JP4121061B2 - 類識別装置及び類識別方法 - Google Patents

類識別装置及び類識別方法 Download PDF

Info

Publication number
JP4121061B2
JP4121061B2 JP2002003907A JP2002003907A JP4121061B2 JP 4121061 B2 JP4121061 B2 JP 4121061B2 JP 2002003907 A JP2002003907 A JP 2002003907A JP 2002003907 A JP2002003907 A JP 2002003907A JP 4121061 B2 JP4121061 B2 JP 4121061B2
Authority
JP
Japan
Prior art keywords
learning
type
data
misidentification
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002003907A
Other languages
English (en)
Other versions
JP2003208594A (ja
Inventor
かおり 川上
秀俊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002003907A priority Critical patent/JP4121061B2/ja
Publication of JP2003208594A publication Critical patent/JP2003208594A/ja
Application granted granted Critical
Publication of JP4121061B2 publication Critical patent/JP4121061B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、類識別対象物の種類を決定する類識別問題を対象とし、さらに詳しくは前記類識別対象物の種類を解として求める類識別装置及び類識別方法に関するものである。
【0002】
【従来の技術】
類識別問題の例として、航空機の類識別問題について考える。
【0003】
従来の類識別装置について図面を参照しながら説明する。図6は、例えば『
依田育士、坂上勝彦著「3次元動き情報を利用した複数対象物の抽出とその実時間認識」電子情報通信学会論文誌D−II、1998年9月号Vol.J81−D−II、No.9、pp.2043−2051』に示された航空機の類識別を行う従来の類識別装置の構成を示す図である。
【0004】
図6において、2は種類学習器、3は種類判別器、6は従来の類識別装置、9は種類判別子付き観測データファイル、71は学習パラメータファイル、10は種類判別対象観測データファイル、11は種類判別結果ファイルである。
【0005】
つぎに、従来の類識別装置の動作について図面を参照しながら説明する。
【0006】
図7は、従来の類識別装置の動作を示す図である。
【0007】
まず、類識別装置6の種類学習器2において、学習パラメータファイル71から出力される学習パラメータを第一の入力とし、種類判別子付き観測データファイル9から出力される種類判別子付き観測データを第二の入力として、上記種類判別子付き観測データに基づき種類学習を行い、種類学習の結果である種類学習結果を出力する。
【0008】
従来行われてきた境界線決めを行う学習手法としては、線形判別法がある。この線形判別法にはいくつかの手法があるが、ここでは、共分散行列に基づく線形判別法を用いる。共分散行列に基づく線形判別法とは、異なる種類のデータ同士はできるだけ離れ、同一種類のデータ同士はなるべく近くに分布するように、全データの中心を表すクラスタ中心を通るベクトルwにデータを射影して判別分析を行う方法であり、各データの射影結果yと各種類の平均ベクトルの射影結果ykとを比較し、最も近いykを持つ種類に属するものとする。境界はベクトルwに垂直でクラスタ中心を通る直線として定義される。
【0009】
図7の左図に、線形判別法による境界決定例を示す。『△』は種類1の教師データ、『黒□』は種類2の教師データであるとすると、図7の左図のように境界線が決定される。なお、図面上では黒い正方形を、電子出願では使用不可のため、『黒□』と記述する。『黒▽』も同様である。
【0010】
類識別装置6の種類判別器3では、種類学習器2から出力される種類学習結果を第一の入力とし、種類判別対象観測データファイル10から出力される種類判別対象観測データを第二の入力として、上記種類学習結果に基づき上記種類判別対象観測データの種類判別を行い、結果を種類判別結果として出力する。この出力は、従来の類識別装置6全体の出力となり、種類判別結果ファイル11に入力される。
【0011】
図7の右図に、種類判別を行う例を示す。種類学習結果として求められた境界線に基づき、種類を判別する。図7の右図で、『△』が含まれる領域に属する種類判別対象観測データを種類1、『黒□』が含まれる領域に属する種類判別対象観測データを種類2と判別する。今、種類が未定であるデータ『黒▽』と、『◇』と、『*』に対して種類判別を行う。『黒▽』と『◇』はそれぞれ種類1、種類2に属するデータであり、『*』は種類1、種類2のどちらでもない未知の種類のデータであるとする。図7の右図において、多くの『黒▽』と『◇』はそれぞれ種類1、種類2と正しく判別されるが、いくつかは間違って判別されている。また、『*』に対しても、未知の種類であるにもかかわらず、種類2であると判別されてしまう。
【0012】
以上より、上記従来の類識別装置6では、境界線付近では正しく判別されないデータが存在する可能性が高いことがわかる。このような誤った判別結果が得られた場合、一般的に、新たな種類判別子付き観測データを使って、最初から全処理をやり直す場合が多い。しかし、例えば、種類判別子付き観測データが豊富でない場合などデータの変更ができない場合もあり得る。
【0013】
【発明が解決しようとする課題】
上述したような従来の類識別装置では、境界線付近では正しく判別されないデータが存在する可能性が高いという問題点があった。
【0014】
この発明は、前述した問題点を解決するためになされたもので、種類判別結果の精度が悪い場合に、種類学習のためのデータである種類判別子付き観測データを変更することなく、種類判別精度を上げることが可能な類識別装置及び類識別方法を得ることを目的とする。
【0015】
【課題を解決するための手段】
この発明の請求項1に係る類識別装置は、種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類器と、前記観測データ分類器により分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習器と、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離dniと事前に設定された第1の閾値とを比較し、誤認距離dniが第1の閾値以上となったデータ数Novをカウントし、Nov×(−1)を学習評価値として算出するとともに、前記学習評価値には、誤認距離dniが第1の閾値以上になったデータのIDである誤認データIDを付加する学習評価器と、前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、前記学習評価値に付加された誤認データIDに該当する種類判別子付き観測データを学習対象からはずすように、全誤認データIDを前記種類学習器に出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習パラメータ変更器と、分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別器とを備え、前記学習パラメータ変更器から出力された全誤認データIDは、前記種類学習器の入力となり、再び、前記種類学習器において入力された誤認データIDに該当する種類判別子付き観測データを学習対象からはずして学習を行い、学習結果の出力を行い、続いて前記学習評価器において評価及び学習評価値の出力を行い、以下、前記学習パラメータ変更器において学習再実行不要と判断されるまで、前記種類学習器、前記学習評価器、及び前記学習パラメータ変更器において上記の処理を繰り返し、前記種類学習器では、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力するものである。
【0016】
この発明の請求項2に係る類識別装置は、種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類器と、前記観測データ分類器により分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習器と、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離と近傍のデータの誤認距離と比較し、近傍であるにもかかわらず誤認距離の差が第1の閾値以上大きい場合に、第1の閾値を超えた誤認距離の差dmsの総和に(−1)をかけて学習評価値として算出する学習評価器と、前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、ニューラルネットワーク、サポートベクタマシンのいずれかに学習手法を変更するように前記種類学習器に指示を出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習手法変更器と、分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別器とを備え、前記学習手法変更器から出力された学習手法変更指示は、前記種類学習器の入力となり、再び、前記種類学習器において学習及び学習結果の出力を行い、続いて前記学習評価器において評価及び学習評価値の出力を行い、以下、前記学習手法変更器において学習再実行不要と判断されるまで、前記種類学習器、前記学習評価器、及び前記学習手法変更器において上記の処理を繰り返し、前記種類学習器では、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力するものである。
【0017】
この発明の請求項3に係る類識別方法は、観測データ分類器により、種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類ステップと、種類学習器により、前記観測データ分類ステップにより分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習ステップと、学習評価器により、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離dniと事前に設定された第1の閾値とを比較し、誤認距離dniが第1の閾値以上となったデータ数Novをカウントし、Nov×(−1)を学習評価値として算出するとともに、前記学習評価値には、誤認距離dniが第1の閾値以上になったデータのIDである誤認データIDを付加する学習評価ステップと、学習パラメータ変更器により、前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、前記学習評価値に付加された誤認データIDに該当する種類判別子付き観測データを学習対象からはずすように、全誤認データIDを前記種類学習ステップに出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習パラメータ変更ステップと、種類判別器により、分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別ステップとを含み、前記学習パラメータ変更ステップから出力された全誤認データIDは、前記種類学習ステップの入力となり、再び、前記種類学習ステップにおいて入力された誤認データIDに該当する種類判別子付き観測データを学習対象からはずして学習を行い、学習結果の出力を行い、続いて前記学習評価ステップにおいて評価及び学習評価値の出力を行い、以下、前記学習パラメータ変更ステップにおいて学習再実行不要と判断されるまで、前記種類学習ステップ、前記学習評価ステップ、及び前記学習パラメータ変更ステップにおいて上記の処理を繰り返し、前記種類学習ステップでは、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力するものである。
【0018】
この発明の請求項4に係る類識別方法は、観測データ分類器により、種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類ステップと、種類学習器により、前記観測データ分類ステップにより分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習ステップと、学習評価器により、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離と近傍のデータの誤認距離と比較し、近傍であるにもかかわらず誤認距離の差が第1の閾値以上大きい場合に、第1の閾値を超えた誤認距離の差dmsの総和に(−1)をかけて学習評価値として算出する学習評価ステップと、学習手法変更器により、前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、ニューラルネットワーク、サポートベクタマシンのいずれかに学習手法を変更するように前記種類学習ステップに指示を出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習手法変更ステップと、種類判別器により、分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別ステップとを含み、前記学習手法変更ステップから出力された学習手法変更指示は、前記種類学習ステップの入力となり、再び、前記種類学習ステップにおいて学習及び学習結果の出力を行い、続いて前記学習評価ステップにおいて評価及び学習評価値の出力を行い、以下、前記学習手法変更ステップにおいて学習再実行不要と判断されるまで、前記種類学習ステップ、前記学習評価ステップ、及び前記学習手法変更ステップにおいて上記の処理を繰り返し、前記種類学習ステップでは、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力するものである。
【0027】
【発明の実施の形態】
実施の形態1.
この発明の実施の形態1に係る類識別装置及び類識別方法について図面を参照しながら説明する。図1は、この発明の実施の形態1に係る類識別装置の構成を示す図である。なお、各図中、同一符号は同一又は相当部分を示す。
【0028】
図1において、1は観測データ分類器、2は種類学習器、3は種類判別器、4は学習再実行指示生成器、5は学習評価器、6Aは類識別装置、71は学習パラメータファイル、72は分類パラメータファイル、9は種類判別子付き観測データファイル、10は種類判別対象観測データファイル、11は種類判別結果ファイルである。また、学習再実行指示生成器4は、学習パラメータ変更器41を有する。
【0029】
つぎに、この実施の形態1に係る類識別装置の動作について図面を参照しながら説明する。
【0030】
図2及び図3は、この発明の実施の形態1に係る類識別装置の動作を示す図である。
【0031】
まず、観測データ分類器1では、類識別装置6A全体の入力として分類パラメータファイル72から出力される分類するためのパラメータである分類パラメータを第一の入力とし、同じく類識別装置6A全体の入力として種類判別子付き観測データファイル9から出力される、種類を表す種類判別子付きの観測データである種類判別子付き観測データを第二の入力とし、上記種類判別子付き観測データの分類結果である観測データ分類結果を出力する。分類パラメータとしては、たとえば、分類の数をあらわす分類数や、分類に必要なパラメータの初期値を決定するための乱数のシード値や、分類手法に特化したパラメータ等がある。
【0032】
種類判別子付き観測データの分類例を示す。本実施の形態1では、分類手法として、一般的な分類問題によく用いられる手法である最短距離法(nearest neighbor method)を適用する。この最短距離法では、初期設定として、個々の観測データをそれぞれが独立した1つの分類とみなし、分類間の類似度をそれぞれの分類に属する任意の観測データ間の類似度の最大値であらわす。次に、類似度の最も大きい分類同士を結合し、再び類似度を計算する。以下、分類の結合と類似度の計算を繰り返し、収束条件を満たしたところで、分類を決定する方法である。収束条件としては、全分類間の類似度が事前に設定した閾値以下になることや、同様に事前に設定した分類数になる等がある。観測データ間の類似度は、属性値の一致の度合いから算出する。この場合の分類パラメータとしては、類似度の閾値などがある。『△』と『黒□』の15個の観測データに対して分類を行った結果を図2の左図に示す。
【0033】
次に、種類学習器2において、学習パラメータファイル71から出力される学習パラメータを第一の入力とし、種類判別子付き観測データファイル9から出力される種類判別子付き観測データを第二の入力とし、観測データ分類器1から出力される観測データ分類結果を第三の入力として、観測データ分類結果で示される各分類内で、種類判別子付き観測データに基づき種類学習を行い、種類学習の結果である種類学習結果を出力する。
【0034】
種類学習を行う例を示す。本実施の形態1では、学習手法として境界線を決定する手法である線形判別法を適用する。この線形判別法にはいくつかの手法があるが、ここでは共分散行列に基づく線形判別法を用いる。共分散行列に基づく線形判別法とは、異なる種類のデータ同士はできるだけ離れ、同一種類のデータ同士はなるべく近くに分布するように、全データの中心を表すクラスタ中心を通るベクトルwにデータを射影して判別分析を行う方法であり、各データの射影結果yと各種類の平均ベクトルの射影結果ykとを比較し、最も近い射影結果ykを持つ種類に属するものとする。境界は、ベクトルwに垂直でクラスタ中心を通る直線として定義される。図2の中央の図に線形判別法による種類学習例を示す。『△』は種類1の教師データ、『黒□』は種類2の教師データであるとすると、種類学習により、図2の中央の図のように境界線が決定される。
【0035】
学習評価器5では、種類学習器2から出力される種類学習結果を第一の入力とし、上記種類学習結果の評価を行い、結果を学習評価値として出力する。
【0036】
学習評価方法の第一の例としては、学習対象としたデータを含む全ての種類判別子付き観測データの所属状態から、誤認の度合いを示す誤認距離を算出し、個々の誤認距離に基づき学習評価値を算出する。
【0037】
具体的には、まず、学習対象としたデータを含む全ての種類判別子付きデータに対して、種類判別を行い、誤って判別されたデータの境界線からの距離から誤認距離を算出する。この誤認距離の算出方法としては、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとする。次に、個々のデータの誤認距離dniと事前に設定された閾値とを比較し、閾値以上となったデータ数Novをカウントし、Nov×(−1)を学習評価値とする。なお、学習評価値には、誤認距離dniが閾値以上になったデータのIDである誤認データIDも付加する。
【0038】
例えば、図3において、『△』、『黒□』を学習に適用した種類判別子付き観測データ、『黒▽』、『◇』を学習の対象外の種類判別子付き観測データであるとすると、19個中3個が誤った種類の境界領域に位置する。今、誤認したデータと境界線との距離がそれぞれd1=2、d2=5、d3=2で、全学習対象データの境界線からの距離の平均値m=10、閾値var=0.3とする。誤認距離は、それぞれdn1=0.2、dn2=0.5、dn3=0.2となり、したがって閾値を超えるのは距離がd2のデータのみとなり、学習評価値はEl1=1×(−1)=−1となる。なおこの場合、学習評価値は0が最良であり、値が大きいほど評価値は悪くなる。
【0039】
このように、学習対象としたデータを含む全ての上記種類判別子付き観測データのうち、誤認であると判定されたデータに対し、上記学習結果で示される境界線からの距離を用いて、誤認の度合いを示す誤認距離を算出し、個々の上記種類判別子付き観測データの誤認距離に基づき上記学習評価値を算出することにより、誤認の度合いが強いデータを把握し、学習へフィードバックすることが可能になる。
【0040】
学習再実行指示生成器4では、学習評価器5から出力される学習評価値を第一の入力とし、学習パラメータファイル71から出力される学習パラメータを第二の入力として、学習再実行の必要性を判断し、学習再実行パラメータを出力する。判断の仕方としては、あらかじめ設定されていた閾値と学習評価値とを比較し、閾値以下の場合に再実行とする。閾値は、学習パラメータの一つとしてユーザが設定するか、あるいは、学習結果の評価方法に応じて、あらかじめシステムが決めておく。
【0041】
次に、学習再実行の必要性ありと判断された場合の学習再実行パラメータの例として、学習再実行指示生成器4を構成する学習パラメータ変更器41において、学習パラメータを変更して学習パラメータ変更値を求める場合を示す。学習パラメータとしては、乱数のシード値や学習手法に特化したパラメータ等があるが、ここでは学習対象となる種類判別子付き観測データを変更する場合の例を示す。
【0042】
具体的には、前述の学習評価方法例において、学習評価値に付随して出力された誤認データIDに該当する種類判別子付き観測データを、学習対象からはずす方法が考えられる。学習パラメータ変更器41では、全誤認データIDを学習パラメータ変更値として出力し、種類学習器2では、学習パラメータ変更値として入力された誤認データIDに該当する種類判別子付き観測データを学習対象からはずして、学習を行う。
【0043】
このように、初期設定として与えられた学習対象データなどの学習パラメータを変更して、学習し直すことにより、より良い学習結果が期待できる。
【0044】
学習再実行指示生成器4から出力された学習再実行パラメータは、種類学習器2の入力となり、再び、種類学習器2において学習及び学習結果の出力を行い、続いて学習評価器5において評価及び学習評価値の出力を行う。以下、学習再実行指示生成器4において学習再実行不要と判断されるまで、種類学習器2、学習評価器5、及び学習再実行指示生成器4において上記の処理を繰り返す。学習再実行指示生成器4において、学習再実行不要と判断されたところで、学習終了指示が学習再実行パラメータとして出力される。種類学習器2では、学習再実行指示生成器4から出力された学習終了指示が入力されると、種類学習結果を種類判別器3に出力する。
【0045】
学習再実行指示生成器4は、学習評価値が事前に設定されていたある閾値以上になるか、あるいは事前に設定されていたある回数を超えたところで、再実行不要と判断する。また、種類学習器2は、上記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力する。
【0046】
種類判別器3では、種類学習器2から出力される種類学習結果を第一の入力とし、種類判別対象観測データファイル10から出力される種類判別対象観測データを第二の入力として、種類学習結果に基づき種類判別対象観測データの種類判別を行い、結果を種類判別結果として出力する。この出力は、本発明の類識別装置6A全体の出力となり、種類判別結果ファイル11に入力される。
【0047】
図2の右図に種類判別を行う例を示す。種類学習結果として求められた境界線に基づき、種類を判別する。図2の右図で『△』が多く属する境界線の上側の領域を種類1の境界領域、逆に『黒□』が多く属する境界線の下側の領域を種類2の境界領域とし、いずれの領域に属するかによって種類判別対象観測データの種類を判別する。図2の右図において、『黒▽』と『◇』は種類が未定の観測データであり、『黒▽』と『◇』がそれぞれ種類1、種類2と判別される。
【0048】
以上のように、本発明の実施の形態1で示した類識別装置6Aによれば、種類学習結果を評価し、個々の種類学習結果の状況に応じて、学習段階からやり直すことにより、質の高い種類学習結果を得ることができ、その結果として質の高い種類判別を期待できる。
【0049】
また、学習パラメータ変更器41において、初期設定として与えられた学習対象データなどの学習パラメータを変更して、学習し直すことにより、より良い学習結果が期待できる。
【0050】
さらに、学習評価器5において、学習対象としたデータを含む全ての上記種類判別子付き観測データのうち、誤認であると判定されたデータに対し、上記学習結果で示される境界線からの距離を用いて、誤認の度合いを示す誤認距離を算出し、個々の上記種類判別子付き観測データの誤認距離に基づき上記学習評価値を算出することにより、誤認の度合いが強いデータを把握し、学習へフィードバックすることが可能になる。具体的には、誤認の度合いが大きいデータを学習対象データからはずすこと等が可能となり、これは学習精度の向上につながる。
【0051】
実施の形態2.
この発明の実施の形態2に係る類識別装置及び類識別方法について図面を参照しながら説明する。図4は、この発明の実施の形態2に係る類識別装置の構成を示す図である。
【0052】
図4において、1は観測データ分類器、2は種類学習器、3は種類判別器、4は学習再実行指示生成器、5は学習評価器、6Bは類識別装置、71は学習パラメータファイル、72は分類パラメータファイル、9は種類判別子付き観測データファイル、10は種類判別対象観測データファイル、11は種類判別結果ファイルである。また、学習再実行指示生成器4は、学習手法変更器42を有する。
【0053】
つぎに、この実施の形態2に係る類識別装置の動作について図面を参照しながら説明する。
【0054】
上記実施の形態1では、学習評価器5において、学習対象としたデータを含む全ての上記種類判別子付き観測データのうち、誤認であると判定されたデータの個々の誤認距離に基づいて学習評価値を算出後、学習再実行指示生成器4を構成する学習パラメータ変更器41により学習パラメータを変更して学習再実行を行う例を示したが、本実施の形態2では、上記誤認距離の分布状況に基づいて上記学習評価値を算出後、上記学習評価値に基づき、学習再実行指示生成器4を構成する学習手法変更器42によって学習手法を変更して学習再実行を行う例を示す。
【0055】
学習評価方法の第二の例としては、学習対象としたデータを含む全ての種類判別子付き観測データの所属状態から、誤認の度合いを示す誤認距離を算出し、誤認距離の分布状況に基づき学習評価値を算出する。
【0056】
具体的には、まず、学習対象としたデータを含む全ての種類判別子付き観測データに対して、種類判別を行い、誤って判別されたデータの境界線からの距離から誤認距離を算出する。誤認距離の算出方法としては、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diをmで割った値di/mを誤認距離dniとする。
【0057】
次に、個々のデータの誤認距離を近傍のデータの誤認距離と比較し、近傍であるにもかかわらず誤認距離の差がある閾値以上大きい場合や、近傍のデータの誤認距離がある閾値を超えた幅で振動しているような場合に、学習評価値を誤認距離の差や、振動の幅から算出する。
【0058】
具体的には、閾値を超えた誤認距離の差dmsや、振動の幅swの総和に(−1)をかけたものを学習評価値とする方法などがある。また、学習評価値には、いずれの近傍データ群において閾値を超えた誤認距離の差dms、振動の幅swが発生したかを示す誤認近傍データID群を付加する。
【0059】
図5では、△が種類1、◇が種類2の種類判別子付き観測データであり、左図において種類2が3個、右図において種類1が3個、誤った境界領域に属している。今、誤認距離の振動の閾値を0.5、誤認距離の差の閾値を1.0とする。d1〜d6はそれぞれの境界線からの距離であり、それぞれd1=1、d2=5、d3=2、d4=1、d5=6、d6=12、m=4とすると、誤認距離はそれぞれdn1=0.25、dn2=1.25、dn3=0.5、dn4=0.25、dn5=1.5、dn6=3.0となる。ここで、dn1、dn2、dn3で表されるデータを近傍1、dn4、dn5、dn6で表されるデータを近傍2とすると、近傍1ではdn1とdn2の誤認距離の差1.0が閾値0.5以上であり、同様にdn2とdn3の差0.75も閾値0.5を超えているため、近傍1では誤認距離の振動が起きている。また、近傍2ではdn4からdn6にかけて誤認距離が差1.25、1.5ずつ大きくなっており、これも誤認距離の差の閾値1.0を超えている。これより、学習評価値は、−1.0×(1.0+0.75+1.25+1.5)=−4.5となる。
【0060】
ここで、図5からもわかるように、近傍のデータ同士の誤認距離の差や、誤認距離の振動幅が大きい場合、境界が曲線などの非線形な関数で定義をした方がより適切な境界定義となることが予想される。ところが、上述の線形判別法による学習では、必ず境界は線形な関数、すなわち直線で定義されるため、必ずしも適切な境界が得られない。以上の点を踏まえて、誤認距離の差や振動幅と、該当するデータの個数に応じて学習評価値が悪くなるように設定した。
【0061】
このように、学習対象としたデータを含む全ての上記種類判別子付き観測データのうち、誤認であると判定されたデータに対し、上記学習結果で示される境界線からの距離を用いて、誤認の度合いを示す誤認距離を算出し、上記誤認距離の分布状況に基づき上記学習評価値を算出することにより、境界線の形状が線形もしくは非線形のどちらであるかを判断する基準の一つを得ることができ、学習の質の向上につながる。
【0062】
次に、学習再実行指示生成器4を構成する学習手法変更器42では、上記実施の形態1と同様に、上記学習評価値を入力とし、学習再実行の必要性を判断する。例えば、事前に設定されている閾値との比較で学習評価値が閾値以上の場合には、学習再実行の必要性ありと判断する。
【0063】
以下、学習再実行の必要性ありの場合に、学習再実行指示生成器4を構成する学習手法変更器42において、学習手法変更を指示する学習手法変更指示を学習再実行パラメータとして出力する例を示す。
【0064】
第一の学習手法変更例として、上記実施の形態1で示した線形判別法から、ニューラルネットワークに変更する場合の例を以下に示す。
【0065】
このニューラルネットワークとは、生命の神経回路網を模倣した学習手法であり、教師データに基づき、最終的に最適な種類間の境界を決定する。この場合の学習パラメータとしては、ニューロンが発火する際の閾値や、ニューロンの数などの手法に特化したものがある。
【0066】
ニューラルネットワークと前述の共分散行列に基づく線形判別法との大きな違いは、共分散行列に基づく線形判別法では種類間の境界を線形に決定する、すなわち直線で定義するのに対し、ニューラルネットワークでは曲線などの非線形な境界の定義が可能な点である。したがって、上述の学習評価方法例のように、境界が非線形になることが予測されるような場合に有用である。
【0067】
このように、新たな学習手法としてニューラルネットワークを適用することにより、境界が非線形となることが予想されるような場合に、観測データの分布状況に適した境界線決定が可能となる。
【0068】
次に、第二の学習手法変更例として、学習手法をサポートベクタマシンに変更する場合の例を以下に示す。
【0069】
このサポートベクタマシンは、線形判別法の変形手法の一つとして考えられている。前述の共分散行列に基づく線形判別法等の一般的な線形判別法とサポートベクタマシンとの違いは、カーネル関数とよばれる関数の線形和で学習に必要な関数を表すことにより、非線形な境界定義が可能な点である。カーネル関数は複数種類存在し、学習パラメータにおいて、いずれのカーネルを選択するかを指定する。
【0070】
また、同じく非線形な境界が定義可能なニューラルネットワークとサポートベクタマシンとの違いは、サポートベクタマシンでは決定的に厳密解が求まる点である。これに対し、ニューラルネットワークのような最適化手法と呼ばれる手法は、できるだけ最適に近い境界を、実使用に耐えうる時間内で求めるのに適した手法と考えられており、したがって、必ずしも厳密解は求まらない。これより、厳密解が必要とされる問題においては、サポートベクタマシンのような手法が有用といえる。
【0071】
このように、新たな学習手法としてサポートベクタマシンを適用することにより、境界が非線形となることが予想される場合や、厳密解が必要とされる場合に、精度の良い境界を得ることができる。
【0072】
ここで、サポートベクタマシンの問題点について考える。カーネル関数を用いることにより、非線形な境界を定義可能であることは、サポートベクタマシンの長所である反面、カーネルの選択を行う際に、不適切なカーネルを選択してしまうと、観測データの分布状況に不適切な境界しか定義できなくなってしまう危険性がある。これに対し、ニューラルネットワークによる学習では、学習パラメータとして設定するのは細かな学習に特化したパラメータのみで、境界の形状は常にある程度、観測データの分布状況を踏まえた形となる。したがって、厳密解が必ずしも必要ではなく、適当な初期設定である程度の解が必要な場合には、サポートベクタマシンよりもニューラルネットワークの方が有用といえる。
【0073】
以上のように、本発明の実施の形態2で示した類識別装置6Bによれば、学習対象としたデータを含む全ての上記種類判別子付き観測データのうち、誤認であると判定されたデータに対し、上記学習結果で示される境界線からの距離を用いて、誤認の度合いを示す誤認距離を算出し、上記誤認距離の分布状況に基づき上記学習評価値を算出することにより、境界線の形状が線形もしくは非線形のどちらであるかを判断する基準の一つを得ることができ、学習の質の向上につながる。
【0074】
また、学習手法変更器42において、問題の性質に応じて、学習手法を変更することにより、より良い学習結果が期待できる。
【0075】
また、同じく学習手法変更器42において、新たな学習手法としてニューラルネットワークを適用することにより、観測データの分布状況により適した境界決定が可能となる。さらに、厳密解が必ずしも必要ではなく、適当な初期設定で、ある程度の解が必要な場合に、比較的精度の良い境界を得ることができる。
【0076】
さらに、同じく学習手法変更器42において、新たな学習手法としてサポートベクタマシンを適用することにより、境界が非線形となることが予想される場合や、厳密解が必要とされる場合に、精度の良い境界を得ることができる。
【0077】
なお、本発明は航空機の類識別を行う場合の例を示したが、それ以外にも、レーダから得られた大量の電波画像データを利用した類識別問題への適用も可能である。
【0079】
【発明の効果】
この発明の請求項1に係る類識別装置は、以上説明したとおり、種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類器と、前記観測データ分類器により分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習器と、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離dniと事前に設定された第1の閾値とを比較し、誤認距離dniが第1の閾値以上となったデータ数Novをカウントし、Nov×(−1)を学習評価値として算出するとともに、前記学習評価値には、誤認距離dniが第1の閾値以上になったデータのIDである誤認データIDを付加する学習評価器と、前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、前記学習評価値に付加された誤認データIDに該当する種類判別子付き観測データを学習対象からはずすように、全誤認データIDを前記種類学習器に出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習パラメータ変更器と、分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別器とを備え、前記学習パラメータ変更器から出力された全誤認データIDは、前記種類学習器の入力となり、再び、前記種類学習器において入力された誤認データIDに該当する種類判別子付き観測データを学習対象からはずして学習を行い、学習結果の出力を行い、続いて前記学習評価器において評価及び学習評価値の出力を行い、以下、前記学習パラメータ変更器において学習再実行不要と判断されるまで、前記種類学習器、前記学習評価器、及び前記学習パラメータ変更器において上記の処理を繰り返し、前記種類学習器では、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力するので、誤認の度合いが強いデータを把握し、学習へフィードバックすることが可能になり、具体的には、誤認の度合いが大きいデータを学習対象データからはずすこと等が可能となり、これは学習精度の向上につながるという効果を奏する。
【0080】
この発明の請求項2に係る類識別装置は、以上説明したとおり、種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類器と、前記観測データ分類器により分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習器と、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離と近傍のデータの誤認距離と比較し、近傍であるにもかかわらず誤認距離の差が第1の閾値以上大きい場合に、第1の閾値を超えた誤認距離の差dmsの総和に(−1)をかけて学習評価値として算出する学習評価器と、前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、ニューラルネットワーク、サポートベクタマシンのいずれかに学習手法を変更するように前記種類学習器に指示を出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習手法変更器と、分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別器とを備え、前記学習手法変更器から出力された学習手法変更指示は、前記種類学習器の入力となり、再び、前記種類学習器において学習及び学習結果の出力を行い、続いて前記学習評価器において評価及び学習評価値の出力を行い、以下、前記学習手法変更器において学習再実行不要と判断されるまで、前記種類学習器、前記学習評価器、及び前記学習手法変更器において上記の処理を繰り返し、前記種類学習器では、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力するので、境界線の形状が線形もしくは非線形のどちらであるかを判断する基準の一つを得ることができ、学習の質の向上につながるという効果を奏する。
【0086】
この発明の請求項3に係る類識別方法は、以上説明したとおり、観測データ分類器により、種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類ステップと、種類学習器により、前記観測データ分類ステップにより分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習ステップと、学習評価器により、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離dniと事前に設定された第1の閾値とを比較し、誤認距離dniが第1の閾値以上となったデータ数Novをカウントし、Nov×(−1)を学習評価値として算出するとともに、前記学習評価値には、誤認距離dniが第1の閾値以上になったデータのIDである誤認データIDを付加する学習評価ステップと、学習パラメータ変更器により、前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、前記学習評価値に付加された誤認データIDに該当する種類判別子付き観測データを学習対象からはずすように、全誤認データIDを前記種類学習ステップに出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習パラメータ変更ステップと、種類判別器により、分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別ステップとを含み、前記学習パラメータ変更ステップから出力された全誤認データIDは、前記種類学習ステップの入力となり、再び、前記種類学習ステップにおいて入力された誤認データIDに該当する種類判別子付き観測データを学習対象からはずして学習を行い、学習結果の出力を行い、続いて前記学習評価ステップにおいて評価及び学習評価値の出力を行い、以下、前記学習パラメータ変更ステップにおいて学習再実行不要と判断されるまで、前記種類学習ステップ、前記学習評価ステップ、及び前記学習パラメータ変更ステップにおいて上記の処理を繰り返し、前記種類学習ステップでは、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力するので、誤認の度合いが強いデータを把握し、学習へフィードバックすることが可能になり、具体的には、誤認の度合いが大きいデータを学習対象データからはずすこと等が可能となり、これは学習精度の向上につながるという効果を奏する。
【0087】
この発明の請求項4に係る類識別方法は、以上説明したとおり、観測データ分類器により、種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類ステップと、種類学習器により、前記観測データ分類ステップにより分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習ステップと、学習評価器により、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離と近傍のデータの誤認距離と比較し、近傍であるにもかかわらず誤認距離の差が第1の閾値以上大きい場合に、第1の閾値を超えた誤認距離の差dmsの総和に(−1)をかけて学習評価値として算出する学習評価ステップと、学習手法変更器により、前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、ニューラルネットワーク、サポートベクタマシンのいずれかに学習手法を変更するように前記種類学習ステップに指示を出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習手法変更ステップと、種類判別器により、分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別ステップとを含み、前記学習手法変更ステップから出力された学習手法変更指示は、前記種類学習ステップの入力となり、再び、前記種類学習ステップにおいて学習及び学習結果の出力を行い、続いて前記学習評価ステップにおいて評価及び学習評価値の出力を行い、以下、前記学習手法変更ステップにおいて学習再実行不要と判断されるまで、前記種類学習ステップ、前記学習評価ステップ、及び前記学習手法変更ステップにおいて上記の処理を繰り返し、前記種類学習ステップでは、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力するので、境界線の形状が線形もしくは非線形のどちらであるかを判断する基準の一つを得ることができ、学習の質の向上につながるという効果を奏する。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係る類識別装置の構成を示す図である。
【図2】 この発明の実施の形態1に係る類識別装置の動作を示す図である。
【図3】 この発明の実施の形態1に係る類識別装置の動作を示す図である。
【図4】 この発明の実施の形態2に係る類識別装置の構成を示す図である。
【図5】 この発明の実施の形態2に係る類識別装置の動作を示す図である。
【図6】 従来の類識別装置の構成を示す図である。
【図7】 従来の類識別装置の動作を示す図である。
【符号の説明】
1 観測データ分類器、2 種類学習器、3 種類判別器、4 学習再実行指示生成器、41 学習パラメータ変更器、42 学習手法変更器、5 学習評価器、6A、6B 類識別装置、71 学習パラメータファイル、72 分類パラメータファイル、9 種類判別子付き観測データファイル、10 種類判別対象観測データファイル、11 種類判別結果ファイル。

Claims (4)

  1. 種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類器と、
    前記観測データ分類器により分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習器と、
    全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離dniと事前に設定された第1の閾値とを比較し、誤認距離dniが第1の閾値以上となったデータ数Novをカウントし、Nov×(−1)を学習評価値として算出するとともに、前記学習評価値には、誤認距離dniが第1の閾値以上になったデータのIDである誤認データIDを付加する学習評価器と、
    前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、前記学習評価値に付加された誤認データIDに該当する種類判別子付き観測データを学習対象からはずすように、全誤認データIDを前記種類学習器に出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習パラメータ変更器と、
    分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別器とを備え、
    前記学習パラメータ変更器から出力された全誤認データIDは、前記種類学習器の入力となり、再び、前記種類学習器において入力された誤認データIDに該当する種類判別子付き観測データを学習対象からはずして学習を行い、学習結果の出力を行い、続いて前記学習評価器において評価及び学習評価値の出力を行い、以下、前記学習パラメータ変更器において学習再実行不要と判断されるまで、前記種類学習器、前記学習評価器、及び前記学習パラメータ変更器において上記の処理を繰り返し、
    前記種類学習器では、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力する
    ことを特徴とする類識別装置。
  2. 種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類器と、
    前記観測データ分類器により分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習器と、
    全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離と近傍のデータの誤認距離と比較し、近傍であるにもかかわらず誤認距離の差が第1の閾値以上大きい場合に、第1の閾値を超えた誤認距離の差dmsの総和に(−1)をかけて学習評価値として算出する学習評価器と、
    前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、ニューラルネットワーク、サポートベクタマシンのいずれかに学習手法を変更するように前記種類学習器に指示を出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習手法変更器と、
    分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別器とを備え、
    前記学習手法変更器から出力された学習手法変更指示は、前記種類学習器の入力となり、再び、前記種類学習器において学習及び学習結果の出力を行い、続いて前記学習評価器において評価及び学習評価値の出力を行い、以下、前記学習手法変更器において学習再実行不要と判断されるまで、前記種類学習器、前記学習評価器、及び前記学習手法変更器において上記の処理を繰り返し、
    前記種類学習器では、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力する
    ことを特徴とする類識別装置。
  3. 観測データ分類器により、種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類ステップと、
    種類学習器により、前記観測データ分類ステップにより分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習ステップと、
    学習評価器により、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離dniと事前に設定された第1の閾値とを比較し、誤認距離dniが第1の閾値以上となったデータ数Novをカウントし、Nov×(−1)を学習評価値として算出するとともに、前記学習評価値には、誤認距離dniが第1の閾値以上になったデータのIDである誤認データIDを付加する学習評価ステップと、
    学習パラメータ変更器により、前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、前記学習評価値に付加された誤認データIDに該当する種類判別子付き観測データを学習対象からはずすように、全誤認データIDを前記種類学習ステップに出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習パラメータ変更ステップと、
    種類判別器により、分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別ステップとを含み、
    前記学習パラメータ変更ステップから出力された全誤認データIDは、前記種類学習ステップの入力となり、再び、前記種類学習ステップにおいて入力された誤認データIDに該当する種類判別子付き観測データを学習対象からはずして学習を行い、学習結果の出力を行い、続いて前記学習評価ステップにおいて評価及び学習評価値の出力を行い、以下、前記学習パラメータ変更ステップにおいて学習再実行不要と判断されるまで、前記種類学習ステップ、前記学習評価ステップ、及び前記学習パラメータ変更ステップにおいて上記の処理を繰り返し、
    前記種類学習ステップでは、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力する
    ことを特徴とする類識別方法。
  4. 観測データ分類器により、種類を表す種類判別子付きの観測データである種類判別子付き観測データを最短距離法により分類し、収束条件として、分類の数をあらわす分類数になったところで、分類を決定する観測データ分類ステップと、
    種類学習器により、前記観測データ分類ステップにより分類された種類判別子付き観測データについて共分散行列に基づく線形判別法により種類学習を行い、全データの中心を表すクラスタ中心を通るベクトルに垂直でクラスタ中心を通る直線として境界線を決定する種類学習ステップと、
    学習評価器により、全学習対象データの境界線からの距離の平均値mを求め、誤認されたデータiの境界線からの距離diを平均値mで割った値di/mを誤認距離dniとして算出し、個々のデータの誤認距離と近傍のデータの誤認距離と比較し、近傍であるにもかかわらず誤認距離の差が第1の閾値以上大きい場合に、第1の閾値を超えた誤認距離の差dmsの総和に(−1)をかけて学習評価値として算出する学習評価ステップと、
    学習手法変更器により、前記学習評価値と予め設定された第2の閾値とを比較し、前記学習評価値が第2の閾値以下の場合には、学習再実行の必要性ありと判断し、ニューラルネットワーク、サポートベクタマシンのいずれかに学習手法を変更するように前記種類学習ステップに指示を出力し、学習再実行が不要と判断した場合には、学習終了指示を出力する学習手法変更ステップと、
    種類判別器により、分類毎の境界線の上側、下側のいずれの領域に属するかによって種類判別対象観測データの種類を判別する種類判別ステップとを含み、
    前記学習手法変更ステップから出力された学習手法変更指示は、前記種類学習ステップの入力となり、再び、前記種類学習ステップにおいて学習及び学習結果の出力を行い、続いて前記学習評価ステップにおいて評価及び学習評価値の出力を行い、以下、前記学習手法変更ステップにおいて学習再実行不要と判断されるまで、前記種類学習ステップ、前記学習評価ステップ、及び前記学習手法変更ステップにおいて上記の処理を繰り返し、
    前記種類学習ステップでは、前記学習終了指示が入力されると、前記繰り返し処理で得られた種類学習結果のうち、最良の学習評価値を記録した種類学習結果を出力する
    ことを特徴とする類識別方法。
JP2002003907A 2002-01-10 2002-01-10 類識別装置及び類識別方法 Expired - Fee Related JP4121061B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002003907A JP4121061B2 (ja) 2002-01-10 2002-01-10 類識別装置及び類識別方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002003907A JP4121061B2 (ja) 2002-01-10 2002-01-10 類識別装置及び類識別方法

Publications (2)

Publication Number Publication Date
JP2003208594A JP2003208594A (ja) 2003-07-25
JP4121061B2 true JP4121061B2 (ja) 2008-07-16

Family

ID=27643375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002003907A Expired - Fee Related JP4121061B2 (ja) 2002-01-10 2002-01-10 類識別装置及び類識別方法

Country Status (1)

Country Link
JP (1) JP4121061B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207565A (ja) * 2002-01-10 2003-07-25 Mitsubishi Electric Corp 類識別装置及び類識別方法
JP4859351B2 (ja) * 2004-06-14 2012-01-25 財団法人電力中央研究所 事例データベースの構築方法、判別装置の学習方法、データ判別支援装置、データ判別支援プログラム
JP5271877B2 (ja) * 2009-11-17 2013-08-21 日本電信電話株式会社 複数クラス分類装置、複数クラス分類方法および複数クラス分類プログラム
US10210464B2 (en) * 2015-03-11 2019-02-19 Qualcomm Incorporated Online training for object recognition system
JP6957659B2 (ja) * 2016-04-26 2021-11-02 株式会社日立製作所 情報処理システムおよびその運用方法
WO2017187516A1 (ja) * 2016-04-26 2017-11-02 株式会社日立製作所 情報処理システムおよびその運用方法
JP6664812B2 (ja) * 2016-05-10 2020-03-13 国立研究開発法人情報通信研究機構 仮想資源自動選択システム及び方法
JP7238470B2 (ja) * 2018-03-15 2023-03-14 富士通株式会社 学習装置、検査装置、学習検査方法、学習プログラムおよび検査プログラム
EP3888016A1 (en) * 2018-11-27 2021-10-06 Raytheon Company Dynamic reconfiguration training computer architecture
JPWO2022024985A1 (ja) * 2020-07-27 2022-02-03

Also Published As

Publication number Publication date
JP2003208594A (ja) 2003-07-25

Similar Documents

Publication Publication Date Title
Li et al. Floatboost learning and statistical face detection
US9152926B2 (en) Systems, methods, and media for updating a classifier
US20070058856A1 (en) Character recoginition in video data
US20070065003A1 (en) Real-time recognition of mixed source text
CN102147858B (zh) 车牌字符识别方法
Winkeler et al. Genetic programming for object detection
JP2015087903A (ja) 情報処理装置及び情報処理方法
US11295240B2 (en) Systems and methods for machine classification and learning that is robust to unknown inputs
CN108320024A (zh) 词典生成装置及方法、评估装置及方法、以及存储介质
JP4121061B2 (ja) 類識別装置及び類識別方法
CN112614187A (zh) 回环检测方法、装置、终端设备和可读存储介质
JP7268756B2 (ja) 劣化抑制プログラム、劣化抑制方法および情報処理装置
WO2015146113A1 (ja) 識別辞書学習システム、識別辞書学習方法および記録媒体
JP2019159576A (ja) 学習プログラム、学習方法および学習装置
Tavallali et al. A systematic training procedure for viola-jones face detector in heterogeneous computing architecture
CN110770753B (zh) 高维数据实时分析的装置和方法
Loeff et al. Efficient unsupervised learning for localization and detection in object categories
Abdullah et al. Determining adaptive thresholds for image segmentation for a license plate recognition system
Neto et al. PIC-Score: Probabilistic Interpretable Comparison Score for Optimal Matching Confidence in Single-and Multi-Biometric Face Recognition
Saidi et al. Application of pixel selection in pixel-based classification for automatic white blood cell segmentation
JP2006244385A (ja) 顔判別装置およびプログラム並びに顔判別装置の学習方法
JP4121060B2 (ja) 類識別装置及び類識別方法
Ramirez et al. Face detection using combinations of classifiers
JP5840083B2 (ja) 画像処理装置
Li et al. Fuzzy clustering with automated model selection: entropy penalty approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees