JP4120703B2 - Camera with focus detection device - Google Patents

Camera with focus detection device Download PDF

Info

Publication number
JP4120703B2
JP4120703B2 JP2007290568A JP2007290568A JP4120703B2 JP 4120703 B2 JP4120703 B2 JP 4120703B2 JP 2007290568 A JP2007290568 A JP 2007290568A JP 2007290568 A JP2007290568 A JP 2007290568A JP 4120703 B2 JP4120703 B2 JP 4120703B2
Authority
JP
Japan
Prior art keywords
focus detection
conversion coefficient
amount
detection device
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007290568A
Other languages
Japanese (ja)
Other versions
JP2008102537A (en
Inventor
重之 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007290568A priority Critical patent/JP4120703B2/en
Publication of JP2008102537A publication Critical patent/JP2008102537A/en
Application granted granted Critical
Publication of JP4120703B2 publication Critical patent/JP4120703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、撮影レンズの焦点調節状態を検出する焦点検出装置を備えたカメラに関する。   The present invention relates to a camera including a focus detection device that detects a focus adjustment state of a photographing lens.

位相差検出方式の焦点検出装置が知られている。図6により、位相差検出方式の焦点検出装置を説明する。
撮影レンズ100の領域101を通って入射した光束は、視野マスク200、フィールドレンズ300、絞り開口部401および再結像レンズ501を通り、イメージセンサーアレイ600のA列上に結像する。イメージセンサーアレイ600のA列は複数の光電変換画素からなり、被写体像の光強度分布に応じた信号列を出力する。同様に、撮影レンズ100の領域102を通って入射した光束は、視野マスク200、フィールドレンズ300、絞り開口部402および再結像レンズ502を通り、イメージセンサーアレイ600のB列上に結像する。イメージセンサーアレイ600のB列も複数の光電変換画素からなり、被写体像の光強度分布に応じた信号列を出力する。
A phase difference detection type focus detection apparatus is known. A phase difference detection type focus detection apparatus will be described with reference to FIG.
The light beam incident through the region 101 of the photographing lens 100 passes through the field mask 200, the field lens 300, the aperture opening 401, and the re-imaging lens 501, and forms an image on the A column of the image sensor array 600. The A column of the image sensor array 600 includes a plurality of photoelectric conversion pixels, and outputs a signal sequence corresponding to the light intensity distribution of the subject image. Similarly, the light beam incident through the region 102 of the photographing lens 100 passes through the field mask 200, the field lens 300, the aperture opening 402, and the re-imaging lens 502, and forms an image on the B row of the image sensor array 600. . The B column of the image sensor array 600 also includes a plurality of photoelectric conversion pixels, and outputs a signal column corresponding to the light intensity distribution of the subject image.

イメージセンサーアレイ600のA列、B列上に結像した一対の被写体像は、撮影レンズ100が予定焦点面よりも前に被写体の鮮鋭像を結ぶ、いわゆる前ピン状態では互いに近づき、逆に予定焦点面よりも後に被写体の鮮鋭像を結ぶ、いわゆる後ピン状態では互いに遠ざかる。また、ちょうど予定焦点面に被写体の鮮鋭像を結ぶいわゆる合焦時には、イメージセンサーアレイ600のA列、B列上の一対の被写体像は所定の間隔に位置する。したがって、イメージセンサーアレイ600上の一対の被写体像をイメージセンサーアレイ600のA列、B列で光電変換し、これらの信号を演算処理して一対の被写体像の位置ずれ量を求めることにより、撮影レンズ100の予定焦点面に対する焦点調節状態、ここでは合焦状態から離れている量とその方向(以後、デフォーカス量と呼ぶ)を求めることができる。   A pair of subject images formed on the A and B rows of the image sensor array 600 are close to each other in a so-called front pin state in which the photographing lens 100 forms a sharp image of the subject before the planned focal plane, and conversely planned. In the so-called rear pin state, in which a sharp image of the subject is formed after the focal plane, they move away from each other. Further, at the time of so-called in-focus, in which a sharp image of a subject is formed on the planned focal plane, a pair of subject images on the A and B columns of the image sensor array 600 are positioned at a predetermined interval. Therefore, a pair of subject images on the image sensor array 600 are photoelectrically converted by the A and B columns of the image sensor array 600, and these signals are arithmetically processed to obtain a positional deviation amount of the pair of subject images. The focus adjustment state of the lens 100 with respect to the planned focal plane, here, the distance away from the focused state and its direction (hereinafter referred to as defocus amount) can be obtained.

これらの視野マスク200、フィールドレンズ300、絞り開口部401、402、再結像レンズ501、502、イメージセンサーアレイ600は、プラスチック材料を用いて成形されたハウジングに装着され、カメラの場合にはボディの底部に組み込まれる。以下、視野マスク200、フィールドレンズ300、絞り開口部401、402、再結像レンズ501、502、イメージセンサーアレイ600がハウジングに装着されたものを焦点検出モジュールと呼ぶ。   The field mask 200, the field lens 300, the aperture openings 401 and 402, the re-imaging lenses 501 and 502, and the image sensor array 600 are mounted on a housing molded using a plastic material. Built into the bottom of the. Hereinafter, the field mask 200, the field lens 300, the aperture openings 401 and 402, the re-imaging lenses 501 and 502, and the image sensor array 600 mounted on the housing are referred to as a focus detection module.

