JP4120937B2 - Phase rotation method and phase rotation device - Google Patents

Phase rotation method and phase rotation device Download PDF

Info

Publication number
JP4120937B2
JP4120937B2 JP2003376404A JP2003376404A JP4120937B2 JP 4120937 B2 JP4120937 B2 JP 4120937B2 JP 2003376404 A JP2003376404 A JP 2003376404A JP 2003376404 A JP2003376404 A JP 2003376404A JP 4120937 B2 JP4120937 B2 JP 4120937B2
Authority
JP
Japan
Prior art keywords
component
phase
signal
amplitude
phase rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003376404A
Other languages
Japanese (ja)
Other versions
JP2005142779A (en
Inventor
隼 亀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003376404A priority Critical patent/JP4120937B2/en
Publication of JP2005142779A publication Critical patent/JP2005142779A/en
Application granted granted Critical
Publication of JP4120937B2 publication Critical patent/JP4120937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、信号位相を所望の位相にディジタル信号処理によって回転させる位相回転方法及び位相回転装置に関する。   The present invention relates to a phase rotation method and a phase rotation apparatus for rotating a signal phase to a desired phase by digital signal processing.

各種の信号処理に於いて、信号位相を調整する各種の手段が適用されている。一般的には、直交座標上で表される信号の位相を、その信号の同相成分信号(I)と直交成分信号(Q)とに対して乗除算又は加減算処理を行った後、合成する処理により回転させることができる。又準同期検波方式を適用した受信装置の直交復調回路に於いて、受信した直交変調信号を、π/2の位相差の復調用搬送波により、I,Q直交信号に復調し、それぞれディジタル信号に変換して、位相オフセット分を補正する位相回転回路を設けた構成が知られている(例えば、特許文献1参照)。   In various signal processing, various means for adjusting the signal phase are applied. In general, the phase of a signal represented on rectangular coordinates is subjected to multiplication / division or addition / subtraction processing on the in-phase component signal (I) and the quadrature component signal (Q) of the signal, and then combined. Can be rotated. Also, in the quadrature demodulation circuit of the receiving apparatus to which the quasi-synchronous detection method is applied, the received quadrature modulation signal is demodulated into I and Q quadrature signals by a demodulation carrier having a phase difference of π / 2, and each is converted into a digital signal A configuration in which a phase rotation circuit that converts and corrects a phase offset is provided is known (see, for example, Patent Document 1).

又地球上の軌道を周回する複数の衛星からの電波を受信して復調し、この電波の受信点の三次元位置と移動速度とを算出できる航法システムが知られており、この航法システムの受信機に於いて、直交復調信号を処理する機能を備え、位相シフト等の手段を設けている。その為の構成として、例えば、信号の振幅と位相とに対応させた信号点を、X,Y軸の直交座標のX成分値とY成分値とに対応させてメモリに格納し、信号の位相回転位置に対応する信号点に対応するX成分値とY成分値とを読出すことにより、位相回転処理を行うものである。しかし、この構成は、位相回転による信号点の移動についてみると、回転角度によっては、直交格子を縦横以外に斜めに横切ることになり、誤差分が位相回転位置によって大きく変化する。   In addition, navigation systems are known that can receive and demodulate radio waves from multiple satellites orbiting the earth and calculate the three-dimensional position and movement speed of the reception point of these radio waves. The machine has a function of processing a quadrature demodulated signal and is provided with means such as phase shift. As a configuration for that purpose, for example, signal points corresponding to the amplitude and phase of the signal are stored in the memory in correspondence with the X component value and the Y component value of the orthogonal coordinates of the X and Y axes, and the signal phase The phase rotation process is performed by reading the X component value and the Y component value corresponding to the signal point corresponding to the rotation position. However, in this configuration, when the signal point is moved by the phase rotation, depending on the rotation angle, the orthogonal lattice is obliquely crossed in addition to the vertical and horizontal directions, and the error greatly varies depending on the phase rotation position.

そこで、位相回転に従って信号点が移動する軌跡を、座標原点を中心とした同心円とし、各円上に信号点を配置した状態でメモリに格納する。即ち、極座標に類似した構成で信号点を記憶させたメモリを用いることにより、位相回転位置による誤差分の変化を少なくする。その場合、入力された信号のレベルを、信号点を配置した円の半径に相当するレベルに一旦変換し、メモリから位相回転後の信号点を読出し、そのレベルを再変換するものである(例えば、特許文献2参照)。   Therefore, the trajectory along which the signal point moves according to the phase rotation is a concentric circle with the coordinate origin as the center, and the signal point is placed on each circle and stored in the memory. That is, by using a memory in which signal points are stored with a configuration similar to polar coordinates, changes in error due to the phase rotation position are reduced. In that case, the level of the input signal is once converted into a level corresponding to the radius of the circle in which the signal points are arranged, the signal points after phase rotation are read from the memory, and the levels are reconverted (for example, , See Patent Document 2).

又データ伝送に於ける復調回路に於いて、ディジタル処理により直交したI,Q信号の位相回転を、例えば、図4に示すように、三角関数乗算部21〜24と加算器25,26とを設けた構成により処理する手段が知られている。この場合、I,Q信号と位相回転量θとにより、三角関数乗算部21〜24と加算器25,26とによって、
I’=Icosθ−Qsinθ
Q’=Isinθ+Qcosθ
の演算を行い、位相回転量θに従って位相回転した直交信号I’,Q’を求めることができる。尚、三角関数を2の巾乗で表して、三角関数乗算部21〜24を、複数のシフトレジスタと、加算器と、セレクタとを含む構成で実現することができることが知られている(例えば、特許文献3参照)。
特開平6−181475号公報 特開平11−17756号公報 特公平7−65901号公報
Further, in the demodulating circuit in data transmission, the phase rotation of the I and Q signals orthogonal by digital processing is performed by, for example, trigonometric function multiplying units 21 to 24 and adders 25 and 26 as shown in FIG. Means for processing according to the provided configuration is known. In this case, with the I and Q signals and the phase rotation amount θ, the trigonometric function multipliers 21 to 24 and the adders 25 and 26
I ′ = I cos θ−Q sin θ
Q ′ = Isin θ + Q cos θ
The quadrature signals I ′ and Q ′ rotated in phase according to the phase rotation amount θ can be obtained. It is known that the trigonometric function can be expressed by a power of 2, and the trigonometric function multipliers 21 to 24 can be realized by a configuration including a plurality of shift registers, adders, and selectors (for example, And Patent Document 3).
JP-A-6-181475 Japanese Patent Laid-Open No. 11-17756 Japanese Patent Publication No. 7-65901

信号位相の回転処理は、前述のように、既に各種の手段が提案されているが、位相回転後の信号もディジタル信号とするものであるから、処理するビット数により、取り扱うことができる最大値が決まることになる。例えば、図5の(A)に示すように、I,Q信号の最大値をそれぞれ同一の値のImax,Qmaxとすると、π/4の位相角の信号AのI,Q信号は、最大値Imax,Qmaxとなる。この信号Aを位相回転量φ回転させると、信号Aは信号A’となる。この信号A’は、信号Aとレベル(振幅)は同一であるが、同相成分信号Iは最大値Imax以下となり、直交成分信号Qは最大値Qmaxを超えて、信号処理としてはオーバーフローの状態となる。その為、図5の(B)に示すように、信号A’の同相成分信号Iは最大値以下であるが、直交成分信号Qは最大値Qmaxに制限されることになり、従って、位相回転後は信号A”となる。その為、位相回転した信号A’と、最大値を超えないように処理した信号A”との間はδの位相差が生じることになる。即ち、位相回転処理により位相誤差δが生じる問題がある。   Various methods have already been proposed for signal phase rotation processing as described above, but since the signal after phase rotation is also a digital signal, the maximum value that can be handled depending on the number of bits to be processed. Will be decided. For example, as shown in FIG. 5A, assuming that the maximum values of the I and Q signals are the same values of Imax and Qmax, the I and Q signals of the signal A having a phase angle of π / 4 are the maximum values. Imax and Qmax. When the signal A is rotated by the phase rotation amount φ, the signal A becomes a signal A ′. The signal A ′ has the same level (amplitude) as the signal A, but the in-phase component signal I is less than the maximum value Imax, the quadrature component signal Q exceeds the maximum value Qmax, and the signal processing is in an overflow state. Become. Therefore, as shown in FIG. 5B, the in-phase component signal I of the signal A ′ is less than or equal to the maximum value, but the quadrature component signal Q is limited to the maximum value Qmax. After that, the signal becomes A ″. Therefore, a phase difference of δ is generated between the phase-rotated signal A ′ and the signal A ″ processed so as not to exceed the maximum value. That is, there is a problem that a phase error δ is generated by the phase rotation process.

このような問題は、前述の信号点を同心円上に配置してメモリに格納した場合でも同様に発生する。このような位相誤差δを低減する為には、位相回転後のI,Q信号が最大値Imax,Qmaxを超える場合、その超えた割合に従って、超えない方の信号も低減する処理を行う必要があり、位相回転処理が複雑化する問題が生じる。   Such a problem also occurs when the signal points described above are arranged concentrically and stored in the memory. In order to reduce such a phase error δ, when the I and Q signals after phase rotation exceed the maximum values Imax and Qmax, it is necessary to perform a process of reducing the signal that does not exceed according to the exceeding ratio. There arises a problem that the phase rotation processing becomes complicated.

本発明は、比較的簡単な処理及び構成により、位相回転後の信号成分を最大値に制限すると共に位相誤差を低減することを目的とする。   An object of the present invention is to limit a signal component after phase rotation to a maximum value and reduce a phase error by a relatively simple process and configuration.

本発明の位相回転方法は、位相回転を行う信号の同相成分信号と直交成分信号とを、極座標変換により振幅成分と角度成分とに変換し、前記角度成分に位相回転量を加算した回転角度成分に於ける振幅成分の最大値を求め、前記極座標変換により得られた振幅成分が前記最大値を超えている時は、前記振幅成分を前記最大値に制限した振幅成分とし、該振幅成分と前記位相回転量を加算した回転角度成分とを基に直交座標変換により同相成分信号と直交成分信号とに変換する過程を含むものである。   According to the phase rotation method of the present invention, the in-phase component signal and the quadrature component signal of the signal for phase rotation are converted into an amplitude component and an angle component by polar coordinate conversion, and a rotation angle component obtained by adding a phase rotation amount to the angle component. When the amplitude component obtained by polar coordinate conversion exceeds the maximum value, the amplitude component is limited to the maximum value, and the amplitude component and the amplitude component This includes a process of converting into an in-phase component signal and a quadrature component signal by orthogonal coordinate transformation based on the rotation angle component obtained by adding the phase rotation amount.

又本発明の位相回転装置は、位相回転を行う信号の同相成分信号と直交成分信号とを入力して振幅成分と角度成分とに変換する極座標変換部と、該極座標変換部からの前記角度成分に位相回転量を加算して回転角度成分を出力する位相回転部と、該位相回転部からの回転角度成分に対応した振幅成分の最大値を求め、該最大値と前記極座標変換部から振幅成分とを比較し、該振幅成分を前記最大値以下に制限した振幅成分を出力する振幅調整部と、該振幅調整部からの振幅成分と前記位相回転部からの回転角度成分とを入力して同相成分信号と直交成分信号とに変換する直交座標変換部とを備えている。   The phase rotation device according to the present invention includes a polar coordinate conversion unit that receives an in-phase component signal and a quadrature component signal of a signal that performs phase rotation and converts the signal into an amplitude component and an angle component, and the angle component from the polar coordinate conversion unit. A phase rotation unit that adds a phase rotation amount to the rotation angle component and outputs a rotation angle component; obtains a maximum value of an amplitude component corresponding to the rotation angle component from the phase rotation unit; and calculates the maximum value and the amplitude component from the polar coordinate conversion unit And an amplitude adjustment unit that outputs an amplitude component in which the amplitude component is limited to the maximum value or less, an amplitude component from the amplitude adjustment unit, and a rotation angle component from the phase rotation unit are input to be in phase An orthogonal coordinate conversion unit for converting into a component signal and an orthogonal component signal is provided.

又前記位相回転装置の振幅調整部は、角度成分に対する振幅成分の最大値を格納し、前記位相回転部からの回転角度成分をアドレスとして前記最大値を読出すメモリと、該メモリから読出した最大値と前記極座標変換部からの振幅成分とを比較し、該振幅成分が前記最大値を超えないように制限する演算部とを含む構成を有するものである。   The amplitude adjustment unit of the phase rotation device stores the maximum value of the amplitude component with respect to the angle component, and reads out the maximum value using the rotation angle component from the phase rotation unit as an address, and the maximum value read from the memory. And a calculation unit that compares the value with the amplitude component from the polar coordinate conversion unit and limits the amplitude component so as not to exceed the maximum value.

ディジタル信号処理により信号位相を位相回転量φだけ回転させる際に、極座標に変換して、角度成分に対して位相回転量を加算して位相回転処理を行い、その位相回転後の振幅成分を最大値に制限して直交座標に変換するから、変換後の同相成分と直交成分とは最大値を超えることがなく、即ち、オーバーフローが生じないので、位相誤差が生じないものとなる。又振幅の調整も必要最小限にとどめることができる。   When the signal phase is rotated by the phase rotation amount φ by digital signal processing, it is converted to polar coordinates, phase rotation processing is performed by adding the phase rotation amount to the angle component, and the amplitude component after the phase rotation is maximized Since conversion into rectangular coordinates is performed by limiting the value, the in-phase component and the orthogonal component after conversion do not exceed the maximum value, that is, overflow does not occur, so that no phase error occurs. Also, the amplitude can be adjusted to the minimum necessary.

本発明の位相回転方法は、位相回転を行う信号の同相成分信号Iと直交成分信号Qとを、極座標変換により振幅成分rと角度成分θとに変換し、角度成分θに位相回転量φを加算した回転角度成分θ’に於ける振幅成分の最大値r’maxを求め、極座標変換により得られた振幅成分rが最大値r’maxを超えている時は、振幅成分rを最大値r’maxに制限した振幅成分r’とし、この振幅成分と、位相回転量φを加算した回転角度成分θ’とを基に直交座標変換により同相成分信号I’と直交成分信号Q’とに変換する過程を含むものである。   In the phase rotation method of the present invention, the in-phase component signal I and the quadrature component signal Q of the signal for phase rotation are converted into an amplitude component r and an angle component θ by polar coordinate conversion, and the phase rotation amount φ is set as the angle component θ. The maximum value r′max of the amplitude component in the added rotation angle component θ ′ is obtained, and when the amplitude component r obtained by polar coordinate conversion exceeds the maximum value r′max, the amplitude component r is converted to the maximum value r. An amplitude component r limited to “max” is converted into an in-phase component signal I ′ and a quadrature component signal Q ′ by orthogonal coordinate conversion based on the amplitude component and a rotation angle component θ ′ obtained by adding the phase rotation amount φ. Process.

本発明の位相回転装置は、位相回転を行う信号の同相成分信号Iと直交成分信号Qとを入力して振幅成分rと角度成分θとに変換する極座標変換部1と、この極座標変換部1からの角度成分θに位相回転量φを加算して回転角度成分θ’を出力する位相回転部3と、この位相回転部3からの回転角度成分θ’に対応した振幅成分の最大値r’maxを求めて、この最大値r’maxと極座標変換部1から振幅成分rとを比較し、この振幅成分rが最大値を超えていない時は、そのまま出力し、最大値を超えている時は、その最大値に制限した振幅成分r’を出力する振幅調整部2と、この振幅調整部2からの振幅成分r’と位相回転部3からの回転角度成分θ’とを入力して同相成分信号Iと直交成分信号Qとに変換する直交座標変換部4とを備えている。   The phase rotation device according to the present invention receives a in-phase component signal I and a quadrature component signal Q of a signal for phase rotation and converts them into an amplitude component r and an angle component θ, and the polar coordinate conversion unit 1 The phase rotation unit 3 that adds the phase rotation amount φ to the angle component θ from the output and outputs the rotation angle component θ ′, and the maximum value r ′ of the amplitude component corresponding to the rotation angle component θ ′ from the phase rotation unit 3 When max is obtained, the maximum value r′max is compared with the amplitude component r from the polar coordinate conversion unit 1, and when the amplitude component r does not exceed the maximum value, it is output as it is, and when it exceeds the maximum value Is supplied with the amplitude adjustment unit 2 that outputs the amplitude component r ′ limited to the maximum value, the amplitude component r ′ from the amplitude adjustment unit 2 and the rotation angle component θ ′ from the phase rotation unit 3 and inputs the same phase. An orthogonal coordinate conversion unit 4 for converting the component signal I and the orthogonal component signal Q is provided. To have.

図1は、本発明の実施例1の説明図であり、1は極座標変換部、2は振幅調整部、3は位相回転部、4は直交座標変換部を示す。直交座標で表されるI,Q信号を極座標変換部1に入力して、振幅(動径)成分rと角度成分θとによる極座標(r,θ)に変換する。位相回転部3は、極座標変換部1により変換された角度成分θに位相回転量φを加算し、加算した回転角度成分θ’を振幅調整部2と直交座標変換部4とに入力する。   FIG. 1 is an explanatory diagram of Embodiment 1 of the present invention, where 1 is a polar coordinate conversion unit, 2 is an amplitude adjustment unit, 3 is a phase rotation unit, and 4 is an orthogonal coordinate conversion unit. I and Q signals represented by orthogonal coordinates are input to the polar coordinate conversion unit 1 and converted into polar coordinates (r, θ) by an amplitude (radial radius) component r and an angle component θ. The phase rotation unit 3 adds the phase rotation amount φ to the angle component θ converted by the polar coordinate conversion unit 1 and inputs the added rotation angle component θ ′ to the amplitude adjustment unit 2 and the orthogonal coordinate conversion unit 4.

振幅調整部2は、位相回転部3から入力された回転角度成分θ’に対応した振幅成分の最大値r’maxを求め、極座標変換部1からの振幅成分rが最大値を超えているか否かを判定する。この最大値r’maxは、Q信号についてはかっこ内で示すと、
r’max=I(Q)max/cosθ’
(但し、0≦|θ’|≦π/4及び3π/4≦|θ’|≦π)
r’max=I(Q)max/sinθ’
(但し、π/4≦|θ’|≦3π/4)
として求めることができる。
The amplitude adjustment unit 2 obtains the maximum value r′max of the amplitude component corresponding to the rotation angle component θ ′ input from the phase rotation unit 3, and determines whether the amplitude component r from the polar coordinate conversion unit 1 exceeds the maximum value. Determine whether. This maximum value r'max is shown in parentheses for the Q signal:
r′max = I (Q) max / cos θ ′
(However, 0 ≦ | θ ′ | ≦ π / 4 and 3π / 4 ≦ | θ ′ | ≦ π)
r′max = I (Q) max / sin θ ′
(However, π / 4 ≦ | θ ′ | ≦ 3π / 4)
Can be obtained as

振幅成分rが、回転角度成分θ’に従って回転した場合の最大値r’maxを超えない場合、そのまま振幅成分r’として出力し、又超える場合は、振幅成分rを回転角度成分θ’に於ける最大値に制限した振幅成分r’として出力し、その振幅成分を直交座標変換部4に入力し、又その振幅成分の調整量rc=(振幅成分r−位相回転後の振幅成分の最大値r’max)を、後段の処理回路に出力する。尚、振幅成分rが最大値を超えない場合は、r=r’として、直交座標変換部4に入力し、その時の調整量rc=0とする。   If the amplitude component r does not exceed the maximum value r′max when rotated in accordance with the rotation angle component θ ′, the amplitude component r ′ is output as it is, and if it exceeds, the amplitude component r is output as the rotation angle component θ ′. Is output as an amplitude component r ′ limited to the maximum value, and the amplitude component is input to the orthogonal coordinate transformation unit 4, and the adjustment amount rc = (amplitude component r−maximum value of the amplitude component after phase rotation) r′max) is output to the subsequent processing circuit. When the amplitude component r does not exceed the maximum value, r = r ′ is input to the orthogonal coordinate conversion unit 4 and the adjustment amount rc = 0 at that time is set.

直交座標変換部4は、振幅成分r’と回転角度成分θ’とを基に、
I’=r’cosθ’
Q’=r’sinθ’
により、位相回転後の直交したI’,Q’信号を出力することができる。この場合、それぞれ最大値を超えないものとなる。即ち、オーバーフローを生じないので、位相誤差は生じないものとなる。尚、振幅成分が最大値に従って制限された場合、後段の処理回路に於いて、調整量rcにより、本来の振幅成分となるように補正することができる。
The orthogonal coordinate conversion unit 4 is based on the amplitude component r ′ and the rotation angle component θ ′.
I ′ = r′cos θ ′
Q ′ = r′sin θ ′
Thus, the orthogonal I ′ and Q ′ signals after phase rotation can be output. In this case, the maximum value is not exceeded. That is, since no overflow occurs, no phase error occurs. When the amplitude component is limited according to the maximum value, it can be corrected so as to become the original amplitude component by the adjustment amount rc in the subsequent processing circuit.

図2は、位相回転処理の説明図であり、(A)に示すように、π/4の位相角で、振幅(動径)成分rの信号の同相成分信号Iは最大値Imaxで、直交成分信号Qも最大値Qmaxとした場合、極座標変換部1は、入力された同相成分信号Iと直交成分信号Qとを、振幅(動径)成分rと角度成分θ(この場合、θ=π/4)とに変換し、制御情報としての位相回転量φに従って回転する場合に、位相回転部3は、θ’=θ+φの処理により求めた回転角度成分θ’を振幅調整部2に加える。   FIG. 2 is an explanatory diagram of the phase rotation processing. As shown in FIG. 2A, the in-phase component signal I of the signal of the amplitude (radial) component r at the phase angle of π / 4 has a maximum value Imax and is orthogonal. When the component signal Q is also the maximum value Qmax, the polar coordinate conversion unit 1 converts the input in-phase component signal I and the quadrature component signal Q into an amplitude (radial) component r and an angle component θ (in this case, θ = π). / 4), and when rotating according to the phase rotation amount φ as the control information, the phase rotation unit 3 adds the rotation angle component θ ′ obtained by the processing of θ ′ = θ + φ to the amplitude adjustment unit 2.

振幅調整部2は、振幅成分rと回転角度成分θ’とにより、位相回転後の信号の振幅成分の最大値r’maxを前述の演算式に従って求めて振幅成分rと比較し、この振幅成分rが最大値r’maxを超えている場合、振幅成分rを最大値に制限したr’とする。   The amplitude adjustment unit 2 obtains the maximum value r′max of the amplitude component of the signal after phase rotation by using the amplitude component r and the rotation angle component θ ′, and compares it with the amplitude component r. When r exceeds the maximum value r′max, the amplitude component r is set to r ′ limited to the maximum value.

この最大値に制限した振幅成分r’を位相回転量φに従って回転すると、図2の(B)に示す状態となり、位相回転後の振幅成分r’は、直交成分信号Qの最大値Qmaxを超えないものとなり、又位相誤差も発生しないものとなる。例えば、角度成分θ=π/4とし、位相回転量φ=π/12とすると、回転角度位相θ’=θ+φ=π/3となる。そして、振幅成分r=1とすると、角度成分θ=π/4の時の同相成分Iと直交成分Qとの最大値は約0.7となる。そして、回転角度位相θ’=π/3とした場合の振幅成分の最大値r’maxは、約0.8となる。従って、振幅成分r=1を、この最大値r’max≒0.8に制限した振幅成分r’を直交変換部4に出力する。直交座標変換部4は、この振幅成分r’と回転角度位相θ’とを基に、同相成分信号I’と直交成分信号Q’とに変換する。又回転方向を反対とした場合も同様であり、その場合は、同相成分信号Iの最大値Imaxを超えないように、振幅成分rを制限することができる。   When the amplitude component r ′ limited to the maximum value is rotated according to the phase rotation amount φ, the state shown in FIG. 2B is obtained, and the amplitude component r ′ after the phase rotation exceeds the maximum value Qmax of the quadrature component signal Q. And no phase error occurs. For example, if the angle component θ = π / 4 and the phase rotation amount φ = π / 12, the rotation angle phase θ ′ = θ + φ = π / 3. When the amplitude component r = 1, the maximum value of the in-phase component I and the quadrature component Q when the angle component θ = π / 4 is about 0.7. The maximum value r′max of the amplitude component when the rotation angle phase θ ′ = π / 3 is about 0.8. Accordingly, the amplitude component r ′ in which the amplitude component r = 1 is limited to the maximum value r′max≈0.8 is output to the orthogonal transform unit 4. The orthogonal coordinate conversion unit 4 converts the in-phase component signal I ′ and the orthogonal component signal Q ′ based on the amplitude component r ′ and the rotation angle phase θ ′. The same applies to the case where the rotation direction is reversed. In this case, the amplitude component r can be limited so as not to exceed the maximum value Imax of the in-phase component signal I.

図3は、本発明の実施例2の説明図であり、図1と同一符号は、同一名称部分を示す。この実施例は、振幅調整部2を、メモリ5と演算部6とにより構成し、メモリ5に、回転角度成分θ’と振幅成分の最大値r’maxとの関係のデータを格納する。このメモリ5に対して、位相回転部3からの回転角度成分θ’をアドレスとして入力し、最大値を読出して演算部6に入力する。   FIG. 3 is an explanatory diagram of Embodiment 2 of the present invention, and the same reference numerals as those in FIG. 1 denote the same names. In this embodiment, the amplitude adjustment unit 2 includes a memory 5 and a calculation unit 6, and the memory 5 stores data on the relationship between the rotation angle component θ ′ and the maximum value r′max of the amplitude component. The rotation angle component θ ′ from the phase rotation unit 3 is input to the memory 5 as an address, the maximum value is read and input to the calculation unit 6.

演算部6は、極座標変換部1からの振幅成分rと、メモリ5からの最大値r’maxとを比較し、r≧r’maxの場合は、振幅成分rをそのまま直交座標変換部4に入力する振幅成分r’とし、又r≦r’maxの場合は、その最大値を振幅成分r’として、直交座標変換部4に入力する。直交座標変換部4は、前述の実施例と同様に、振幅成分r’と角度成分θ’とを基に直交座標変換により、位相回転後の同相成分信号I’と直交成分信号Q’とに変換して出力する。   The calculation unit 6 compares the amplitude component r from the polar coordinate conversion unit 1 with the maximum value r′max from the memory 5. If r ≧ r′max, the calculation unit 6 directly converts the amplitude component r to the orthogonal coordinate conversion unit 4. When the amplitude component r ′ is input, and r ≦ r′max, the maximum value is input to the orthogonal coordinate conversion unit 4 as the amplitude component r ′. Similarly to the above-described embodiment, the orthogonal coordinate conversion unit 4 converts the in-phase component signal I ′ and the orthogonal component signal Q ′ after phase rotation by orthogonal coordinate conversion based on the amplitude component r ′ and the angle component θ ′. Convert and output.

尚、メモリ5は、2πの角度範囲にわたる最大値r’maxを格納することなく、例えば、0〜π/2の角度範囲にわたる最大値r’maxを格納し、角度成分θ’が0〜π/2の範囲でない場合に、アドレス変換してアクセスすることにより、最大値の読出しを行う構成とすることもできる。それにより、メモリ5の小型化を図ることができる。又演算部6は、比較、減算の処理機能を有する簡単な構成で実現することができる。   The memory 5 does not store the maximum value r′max over the angle range of 2π, for example, stores the maximum value r′max over the angle range of 0 to π / 2, and the angle component θ ′ is 0 to π. If it is not in the range of / 2, it is possible to read out the maximum value by converting the address and accessing. Thereby, the memory 5 can be downsized. The arithmetic unit 6 can be realized with a simple configuration having comparison and subtraction processing functions.

本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention. 位相回転処理の説明図である。It is explanatory drawing of a phase rotation process. 本発明の実施例2の説明図である。It is explanatory drawing of Example 2 of this invention. 従来例の説明図である。It is explanatory drawing of a prior art example. 従来例の位相回転処理の説明図である。It is explanatory drawing of the phase rotation process of a prior art example.

符号の説明Explanation of symbols

1 極座標変換部
2 振幅調整部
3 位相回転部
4 直交座標変換部
5 メモリ
6 演算部
DESCRIPTION OF SYMBOLS 1 Polar coordinate conversion part 2 Amplitude adjustment part 3 Phase rotation part 4 Cartesian coordinate conversion part 5 Memory 6 Calculation part

Claims (3)

信号位相を回転する位相回転方法に於いて、
位相回転を行う信号の同相成分信号と直交成分信号とを、極座標変換により振幅成分と角度成分とに変換し、前記極座標変換により得られた振幅成分が、前記角度成分に位相回転量を加算した回転角度成分に於ける振幅成分の最大値を超えている時は、前記振幅成分を前記最大値に制限した振幅成分とし、該振幅成分と前記位相回転量を加算した回転角度成分とを基に直交座標変換により同相成分信号と直交成分信号とに変換する過程を含む
ことを特徴とする位相回転方法。
In the phase rotation method of rotating the signal phase,
The in-phase component signal and the quadrature component signal of the signal for phase rotation are converted into an amplitude component and an angle component by polar coordinate conversion, and the amplitude component obtained by the polar coordinate conversion adds the phase rotation amount to the angle component. When the maximum value of the amplitude component in the rotation angle component is exceeded, the amplitude component is limited to the maximum value, and based on the rotation angle component obtained by adding the amplitude component and the phase rotation amount A phase rotation method comprising a step of converting into an in-phase component signal and a quadrature component signal by orthogonal coordinate transformation.
信号位相を回転する位相回転装置に於いて、
位相回転を行う信号の同相成分信号と直交成分信号とを入力して振幅成分と角度成分とに変換する極座標変換部と、
該極座標変換部からの前記角度成分に位相回転量を加算して回転角度成分を出力する位相回転部と、
該位相回転部からの回転角度成分に対応した振幅成分の最大値を求め、該最大値と前記極座標変換部から振幅成分とを比較し、該振幅成分を前記最大値以下に制限した振幅成分を出力する振幅調整部と、
該振幅調整部からの振幅成分と前記位相回転部からの回転角度成分とを入力して同相成分信号と直交成分信号とに変換する直交座標変換部と
を備えたことを特徴とする位相回転装置。
In a phase rotation device that rotates a signal phase,
A polar coordinate conversion unit that inputs an in-phase component signal and a quadrature component signal of a signal that performs phase rotation and converts them into an amplitude component and an angle component;
A phase rotation unit that adds a phase rotation amount to the angle component from the polar coordinate conversion unit and outputs a rotation angle component;
The maximum value of the amplitude component corresponding to the rotation angle component from the phase rotation unit is obtained, the maximum value is compared with the amplitude component from the polar coordinate conversion unit, and the amplitude component in which the amplitude component is limited to the maximum value or less is obtained. An amplitude adjustment unit to output;
A phase rotation apparatus comprising: an orthogonal coordinate conversion unit that inputs an amplitude component from the amplitude adjustment unit and a rotation angle component from the phase rotation unit and converts the component into an in-phase component signal and a quadrature component signal .
前記振幅調整部は、角度成分に対する振幅成分の最大値を格納し、前記位相回転部からの回転角度成分をアドレスとして前記最大値を読出すメモリと、該メモリから読出した最大値と前記極座標変換部からの振幅成分とを比較し、該振幅成分が前記最大値を超えないように制限する演算部とを含む構成を有することを特徴とする請求項2記載の位相回転装置。   The amplitude adjustment unit stores a maximum value of an amplitude component with respect to an angle component, reads out the maximum value using the rotation angle component from the phase rotation unit as an address, and converts the maximum value read from the memory and the polar coordinate conversion The phase rotation device according to claim 2, further comprising: an arithmetic unit that compares the amplitude component from the unit and limits the amplitude component so as not to exceed the maximum value.
JP2003376404A 2003-11-06 2003-11-06 Phase rotation method and phase rotation device Expired - Fee Related JP4120937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376404A JP4120937B2 (en) 2003-11-06 2003-11-06 Phase rotation method and phase rotation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376404A JP4120937B2 (en) 2003-11-06 2003-11-06 Phase rotation method and phase rotation device

Publications (2)

Publication Number Publication Date
JP2005142779A JP2005142779A (en) 2005-06-02
JP4120937B2 true JP4120937B2 (en) 2008-07-16

Family

ID=34687455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376404A Expired - Fee Related JP4120937B2 (en) 2003-11-06 2003-11-06 Phase rotation method and phase rotation device

Country Status (1)

Country Link
JP (1) JP4120937B2 (en)

Also Published As

Publication number Publication date
JP2005142779A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US20170134193A1 (en) Soft decision value generating apparatus and method of generating soft decision value
US9553695B2 (en) Likelihood generation circuit and likelihood generation method
US20140270014A1 (en) Method and apparatus for performing soft demapping in rotated quadrature amplitude modulation (qam) based communication system
JPH11284677A (en) Demodulator and digital radio communication system using it
JP4120937B2 (en) Phase rotation method and phase rotation device
US5504453A (en) Method and device for estimating phase error
EP0987863A1 (en) Soft decision method and apparatus for 8PSK demodulation
JPH11331291A (en) Automatic gain control method and demodulator provided with automatic gain control
US6697440B1 (en) Demodulator of receiver
JP3498600B2 (en) Carrier phase estimator and demodulator using carrier phase estimator
JP2016523042A (en) Correction of quadrature phase imbalance and gain imbalance using dual CORDIC architecture during receiver low frequency conversion
JP3091634B2 (en) Diversity device
JP4082169B2 (en) Amplitude phase converter and amplitude phase conversion method
JP2004343752A (en) Qpsk demodulation method and apparatus for soft output in 3g tdd system
JP3091649B2 (en) Diversity device
JP4105079B2 (en) Phase difference calculation circuit
JP5745293B2 (en) Receiving method and receiving apparatus for spread spectrum communication system
KR100903876B1 (en) Method for dividing received signal modulated phase shift keying using Bit Reflected Gray Code into bits, and device thereof
US6643335B1 (en) Signal point arrangement dispersion calculation circuit
JP2000022770A (en) Frequency error detection circuit and demodulation circuit
JPS6340060B2 (en)
JP2016010034A (en) Angle detection device and angle detection method
JP2004364046A (en) Phase modulated signal demodulator
JPH0654014A (en) Frequency discriminator
JPS6037668B2 (en) Carrier phase control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4120937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees