凍結させる、急速凍結庫等に適用される冷凍庫に関する。
【0002】
【従来の技術】
従来の冷凍庫は、庫内を形成する断熱箱体と、この断熱箱体の一内側壁に対し間隔を隔てて設けられて冷却室を形成する仕切板と、上記冷却室内に設置された冷却器と、冷却室内で冷却器の冷媒入口側領域側(例えば上側)、冷媒出口側領域側(例えば下側)にそれぞれ設置された庫内上ファン、庫内下ファンと、仕切板における冷却器に対向する位置に設けられた吸込口と、仕切板における庫内上ファン、庫内下ファンにそれぞれ対向する位置に設けられた吹出口とを備え、冷却器にて冷却されて吹出口から吹き出される冷却空気(冷気)により、庫内に収納された保存物を凍結させるものである。
【0003】
このような冷凍庫では、図7に示すように、庫内に設置された温度センサによる検出温度が(冷凍保存設定温度T1+10℃)以上であるか否かを判定し(S100)、以上の時に、庫内上ファン及び庫内下ファンを共に高速回転させて、これらの庫内上ファン及び庫内下ファンからの吹出空気の風速を強とする急速凍結モードを実施する(S101)。上記温度センサによる検出温度が(冷凍保存設定温度T1+10℃)以下である時には、この検出温度が急速凍結設定温度T2以上であるか否かを判定し(S102)、以上である時に上記急速凍結モードを継続させる(S101)。
【0004】
上記ステップS102において、検出温度が急速凍結設定温度T2未満となった時に、庫内上ファン及び庫内下ファンを共に低速回転させて、これらの庫内上ファン及び庫内下ファンからの吹出空気の風速を弱とする冷凍保存モードを実施する(S103)。この冷凍保存モード中に、庫内温度が(冷凍保存設定温度T1+10℃)以上となったか否かを判定し(104)、以上となった時に急速凍結モードを実施する(S101)。
【0005】
【発明が解決しようとする課題】
ところで、冷却器では、冷媒の入口側領域(例えば上側領域)にて冷却される空気は、冷媒の出口側領域(例えば下側領域)にて冷却される空気よりも低温となるのが一般的である。
【0006】
このため、上述のように、急速凍結モードを実施するにあたり、庫内上ファンと庫内下ファンを共に高速回転に設定すると、庫内のうち、庫内上部分が例えば−40℃に、庫内下部分が例えば−35℃になって、庫内下部分が庫内上部分よりも高温となり、庫内温度が不均一になってしまう。
【0007】
また、上述のように庫内温度が不均一になる急速凍結モードにおいて、解凍状態の保存物が庫内下部分に収納されると、この保存物の凍結に長時間を要することになる。
【0008】
本発明は上述の事情を考慮してなされたものであり、請求項1に記載の発明の課題は、庫内を略均一に冷却できる冷凍庫を提供することにあり、請求項2に記載の発明の課題は、庫内における負荷の相違を迅速に解消できる冷凍庫を提供することにある。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、庫内を形成する断熱箱体と、この断熱箱体の一内側壁に対し間隔を隔てて設けられて冷却室を形成する仕切体と、上記冷却室内に設置された冷却器と、上記冷却室内で上記冷却器の冷媒入口側領域側、冷媒出口側領域側にそれぞれ設置された第一冷却ファン、第二冷却ファンと、上記仕切体における上記冷却器に対向する位置に設けられた吸込口と、上記仕切体における上記第一冷却ファン、上記第二冷却ファンにそれぞれ対向する位置に設けられた吹出口と、を備えてなる冷凍庫において、庫内温度が冷凍保存温度に所定温度を加えた温度に至ったら、急速凍結モードに移行し、庫内温度が急速凍結設定温度に至ったら、冷凍保存モードに移行し、上記急速凍結モードでは、上記冷却器の冷媒出口側領域側に設置された第二冷却ファンの回転数を強にすると共に、上記冷却器の冷媒入口側領域側に設置された第一冷却ファンの回転数を弱にして運転し、上記冷凍保存モードでは、上記第一冷却ファンおよび上記第二冷却ファンの回転数を弱にして運転することを特徴とするものである。
【0010】
請求項2記載の発明は、上記構成において、上記庫内のうち、冷却室における冷却器の冷媒入口側領域側に対応する庫内部分と冷媒出口側領域側に対応する庫内部分とのそれぞれに、庫内温度を検出する温度検出器が設置され、庫内温度が冷凍保存温度に所定温度を加えた温度より高く、かつ各庫内部分の温度差が予め設定した温度よりも低い場合に、上記冷却器の冷媒出口側領域側に設置された第二冷却ファンの回転数を強にすると共に、上記冷却器の冷媒入口側領域側に設置された第一冷却ファンの回転数を弱にして運転する運転モードを更に備えたことを特徴とするものである。
【0011】
請求項3記載の発明は、上記構成において、上記庫内のうち、冷却室における冷却器の冷媒入口側領域側に対応する庫内部分と冷媒出口側領域側に対応する庫内部分とのそれぞれに、庫内温度を検出する温度検出器が設置され、庫内温度が冷凍保存温度に所定温度を加えた温度より高く、各庫内部分の温度差が予め設定した温度よりも高い場合に、温度が高い庫内部分に対応する冷却ファンの回転数を強にすると共に、温度が低い庫内部分に対応する冷却ファンの回転数を弱にして運転する運転モードを更に備えたことを特徴とするものである。
【0012】
上記発明には、次の作用がある。
【0013】
冷却器では、一般に、冷媒入口側領域にて冷却される空気が、冷媒出口側領域にて冷却される空気よりも低温となる。そこで、冷却室内で上記冷却器の冷媒出口側領域側に設置された第二冷却ファンの回転数を、上記冷却室内で上記冷却器の冷媒入口側領域側に設置された第一冷却ファンの回転数よりも高く設定して、冷却器の冷媒入口側領域で冷却されたより低温の空気を、冷却室における冷却器の冷媒出口側領域側に引き込み、庫内へ吹出させることにより、庫内を均一温度に冷却することができる。
【0015】
庫内のうち、冷却室における冷却器の冷媒入口側領域側に対応する庫内部分と冷媒出口側領域側に対応する庫内部分とで負荷が異なる場合に、負荷の大きな庫内部分に対応する第一冷却ファン又は第二冷却ファンの回転数が、負荷の小さな庫内部分に対応する第二冷却ファン又は第一冷却ファンの回転数よりも高く設定可能に構成されたことから、冷却器にて冷却された空気を負荷の大きな庫内部分へ大量に供給できるので、庫内における負荷の相違を迅速に解消できる。
【0017】
庫内のうち、冷却室における冷却器の冷媒入口側領域側に対応する庫内部分と冷媒出口側領域側に対応する庫内部分とのそれぞれに、庫内温度を検出する温度検出器が設置されたことから、これらの温度検出器により庫内の温度の相違を検出でき、庫内のうち負荷の大きな庫内部分を的確に判定できる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0019】
図1は、本発明に係る冷凍庫の一実施の形態が適用された急速凍結庫を示す斜視図である。図2は、図1の急速凍結庫を示す正断面図である。
これらの図1及び図2に示す冷凍庫としての急速凍結庫10は、庫内に収納された保存物を急速に凍結するものであり、断熱箱体11が庫内12を形成する。この断熱箱体11は、前面に開口部を有し、この開口部が断熱上扉13及び断熱下扉14により開放又は閉塞される。
【0020】
上記庫内12には、断熱箱体11の一内側壁15に対し一定間隔を隔てて、仕切体としての仕切板16が配設される。この仕切板16と上記一内側壁15との間に冷却室17が形成される。
【0021】
この冷却室17内には、断熱箱体11の鉛直方向中央位置に冷却器18が配置され、この冷却器18の上方に第一冷却ファンとしての庫内上ファン19が、下方に第二冷却ファンとしての庫内下ファン20がそれぞれ設置される。図4に示すように、冷却器18の熱交換チューブ21には、入口パイプ22Aを経て上方から下方へ向かって冷媒が流れ、この冷媒は、出口パイプ22Bを経て流出する。従って、庫内上ファン19は、冷却室17内において、冷却器18の冷媒入口側領域18A側に設置され、また、庫内下ファン20は、冷却室17内において、冷却器18の冷媒出口側領域18B側に設置されていることになる。
【0022】
図1及び図2に示すように、上記冷却器18と共に冷凍サイクルを構成する圧縮機30、凝縮器31などが断熱箱体11の天面部に設置される。圧縮機30からの冷媒が凝縮器31及び膨張機構(不図示)を経て冷却器18へ至り、圧縮機30へ戻ることにより、冷却器18が庫内12内の空気を冷却する。
【0023】
上記仕切板16には、冷却器18に対向する位置に複数の吸込口23が形成されると共に、庫内上ファン19、庫内下ファン20にそれぞれ対向する位置に上吹出口24、下吹出口25が形成される。これらの上吹出口24、下吹出口25は、ファンガード26により覆われている。庫内12内の空気(冷気)は、吸込口23から冷却室17内へ吸い込まれ、冷却器18にて冷却された後、庫内上ファン19及び庫内下ファン20の作用で、上吹出口24、下吹出口25から庫内12内へ吹き出され、強制循環される。
【0024】
この庫内12内には、複数段の網棚27が水平状態で配置される。図3に示す保存物としての蓄冷剤28がバスケット29に収容されて、網棚27に載置される。或いは、図示しない食品が直接網棚27に載置される。これらの庫内12に収容された蓄冷剤28又は食品は、冷却器18にて冷却されるとともに庫内12へ吹き出された空気により凍結される。
【0025】
図2に示すように、上記庫内12のうち、冷却室17における冷却器18の冷媒入口側領域18A側に対応する庫内上部分32と、冷媒出口側領域18B側に対応する庫内下部分33とのそれぞれに、庫内温度を検出する上温度センサ34、下温度センサ35が設置される。これらの上温度センサ34及び下温度センサ35による検出温度は、制御装置36へ送信される。
【0026】
この制御装置36は、上温度センサ34及び下温度センサ35にて検出された検出温度に基づき、圧縮機30の稼働と停止、庫内上ファン19及び庫内下ファン20の駆動と停止をそれぞれ制御して、急速凍結モードと冷凍保存モードを実施する。
【0027】
つまり、制御装置36は、図5に示すように、運転開始から急速凍結設定温度T2に至るまでのA区間において、急速凍結モードを実施し、その後のB区間では冷凍保存モードを実施して、庫内12温度を冷凍保存設定温度T1にほぼ一致させる。
【0028】
制御装置36は、断熱上扉13又は断熱下扉14の開操作や、解凍状態の蓄冷剤28を庫内12へ搬入するなどによって、庫内12内の負荷が増大し、庫内12の温度が(冷凍保存設定温度T1+10℃)以上となったC区間で、急速凍結モードを再び実施する。その後、庫内12が急速凍結設定温度T2に達した後のD区間において、制御装置36は冷凍保存モードを実施し、庫内12温度をほぼ冷凍保存設定温度T1に保持する。
【0029】
制御装置36(図2)は、上記急速凍結モードにおいて、通常、庫内下ファン20の回転数を庫内上ファン19の回転数よりも高く設定して、庫内下ファン20から吹き出される空気の風速を強とし、庫内上ファン19から吹き出される空気の風速を弱とする。その理由は次の通りである。
即ち、図3において前述した如く、冷却器18の熱交換チューブ21には、入口パイプ22Aを経て上方から下方へ向かって冷媒が流れるので、この冷却器18では、冷媒入口側領域18Aにて冷却される空気は、冷媒出口側領域18Bにて冷却される空気よりも低温となる。このため、冷却室17内において冷媒出口側領域18B側に配置された庫内下ファン20の回転数を、冷却室17内において冷媒入口側領域18A側に配置された庫内上ファン19の回転数よりも高く設定して、冷媒入口側領域18Aにて冷却されたより低温の空気を冷却室17内における冷媒出口側領域18B側へ引き込むことにより、庫内下部分33を低温化して、庫内12内をほぼ均一温度に冷却させることができるからである。
【0030】
また、制御装置36(図2)は、上温度センサ34又は下温度センサ35からの検出温度が一定値(例えば5℃)以上の差がある時に、庫内上部分32と庫内下部分33のいずれか一方の負荷が増大したと判断し、検出温度が高くて負荷が増大したと判断した庫内上部分32或いは庫内下部分33側に対応する庫内上ファン19或いは庫内下ファン20の回転数を、検出温度が低くて負荷が小さいと判断した庫内下部分33或いは庫内上部分32側に対応する庫内下ファン20或いは庫内上ファン19の回転数よりも高く設定する。これにより、負荷が増大した庫内上部分32或いは庫内下部分33側に対応する庫内上ファン19或いは庫内下ファン20から吹き出される空気の風速が強となり、負荷の小さな庫内下部分33或いは庫内上部分32側に対応する庫内下ファン20或いは庫内上ファン19から吹き出される空気の風速が弱となって、負荷が増大した庫内上部分32或いは庫内下部分33へ、冷却器18にて冷却された空気を大量に供給できる。
【0031】
次に、上述の制御装置36による庫内上ファン19及び庫内下ファン20の制御を、図6を用いて説明する。
【0032】
制御装置36は、急速凍結庫10の運転を開始した後、上温度センサ34及び下温度センサ35による検出温度が(冷凍保存設定温度T1+10℃)以上であるか否かを判定し(S1)、以上である場合に、これらの検出温度差が5℃以上であるか否かを判定する(S2)。
【0033】
このステップS2において上温度センサ34及び下温度センサ35による検出温度差が5℃以下の時に、または、ステップS1において上温度センサ34及び下温度センサ35による検出温度が(冷凍保存設定温度T1+10℃)以下の時に、制御装置36は、これらの検出温度が急速凍結設定温度T2以下であるか否かを判定する(S3)。
【0034】
制御装置36は、ステップS3において、上温度センサ34及び下温度センサ35による検出温度が急速凍結設定温度T2以上の時に、庫内上ファン19を低速回転させて、この庫内上ファン19からの吹出空気の風速を弱とし、庫内下ファン20を高速回転させて、この庫内下ファン20からの吹出空気の風速を強として、急速凍結モードを実施する(S4)。
【0035】
ステップS3において、上温度センサ34及び下温度センサ35による検出温度が急速凍結設定温度T2以下の時には、制御装置36は、庫内上ファン19及び庫内下ファン20を共に低速回転させて、これらの庫内上ファン19及び庫内下ファン20からの吹出空気の風速を共に弱として、冷凍保存モードを実施する(S5)。この冷凍保存モードの実施中に、制御装置36は、上温度センサ34及び下温度センサ35による検出温度が(冷凍保存設定温度T1+10℃)以上となったか否かを判定し(S6)、以上となった時に、ステップS3を経て急速凍結モードを実施する(S4)。
【0036】
制御装置36は、ステップS2において、上温度センサ34と下温度センサ35とによる検出温度差が5℃以上の場合に、上温度センサ34による検出温度が(下温度センサ35による検出温度+5℃)以上であるか否かを判定する(S7)。上温度センサ34による検出温度が、(下温度センサ35による検出温度+5℃)以上である場合には、上温度センサ34の配設された庫内上部分32が、下温度センサ35の配設された庫内下部分33よりも負荷が大きいので、制御装置36は、この負荷の大きな庫内上部分32に対応する庫内上ファン19を高速回転として、この庫内上ファン19からの吹出空気の風速を強とし、負荷の小さな庫内下部分33に対応する庫内下ファン20を低速回転として、この庫内下ファン20からの吹出空気の風速を弱として、急速凍結モードを実施する(S8)。
【0037】
また、制御装置36は、ステップS7において、上温度センサ34による検出温度が、(下温度センサ35による検出温度+5℃)以下であるとき、つまり、この場合には、下温度センサ35による検出温度が(上温度センサ34による検出温度+5℃)以上である時に、下温度センサ35の配設された庫内下部分33が、上温度センサ34の配設された庫内上部分32よりも負荷が大きいので、制御装置36は、この負荷が大きな庫内下部分33に対応する庫内下ファン20を高速回転として、この庫内下ファン20からの吹出空気の風速を強とし、負荷が小さな庫内上部分32に対応する庫内上ファン19を低速回転として、この庫内上ファン19からの吹出空気の風速を弱とし、急速凍結モードを実施する(S4)。
【0038】
従って、上記実施の形態によれば、次の効果▲1▼〜▲3▼を奏する。
【0039】
▲1▼冷却器18では、一般に、冷媒入口側領域18Aにて冷却される空気が、冷媒出口側領域18Bにて冷却される空気よりも低温となる。そこで、本実施の形態では、冷却室17内で冷却器18の冷媒出口側領域18B側に設置された庫内下ファン20の回転数を、冷却室17内で冷却器18の冷媒入口側領域18A側に設置された庫内上ファン19の回転数よりも高く設定して、冷却器18の冷媒入口側領域18Aで冷却されたより低温の空気を、冷却室17における冷却器18の冷媒出口側領域18B側に引き込み、庫内下部分33へ吹き出させることにより、庫内12を略均一温度に冷却することができる。
【0040】
▲2▼庫内12のうち、冷却室17における冷却器18の冷媒入口側領域18A側に対応する庫内上部分32と冷媒出口側領域18B側に対応する庫内下部分33とで負荷が異なる場合に、負荷の大きな庫内上部分32または庫内下部分33にそれぞれ対応する庫内上ファン19または庫内下ファン20の回転数が、負荷の小さな庫内下部分33または庫内上部分32にそれぞれ対応する庫内下ファン20又は庫内上ファン19の回転数よりも高く設定可能に構成されたことから、冷却器18にて冷却された空気を、負荷の大きな庫内上部分32または庫内下部分33へ大量に供給できるので、庫内12における負荷の相違を早期に解消できる。この結果、庫内上部分32又は庫内下部分33のいずれか一方に、解凍状態の蓄冷剤28が収納された時に、この解凍状態の蓄冷剤を迅速に凍結させることができる。
【0041】
▲3▼庫内12のうち、冷却室17における冷却器18の冷媒入口側領域18A側に対応する庫内上部分32と冷媒出口側領域18B側に対応する庫内下部分33とのそれぞれに、庫内温度を検出する上温度センサ34、下温度センサ35が設置されたことから、これらの上温度センサ34、下温度センサ35により庫内12の温度の相違を検出でき、庫内12のうち負荷の大きな庫内上部分32又は庫内下部分33を的確に判定できる。
【0042】
以上、一実施の形態に基づいて本発明を説明したが、本発明はこれに限定されるものではない。
【0043】
例えば、庫内12に上温度センサ34及び下温度センサ35を設置せず、図2の破線に示すように、庫内12の鉛直方向中央位置に1個の温度センサ37を設置し、図6のステップS2及びS7を削除してステップS1、S3〜S6を実施させてもよい。そして、この場合には、制御装置36に、庫内上ファン19と庫内下ファン20の回転数を切り換える切換スイッチを設け、庫内12のうち、解凍状態の蓄冷剤28を搬入するなどして負荷を大きくした庫内上部分32または庫内下部分33に対応する庫内上ファン19又は庫内下ファン20を、上記切換えスイッチの手動操作により高速回転に設定して、これらの庫内上ファン19又は庫内下ファン20からの吹出空気の風速を強としてもよい。
【0044】
また、上記実施の形態の急速凍結庫10では、冷却器18の冷媒入口側領域18Aが上に、冷媒出口側領域18Bが下に配置された縦型の急速凍結庫10の場合を述べたが、冷却器18の冷媒入口側領域18Aと冷媒出口側領域18Bとが左右に配置された横型の急速凍結庫10の場合にも本発明を適用できる。
【0045】
【発明の効果】
以上のように、本発明の冷凍庫によれば、急速凍結モードでは、冷却室内で冷却器の冷媒出口側領域側に設置された第二冷却ファンの回転数が、冷却室内で冷却器の冷媒入口側領域側に設置された第一冷却ファンの回転数よりも高く設定されたことから、冷却器の冷媒入口側で冷却されたより低温の空気を、冷却室における冷却器の冷媒出口側領域側に吹き込むことにより、庫内を均一温度に冷却することができる。
【0046】
また、本発明の冷凍庫によれば、庫内のうち、冷却室における冷却器の冷媒入口側領域側に対応する庫内部分と冷媒出口側領域側に対応する庫内部分とで負荷が異なる場合に、負荷の大きな庫内部分に対応する第一冷却ファン又は第二冷却ファンの回転数が、負荷の小さな庫内部分に対応する第二冷却ファン又は第一冷却ファンの回転数よりも高く設定される運転モードを備えたことから、冷却器にて冷却された空気を負荷の大きな庫内部分へ大量に供給できるので、庫内における負荷の相違を迅速に解消できる。
【図面の簡単な説明】
【図1】本発明に係る冷凍庫の一実施の形態が適用された急速凍結庫を示す斜視図である。
【図2】図1の急速凍結庫を示す正断面図である。
【図3】図2の急速凍結庫に蓄冷剤を配置した正断面図である。
【図4】図1の冷却器の熱交換チューブを示す斜視図である。
【図5】図1の急速凍結庫における庫内温度の変化を示すグラフである。
【図6】図1の急速凍結庫における庫内上ファン及び庫内下ファンの制御を示すフローチャートである。
【図7】従来の急速凍結庫における庫内上ファン及び庫内下ファンの制御を示すフローチャートである。
【符号の説明】
10 急速凍結庫(冷凍庫)
11 断熱箱体
12 庫内
16 仕切板(仕切体)
17 冷却室
18 冷却器
18A 冷媒入口側領域
18B 冷媒出口側領域
19 庫内上ファン(第一冷却ファン)
20 庫内下ファン(第二冷却ファン)
23 吸込口
24 上吹出口
25 下吹出口
32 庫内上部分
33 庫内下部分
34 上温度センサ(温度検出器)
35 下温度センサ(温度検出器)
36 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a freezer applied to a quick freezer or the like in which cold air is forcibly circulated in a refrigerator to freeze a stored product.
[0002]
[Prior art]
A conventional freezer includes a heat insulating box that forms the interior of the refrigerator, a partition plate that is provided at a distance from an inner wall of the heat insulating box to form a cooling chamber, and a cooler that is installed in the cooling chamber. And an in-compartment upper fan and an in-compartment lower fan installed on the refrigerant inlet side region side (for example, the upper side) and the refrigerant outlet side region side (for example, the lower side) of the cooler, and the cooler in the partition plate, respectively. It has a suction port provided at the opposed position, and an air outlet provided at a position facing the upper fan and the lower fan in the partition plate, and is cooled by a cooler and blown out from the air outlet. The stored material stored in the cabinet is frozen by cooling air (cold air).
[0003]
In such a freezer, as shown in FIG. 7, it is determined whether or not the temperature detected by the temperature sensor installed in the refrigerator is (refrigerated storage set temperature T1 + 10 ° C.) or higher (S100). A quick freezing mode is performed in which both the internal upper fan and the internal lower fan are rotated at a high speed to increase the wind speed of the air blown from the internal upper fan and the internal lower fan (S101). When the temperature detected by the temperature sensor is equal to or lower than (freezer storage set temperature T1 + 10 ° C.), it is determined whether or not the detected temperature is equal to or higher than the quick freezing set temperature T2 (S102). Is continued (S101).
[0004]
When the detected temperature becomes lower than the quick freeze set temperature T2 in step S102, both the upper fan and the lower fan are rotated at a low speed, and the air blown from these upper and lower fans The frozen storage mode in which the wind speed is weakened is implemented (S103). During this frozen storage mode, it is determined whether or not the internal temperature has become (refrigerated storage set temperature T1 + 10 ° C.) or higher (104), and when it is higher, the quick freezing mode is carried out (S101).
[0005]
[Problems to be solved by the invention]
By the way, in a cooler, the air cooled in the refrigerant | coolant inlet side area | region (for example, upper area | region) becomes colder than the air cooled in the refrigerant | coolant outlet side area | region (for example, lower area | region). It is.
[0006]
Therefore, as described above, when the quick freeze mode is performed, if both the upper fan and the lower fan are set to high-speed rotation, the upper portion of the inner portion is stored at, for example, −40 ° C. The inner lower part becomes, for example, −35 ° C., the lower part in the warehouse becomes higher than the upper part in the warehouse, and the temperature in the warehouse becomes uneven.
[0007]
Further, in the quick freezing mode in which the inside temperature is non-uniform as described above, if a preserved material in a thawed state is stored in the lower part of the inside of the warehouse, it takes a long time to freeze the preserved material.
[0008]
The present invention has been made in consideration of the above-mentioned circumstances, and an object of the invention described in claim 1 is to provide a freezer capable of cooling the inside of the refrigerator substantially uniformly, and the invention described in claim 2. The subject of this is to provide the freezer which can eliminate rapidly the difference in the load in a store | warehouse | chamber.
[0009]
[Means for Solving the Problems]
The invention described in claim 1 is provided in a heat insulating box that forms the interior of the cabinet, a partition that is provided at a distance from an inner wall of the heat insulating box and forms a cooling chamber, and the cooling chamber. And the first cooling fan and the second cooling fan respectively installed on the refrigerant inlet side region side and the refrigerant outlet side region side of the cooler in the cooling chamber, and the cooler in the partition. In a freezer comprising a suction port provided at a position, and an air outlet provided at a position facing each of the first cooling fan and the second cooling fan in the partition, the internal temperature is stored frozen. When the temperature reaches a temperature obtained by adding a predetermined temperature, the mode is shifted to a quick freezing mode. When the internal temperature reaches the quick freezing set temperature, the mode is switched to a frozen storage mode. In the quick freezing mode, the refrigerant outlet of the cooler is Installed on the side area side And while the intensity of the rotational speed of the second cooling fan, the rotational speed of the first cooling fan installed in the refrigerant inlet side region side of the condenser was operated in the weak, in the frozen mode, the first The cooling fan and the second cooling fan are operated at a low rotational speed .
[0010]
Invention of Claim 2 is the said structure. WHEREIN: Each of the in-chamber part corresponding to the refrigerant | coolant inlet side area | region side of the cooler in a cooling chamber, and the in-chamber part corresponding to the refrigerant | coolant outlet side area | region side in the said chamber | room If the temperature detector for detecting the internal temperature is installed, the internal temperature is higher than the temperature obtained by adding the predetermined temperature to the frozen storage temperature, and the temperature difference between the internal parts is lower than the preset temperature The rotational speed of the second cooling fan installed on the refrigerant outlet side region side of the cooler is increased and the rotational speed of the first cooling fan installed on the refrigerant inlet side region side of the cooler is decreased. And an operation mode for driving the vehicle .
[0011]
According to a third aspect of the present invention, in the above-described configuration, each of the inside portion corresponding to the refrigerant inlet side region side of the cooler in the cooling chamber and the inside portion corresponding to the refrigerant outlet side region side in the cooling chamber in the above configuration. In addition, when a temperature detector for detecting the internal temperature is installed , the internal temperature is higher than the temperature obtained by adding the predetermined temperature to the frozen storage temperature, and the temperature difference of each internal part is higher than the preset temperature, It is further characterized by further comprising an operation mode in which the rotation speed of the cooling fan corresponding to the interior portion having a high temperature is increased and the rotation speed of the cooling fan corresponding to the interior portion having a low temperature is decreased. To do.
[0012]
The above invention has the following effects.
[0013]
In the cooler, generally, the air cooled in the refrigerant inlet side region has a lower temperature than the air cooled in the refrigerant outlet side region. Therefore, the rotation speed of the second cooling fan installed on the refrigerant outlet side region side of the cooler in the cooling chamber is set to the rotation speed of the first cooling fan installed on the refrigerant inlet side region side of the cooler in the cooling chamber. By setting higher than the number, the cooler air cooled in the refrigerant inlet side area of the cooler is drawn into the refrigerant outlet side area side of the cooler in the cooling chamber and blown out into the warehouse, so that the inside of the warehouse is uniform Can be cooled to temperature.
[0015]
Corresponding to a large internal load part when the load is different between the internal part corresponding to the refrigerant inlet side region side of the cooler and the internal part corresponding to the refrigerant outlet side region side in the cooling chamber. The number of rotations of the first cooling fan or the second cooling fan that can be set is higher than the number of rotations of the second cooling fan or the first cooling fan corresponding to the interior portion with a small load. Since a large amount of the air cooled in the chamber can be supplied to the portion of the warehouse with a large load, the difference in load in the warehouse can be quickly resolved.
[0017]
Temperature detectors that detect the internal temperature are installed in the internal part corresponding to the refrigerant inlet side region side of the cooler and the internal part corresponding to the refrigerant outlet side region side of the cooler in the refrigerator. Therefore, these temperature detectors can detect the difference in the temperature in the storage, and can accurately determine the portion of the storage that has a large load.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 is a perspective view showing a quick freezer to which an embodiment of a freezer according to the present invention is applied. FIG. 2 is a front sectional view showing the quick freezer of FIG.
The quick freezer 10 as the freezer shown in FIG. 1 and FIG. 2 rapidly freezes the stored material stored in the refrigerator, and the heat insulating box 11 forms the interior 12. The heat insulating box 11 has an opening on the front surface, and the opening is opened or closed by a heat insulating upper door 13 and a heat insulating lower door 14.
[0020]
A partition plate 16 serving as a partition is disposed in the interior 12 with a predetermined interval from the inner wall 15 of the heat insulating box 11. A cooling chamber 17 is formed between the partition plate 16 and the inner wall 15.
[0021]
In the cooling chamber 17, a cooler 18 is disposed at the center in the vertical direction of the heat insulating box 11, and the upper fan 19 serving as a first cooling fan is disposed above the cooler 18, and the second cooling is performed downward. An in-compartment lower fan 20 is installed as a fan. As shown in FIG. 4, the refrigerant flows from the upper side to the lower side through the inlet pipe 22A in the heat exchange tube 21 of the cooler 18, and this refrigerant flows out through the outlet pipe 22B. Accordingly, the internal fan 19 is installed in the cooling chamber 17 on the refrigerant inlet side region 18A side of the cooler 18, and the internal lower fan 20 is installed in the cooling chamber 17 on the refrigerant outlet of the cooler 18. It is installed on the side region 18B side.
[0022]
As shown in FIGS. 1 and 2, the compressor 30, the condenser 31, and the like that constitute the refrigeration cycle together with the cooler 18 are installed on the top surface of the heat insulating box 11. The refrigerant from the compressor 30 reaches the cooler 18 through the condenser 31 and the expansion mechanism (not shown) and returns to the compressor 30, whereby the cooler 18 cools the air in the interior 12.
[0023]
The partition plate 16 is formed with a plurality of suction ports 23 at positions facing the cooler 18, and at the positions facing the upper fan 19 and the lower fan 20, respectively. An outlet 25 is formed. These upper outlet 24 and lower outlet 25 are covered with a fan guard 26. The air (cold air) in the interior 12 is sucked into the cooling chamber 17 from the suction port 23 and cooled by the cooler 18, and then the upper fan 19 and the lower fan 20 inside the warehouse The air is blown into the interior 12 from the outlet 24 and the lower air outlet 25 and is forcedly circulated.
[0024]
A plurality of stages of net shelves 27 are horizontally arranged in the cabinet 12. A regenerator 28 as a stored product shown in FIG. 3 is accommodated in a basket 29 and placed on a net shelf 27. Alternatively, food not shown is directly placed on the net shelf 27. The regenerator 28 or the food stored in the storage 12 is cooled by the cooler 18 and frozen by the air blown out to the storage 12.
[0025]
As shown in FIG. 2, among the interior 12, the interior upper portion 32 corresponding to the refrigerant inlet side region 18 </ b> A side of the cooler 18 in the cooling chamber 17 and the interior lower portion corresponding to the refrigerant outlet side region 18 </ b> B side. An upper temperature sensor 34 and a lower temperature sensor 35 for detecting the internal temperature are installed in each of the portions 33. The temperatures detected by the upper temperature sensor 34 and the lower temperature sensor 35 are transmitted to the control device 36.
[0026]
Based on the detected temperatures detected by the upper temperature sensor 34 and the lower temperature sensor 35, the control device 36 operates and stops the compressor 30, and drives and stops the internal fan 19 and the internal lower fan 20, respectively. Control and implement quick freezing mode and frozen storage mode.
[0027]
That is, as shown in FIG. 5, the control device 36 performs the quick freezing mode in the A section from the start of operation to the quick freezing set temperature T2, and performs the frozen storage mode in the subsequent B section. The inside 12 temperature is made to substantially coincide with the frozen storage set temperature T1.
[0028]
The controller 36 increases the load in the storage 12 by opening the heat-insulating upper door 13 or the heat-insulating lower door 14, or carrying the defrosted cold storage agent 28 into the storage 12. The quick freezing mode is performed again in the section C where becomes (freezing preservation set temperature T1 + 10 ° C.) or more. After that, in the D section after the inside 12 reaches the quick freezing set temperature T2, the control device 36 performs the frozen storage mode, and keeps the inside 12 temperature almost at the frozen storage set temperature T1.
[0029]
In the quick freeze mode, the control device 36 (FIG. 2) normally blows out the internal lower fan 20 by setting the rotational speed of the internal lower fan 20 higher than the rotational speed of the internal upper fan 19. The wind speed of the air is increased and the wind speed of the air blown from the internal fan 19 is decreased. The reason is as follows.
That is, as described above with reference to FIG. 3, since the refrigerant flows from the upper side to the lower side through the inlet pipe 22A in the heat exchange tube 21 of the cooler 18, the cooler 18 cools in the refrigerant inlet side region 18A. The air to be cooled is at a lower temperature than the air cooled in the refrigerant outlet side region 18B. For this reason, the rotation speed of the in-compartment lower fan 20 disposed on the refrigerant outlet side region 18B side in the cooling chamber 17 is set to the rotation speed of the in-compartment upper fan 19 disposed on the refrigerant inlet side region 18A side in the cooling chamber 17. By setting the temperature higher than the number, the lower temperature air cooled in the refrigerant inlet side region 18A is drawn to the refrigerant outlet side region 18B side in the cooling chamber 17, thereby lowering the temperature of the lower portion 33 in the warehouse, This is because the inside of 12 can be cooled to a substantially uniform temperature.
[0030]
Further, the control device 36 (FIG. 2) is configured so that when the detected temperature from the upper temperature sensor 34 or the lower temperature sensor 35 has a difference of a certain value (for example, 5 ° C.) or more, the upper portion 32 and the lower portion 33 are stored. The internal upper fan 19 or the internal lower fan corresponding to the internal upper portion 32 or the internal lower portion 33 that has been determined that the load has increased and the detected temperature is high and the load has increased. The number of rotations of 20 is set higher than the number of rotations of the in-compartment lower fan 20 or the in-compartment upper fan 19 corresponding to the in-compartment lower part 33 or the in-compartment upper part 32 side where the detected temperature is low and the load is small To do. As a result, the wind speed of the air blown out from the upper fan 19 or the lower fan 20 corresponding to the upper portion 32 or the lower portion 33 side where the load is increased becomes strong, and the lower portion of the load is reduced. The upper part 32 or the lower part in the warehouse where the air velocity blown out from the lower fan 20 or the upper fan 19 corresponding to the part 33 or the upper part 32 side becomes weak and the load increases. A large amount of air cooled by the cooler 18 can be supplied to 33.
[0031]
Next, control of the internal fan 19 and the internal fan 20 by the control device 36 will be described with reference to FIG.
[0032]
After starting the operation of the quick freezer 10, the control device 36 determines whether or not the temperature detected by the upper temperature sensor 34 and the lower temperature sensor 35 is equal to or higher than the (freezer storage set temperature T1 + 10 ° C.) (S1). When it is above, it is determined whether these detected temperature differences are 5 degreeC or more (S2).
[0033]
When the detected temperature difference between the upper temperature sensor 34 and the lower temperature sensor 35 is 5 ° C. or less in this step S2, or the detected temperature by the upper temperature sensor 34 and the lower temperature sensor 35 is (freezing preservation set temperature T1 + 10 ° C.) in step S1. At the following time, the controller 36 determines whether or not these detected temperatures are equal to or lower than the quick freezing set temperature T2 (S3).
[0034]
In step S3, when the temperature detected by the upper temperature sensor 34 and the lower temperature sensor 35 is equal to or higher than the quick freezing set temperature T2, the control device 36 rotates the upper fan 19 at a low speed, The quick freezing mode is carried out by setting the wind speed of the blown air low, rotating the internal lower fan 20 at a high speed, and increasing the wind speed of the blown air from the internal lower fan 20 (S4).
[0035]
In step S3, when the temperature detected by the upper temperature sensor 34 and the lower temperature sensor 35 is equal to or lower than the quick freezing set temperature T2, the control device 36 rotates both the upper fan 19 and the lower fan 20 at low speed, The frozen storage mode is carried out with both the wind speeds of the air blown out from the upper fan 19 and the lower fan 20 in the refrigerator being weak (S5). During the execution of the frozen storage mode, the control device 36 determines whether or not the temperature detected by the upper temperature sensor 34 and the lower temperature sensor 35 is equal to or higher than (the frozen storage set temperature T1 + 10 ° C.) (S6). When this happens, the quick freezing mode is performed through step S3 (S4).
[0036]
When the detected temperature difference between the upper temperature sensor 34 and the lower temperature sensor 35 is 5 ° C. or more in step S 2, the control device 36 detects the detected temperature by the upper temperature sensor 34 (detected temperature by the lower temperature sensor 35 + 5 ° C.). It is determined whether or not this is the case (S7). When the temperature detected by the upper temperature sensor 34 is equal to or higher than (the temperature detected by the lower temperature sensor 35 + 5 ° C.), the upper portion 32 in which the upper temperature sensor 34 is disposed is disposed in the lower temperature sensor 35. Since the load is greater than the lower part 33 in the warehouse, the control device 36 makes the upper fan 19 corresponding to the upper part 32 having a large load rotate at a high speed and blows out from the upper fan 19. The quick freezing mode is performed by setting the wind speed of the air to a high level, rotating the lower fan 20 corresponding to the lower part 33 of the warehouse with a low load at a low speed, and reducing the wind speed of the air blown from the lower fan 20 inside the box. (S8).
[0037]
Further, in step S7, the control device 36 detects the temperature detected by the lower temperature sensor 35 when the temperature detected by the upper temperature sensor 34 is equal to or lower than (temperature detected by the lower temperature sensor 35 + 5 ° C.). Is equal to or higher than (detected temperature by the upper temperature sensor 34 + 5 ° C.) or more, the lower portion 33 in the warehouse in which the lower temperature sensor 35 is disposed is more loaded than the upper portion 32 in the chamber in which the upper temperature sensor 34 is disposed. Therefore, the control device 36 makes the internal lower fan 20 corresponding to the internal lower portion 33 having a large load rotate at high speed, increases the wind speed of the air blown from the internal lower fan 20, and reduces the load. The in-compartment upper fan 19 corresponding to the in-compartment upper portion 32 is rotated at a low speed, the wind speed of the air blown from the in-compartment upper fan 19 is reduced, and the quick freezing mode is performed (S4).
[0038]
Therefore, according to the above embodiment, the following effects (1) to (3) are obtained.
[0039]
(1) In the cooler 18, the air cooled in the refrigerant inlet side region 18A is generally at a lower temperature than the air cooled in the refrigerant outlet side region 18B. Therefore, in the present embodiment, the number of rotations of the internal lower fan 20 installed in the cooling chamber 17 on the side of the refrigerant outlet side 18B of the cooler 18 is set to the refrigerant inlet side region of the cooler 18 in the cooling chamber 17. The temperature of the cooler 18 is set higher than the rotational speed of the internal fan 19 installed on the 18A side and cooled in the refrigerant inlet side region 18A of the cooler 18, and the cooler 18 in the cooling chamber 17 is on the refrigerant outlet side of the cooler 18. The inside 12 can be cooled to a substantially uniform temperature by drawing it to the region 18B side and blowing it out to the inside lower part 33.
[0040]
{Circle around (2)} Of the interior 12, a load is applied to the interior upper portion 32 corresponding to the refrigerant inlet side region 18 </ b> A side of the cooler 18 in the cooling chamber 17 and the interior lower portion 33 corresponding to the coolant outlet side region 18 </ b> B side. If they are different, the number of rotations of the upper fan 19 or the lower fan 20 corresponding to the upper chamber portion 32 or the lower chamber portion 33 with a large load is smaller than the lower chamber portion 33 or the upper chamber portion with a small load. Since it is configured to be set higher than the rotation speed of the lower fan 20 or the upper fan 19 corresponding to each of the portions 32, the air that has been cooled by the cooler 18 is transferred to the upper portion of the warehouse with a large load. 32 or the lower part 33 in the warehouse can be supplied in large quantities, so that the difference in load in the warehouse 12 can be eliminated at an early stage. As a result, when the refrigerated cold storage agent 28 is stored in either the upper part 32 or the lower part 33 of the box, the chilled cold storage agent 28 can be quickly frozen.
[0041]
{Circle around (3)} Of the interior 12, each of the interior upper portion 32 corresponding to the refrigerant inlet side region 18 </ b> A side of the cooler 18 in the cooling chamber 17 and the interior lower portion 33 corresponding to the coolant outlet side region 18 </ b> B side. Since the upper temperature sensor 34 and the lower temperature sensor 35 for detecting the internal temperature are installed, the upper temperature sensor 34 and the lower temperature sensor 35 can detect the temperature difference in the internal chamber 12. Of these, the upper portion 32 or the lower portion 33 with a large load can be accurately determined.
[0042]
As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this.
[0043]
For example, the upper temperature sensor 34 and the lower temperature sensor 35 are not installed in the interior 12 but one temperature sensor 37 is installed at the center in the vertical direction of the interior 12 as shown by the broken line in FIG. Steps S2 and S7 may be deleted and Steps S1, S3 to S6 may be performed. In this case, the control device 36 is provided with a changeover switch for switching the number of rotations of the upper fan 19 and the lower fan 20 in the warehouse, and the defrosted regenerator 28 is carried in the inside 12. The interior upper fan 19 or the interior lower fan 20 corresponding to the interior upper portion 32 or the interior lower portion 33 whose load is increased is set to high speed rotation by manual operation of the changeover switch. It is good also considering the wind speed of the blowing air from the upper fan 19 or the internal lower fan 20 as strong.
[0044]
Moreover, in the quick freezer 10 of the said embodiment, although the refrigerant | coolant inlet side area | region 18A of the cooler 18 was described above, the case of the vertical type quick freezer 10 arrange | positioned below the refrigerant | coolant outlet side area | region 18B was described. The present invention can also be applied to the case of the horizontal quick freezer 10 in which the refrigerant inlet side region 18A and the refrigerant outlet side region 18B of the cooler 18 are arranged on the left and right.
[0045]
【The invention's effect】
As described above, according to the freezer of the present invention , in the quick freeze mode, the rotational speed of the second cooling fan installed on the refrigerant outlet side region side of the cooler in the cooling chamber is from what has been first set higher than the rotation speed of the cooling fan installed in the side region side, cold air from being cooled by the refrigerant inlet side of the cooler, the refrigerant outlet side region of the cooler in the cooling chamber By blowing to the side, the inside of the cabinet can be cooled to a uniform temperature.
[0046]
Moreover, according to the freezer of the present invention, when the load is different between the inside portion corresponding to the refrigerant inlet side region side of the cooler in the cooling chamber and the inside portion corresponding to the refrigerant outlet side region side in the cooling chamber. In addition, the number of rotations of the first cooling fan or the second cooling fan corresponding to the part with the large load is set higher than the number of rotations of the second cooling fan or the first cooling fan corresponding to the part with the small load. Since the operation mode is provided, a large amount of the air cooled by the cooler can be supplied to the inside of the warehouse having a large load, so that the load difference in the warehouse can be quickly eliminated.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a quick freezer to which an embodiment of a freezer according to the present invention is applied.
FIG. 2 is a front sectional view showing the quick freezer of FIG. 1;
FIG. 3 is a front sectional view in which a cold storage agent is arranged in the quick freezer of FIG. 2;
4 is a perspective view showing a heat exchange tube of the cooler of FIG. 1. FIG.
FIG. 5 is a graph showing changes in the internal temperature in the quick freezer of FIG. 1;
6 is a flowchart showing control of the upper fan and the lower fan in the quick freezer of FIG. 1. FIG.
FIG. 7 is a flowchart showing the control of the upper fan and the lower fan in the conventional quick freezer.
[Explanation of symbols]
10 Quick freezers (freezers)
11 Insulation box 12 Chamber 16 Partition plate (partition body)
17 Cooling chamber 18 Cooler 18A Refrigerant inlet side region 18B Refrigerant outlet side region 19 Inside fan (first cooling fan)
20 Inside fan (second cooling fan)
23 Suction port 24 Upper air outlet 25 Lower air outlet 32 Upper part in the chamber 33 Lower part in the chamber 34 Upper temperature sensor (temperature detector)
35 Lower temperature sensor (temperature detector)
36 Control device

Claims (3)

庫内を形成する断熱箱体と、この断熱箱体の一内側壁に対し間隔を隔てて設けられて冷却室を形成する仕切体と、上記冷却室内に設置された冷却器と、上記冷却室内で上記冷却器の冷媒入口側領域側、冷媒出口側領域側にそれぞれ設置された第一冷却ファン、第二冷却ファンと、上記仕切体における上記冷却器に対向する位置に設けられた吸込口と、上記仕切体における上記第一冷却ファン、上記第二冷却ファンにそれぞれ対向する位置に設けられた吹出口と、を備えてなる冷凍庫において、
庫内温度が冷凍保存温度に所定温度を加えた温度に至ったら、急速凍結モードに移行し、
庫内温度が急速凍結設定温度に至ったら、冷凍保存モードに移行し、
上記急速凍結モードでは、上記冷却器の冷媒出口側領域側に設置された第二冷却ファンの回転数を強にすると共に、上記冷却器の冷媒入口側領域側に設置された第一冷却ファンの回転数を弱にして運転し、
上記冷凍保存モードでは、上記第一冷却ファンおよび上記第二冷却ファンの回転数を弱にして運転することを特徴とする冷凍庫。
A heat insulating box that forms the inside of the cabinet, a partition that is provided at a distance from an inner wall of the heat insulating box to form a cooling chamber, a cooler installed in the cooling chamber, and the cooling chamber A first cooling fan and a second cooling fan respectively installed on the refrigerant inlet side region side and the refrigerant outlet side region side of the cooler, and a suction port provided at a position facing the cooler in the partition In the freezer comprising: the first cooling fan in the partition, and the air outlets provided at positions facing the second cooling fan, respectively.
When the internal temperature reaches the temperature obtained by adding the predetermined temperature to the frozen storage temperature, the system switches to quick freezing mode.
When the internal temperature reaches the quick freezing set temperature, shift to frozen storage mode,
In the quick freezing mode, the rotation speed of the second cooling fan installed on the refrigerant outlet side region side of the cooler is increased, and the first cooling fan installed on the refrigerant inlet side region side of the cooler is Drive at a low speed ,
In the frozen storage mode, the freezer is operated with a low number of revolutions of the first cooling fan and the second cooling fan .
上記庫内のうち、冷却室における冷却器の冷媒入口側領域側に対応する庫内部分と冷媒出口側領域側に対応する庫内部分とのそれぞれに、庫内温度を検出する温度検出器が設置され、
庫内温度が冷凍保存温度に所定温度を加えた温度より高く、かつ各庫内部分の温度差が予め設定した温度よりも低い場合に、上記冷却器の冷媒出口側領域側に設置された第二冷却ファンの回転数を強にすると共に、上記冷却器の冷媒入口側領域側に設置された第一冷却ファンの回転数を弱にして運転する運転モードを更に備えたことを特徴とする請求項に記載の冷凍庫。
A temperature detector that detects the internal temperature of each of the internal part corresponding to the refrigerant inlet side region side of the cooler and the internal part corresponding to the refrigerant outlet side region side of the cooler in the cooling chamber. Installed,
When the internal temperature is higher than the temperature obtained by adding the predetermined temperature to the frozen storage temperature and the temperature difference between the internal portions is lower than the preset temperature, the first installed on the refrigerant outlet side region side of the cooler. An operation mode is further provided in which the second cooling fan is operated with a higher rotational speed and with a lower rotational speed of the first cooling fan installed on the refrigerant inlet side region side of the cooler. Item 2. The freezer according to item 1 .
上記庫内のうち、冷却室における冷却器の冷媒入口側領域側に対応する庫内部分と冷媒出口側領域側に対応する庫内部分とのそれぞれに、庫内温度を検出する温度検出器が設置され
庫内温度が冷凍保存温度に所定温度を加えた温度より高く、各庫内部分の温度差が予め設定した温度よりも高い場合に、温度が高い庫内部分に対応する冷却ファンの回転数を強にすると共に、温度が低い庫内部分に対応する冷却ファンの回転数を弱にして運転する運転モードを更に備えたことを特徴とする請求項に記載の冷凍庫。
A temperature detector that detects the internal temperature of each of the internal part corresponding to the refrigerant inlet side region side of the cooler and the internal part corresponding to the refrigerant outlet side region side of the cooler in the cooling chamber. Installed ,
When the internal temperature is higher than the temperature obtained by adding the predetermined temperature to the frozen storage temperature and the temperature difference between the internal portions is higher than the preset temperature, the number of rotations of the cooling fan corresponding to the internal portion where the temperature is high is set. 2. The freezer according to claim 1 , further comprising an operation mode in which the operation is performed with the rotation speed of the cooling fan corresponding to a portion in the refrigerator having a low temperature being weakened .
JP29790798A 1998-10-20 1998-10-20 freezer Expired - Lifetime JP4121197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29790798A JP4121197B2 (en) 1998-10-20 1998-10-20 freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29790798A JP4121197B2 (en) 1998-10-20 1998-10-20 freezer

Publications (2)

Publication Number Publication Date
JP2000121228A JP2000121228A (en) 2000-04-28
JP4121197B2 true JP4121197B2 (en) 2008-07-23

Family

ID=17852648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29790798A Expired - Lifetime JP4121197B2 (en) 1998-10-20 1998-10-20 freezer

Country Status (1)

Country Link
JP (1) JP4121197B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL144024A0 (en) 2000-06-05 2002-04-21 Fujikin Kk Reactor for generating moisture
ITMI20012427A1 (en) * 2001-11-16 2003-05-16 Whirlpool Co REFRIGERATOR WITH INTERNAL COMPARTMENT DIVIDED IN AREAS AT INDEPENDENT TEMPERATURES
CN103398540B (en) * 2013-07-29 2016-03-30 合肥美的电冰箱有限公司 The control method of refrigerator and refrigerator

Also Published As

Publication number Publication date
JP2000121228A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
KR100568060B1 (en) Refrigerator
JP5530852B2 (en) refrigerator
JP4059474B2 (en) refrigerator
WO2011001479A1 (en) Refrigerator
JP3455058B2 (en) refrigerator
JP2001082850A (en) Refrigerator
JP2007225178A (en) Refrigerator
JP2005172298A (en) Control method of refrigerator
JP3611447B2 (en) refrigerator
JP4076804B2 (en) refrigerator
JP4121197B2 (en) freezer
JP2000146390A (en) Basket
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
JP3483763B2 (en) Refrigerator control method
JPH09236369A (en) Refrigerator
JP2772173B2 (en) refrigerator
JP2004092939A (en) Refrigerator-freezer
JP2000356445A (en) Refrigerator
JP3819815B2 (en) Refrigerant leak detection method for refrigerator
JP3813478B2 (en) Cooling storage
JPH1047828A (en) Refrigerator
JP2005016777A (en) Refrigerator
KR100447406B1 (en) Method for control cool air of refrigerator using to infrared rays sensor
JP3332801B2 (en) refrigerator
JP2011052934A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

EXPY Cancellation because of completion of term