イメージセンサーアレイ600のA列、B列はそれぞれ複数の光電変換画素からなり、一対の出力信号列a[1],...,a[n]、b[1],...b[n]を出力する。そして、この一対の出力信号列を用いて例えば特許文献1に開示されている焦点検出演算を実行し、位置ずれ量Lsを算出する。さらに、位置ずれ量Lsから(1)式によりデフォーカス量DFを算出する。
DF=Kf・(Ls−ZL) ・・・(1)
(1)式において、Kfは図6に示す光学系およびイメージセンサーアレイ600の光電変換画素のピッチ幅によって定まる、位置ずれ量Lsからデフォーカス量DFへの変換係数である。ZLは撮影レンズ100が合焦状態にある時の位置ずれ量であり、焦点検出モジュールをカメラに組み込む時に生じる製造誤差などに起因して発生する。したがって、この位置ずれ量ZLは焦点検出装置ごとに異なる。そこで、従来の焦点検出装置では、製造時に合焦時の位置ずれ量ZLを測定してEEPROMなどの記憶媒体に記憶し、(1)式の焦点検出演算時に用いるようにしている。
Each of the A column and the B column of the image sensor array 600 includes a plurality of photoelectric conversion pixels, and a pair of output signal columns a [1],. . . , A [n], b [1],. . . b [n] is output. Then, using this pair of output signal sequences, for example, the focus detection calculation disclosed in Patent Document 1 is executed to calculate the positional deviation amount Ls. Further, the defocus amount DF is calculated from the positional deviation amount Ls by the equation (1).
DF = Kf · (Ls−ZL) (1)
In the equation (1), Kf is a conversion coefficient from the positional shift amount Ls to the defocus amount DF, which is determined by the pitch width of the photoelectric conversion pixels of the optical system and the image sensor array 600 shown in FIG. ZL is the amount of displacement when the taking lens 100 is in focus, and is caused by a manufacturing error that occurs when the focus detection module is incorporated into the camera. Therefore, this positional deviation amount ZL differs for each focus detection device. Therefore, in the conventional focus detection apparatus, the positional deviation amount ZL at the time of in-focus is measured at the time of manufacture and stored in a storage medium such as an EEPROM, and is used during the focus detection calculation of equation (1).

この出願の発明に関連する先行技術文献としては次のものがある。
特開昭60−037513号公報
Prior art documents related to the invention of this application include the following.
Japanese Patent Laid-Open No. 60-037513

ところで、デフォーカス量DFと位置ずれ量との関係は実際には線形ではなく、図4に示すように非線形となっている。
図4において、横軸が位置ずれ量Lsを表わし、縦軸がデフォーカス量DFを表わす。曲線(イ)は合焦時の位置ずれ量ZLが正の場合の特性を示し、曲線(ロ)は合焦時の位置ずれ量ZLが0の場合の特性を示し、曲線(ハ)は合焦時の位置ずれ量ZLが負の場合の特性を示す。
By the way, the relationship between the defocus amount DF and the positional deviation amount is not actually linear but nonlinear as shown in FIG.
In FIG. 4, the horizontal axis represents the positional deviation amount Ls, and the vertical axis represents the defocus amount DF. Curve (A) shows the characteristics when the positional deviation amount ZL at the time of focusing is positive, curve (B) shows the characteristics when the positional deviation amount ZL at the time of focusing is 0, and curve (C) shows the characteristics when the positional deviation amount ZL is zero. The characteristic when the positional deviation amount ZL at the time of focusing is negative is shown.

このように、位置ずれ量Lsとデフォーカス量DFとの関係が非線形であるため、(1)式で求めたデフォーカス量DFを(2)式によって補正する必要がある。
DF=DF/{1+DF/Po} ・・・(2)
この(2)式と実質的に同一な演算式が特開昭57−165806号公報に開示されている。(2)式において、Poは開口部401、402のフィールドレンズ300による共役面と予定焦点面との距離であり、通常100mm程度に設計する。
Thus, since the relationship between the positional deviation amount Ls and the defocus amount DF is nonlinear, it is necessary to correct the defocus amount DF obtained by the equation (1) by the equation (2).
DF = DF / {1 + DF / Po} (2)
An arithmetic expression substantially the same as the expression (2) is disclosed in Japanese Patent Laid-Open No. 57-165806. In the equation (2), Po is the distance between the conjugate plane of the openings 401 and 402 by the field lens 300 and the planned focal plane, and is usually designed to be about 100 mm.

変換係数Kfは図4に示す曲線の接線の傾きであり、合焦状態(デフォーカス量DF=0)における曲線の接線の傾き、すなわち図4の特性曲線(イ)〜(ハ)とデフォーカス量DF=0の直線との交点における接線の傾きが、合焦点の近傍において位置ずれ量からデフォーカス量へ正確に変換するための最適な変換係数Kfとなる。合焦時の位置ずれ量ZLと最適な変換係数Kfとの関係を図5に示す。   The conversion coefficient Kf is the slope of the tangent line of the curve shown in FIG. 4, and the slope of the tangent line of the curve in the focused state (defocus amount DF = 0), that is, the characteristic curves (A) to (C) in FIG. The slope of the tangent at the intersection with the straight line with the amount DF = 0 is the optimum conversion coefficient Kf for accurately converting the positional deviation amount to the defocus amount in the vicinity of the focal point. FIG. 5 shows the relationship between the positional shift amount ZL at the time of focusing and the optimum conversion coefficient Kf.

上述したように、合焦時の位置ずれ量ZLは焦点検出装置ごとに異なるが、焦点検出装置ごとの位置ずれ量ZLのバラツキが小さい場合には、変換係数Kfを固定値としてもよい。逆に、位置ずれ量ZLのバラツキが大きい場合には、焦点検出装置ごとに適切な変換係数Kfを設定しなければならない。
本発明の目的は、焦点検出装置ごとに最適な変換係数を設定して焦点検出精度を向上させた焦点検出装置を提供することにある。
As described above, the positional deviation amount ZL at the time of in-focus differs depending on the focus detection device. However, when the variation in the positional deviation amount ZL for each focus detection device is small, the conversion coefficient Kf may be a fixed value. On the contrary, when the variation of the positional deviation amount ZL is large, an appropriate conversion coefficient Kf must be set for each focus detection device.
An object of the present invention is to provide a focus detection apparatus in which an optimum conversion coefficient is set for each focus detection apparatus to improve focus detection accuracy.

(1) 請求項1の発明は、撮影光学系の異なる領域を通過した少なくとも一対の光束を受光し、該光束による一対の被写体像の光強度分布に応じた一対の信号列を出力する光電変換手段と、光電変換手段から出力される一対の信号列の相対的な位置ずれ量を検出する位置ずれ量検出手段と、所定の変換係数を用いて相対的な位置ずれ量を撮影光学系のデフオーカス量に変換する変換手段とからなる焦点検出装置を備えたカメラに適用され、撮影光学系が合焦状態にある時の基準ずれ量に対する変換係数を算出する変換係数算出手段と、変換係数を記憶する変換係数記憶手段とを備える。
(2) 請求項2の焦点検出装置を備えたカメラは、変換係数算出手段が焦点検出装置とは独立して設けられている。
(3) 請求項3の焦点検出装置を備えたカメラは、光電変換手段によって、撮影光学系の異なる領域を通過した少なくとも一対の光束を再結像光学系を介して受光する。
(1) The invention according to claim 1 is a photoelectric conversion that receives at least a pair of light beams that have passed through different areas of the photographing optical system and outputs a pair of signal sequences according to the light intensity distribution of the pair of subject images by the light beams. A positional deviation amount detecting means for detecting a relative positional deviation amount of a pair of signal sequences output from the photoelectric conversion means, and a relative displacement amount using a predetermined conversion coefficient. A conversion coefficient calculating means for calculating a conversion coefficient for a reference deviation amount when the photographing optical system is in focus, and a conversion coefficient stored therein; Conversion coefficient storage means.
(2) In the camera provided with the focus detection device according to claim 2, the conversion coefficient calculation means is provided independently of the focus detection device.
(3) A camera including the focus detection apparatus according to claim 3 receives at least a pair of light beams that have passed through different regions of the photographing optical system via the re-imaging optical system by the photoelectric conversion unit.

本発明によれば、合焦時の基準ずれ量に基づく変換係数を求め、記憶するようにしたので、個々の焦点検出装置ごとに最適な変換係数を設定することができ、焦点検出精度を向上させることができる。
また、本発明によれば、変換係数算出手段は焦点検出装置内にはなく独立しているので、焦点検出装置内で変換係数を算出する必要がなく、演算の規模を縮小することができる。
According to the present invention, since the conversion coefficient based on the reference deviation amount at the time of focusing is obtained and stored, the optimum conversion coefficient can be set for each individual focus detection device, and the focus detection accuracy is improved. Can be made.
Further, according to the present invention, since the conversion coefficient calculation means is independent of the focus detection apparatus, it is not necessary to calculate the conversion coefficient in the focus detection apparatus, and the scale of calculation can be reduced.

−発明の第1の実施の形態−
焦点検出装置の製造時に測定した合焦時の位置ずれ量ZLを焦点検出装置内のメモリに記憶しておき、その合焦時の位置ずれ量ZLに基づいて最適な変換係数Kfを設定する第1の実施の形態を説明する。
-First embodiment of the invention-
A position shift amount ZL at the time of focusing measured during manufacture of the focus detection device is stored in a memory in the focus detection device, and an optimum conversion coefficient Kf is set based on the position shift amount ZL at the time of focusing. 1 is described.

図1に第1の実施の形態の構成を示す。
焦点検出モジュール1は、上述した図6に示す視野マスク200、フィールドレンズ300、絞り開口部401、402、再結像レンズ501、502、イメージセンサーアレイ600を備える。焦点検出演算部2は、位置ずれ量Lsを検出し、デフォーカス量DFを演算する。
FIG. 1 shows the configuration of the first embodiment.
The focus detection module 1 includes the field mask 200, the field lens 300, the aperture openings 401 and 402, the re-imaging lenses 501 and 502, and the image sensor array 600 shown in FIG. The focus detection calculation unit 2 detects the positional deviation amount Ls and calculates the defocus amount DF.

ここで、例えば特開昭60−37513号公報に開示されている位置ずれ量Lsの検出方法を説明する。
図8(a)、(b)に示すように、焦点検出モジュール1に装着されたイメージセンサーアレイ600のA列、B列は、一対の信号列a[1],...,a[n]、b[1],...b[n]を出力する。そして、この一対の出力信号列の内の所定範囲のデータを相対的に所定のデータ分Lずつシフトしながら相関演算を行う。最大シフト量をlmaxとすると、Lの範囲は−lmaxからlmaxとなる。具体的には相関量C[L]を(3)式により算出する。
C[L]=Σ|a[i+L]−b[i]|,
L=-lmax,...,-2,-1,0,1,2,...,lmax ・・・(3)
(3)式において、Σはi=k〜rの総和演算を示し、Lはデータ列のシフト量を示す整数である。
Here, for example, a method for detecting the positional deviation amount Ls disclosed in Japanese Patent Application Laid-Open No. 60-37513 will be described.
As shown in FIGS. 8A and 8B, the A and B columns of the image sensor array 600 mounted on the focus detection module 1 are a pair of signal columns a [1],. . . , A [n], b [1],. . . b [n] is output. Then, the correlation calculation is performed while the data in a predetermined range of the pair of output signal sequences is relatively shifted by L by predetermined data. When the maximum shift amount is lmax, the range of L is from −1max to lmax. Specifically, the correlation amount C [L] is calculated by the equation (3).
C [L] = Σ | a [i + L] −b [i] |,
L = -lmax, ...,-2, -1,0,1,2, ..., lmax (3)
In the equation (3), Σ indicates a summation operation of i = k to r, and L is an integer indicating the shift amount of the data string.

(3)式の初項kと最終項rは、例えば(4)式に示すようにシフト量Lに依存して変化させる。
L≧0の時; k=k0+INT{−L/2},
r=r0+INT{−L/2},
L<0の時; k=k0+INT{(−L+1)/2},
r=r0+INT{(−L+1)/2} ・・・(4)
(4)式において、k0とr0はシフト量Lが0の時の初項と最終項である。
The first term k and the last term r in the equation (3) are changed depending on the shift amount L as shown in, for example, the equation (4).
When L ≧ 0; k = k0 + INT {−L / 2},
r = r0 + INT {−L / 2},
When L <0; k = k0 + INT {(− L + 1) / 2},
r = r0 + INT {(−L + 1) / 2} (4)
In equation (4), k0 and r0 are the first term and the last term when the shift amount L is zero.

(4)式によって初項kと最終項rを変化させた時の、(3)式におけるA列、B列の信号の差分の絶対値を算出する組み合わせと、差分の絶対値を加算する演算範囲を図9に示す。このように、シフト量Lの変化にともなって、A列、B列の相関演算に使用する範囲が互いに逆方向にずれていく。初項kと最終項rをシフト量Lに関わらず一定とする方法もあり、この場合は一方の列の相関演算に使用する範囲は常に一定となり、他方の列のみがずれる。そして、位置ずれ量は一対のデータが一致したときのシフト量Lとなるので、こうして得られた相関量C[L]の中で極小値となる相関量を与えるシフト量を検出する。   A combination for calculating the absolute value of the difference between the signals in columns A and B in equation (3) when the first term k and the final term r are changed by equation (4), and the operation for adding the absolute value of the difference The range is shown in FIG. Thus, as the shift amount L changes, the ranges used for the correlation calculation of the A column and the B column shift in opposite directions. There is also a method in which the initial term k and the final term r are made constant regardless of the shift amount L. In this case, the range used for correlation calculation of one column is always constant, and only the other column is shifted. Since the positional deviation amount is the shift amount L when the pair of data coincides, the shift amount that gives the minimum correlation amount is detected from the correlation amount C [L] thus obtained.

ところで、相関量C[L]は図8(c)に示すように離散的な値であり、検出可能な位置ずれ量の最小単位はイメージセンサーアレイ600のA列、B列の光電変換画素のピッチ幅によって制限されてしまう。そこで、離散的な相関量C[L]に基づいて補間演算を行うことによって真の極小値Cexを算出し、綿密な焦点検出を行う。これは、図7に示すように極小値である相関量C[Le]とその両側のシフト量での相関量C[Le+1]、C[Le−1]を用いて真の極小値Cexとこれを与える位置ずれ量Lsを(5)式、(6)式により算出するものである。
DL=(C[Le−1]−C[Le+1])/2,
Cex=C[Le]−|DL|,
E=MAX{C[Le+1]−C[Le],C[Le−1]−C[Le]} ・・・(5)
Ls=Le+DL/E ・・・(6)
(5)式において、MAX{Ca,Cb}はCaとCbの内の大なる方を選択することを表わす。
By the way, the correlation amount C [L] is a discrete value as shown in FIG. 8C, and the minimum unit of the detectable positional deviation amount is that of the photoelectric conversion pixels in the A and B columns of the image sensor array 600. It is limited by the pitch width. Therefore, the true local minimum value Cex is calculated by performing an interpolation operation based on the discrete correlation amount C [L], and fine focus detection is performed. As shown in FIG. 7, the true minimum value Cex is obtained by using the correlation amount C [Le] which is the minimum value and the correlation amounts C [Le + 1] and C [Le-1] at the shift amounts on both sides thereof. Is calculated by the equations (5) and (6).
DL = (C [Le-1] -C [Le + 1]) / 2
Cex = C [Le]-| DL |,
E = MAX {C [Le + 1] -C [Le], C [Le-1] -C [Le]} (5)
Ls = Le + DL / E (6)
In the formula (5), MAX {Ca, Cb} indicates that the larger one of Ca and Cb is selected.

こうして得られた位置ずれ量Lsが、真に位置ずれ量を示しているのか、ノイズなどによる相関量の揺らぎによるものなのかを判定する必要があり、(7)式に示す条件を満たした時、位置ずれ量Lsは信頼ありとする。
E>E1 & Cex/E<G1 ・・・(7)
(7)式におけるE1とG1は所定のしきい値である。数値Eは相関量の変化の様子を示し、被写体のコントラストに依存する値であり、値が大きいほどコントラストが高く信頼性が高いことになる。Cexは一対のデータが最も一致した時の差分であり本来は0となる。しかしながら、ノイズの影響、さらには領域101と領域102とで視差が生じているために、一対の被写体像に微妙な差が生じて0とはならない。そして、ノイズや被写体像の差の影響は被写体のコントラストが高いほど小さいので、一対のデータの一致度を表す数値としてはCex/Eを用いる。当然ながら、Cex/Eが0に近いほど一対のデータの一致度が高く信頼性が高いことになる。
なお、数値Eの代わりに一対のデータの一方に関するコントラストを算出し、これを用いて信頼性判定を行う場合もある。そして、信頼性ありと判定されると上記(1)式と(2)式によってデフォーカス量DFを算出する。
It is necessary to determine whether the positional deviation amount Ls obtained in this way truly indicates the positional deviation amount or due to the fluctuation of the correlation amount due to noise or the like, and when the condition shown in the equation (7) is satisfied The positional deviation amount Ls is assumed to be reliable.
E> E1 & Cex / E <G1 (7)
E1 and G1 in equation (7) are predetermined threshold values. The numerical value E indicates how the correlation amount changes, and is a value that depends on the contrast of the subject. The larger the value, the higher the contrast and the higher the reliability. Cex is a difference when a pair of data most closely matches and is originally 0. However, due to the influence of noise and further, parallax is generated between the region 101 and the region 102, a slight difference occurs between the pair of subject images, and the difference does not become zero. Since the influence of noise and the difference between the subject images is smaller as the subject contrast is higher, Cex / E is used as a numerical value representing the degree of coincidence between a pair of data. Naturally, the closer Cex / E is to 0, the higher the degree of coincidence of the pair of data and the higher the reliability.
In some cases, the contrast relating to one of the pair of data is calculated instead of the numerical value E, and the reliability is determined using this. When it is determined that there is reliability, the defocus amount DF is calculated by the above equations (1) and (2).

基準ずれ量記憶部3は、製造時に測定された合焦時の位置ずれ量ZLを記憶するメモリである。焦点検出モジュール1をカメラに組み込んでから合焦時の位置ずれ量ZLを測定し、基準ずれ量記憶部3に記憶する。合焦時の位置ずれ量ZLは、焦点検出演算部2へ出力されて(1)式の焦点検出演算に用いられる。   The reference deviation amount storage unit 3 is a memory that stores a positional deviation amount ZL at the time of focusing measured at the time of manufacture. After the focus detection module 1 is incorporated into the camera, the positional deviation amount ZL at the time of focusing is measured and stored in the reference deviation amount storage unit 3. The in-focus position shift amount ZL is output to the focus detection calculation unit 2 and used for the focus detection calculation of equation (1).

なお、合焦時の位置ずれ量ZLのカメラごとのバラツキが所定の位置ずれ量zbを中心とした比較的狭い範囲に収まっている場合には、位置ずれ量ZLに対する変換係数Kfの変化を一次直線に近似することができ、この場合は上記テーブルが必要なく、変換係数Kfは(8)式により算出される。
Kf=kb+ak・(ZL−zb) ・・・(8)
ここで、kbは位置ずれ量が上記所定値zbの時に最適な変換係数、akは近似直線の傾きとする。
このようにして設定された変換係数Kfは上記焦点検出演算部2へ出力され、(1)式の焦点検出演算に用いられる。
In addition, when the variation in the positional deviation amount ZL at the time of focusing is within a relatively narrow range centered on the predetermined positional deviation amount zb, the change of the conversion coefficient Kf with respect to the positional deviation amount ZL is linear. In this case, the table is not necessary, and the conversion coefficient Kf is calculated by the equation (8).
Kf = kb + ak · (ZL−zb) (8)
Here, kb is the optimum conversion coefficient when the positional deviation amount is the predetermined value zb, and ak is the slope of the approximate line.
The conversion coefficient Kf set in this way is output to the focus detection calculation unit 2 and used for the focus detection calculation of equation (1).

このように、焦点検出モジュールをカメラに搭載する際の誤差などに起因した合焦時の位置ずれ量ZLのバラツキが大きい場合でも、適切な変換係数Kfを設定することができる。
また、カメラの電源をオンした時に変換係数Kfを上記のように設定し、カメラの電源がオフになるまで変換係数Kfを保持し続けるようにしてもよく、(1)式によりデフォーカス量DFを算出する際において、デフォーカス量DFを算出しようとするその度ごとの直前に、変換係数Kfを上記のように設定するようにしてもよい。これらの場合、前者は、カメラの電源が入っている間だけ変換係数Kfを保持すればよく、常に変換係数Kfを記憶しておく必要がないし、デフォーカス量DFを算出しようとする度に変換係数Kfを設定する必要がなく、デフォーカス量DFの算出を早くすることができる。後者は、変換係数Kfを記憶または保持する必要がなく、EEPROMなどの記憶媒体の容量を増やす必要がなくなる。
Thus, even when there is a large variation in the positional deviation amount ZL at the time of focusing due to an error or the like when the focus detection module is mounted on the camera, an appropriate conversion coefficient Kf can be set.
Alternatively, the conversion coefficient Kf may be set as described above when the camera power is turned on, and the conversion coefficient Kf may be held until the camera power is turned off. , The conversion coefficient Kf may be set as described above immediately before each time the defocus amount DF is to be calculated. In these cases, the former only needs to hold the conversion coefficient Kf while the camera is turned on, and it is not always necessary to store the conversion coefficient Kf, and the conversion coefficient Kf is converted every time the defocus amount DF is to be calculated. There is no need to set the coefficient Kf, and the defocus amount DF can be calculated quickly. The latter does not need to store or hold the conversion coefficient Kf, and eliminates the need to increase the capacity of a storage medium such as an EEPROM.

−発明の第2の実施の形態−
所定の位置ずれ量zcにおける基準変換係数kcに対する補正量Hcを記憶し、この補正量Hcを用いて基準変換係数kcを補正して変換係数Kfとして設定するようにした、第2の実施の形態を説明する。
-Second embodiment of the invention-
Second embodiment in which a correction amount Hc for a reference conversion coefficient kc at a predetermined positional deviation amount zc is stored, and the reference conversion coefficient kc is corrected using this correction amount Hc and set as a conversion coefficient Kf Will be explained.

図2に第2の実施の形態の構成を示す。なお、焦点検出モジュール1、焦点検出演算部2、基準ずれ量記憶部3は、図1に示す第1の実施の形態と同様であり、それらの説明は省略する。
製造時に測定した合焦時の位置ずれ量ZLに基づいて基準変換係数kcに施す補正量Hcを製造時に算出し、補正量記憶部5に記憶する。
FIG. 2 shows the configuration of the second embodiment. The focus detection module 1, the focus detection calculation unit 2, and the reference deviation amount storage unit 3 are the same as those in the first embodiment shown in FIG.
A correction amount Hc applied to the reference conversion coefficient kc is calculated at the time of manufacture based on the in-focus position shift amount ZL measured at the time of manufacture, and is stored in the correction amount storage unit 5.

図5により補正量Hcの設定方法について説明する。
まず、図5に示す合焦時の位置ずれ量ZLに対する変換係数Kfの曲線から、合焦時の位置ずれ量ZLに適した変換係数KLを得る。そして、補正量Hcを(9)式により算出する。
Hc=KL−kc ・・・(9)
ここで、kcは所定の位置ずれ量zcにおける変換係数である。
A method of setting the correction amount Hc will be described with reference to FIG.
First, the conversion coefficient KL suitable for the positional shift amount ZL at the time of focusing is obtained from the curve of the conversion coefficient Kf with respect to the positional shift amount ZL at the time of focusing shown in FIG. Then, the correction amount Hc is calculated by the equation (9).
Hc = KL-kc (9)
Here, kc is a conversion coefficient at a predetermined displacement amount zc.

変換係数補正部6は、補正量記憶部5に記憶された補正量Hcに基づいて、(1)式の焦点検出演算に用いる変換係数Kfを(10)式により算出する。
Kf=kc+Hc ・・・(10)
このようにして設定された変換係数Kfは、焦点検出演算部2へ出力され、(1)式の焦点検出演算に用いられる。
Based on the correction amount Hc stored in the correction amount storage unit 5, the conversion coefficient correction unit 6 calculates the conversion coefficient Kf used for the focus detection calculation of the equation (1) by the equation (10).
Kf = kc + Hc (10)
The conversion coefficient Kf set in this way is output to the focus detection calculation unit 2 and used for the focus detection calculation of equation (1).

また、補正量Hcを製造時に算出する補正量算出手段は、焦点検出装置内にあるのではなく、焦点検出装置とは別の例えば調整装置内などにあってもよく、この場合焦点検出装置内に合焦時の位置ずれ量ZLと変換係数Kfの関係を示す曲線の数ポイントをテーブルとして記憶する必要がなく、焦点検出に関する演算の規模や、焦点検出装置内のEEPROMなどの記憶媒体の容量を縮小することができる。さらに、補正量Hcを記憶することにより、変換係数Kfそのものを記憶するより記憶する情報量が少なくてよい。   Further, the correction amount calculation means for calculating the correction amount Hc at the time of manufacture is not in the focus detection device, but may be in, for example, an adjustment device other than the focus detection device, and in this case, in the focus detection device. It is not necessary to store several points of a curve indicating the relationship between the positional deviation amount ZL and the conversion coefficient Kf at the time of focusing as a table, the scale of calculation related to focus detection, and the capacity of a storage medium such as an EEPROM in the focus detection device Can be reduced. Furthermore, by storing the correction amount Hc, the amount of information to be stored may be smaller than storing the conversion coefficient Kf itself.

さらにまた、カメラの電源をオンした時に(10)式により変換係数Kfを算出し、カメラの電源がオフになるまで変換係数Kfを保持し続けるようにしてもよいし、(1)式によりデフオーカス量DFを算出する際において、デフオーカス量DFを算出しようとするその度ごとの直前に、(10)式により変換係数Kfを算出するようにしてもよい。これらの場合、前者は、カメラの電源が入っている間だけ変換係数Kfを保持すればよく、常に変換係数Kfを記憶しておく必要がないし、デフオーカス量DFを算出しようとする度に変換係数Kfを算出する必要がなく、デフオーカス量DFの算出を早くすることができる。後者は、変換係数Kfを記憶または保持する必要がなく、EEPROMなどの記憶媒体の容量を増やす必要がなくなる。   Furthermore, the conversion coefficient Kf may be calculated by the expression (10) when the camera is turned on, and the conversion coefficient Kf may be continuously held until the camera is turned off. Alternatively, the conversion coefficient Kf may be maintained by the expression (1). When calculating the amount DF, the conversion coefficient Kf may be calculated by the equation (10) immediately before every time the defocus amount DF is to be calculated. In these cases, the former only needs to hold the conversion coefficient Kf only while the camera is turned on, and it is not always necessary to store the conversion coefficient Kf, and whenever the conversion coefficient DF is to be calculated, the conversion coefficient Kf is stored. There is no need to calculate Kf, and the calculation of the defocus amount DF can be accelerated. The latter does not need to store or hold the conversion coefficient Kf, and eliminates the need to increase the capacity of a storage medium such as an EEPROM.

上記第2の実施の形態では差の形で補正量を算出し、加算により補正を行う例を示したが、例えば比の形で補正量を算出し、乗算により補正を行うようにしてもよい。   In the second embodiment, the correction amount is calculated in the form of the difference and the correction is performed by addition. However, for example, the correction amount may be calculated in the form of a ratio and the correction may be performed by multiplication. .

位置ずれ量と変換係数の関係を示す曲線(図5の曲線)は、単純な関数式で表すことができないため、このようにすることにより、曲線の多くの点を記憶する必要がなく、したがってカメラ内に多くの記憶容量を必要としないとともに、変換係数Kfの算出の演算時間を短縮することができる。   Since the curve showing the relationship between the amount of displacement and the conversion coefficient (curve in FIG. 5) cannot be expressed by a simple functional equation, it is not necessary to memorize many points of the curve by doing in this way. A large storage capacity is not required in the camera, and the calculation time for calculating the conversion coefficient Kf can be shortened.

−発明の第3の実施の形態−
焦点検出装置の製造時に測定した合焦時の位置ずれ量ZLに基づいて適切な変換係数Kfを求め、この変換係数Kfを記憶する、第3の実施の形態を説明する。
-Third embodiment of the invention-
A third embodiment in which an appropriate conversion coefficient Kf is obtained based on the in-focus position shift amount ZL measured at the time of manufacturing the focus detection apparatus, and this conversion coefficient Kf is stored will be described.

図3に第3の実施の形態の構成を示す。なお、焦点検出モジュール1、焦点検出演算部2および基準ずれ量記憶部3は、図1に示す第1の実施の形態と同様であり、説明を省略する。
変換係数記憶部7は、製造時に測定した合焦時の位置ずれ量ZLに適した変換係数Kfを、図5に示す合焦時の位置ずれ量ZLに対する変換係数Kfの曲線から製造時に求め、記憶する。
FIG. 3 shows the configuration of the third embodiment. The focus detection module 1, the focus detection calculation unit 2, and the reference deviation amount storage unit 3 are the same as those in the first embodiment shown in FIG.
The conversion coefficient storage unit 7 obtains a conversion coefficient Kf suitable for the in-focus position shift amount ZL measured during manufacture from the curve of the conversion coefficient Kf with respect to the in-focus position shift amount ZL shown in FIG. Remember.

また、変換係数Kfを製造時に算出する変換係数算出手段は、焦点検出装置内にあるのではなく、焦点検出装置とは別の例えば調整装置内などにあってもよく、この場合焦点検出装置内に合焦時の位置ずれ量ZLと変換係数Kfの関係を示す曲線の数ポイントをテーブルとして記憶する必要がなく、焦点検出に関する演算の規模や、焦点検出装置内のEEPROMなどの記憶媒体の容量を縮小することができる。   Further, the conversion coefficient calculation means for calculating the conversion coefficient Kf at the time of manufacture is not in the focus detection device, but may be in an adjustment device, for example, different from the focus detection device. It is not necessary to store several points of a curve indicating the relationship between the positional deviation amount ZL and the conversion coefficient Kf at the time of focusing as a table, the scale of calculation related to focus detection, and the capacity of a storage medium such as an EEPROM in the focus detection device Can be reduced.

第1の実施の形態の構成を示す図The figure which shows the structure of 1st Embodiment. 第2の実施の形態の構成を示す図The figure which shows the structure of 2nd Embodiment. 第3の実施の形態の構成を示す図The figure which shows the structure of 3rd Embodiment. イメージセンサーアレイ上の被写体像の位置ずれ量Lsに対するデフォーカス量DFの関係を示す図The figure which shows the relationship of the defocusing amount DF with respect to the positional offset amount Ls of the to-be-photographed image on an image sensor array. 合焦時の位置ずれ量ZLと変換係数Kfとの関係を示す図The figure which shows the relationship between position shift amount ZL at the time of focusing, and conversion coefficient Kf 焦点検出光学系とイメージセンサーアレイを示す図Diagram showing focus detection optical system and image sensor array シフト量Lに対する相関量C[L]の関係を示す図The figure which shows the relationship of the correlation amount C [L] with respect to the shift amount L イメージセンサーアレイの出力信号列と、シフト量Lに対する相関量C[L]の関係を示す図The figure which shows the relationship between the output signal sequence of an image sensor array, and the correlation amount C [L] with respect to the shift amount L 相関演算を説明するための図Diagram for explaining correlation calculation

符号の説明Explanation of symbols

1;焦点検出モジュール、2;焦点検出演算部、3;基準ずれ量記憶部、7;変換係数記憶部、100;撮影レンズ、200;視野マスク、300;フィールドレンズ、401,402;絞り開口部、501,502;再結像レンズ、600;イメージセンサーアレイ DESCRIPTION OF SYMBOLS 1; Focus detection module, 2; Focus detection calculating part, 3; Reference | standard deviation amount memory | storage part, 7; Conversion coefficient memory | storage part, 100; Shooting lens, 200; Field mask, 300; Field lens, 401, 402; 501, 502; Re-imaging lens 600; Image sensor array

Claims (3)

撮影光学系の異なる領域を通過した少なくとも一対の光束を受光し、該光束による一対の被写体像の光強度分布に応じた一対の信号列を出力する光電変換手段と、
前記光電変換手段から出力される一対の信号列の相対的な位置ずれ量を検出する位置ずれ量検出手段と、
所定の変換係数を用いて前記相対的な位置ずれ量を前記撮影光学系のデフオーカス量に変換する変換手段とからなる焦点検出装置を備えたカメラにおいて、
前記撮影光学系が合焦状態にある時の基準ずれ量に対する前記変換係数を算出する変換係数算出手段と、
前記変換係数を記憶する変換係数記憶手段とを備えることを特徴とする焦点検出装置を備えたカメラ。
Photoelectric conversion means for receiving at least a pair of light beams that have passed through different areas of the photographing optical system and outputting a pair of signal sequences corresponding to the light intensity distribution of the pair of subject images by the light beams;
A positional deviation amount detecting means for detecting a relative positional deviation amount of a pair of signal sequences output from the photoelectric conversion means;
In a camera including a focus detection device including conversion means for converting the relative displacement amount into a defocus amount of the photographing optical system using a predetermined conversion coefficient,
Conversion coefficient calculation means for calculating the conversion coefficient with respect to a reference deviation amount when the photographing optical system is in focus;
A camera provided with a focus detection device, comprising conversion coefficient storage means for storing the conversion coefficient.
請求項1に記載の焦点検出装置を備えたカメラにおいて、
前記変換係数算出手段は、前記焦点検出装置とは独立して設けられていることを特徴とする焦点検出装置を備えたカメラ。
In the camera provided with the focus detection apparatus according to claim 1,
The camera provided with a focus detection device, wherein the conversion coefficient calculation means is provided independently of the focus detection device.
請求項1または請求項2に記載の焦点検出装置を備えたカメラにおいて、
前記光電変換手段は、前記撮影光学系の異なる領域を通過した少なくとも一対の光束を再結像光学系を介して受光することを特徴とする焦点検出装置を備えたカメラ。
In the camera provided with the focus detection device according to claim 1 or 2,
The photoelectric conversion means receives at least a pair of light beams that have passed through different areas of the photographing optical system via a re-imaging optical system, and has a focus detection device.
JP2007290568A 2007-11-08 2007-11-08 Camera with focus detection device Expired - Lifetime JP4120703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007290568A JP4120703B2 (en) 2007-11-08 2007-11-08 Camera with focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290568A JP4120703B2 (en) 2007-11-08 2007-11-08 Camera with focus detection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3504697A Division JP4069476B2 (en) 1997-02-19 1997-02-19 Camera with focus detection device

Publications (2)

Publication Number Publication Date
JP2008102537A JP2008102537A (en) 2008-05-01
JP4120703B2 true JP4120703B2 (en) 2008-07-16

Family

ID=39436847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290568A Expired - Lifetime JP4120703B2 (en) 2007-11-08 2007-11-08 Camera with focus detection device

Country Status (1)

Country Link
JP (1) JP4120703B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051509B1 (en) * 2010-06-28 2011-07-22 삼성전기주식회사 Apparatus and method for controlling light intensity of camera
EP4145205A1 (en) 2014-08-07 2023-03-08 Lg Innotek Co., Ltd. Lens moving apparatus and camera module including the same
CN113014790B (en) * 2019-12-19 2022-06-10 华为技术有限公司 Defocus conversion coefficient calibration method, PDAF method and camera module

Also Published As

Publication number Publication date
JP2008102537A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4946059B2 (en) Imaging device
JP2007121896A (en) Focus detector and optical system
JP5685080B2 (en) Focus detection apparatus and focus detection method
EP2937725B1 (en) Imaging apparatus, method for calculating information for focus control, and camera system
JP6014452B2 (en) FOCUS DETECTION DEVICE, LENS DEVICE HAVING THE SAME, AND IMAGING DEVICE
JP4663246B2 (en) Camera, camera system and lens apparatus
JP4120703B2 (en) Camera with focus detection device
WO2015080164A1 (en) Focal point detection device, and imaging device
JP2003247823A (en) Method and device for detecting phase difference, range finder, and image pickup device
JP4926993B2 (en) Focus detection apparatus and imaging apparatus
JPS59107313A (en) Focus detecting signal processing method
JPH0684890B2 (en) Focus detection device
JPH0875986A (en) Focus detector
JP4069476B2 (en) Camera with focus detection device
US7154589B2 (en) Rangefinder apparatus
JP4817552B2 (en) Phase difference detection method, phase difference detection device, distance measuring device, and imaging device
US7054550B2 (en) Rangefinder apparatus
JP4938922B2 (en) Camera system
JPH04230715A (en) Focus detector
JP4821521B2 (en) Focus adjustment apparatus and method
JP2001318304A (en) Focus detecting device
JP2007240275A (en) Range finder/imaging device, range finding method/imaging method, range finding program/imaging program and recording medium
JP2005128292A (en) Focus detector and camera
JP4576157B2 (en) Camera focus detection device
JP2545758B2 (en) Focus detection device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term