JP4120868B2 - AC motor control device - Google Patents

AC motor control device Download PDF

Info

Publication number
JP4120868B2
JP4120868B2 JP2002262667A JP2002262667A JP4120868B2 JP 4120868 B2 JP4120868 B2 JP 4120868B2 JP 2002262667 A JP2002262667 A JP 2002262667A JP 2002262667 A JP2002262667 A JP 2002262667A JP 4120868 B2 JP4120868 B2 JP 4120868B2
Authority
JP
Japan
Prior art keywords
voltage
phase
current
command value
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002262667A
Other languages
Japanese (ja)
Other versions
JP2004104898A (en
Inventor
尚史 野村
博 大沢
寛明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2002262667A priority Critical patent/JP4120868B2/en
Publication of JP2004104898A publication Critical patent/JP2004104898A/en
Application granted granted Critical
Publication of JP4120868B2 publication Critical patent/JP4120868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、交流電圧源を入力として直流電圧を得る整流回路と、直流電圧を任意の振幅と周波数の交流電圧に変換するインバータ回路とを用いて交流電動機を制御する制御装置、特に直流電圧の整流リプルの影響によって電動機に発生する低周波の電流ビートを抑制し、電動機のトルクリプルや騒音を低減するための制御装置に関する。
【0002】
【従来の技術】
まず、電流ビートの発生メカニズムの概要について説明する。
図4に整流回路とインバータ回路からなる電力変換方式の一般的な例を示す。これは、整流回路1の入力が3相交流電圧,整流回路1が全波整流回路,インバータ回路2の出力が3相の場合の例である。この場合、直流電圧Edcには整流回路1の入力電圧周波数ωsに対して6倍周波数のリプルが発生することが一般に知られている。
【0003】
インバータ回路2は、スイッチング素子のオン,オフをゲート信号Sup〜Swnに基づいて制御することで、直流電圧を任意の大きさ,任意の周波数の交流電圧に変換する。ゲート信号Sup〜Swnは、各相の変調率λu*,λv*,λw*をPWM変調器によってPWM変調して求める。この結果、インバータ回路2の出力電圧vu,vv,vwは、λu*,λv*,λw*を使って次の〔数1〕のように表わされる。
【数1】

Figure 0004120868
【0004】
ここで、出力電圧vu,vv,vwを周波数ω*の3相正弦波電圧に制御するために、変調率を次の〔数2〕のように制御する場合、直流電圧Edcが一定値であれば、出力電圧vu,vv,vwを正弦波にできるが、Edcにリプル成分がある場合はvu,vv,vwに低周波のビートが発生する。なお、〔数2〕のλaは変調率振幅を示す。
【数2】
Figure 0004120868
【0005】
ビートの周波数ωbは、Edcのリプル周波数が入力電圧周波数ωsの6倍周波数であることから、次の〔数3〕となる。
【数3】
Figure 0004120868
【0006】
上式より、周波数指令ω*が入力電圧周波数ωsの6倍に近くなるほど、ビートの周波数ωbが小さくなる。このため、インバータ回路を使って交流電動機を運転する場合は、ω*がωsの6倍に近くなるほど、電圧ビートに対する電機子巻線のインピーダンスが小さくなって電流ビートが顕在化する。電流ビートが発生すると、電動機のトルクリプルや騒音の問題が生じる。
【0007】
電流ビートを低減するための対策としては、直流電圧Edcのリプルを低減することが有効である。しかし、これを実現するためには、直流回路の平滑コンデンサの容量を大きく設計したり、直流回路にリアクトルを挿入する等の方法があるが、いずれも機器が大型化するという問題がある。そこで、制御によって電流ビートを低減する方法が提案されている(例えば、特許文献1参照)。
この方法は、コンバータの出力である直流電圧Edcがその基準値Edcrに対しEdc>Edcrとなった場合には、直流電圧Edcの値に反比例させてPWM制御の変調率Aを減少させ、Edc<Edcrとなった場合には、直流電圧Edcの値に反比例させてPWM制御の変調率Aを増加させ、ビート現象を低減するものである。
【0008】
【特許文献1】
特開平01−227693号公報(第4頁、図1,図2)
【0009】
【発明が解決しようとする課題】
しかし、上記提案方法をディジタル制御装置で実現する場合、電流ビートを効果的に低減するためには、直流電圧Edcのリプルを位相遅れがないように高速に検出し、かつ、制御遅れがないよう各種演算を高速に行なう必要があるが、これにより制御装置がコストアップするという問題が生じる。
したがって、この発明の課題は、制御装置をコストアップさせることなくビート現象を抑制することにある。
【0010】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、交流電圧源を入力として直流電圧を得る整流回路と、直流電圧を任意の振幅と周波数の交流電圧に変換するインバータ回路とを用いて交流電動機を制御する制御装置において、
交流電動機の電流と端子電圧をベクトルとしてとらえるとともに周波数指令値で回転する直交回転座標軸としてのγ−δ軸を定義し、
γ軸電圧指令値とδ軸電圧指令値を電気角指令値に基づき相の値に座標変換して第1の相電圧指令値を演算する第1の座標変換器と、
相電流検出値を前記電気角指令値に基づきγ−δ軸の値に座標変換してγ軸電流とδ軸電流を演算する第2の座標変換器と、
γ軸電流の高周波成分を抽出する第1のハイパスフィルタと、
δ軸電流の高周波成分を抽出する第2のハイパスフィルタと、
前記γ軸電流の高周波成分とδ軸電流の高周波成分とを前記電気角指令値に基づき相の値に座標変換して相電流ビートを演算する第3の座標変換器と、
前記相電流ビートを増幅して電流ビート補償電圧を演算する増幅器と、
前記第1の相電圧指令値から前記電流ビート補償電圧を引き算して第2の相電圧指令値を演算する加算器とを設け、
前記インバータ回路により交流電動機の相電圧を第2の相電圧指令値に一致させるように制御することを特徴とする。
【0011】
また、請求項2の発明では、交流電圧源を入力として直流電圧を得る整流回路と、直流電圧を任意の振幅と周波数の交流電圧に変換するインバータ回路とを用いて交流電動機を制御する制御装置において、
交流電動機の電流と端子電圧をベクトルとしてとらえるとともに周波数指令値で回転する直交回転座標軸としてのγ−δ軸を定義し、
γ軸電圧指令値とδ軸電圧指令値を電気角指令値に基づき相の値に座標変換して第1の相電圧指令値を演算する第1の座標変換器と、
相電流検出値を前記電気角指令値に基づきγ−δ軸の値に座標変換してγ軸電流とδ軸電流を演算する第2の座標変換器と、
γ軸電流の基本波成分を抽出する第1のローパスフィルタと、
δ軸電流の基本波成分を抽出する第2のローパスフィルタと、
前記γ軸電流の基本波成分とδ軸電流の基本波成分とを前記電気角指令値に基づき相の値に座標変換して相電流基本波を演算する第3の座標変換器と、
相電流検出値から前記相電流基本波を引き算して相電流ビートを演算する第1の加算器と、
前記相電流ビートを増幅して電流ビート補償電圧を演算する増幅器と、
前記第1の相電圧指令値から前記電流ビート補償電圧を引き算して第2の相電圧指令値を演算する第2の加算器とを設け、
前記インバータ回路により交流電動機の相電圧を第2の相電圧指令値に一致させるように制御することを特徴とする。
上記請求項1または2の発明においては、前記増幅器のゲインを前記周波数指令値の関数とすることができる(請求項3の発明)。
【0012】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示すブロック図である。
まず、その制御原理から説明する。
相における電圧のビートと電流のビートの周波数は数3で示したように、入力電圧周波数指令ωsとインバータ出力周波数ω*の関数であるが、これをγ−δ軸で観測した場合のビートの周波数は6ωsとなる。一般に、6ωsは電動機の制御応答周波数に比べて十分高くなることから、γ−δ軸電流の高周波成分を抽出することでγ−δ軸上での電流ビートを検出でき、これらを相電流に座標変換すれば、相における電流ビートを検出できる。そして、この検出した電流ビートを相電圧指令に負帰還すれば、電流ビートを零に制御できる。この発明は、電流ビート成分のみを選択的に制御することで、電動機の制御系への干渉を小さくし、この発明を実施しても制御性能の劣化が余りないようにする。
【0013】
図1において、f/V変換器7は、周波数指令ω*に基づきω*にほぼ比例するδ軸電圧指令Vδ*を演算する。γ軸電圧指令Vγ*は零とする。ここに、γ−δ軸は周波数ω*で回転する任意の回転座標であり、δ軸はγ軸に対して90°進みと定義する。電気角演算器9は、ω*を積分して電気角指令θ*を演算する。3相電圧指令vu *,vv *,vw *は、座標変換器61によりVγ*,Vδ*をθ*の値に基づいて座標変換して求める。
【0014】
直流電圧補償器4は、vu *,vv *,vw *を直流電圧Edcで割り算して、インバータ回路2の各相の変調率λu*,λv*,λw*を次の〔数4〕にて求める。
【数4】
Figure 0004120868
インバータ回路2は出力電圧をλu*,λv*,λw*にしたがって制御することで、電動機の端子電圧を指令値に制御することができ、回転子の周波数をその指令値に制御することができる。
【0015】
座標変換器62は、相電流検出値iu,iwおよびθ*に基づきγ−δ軸電流iγ,iδを演算する。γ軸電流ハイパスフィルタ81とδ軸電流ハイパスフィルタ82は、それぞれiγ,iδの高周波成分を抽出することにより、γ−δ軸電流ビートiγb,iδbを演算する。iγb,iδbはθ*を用い座標変換器63により、相電流ビートiub,ivb,iwbに座標変換される。
【0016】
相電流ビートにそれぞれ増幅器5の比例ゲインKpbを乗算してビート補償電圧vub *,vvb *,vwb *を演算し、これらを座標変換器61の出力である第1の相電圧指令vu *,vv *,vw *からそれぞれ引き算することで、第2の相電圧指令vu **,vv **,vw **を演算する。vu **,vv **,vw **と直流電圧Edcとを用いて変調率λu*,λv*,λw*を演算し、これに基づいてインバータ回路2を制御することで、電流ビートを発生することなく交流電動機(永久磁石式同期電動機)3を駆動制御するものである。
【0017】
図2にこの発明の第2の実施の形態を示す。
図1とは電流ビートの検出方法を変更したものである。すなわち、座標変換器62は、相電流検出値iu,iwおよびθ*に基づきγ−δ軸電流iγ,iδを演算する。γ軸電流ローパスフィルタ83とδ軸電流ローパスフィルタ84は、それぞれiγ,iδの低周波成分を抽出し、γ−δ軸電流の基本波成分iγf,iδfを演算する。iγf,iδfは、θ*を使って座標変換器63により3相電流基本波成分iuf,ivf,iwfに座標変換される。3相電流ビートiub,ivb,iwbは、相電流検出値iu,iv,iwからiuf,ivf,iwfをそれぞれ引き算することで演算する。ここで、v相電流検出値ivは電流の3相合成値が零であることから、iuとiwを加算した値の極性を極性反転器10により逆にした値から演算する。以下の処理は図1の場合と同様なので、説明は省略する。
【0018】
図3にこの発明の第3の実施の形態を示す。図2の増幅器5の代わりに比例ゲイン演算器51を設け、これにより比例ゲインKpbを得るようにしたものである。
すなわち、数3にも示したように、相電圧ビートの周波数ωbは周波数指令ω*の関数であり、一般に低速運転時はωbが大きいので相電圧ビートに対する電機子巻線のインピーダンスが高く、電流ビートは問題にならない。また、低速時は電機子巻線抵抗の影響などにより電動機の制御系の安定性が高くないので、電流ビートの負帰還を停止するほうが良い。そこで、比例ゲイン演算器51により、低速時は比例ゲインKpbを零とし、周波数指令ω*がωb1〜ωb2の間はKpbをω*に比例して増加させ、ωb2以上でKpbをKpb0にする。以上の処理により、低速時の安定運転と電流ビートが顕在化する速度領域での電流ビートの低減を両立させることができる。
【0019】
図3は図2の改良例であるが、図1に対しても同様に適用できるのは勿論である。また、以上では永久磁石式同期電動機(PMSM)を駆動制御する場合について説明したが、誘導電動機等の他の交流電動機にも適用することができる。
【0020】
【発明の効果】
この発明によれば、電流ビート成分を抽出しこれを相電圧指令に負帰還するだけの簡単な構成としたので、特に制御装置を高価にすることなく、電動機の電流ビートを低減することができ、その結果、電動機のトルクリプルや騒音を低減し得るという利点がもたらされる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示すブロック図
【図2】この発明の第2の実施の形態を示すブロック図
【図3】この発明の第3の実施の形態を示すブロック図
【図4】整流回路とインバータ回路からなる電力変換方式の一般的な例を示す回路図
【符号の説明】
1…整流回路、2…インバータ回路、3…交流電動機(永久磁石式同期電動機:PMSM)、4…直流電圧補償器、5…増幅器、61,62,63…座標変換器、7…f/V変換器、81,82…ハイパスフィルタ、83,84…ローパスフィルタ、9…電気角演算器、10…極性反転器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device that controls an AC motor using a rectifier circuit that obtains a DC voltage with an AC voltage source as an input, and an inverter circuit that converts the DC voltage into an AC voltage having an arbitrary amplitude and frequency, in particular, the DC voltage The present invention relates to a control device for suppressing a low-frequency current beat generated in an electric motor due to the influence of a rectifying ripple and reducing torque ripple and noise of the electric motor.
[0002]
[Prior art]
First, an outline of a mechanism for generating a current beat will be described.
FIG. 4 shows a general example of a power conversion system composed of a rectifier circuit and an inverter circuit. This is an example in which the input of the rectifier circuit 1 is a three-phase AC voltage, the rectifier circuit 1 is a full-wave rectifier circuit, and the output of the inverter circuit 2 is a three-phase. In this case, it is generally known that a ripple having a frequency 6 times as large as the input voltage frequency ω s of the rectifier circuit 1 is generated in the DC voltage E dc .
[0003]
The inverter circuit 2 converts the DC voltage into an AC voltage having an arbitrary magnitude and an arbitrary frequency by controlling on / off of the switching element based on the gate signals S up to S wn . The gate signals S up to S wn are obtained by PWM modulating the modulation factors λu * , λv * , λw * of each phase with a PWM modulator. As a result, the output voltages v u , v v , and v w of the inverter circuit 2 are expressed by the following [Equation 1] using λu * , λv * , and λw * .
[Expression 1]
Figure 0004120868
[0004]
Here, in order to control the output voltage v u , v v , v w to the three-phase sine wave voltage of the frequency ω * , when the modulation rate is controlled as in the following [Equation 2], the DC voltage E dc is If the value is constant, the output voltages v u , v v and v w can be made sinusoidal, but if E dc has a ripple component, beats of low frequency are generated in v u , v v and v w . Note that λ a in [Equation 2] indicates the modulation factor amplitude.
[Expression 2]
Figure 0004120868
[0005]
The beat frequency ω b is expressed by the following [Equation 3] because the ripple frequency of E dc is six times the input voltage frequency ω s .
[Equation 3]
Figure 0004120868
[0006]
From the above equation, the beat frequency ω b decreases as the frequency command ω * approaches six times the input voltage frequency ω s . For this reason, when an AC motor is operated using an inverter circuit, the impedance of the armature winding with respect to the voltage beat becomes smaller and the current beat becomes apparent as ω * approaches 6 times ω s . When a current beat occurs, problems such as motor torque ripple and noise occur.
[0007]
As a measure for reducing the current beat, it is effective to reduce the ripple of the DC voltage E dc . However, in order to achieve this, there are methods such as designing the capacity of the smoothing capacitor of the DC circuit to be large, or inserting a reactor into the DC circuit. Therefore, a method of reducing the current beat by control has been proposed (see, for example, Patent Document 1).
In this method, when the DC voltage E dc which is the output of the converter is E dc > E dcr with respect to the reference value E dcr , the PWM control modulation factor A is set in inverse proportion to the value of the DC voltage E dc. When E dc <E dcr , the modulation rate A of the PWM control is increased in inverse proportion to the value of the DC voltage E dc to reduce the beat phenomenon.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 01-227693 (page 4, FIGS. 1 and 2)
[0009]
[Problems to be solved by the invention]
However, when the proposed method is realized by a digital control device, in order to effectively reduce the current beat, the ripple of the DC voltage E dc is detected at high speed so that there is no phase delay, and there is no control delay. It is necessary to perform various calculations at a high speed, but this causes a problem that the cost of the control device increases.
Therefore, an object of the present invention is to suppress the beat phenomenon without increasing the cost of the control device.
[0010]
[Means for Solving the Problems]
In order to solve such a problem, the invention of claim 1 uses a rectifier circuit that obtains a DC voltage by using an AC voltage source as an input, and an inverter circuit that converts the DC voltage into an AC voltage having an arbitrary amplitude and frequency. In a control device for controlling an AC motor,
Define the γ-δ axis as an orthogonal rotation coordinate axis that takes the current and terminal voltage of the AC motor as a vector and rotates with the frequency command value,
a first coordinate converter for converting a γ-axis voltage command value and a δ-axis voltage command value into a phase value based on an electrical angle command value and calculating a first phase voltage command value;
A second coordinate converter for calculating a γ-axis current and a δ-axis current by converting the phase current detection value into a γ-δ axis value based on the electrical angle command value;
a first high-pass filter that extracts a high-frequency component of the γ-axis current;
a second high-pass filter that extracts a high-frequency component of the δ-axis current;
A third coordinate converter for calculating a phase current beat by converting the high-frequency component of the γ-axis current and the high-frequency component of the δ-axis current into a phase value based on the electrical angle command value;
An amplifier that amplifies the phase current beat to calculate a current beat compensation voltage;
An adder that calculates a second phase voltage command value by subtracting the current beat compensation voltage from the first phase voltage command value;
The inverter circuit is controlled to make the phase voltage of the AC motor coincide with the second phase voltage command value.
[0011]
According to a second aspect of the present invention, there is provided a control device that controls an AC motor using a rectifier circuit that obtains a DC voltage with an AC voltage source as an input, and an inverter circuit that converts the DC voltage into an AC voltage having an arbitrary amplitude and frequency. In
Define the γ-δ axis as an orthogonal rotation coordinate axis that takes the current and terminal voltage of the AC motor as a vector and rotates with the frequency command value,
a first coordinate converter for converting a γ-axis voltage command value and a δ-axis voltage command value into a phase value based on an electrical angle command value and calculating a first phase voltage command value;
A second coordinate converter for calculating a γ-axis current and a δ-axis current by converting the phase current detection value into a γ-δ axis value based on the electrical angle command value;
a first low-pass filter for extracting a fundamental wave component of the γ-axis current;
a second low-pass filter for extracting a fundamental wave component of the δ-axis current;
A third coordinate converter for calculating a phase current fundamental wave by converting the fundamental wave component of the γ-axis current and the fundamental wave component of the δ-axis current into a phase value based on the electrical angle command value;
A first adder for calculating a phase current beat by subtracting the phase current fundamental wave from a phase current detection value;
An amplifier that amplifies the phase current beat to calculate a current beat compensation voltage;
A second adder for calculating a second phase voltage command value by subtracting the current beat compensation voltage from the first phase voltage command value;
The inverter circuit is controlled to make the phase voltage of the AC motor coincide with the second phase voltage command value.
In the invention of claim 1 or 2, the gain of the amplifier can be a function of the frequency command value (invention of claim 3).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a first embodiment of the present invention.
First, the control principle will be described.
The frequency of the beat of the voltage and the beat of the current in the phase is a function of the input voltage frequency command ω s and the inverter output frequency ω * as shown in Equation 3, but this beat when observed on the γ-δ axis of frequency is 6ω s. In general, since the sufficiently high compared to the control response frequency of the 6Omega s electric motor, can detect the current beat on gamma-[delta] axis by extracting the high frequency component of the gamma-[delta] axis current, these on the phase current If the coordinates are converted, the current beat in the phase can be detected. If the detected current beat is negatively fed back to the phase voltage command, the current beat can be controlled to zero. In the present invention, by selectively controlling only the current beat component, interference with the control system of the electric motor is reduced, and even if the present invention is implemented, the control performance is not greatly deteriorated.
[0013]
In FIG. 1, the f / V converter 7 calculates a δ-axis voltage command Vδ * that is substantially proportional to ω * based on the frequency command ω * . The γ-axis voltage command Vγ * is zero. Here, the γ-δ axis is an arbitrary rotation coordinate that rotates at the frequency ω * , and the δ axis is defined as 90 ° advance with respect to the γ axis. The electrical angle calculator 9 calculates the electrical angle command θ * by integrating ω * . The three-phase voltage commands v u * , v v * , and v w * are obtained by coordinate-transforming Vγ * and Vδ * by the coordinate converter 61 based on the value of θ * .
[0014]
DC voltage compensator 4, v u *, v v * , v w * by dividing the DC voltage E dc of each phase of the modulation factor of the inverter circuit 2 λu *, λv *, λw * the following [equation 4].
[Expression 4]
Figure 0004120868
The inverter circuit 2 can control the terminal voltage of the motor to the command value by controlling the output voltage according to λu * , λv * , λw * , and can control the frequency of the rotor to the command value. .
[0015]
The coordinate converter 62 calculates γ-δ axis currents iγ, iδ based on the detected phase current values i u , i w and θ * . The γ-axis current high-pass filter 81 and the δ-axis current high-pass filter 82 calculate γ-δ-axis current beats iγ b and iδ b by extracting high-frequency components of iγ and iδ, respectively. The coordinates of iγ b and iδ b are converted into phase current beats i ub , i vb and i wb by the coordinate converter 63 using θ * .
[0016]
Beat compensation voltages v ub * , v vb * , and v wb * are calculated by multiplying the phase current beat by the proportional gain K pb of the amplifier 5, respectively, and the first phase voltage command that is the output of the coordinate converter 61 is calculated. The second phase voltage commands v u ** , v v ** , and v w ** are calculated by subtracting from v u * , v v * , and v w * , respectively. By calculating the modulation factors λu * , λv * , λw * using v u ** , v v ** , v w ** and the DC voltage E dc, and controlling the inverter circuit 2 based on this, The AC motor (permanent magnet synchronous motor) 3 is driven and controlled without generating a current beat.
[0017]
FIG. 2 shows a second embodiment of the present invention.
FIG. 1 is a modification of the current beat detection method. That is, the coordinate converter 62 calculates the γ-δ axis currents iγ, iδ based on the phase current detection values i u , i w and θ * . gamma-axis current lowpass filter 83 and [delta] -axis current lowpass filter 84, respectively extracts i?, a low-frequency component of i?, calculates the fundamental component i? f, i? f of gamma-[delta] axis current. The coordinates of f and iδ f are transformed into the three-phase current fundamental wave components i uf , i vf , and i wf by the coordinate transformer 63 using θ * . The three-phase current beats i ub , i vb , i wb are calculated by subtracting i uf , i vf , i wf from the phase current detection values i u , i v , i w , respectively. Here, the v-phase current detection value iv is calculated from the value obtained by reversing the polarity of the value obtained by adding i u and i w by the polarity inverter 10 because the three-phase composite value of the current is zero. The following processing is the same as that in FIG.
[0018]
FIG. 3 shows a third embodiment of the present invention. A proportional gain calculator 51 is provided in place of the amplifier 5 in FIG. 2, thereby obtaining a proportional gain K pb .
That is, as shown in Equation 3, the frequency ω b of the phase voltage beat is a function of the frequency command ω * . Generally, ω b is large during low-speed operation, so the impedance of the armature winding with respect to the phase voltage beat is high. The current beat doesn't matter. Also, at low speeds, the stability of the motor control system is not high due to the influence of the armature winding resistance, etc., so it is better to stop the negative feedback of the current beat. Therefore, the proportional gain computing unit 51, low speed is set to zero, the proportional gain K pb, between the frequency command omega * is ω b1b2 increases in proportion to K pb in omega *, K in omega b2 or pb is set to K pb0 . By the above processing, it is possible to achieve both stable operation at a low speed and reduction of the current beat in the speed region where the current beat becomes obvious.
[0019]
FIG. 3 is an improved example of FIG. 2, but of course it can be applied to FIG. Moreover, although the case where drive control of a permanent magnet type synchronous motor (PMSM) was demonstrated above, it is applicable also to other AC motors, such as an induction motor.
[0020]
【The invention's effect】
According to the present invention, since the current beat component is extracted and is simply fed back negatively to the phase voltage command, the current beat of the motor can be reduced without particularly increasing the cost of the control device. As a result, there is an advantage that torque ripple and noise of the electric motor can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of the invention. FIG. 2 is a block diagram showing a second embodiment of the invention. FIG. 3 is a block showing a third embodiment of the invention. [Figure 4] Circuit diagram showing a general example of a power conversion system consisting of a rectifier circuit and an inverter circuit [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rectifier circuit, 2 ... Inverter circuit, 3 ... AC motor (permanent magnet type synchronous motor: PMSM), 4 ... DC voltage compensator, 5 ... Amplifier, 61, 62, 63 ... Coordinate converter, 7 ... f / V Converters 81, 82... High-pass filter, 83, 84. Low-pass filter, 9 ... Electrical angle calculator, 10 ... Polarity inverter.

Claims (3)

交流電圧源を入力として直流電圧を得る整流回路と、直流電圧を任意の振幅と周波数の交流電圧に変換するインバータ回路とを用いて交流電動機を制御する制御装置において、
交流電動機の電流と端子電圧をベクトルとしてとらえるとともに周波数指令値で回転する直交回転座標軸としてのγ−δ軸を定義し、
γ軸電圧指令値とδ軸電圧指令値を電気角指令値に基づき相の値に座標変換して第1の相電圧指令値を演算する第1の座標変換器と、
相電流検出値を前記電気角指令値に基づきγ−δ軸の値に座標変換してγ軸電流とδ軸電流を演算する第2の座標変換器と、
γ軸電流の高周波成分を抽出する第1のハイパスフィルタと、
δ軸電流の高周波成分を抽出する第2のハイパスフィルタと、
前記γ軸電流の高周波成分とδ軸電流の高周波成分とを前記電気角指令値に基づき相の値に座標変換して相電流ビートを演算する第3の座標変換器と、
前記相電流ビートを増幅して電流ビート補償電圧を演算する増幅器と、
前記第1の相電圧指令値から前記電流ビート補償電圧を引き算して第2の相電圧指令値を演算する加算器とを設け、
前記インバータ回路により交流電動機の相電圧を第2の相電圧指令値に一致させるように制御することを特徴とする交流電動機の制御装置。
In a control device that controls an AC motor using a rectifier circuit that obtains a DC voltage with an AC voltage source as an input, and an inverter circuit that converts the DC voltage into an AC voltage having an arbitrary amplitude and frequency,
Define the γ-δ axis as an orthogonal rotation coordinate axis that takes the current and terminal voltage of the AC motor as a vector and rotates with the frequency command value,
a first coordinate converter for converting a γ-axis voltage command value and a δ-axis voltage command value into a phase value based on an electrical angle command value and calculating a first phase voltage command value;
A second coordinate converter for calculating a γ-axis current and a δ-axis current by converting the phase current detection value into a γ-δ axis value based on the electrical angle command value;
a first high-pass filter that extracts a high-frequency component of the γ-axis current;
a second high-pass filter that extracts a high-frequency component of the δ-axis current;
A third coordinate converter for calculating a phase current beat by converting the high-frequency component of the γ-axis current and the high-frequency component of the δ-axis current into a phase value based on the electrical angle command value;
An amplifier that amplifies the phase current beat to calculate a current beat compensation voltage;
An adder that calculates a second phase voltage command value by subtracting the current beat compensation voltage from the first phase voltage command value;
A control apparatus for an AC motor, wherein the inverter circuit controls the phase voltage of the AC motor to coincide with a second phase voltage command value.
交流電圧源を入力として直流電圧を得る整流回路と、直流電圧を任意の振幅と周波数の交流電圧に変換するインバータ回路とを用いて交流電動機を制御する制御装置において、
交流電動機の電流と端子電圧をベクトルとしてとらえるとともに周波数指令値で回転する直交回転座標軸としてのγ−δ軸を定義し、
γ軸電圧指令値とδ軸電圧指令値を電気角指令値に基づき相の値に座標変換して第1の相電圧指令値を演算する第1の座標変換器と、
相電流検出値を前記電気角指令値に基づきγ−δ軸の値に座標変換してγ軸電流とδ軸電流を演算する第2の座標変換器と、
γ軸電流の基本波成分を抽出する第1のローパスフィルタと、
δ軸電流の基本波成分を抽出する第2のローパスフィルタと、
前記γ軸電流の基本波成分とδ軸電流の基本波成分とを前記電気角指令値に基づき相の値に座標変換して相電流基本波を演算する第3の座標変換器と、
相電流検出値から前記相電流基本波を引き算して相電流ビートを演算する第1の加算器と、
前記相電流ビートを増幅して電流ビート補償電圧を演算する増幅器と、
前記第1の相電圧指令値から前記電流ビート補償電圧を引き算して第2の相電圧指令値を演算する第2の加算器とを設け、
前記インバータ回路により交流電動機の相電圧を第2の相電圧指令値に一致させるように制御することを特徴とする交流電動機の制御装置。
In a control device that controls an AC motor using a rectifier circuit that obtains a DC voltage with an AC voltage source as an input, and an inverter circuit that converts the DC voltage into an AC voltage having an arbitrary amplitude and frequency,
Define the γ-δ axis as an orthogonal rotation coordinate axis that takes the current and terminal voltage of the AC motor as a vector and rotates with the frequency command value,
a first coordinate converter for converting a γ-axis voltage command value and a δ-axis voltage command value into a phase value based on an electrical angle command value and calculating a first phase voltage command value;
A second coordinate converter for calculating a γ-axis current and a δ-axis current by converting the phase current detection value into a γ-δ axis value based on the electrical angle command value;
a first low-pass filter for extracting a fundamental wave component of the γ-axis current;
a second low-pass filter for extracting a fundamental wave component of the δ-axis current;
A third coordinate converter for calculating a phase current fundamental wave by converting the fundamental wave component of the γ-axis current and the fundamental wave component of the δ-axis current into a phase value based on the electrical angle command value;
A first adder for calculating a phase current beat by subtracting the phase current fundamental wave from a phase current detection value;
An amplifier that amplifies the phase current beat to calculate a current beat compensation voltage;
A second adder for calculating a second phase voltage command value by subtracting the current beat compensation voltage from the first phase voltage command value;
A control apparatus for an AC motor, wherein the inverter circuit controls the phase voltage of the AC motor to coincide with a second phase voltage command value.
前記増幅器のゲインを前記周波数指令値の関数とすることを特徴とする請求項1または2に記載の交流電動機の制御装置。3. The AC motor control apparatus according to claim 1, wherein a gain of the amplifier is a function of the frequency command value.
JP2002262667A 2002-09-09 2002-09-09 AC motor control device Expired - Fee Related JP4120868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262667A JP4120868B2 (en) 2002-09-09 2002-09-09 AC motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262667A JP4120868B2 (en) 2002-09-09 2002-09-09 AC motor control device

Publications (2)

Publication Number Publication Date
JP2004104898A JP2004104898A (en) 2004-04-02
JP4120868B2 true JP4120868B2 (en) 2008-07-16

Family

ID=32262658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262667A Expired - Fee Related JP4120868B2 (en) 2002-09-09 2002-09-09 AC motor control device

Country Status (1)

Country Link
JP (1) JP4120868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594239B2 (en) 2017-01-11 2020-03-17 Hitachi-Johnson Controls Air Conditioning, Inc. Motor drive device and refrigeration equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340486A (en) * 2005-06-01 2006-12-14 Fuji Electric Fa Components & Systems Co Ltd Control device of motor
JP4988329B2 (en) 2006-12-28 2012-08-01 株式会社日立産機システム Beatless control device for permanent magnet motor
KR101173751B1 (en) * 2007-12-04 2012-08-13 미쓰비시덴키 가부시키가이샤 Ac motor controller
JP6614825B2 (en) 2015-06-30 2019-12-04 日立ジョンソンコントロールズ空調株式会社 Power conversion device, motor drive device, refrigeration device
JP6955206B2 (en) * 2017-09-29 2021-10-27 富士電機株式会社 Power conversion system
JP6629893B2 (en) * 2018-02-05 2020-01-15 ファナック株式会社 Motor drive device for estimating stray capacitance
WO2020217764A1 (en) 2019-04-23 2020-10-29 日立オートモティブシステムズ株式会社 Power conversion device, and electric vehicle system provided therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594239B2 (en) 2017-01-11 2020-03-17 Hitachi-Johnson Controls Air Conditioning, Inc. Motor drive device and refrigeration equipment

Also Published As

Publication number Publication date
JP2004104898A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4988329B2 (en) Beatless control device for permanent magnet motor
JP3627683B2 (en) Motor control device
KR100655702B1 (en) Control method for permanent magnet synchronous motor and control system thereof
JP3611492B2 (en) Inverter control method and apparatus
JP2014200154A (en) Motor controller and magnetic pole position estimation method
EP3522363B1 (en) Control device for power converter
JP2008048593A (en) Method and system for controlling permanent magnet motor drive system
JPH11299297A (en) Controller for permanent magnet synchronous motor
JP3586078B2 (en) Power converter
JP4120868B2 (en) AC motor control device
JP4065375B2 (en) Motor driving apparatus and motor driving method
JP4596906B2 (en) Electric motor control device
US9231514B2 (en) Motor control apparatus and motor control method
JP3882728B2 (en) Electric motor control device
JP4446688B2 (en) Multiphase current supply circuit and control method thereof
KR102255250B1 (en) Inverter control apparatus
JP6024262B2 (en) Power converter
JP7282984B2 (en) POWER CONVERTER AND CONTROL METHOD THEREOF
JP4120503B2 (en) Induction motor control method
KR102255276B1 (en) Inverter control apparatus
JP6729249B2 (en) Power converter controller
KR102133181B1 (en) Apparatus for controlling inverter
CN113661646B (en) Power conversion device and control method thereof
KR100976309B1 (en) Apparatus for controlling inverter
JP2004129360A (en) Motor controller

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4120868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees