JP4120686B2 - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP4120686B2
JP4120686B2 JP2006213128A JP2006213128A JP4120686B2 JP 4120686 B2 JP4120686 B2 JP 4120686B2 JP 2006213128 A JP2006213128 A JP 2006213128A JP 2006213128 A JP2006213128 A JP 2006213128A JP 4120686 B2 JP4120686 B2 JP 4120686B2
Authority
JP
Japan
Prior art keywords
liquid crystal
light
recording medium
crystal element
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006213128A
Other languages
Japanese (ja)
Other versions
JP2006294251A (en
Inventor
光生 大澤
琢治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006213128A priority Critical patent/JP4120686B2/en
Publication of JP2006294251A publication Critical patent/JP2006294251A/en
Application granted granted Critical
Publication of JP4120686B2 publication Critical patent/JP4120686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Description

本発明は光ヘッド装置に関し、特に光記録媒体による情報の記録および再生のために使用する光ヘッド装置に関する。   The present invention relates to an optical head device, and more particularly to an optical head device used for recording and reproducing information on an optical recording medium.

CD−R、CD−RWなどの光記録媒体による情報の記録および再生を行う光ヘッド装置においては、対物レンズなどにより光記録媒体上に集光される光量は、情報の記録時には大きく、情報の再生時には小さくする必要がある。従来、この必要性を満たすため、光を出射する半導体レーザへの注入電流を変化させて半導体レーザからの出射光量を変化させていた。   In an optical head device that records and reproduces information on an optical recording medium such as a CD-R or CD-RW, the amount of light collected on the optical recording medium by an objective lens or the like is large when information is recorded. It is necessary to make it smaller during playback. Conventionally, in order to satisfy this need, the amount of light emitted from the semiconductor laser has been changed by changing the injection current to the semiconductor laser that emits light.

しかし、使用する半導体レーザによっては、出射光量を減少させるため注入電流を小さくしたとき、ノイズが増加したり、出射光量が不安定になるなどの問題があった。
本発明は、使用する半導体レーザの出射光量を変化させずに、光記録媒体上に集光させる光量を変化させ、情報の記録および再生特性の優れた光ヘッド装置を提供することを目的とする。
However, depending on the semiconductor laser used, when the injection current is reduced to reduce the amount of emitted light, there is a problem that noise increases or the amount of emitted light becomes unstable.
An object of the present invention is to provide an optical head device having excellent information recording and reproducing characteristics by changing the amount of light collected on an optical recording medium without changing the amount of light emitted from a semiconductor laser to be used. .

本発明は、光源と、光源からの出射光を光記録媒体上に集光するための集光手段と、集光された出射光の光記録媒体からの反射光を検出する光検出器を備える光ヘッド装置において、光源と集光手段との間の光路中に液晶素子が配置され、液晶素子は2枚の透明基板の対向するそれぞれの面に透明電極が形成され、さらに透明電極間には液晶層が挟持され、液晶分子の方向が液晶層の厚さ方向の軸の回りに螺旋状に捩じれていて、液晶素子の透明電極には、液晶層に電圧が印加できるように電圧制御装置が接続されており、液晶素子と光記録媒体との間の光路中に偏光子が配置され、この偏光子は、偏光子に入射した光が出射する際に光記録媒体に向けて出射する光量を入射光の偏光方向によって変化させるものであり、光源である半導体レーザの出射光の出力を変化させずに、光源の出射光量を一定としたとき、光記録媒体の情報の再生のために光記録媒体上に集光される光量Pの光記録媒体の情報の記録のために集光される光量Pに対する比が0.2〜0.8となるように電圧制御装置により液晶層への印加電圧の大きさを調整することを特徴とする光ヘッド装置を提供する

The present invention includes a light source, condensing means for condensing light emitted from the light source on the optical recording medium, and a photodetector for detecting reflected light from the optical recording medium of the condensed emitted light. In the optical head device, a liquid crystal element is disposed in the optical path between the light source and the light condensing means, and the liquid crystal element has a transparent electrode formed on each opposing surface of the two transparent substrates, and further between the transparent electrodes. The liquid crystal layer is sandwiched, the direction of the liquid crystal molecules is spirally twisted around the axis of the thickness direction of the liquid crystal layer, and a voltage control device is provided so that a voltage can be applied to the liquid crystal layer on the transparent electrode of the liquid crystal element. A polarizer is disposed in the optical path between the liquid crystal element and the optical recording medium, and the polarizer is configured to reduce the amount of light emitted toward the optical recording medium when light incident on the polarizer is emitted. It is changed according to the polarization direction of incident light, and it is a semiconductor laser as a light source. Without changing the output of The emitted light, when the light emission amount of the light source is constant, information of the light amount P 1 of the optical recording medium to be condensed on the optical recording medium for reproducing information of an optical recording medium an optical head, characterized that you adjust the level of the applied voltage to the liquid crystal layer by the voltage controller as the ratio amount P 2 to be focused is 0.2 to 0.8 for recording Providing equipment .

また、前記液晶層とこれに接する2枚の前記透明基板との境界面における液晶分子のそれぞれの配向方向のうちの1つが、前記液晶素子に入射する光の偏光方向に平行であるかまたは直交している上記の光ヘッド装置を提供する。   In addition, one of the alignment directions of the liquid crystal molecules at the interface between the liquid crystal layer and the two transparent substrates in contact with the liquid crystal layer is parallel to or orthogonal to the polarization direction of the light incident on the liquid crystal element. The above-described optical head device is provided.

さらに、前記液晶層とこれに接する2枚の前記透明基板との境界面における液晶分子のそれぞれの2つの配向方向がなす角度を2等分する方向が、前記液晶素子に入射する光の偏光方向に平行であるかまたは直交している上記の光ヘッド装置を提供する。   Furthermore, the direction in which the angle formed by each of the two alignment directions of the liquid crystal molecules at the boundary surface between the liquid crystal layer and the two transparent substrates in contact with the liquid crystal layer is bisected is the polarization direction of light incident on the liquid crystal element. The above-described optical head device is provided that is parallel or orthogonal to the above.

本発明においては液晶素子を構成する2枚の透明基板間に、液晶分子を螺旋状に捩じって配向させたツイステッドネマチック液晶を配した液晶素子と、偏光子とを組み合わせて光ヘッド装置に配設する。この配設時に、液晶素子を偏光子に対して光源側に配置する。このように構成することにより、液晶素子に形成された電極に電圧を印加するだけで、光源である半導体レーザの出射光の出力を変化させずに、光記録媒体上における光の光量を変化させることができ、光記録媒体の情報の記録および再生の特性の優れた光ヘッド装置を得ることができる。特に再生時の特性が優れ低ノイズでの再生ができる。   In the present invention, a liquid crystal element in which twisted nematic liquid crystal in which liquid crystal molecules are twisted and aligned between two transparent substrates constituting the liquid crystal element and a polarizer are combined with an optical head device. Arrange. At the time of this arrangement, the liquid crystal element is arranged on the light source side with respect to the polarizer. With this configuration, the amount of light on the optical recording medium can be changed without changing the output of the light emitted from the semiconductor laser, which is a light source, by simply applying a voltage to the electrodes formed on the liquid crystal element. Thus, an optical head device having excellent information recording and reproducing characteristics of the optical recording medium can be obtained. In particular, the reproduction characteristics are excellent and reproduction with low noise is possible.

図1に本発明の光ヘッド装置の一例を示す。半導体レーザ1より出射された光はコリメートレンズ2により平行光とされ液晶素子3を透過する。電圧制御装置11を用いて液晶素子3には外部から電圧を印加できる。液晶素子3を透過した光は、偏光子4を透過する。偏光子4は、偏光子に入射した光が出射する際に、光記録媒体に向けて出射する光量を入射光の偏光方向によって変化させるものであり、偏光ビームスプリッタ、プリズムまたはワイヤグレーティングを含む回折格子などを用いることができる。図1の例では、偏光子として偏光ビームスプリッタを用いた。また、偏光子4を液晶素子3の集光レンズ5側の透明基板に貼り付け一体化できる。
偏光子4を透過した光は、λ/4板8を透過後、アクチュエータ6に搭載された集光レンズ5により光記録媒体7上に集光される。
FIG. 1 shows an example of an optical head device of the present invention. The light emitted from the semiconductor laser 1 is converted into parallel light by the collimator lens 2 and passes through the liquid crystal element 3. A voltage can be applied to the liquid crystal element 3 from the outside using the voltage control device 11. The light that has passed through the liquid crystal element 3 passes through the polarizer 4. The polarizer 4 changes the amount of light emitted toward the optical recording medium according to the polarization direction of the incident light when the light incident on the polarizer is emitted, and includes a polarization beam splitter, a prism, or a wire grating. A lattice or the like can be used. In the example of FIG. 1, a polarization beam splitter is used as the polarizer. Further, the polarizer 4 can be attached to and integrated with the transparent substrate on the condenser lens 5 side of the liquid crystal element 3.
The light transmitted through the polarizer 4 is transmitted through the λ / 4 plate 8 and then condensed on the optical recording medium 7 by the condenser lens 5 mounted on the actuator 6.

光記録媒体7で反射された光は上記の光路を逆に進む。図1の例では、偏光子4として偏光ビームスプリッタを用いているので、光路を逆に進む光は偏光子4により反射された後、集光レンズ9により集光されて光検出器10に到達する。このとき、液晶素子3に(実際には、液晶素子を構成する透明基板の表面に形成された透明電極に)複数の異なる電圧を印加することにより、液晶素子3を透過した光の偏光方向を変化させ、偏光子4を通過して光記録媒体に集光する光量を変えることができる。   The light reflected by the optical recording medium 7 travels in the reverse direction of the optical path. In the example of FIG. 1, since a polarizing beam splitter is used as the polarizer 4, the light traveling backward in the optical path is reflected by the polarizer 4 and then collected by the condenser lens 9 and reaches the photodetector 10. To do. At this time, by applying a plurality of different voltages to the liquid crystal element 3 (actually, to the transparent electrode formed on the surface of the transparent substrate constituting the liquid crystal element), the polarization direction of the light transmitted through the liquid crystal element 3 is changed. The amount of light that passes through the polarizer 4 and is condensed on the optical recording medium can be changed.

光記録媒体の情報の再生のために光記録媒体上に集光される光量Pの光記録媒体の情報の記録のために集光される光量Pに対する比は、0.2〜0.8の範囲の値とするのがよいが、さらに0.5〜0.8の範囲の値とすることが好ましい。この光量比であると、光記録媒体への情報の記録時には光量を100%にして充分に情報の記録ができ、一方再生時には光量を記録時の光量に対して20〜80%の範囲の値とし、さらに50%〜80%の範囲の値とすると、光記録媒体に情報を書き込むことなくS/Nを大きく取りながら情報の読みとりができるので好ましい。 Ratio amount P 2 which is focused for recording the information of the light amount P 1 of the optical recording medium to be condensed on the optical recording medium for reproducing information of the optical recording medium is from 0.2 to 0. A value in the range of 8 is preferable, but a value in the range of 0.5 to 0.8 is more preferable. With this light quantity ratio, information can be recorded sufficiently by setting the light quantity to 100% when information is recorded on the optical recording medium, while the light quantity is in the range of 20 to 80% with respect to the light quantity during recording. Further, a value in the range of 50% to 80% is preferable because information can be read while taking a large S / N without writing information on the optical recording medium.

本発明の光ヘッド装置においては、半導体レーザ1より出射された光は、偏光子4を透過することによって光量が変化するため、往路においては光は偏光子4を通過する前に液晶素子3を通過する必要がある。すなわち、液晶素子3は偏光子4に対して、光路上半導体レーザ1側(光源側)に配置する必要がある。   In the optical head device of the present invention, the amount of light emitted from the semiconductor laser 1 is changed by passing through the polarizer 4. Therefore, in the forward path, the light passes through the liquid crystal element 3 before passing through the polarizer 4. Need to pass. That is, the liquid crystal element 3 needs to be disposed on the optical path semiconductor laser 1 side (light source side) with respect to the polarizer 4.

図2に一例を示す本発明における液晶素子は、例えばプラスチック、ガラスなどの透明基板101、102表面上に液晶層108への電圧印加用のITOなどの透明電極103、104とポリイミドなどの配向膜105、106を施す。液晶素子の外周部をアクリル樹脂やエポキシなどのシール材107でシールしセルを形成後、液晶を封入して液晶素子を作成する。使用する液晶は、例えばツイステッドネマティック液晶である。液晶分子のプレチルト角には特に制約はないが、0度から15度程度までが好ましく、液晶の応答速度、温度特性などの観点から2度から5度までが特に好ましい。   The liquid crystal element according to the present invention shown in FIG. 2 includes, for example, transparent electrodes 103 and 104 such as ITO for applying voltage to the liquid crystal layer 108 on the transparent substrates 101 and 102 such as plastic and glass, and an alignment film such as polyimide. 105 and 106 are applied. After sealing the outer periphery of the liquid crystal element with a sealing material 107 such as acrylic resin or epoxy to form a cell, the liquid crystal is sealed to form a liquid crystal element. The liquid crystal used is, for example, a twisted nematic liquid crystal. The pretilt angle of the liquid crystal molecules is not particularly limited, but is preferably about 0 to 15 degrees, and particularly preferably 2 to 5 degrees from the viewpoint of the response speed and temperature characteristics of the liquid crystal.

この液晶素子を図2の平面図(透明基板101から透明基板102の方向に見た図)である図3を用いて説明する。液晶素子はシール材205(107)によって透明基板の周辺部がシールされ、液晶が注入されて液晶層204(108)が形成された後、UV接着剤203により注入口が封止されて作成される。また、この液晶素子は電極端子取り出し部206を介して、外部から液晶層に電圧を印加できるようになっている。   This liquid crystal element will be described with reference to FIG. 3 which is a plan view of FIG. 2 (viewed from the transparent substrate 101 to the transparent substrate 102). The liquid crystal element is formed by sealing the periphery of the transparent substrate with a sealant 205 (107), injecting liquid crystal to form a liquid crystal layer 204 (108), and then sealing the injection port with UV adhesive 203. The In addition, this liquid crystal element can apply a voltage to the liquid crystal layer from the outside via the electrode terminal extraction portion 206.

2枚の透明基板101、102と液晶層204との境界面上での液晶分子の配向方向201、202は上記のプレチルト角だけ傾いているが透明基板面にほぼ平行で、かつ図3に示すように互いにある角度をなしている。このため、液晶素子に封入された液晶分子109の長軸方向は透明基板101と102との間で液晶層204の厚み方向の軸の回りに、連続的に捩じれた構造を取る。捩じれの角度には特に制限はないが、電圧により設定する光量が大きな温度依存性を有しないように、また早い応答速度特性が得られるように、20〜45度の範囲の値が好ましい。   The alignment directions 201 and 202 of the liquid crystal molecules on the boundary surface between the two transparent substrates 101 and 102 and the liquid crystal layer 204 are inclined by the pretilt angle but are substantially parallel to the transparent substrate surface and are shown in FIG. Are at an angle to each other. For this reason, the major axis direction of the liquid crystal molecules 109 sealed in the liquid crystal element has a structure that is continuously twisted around the axis of the liquid crystal layer 204 in the thickness direction between the transparent substrates 101 and 102. There is no particular limitation on the twisting angle, but a value in the range of 20 to 45 degrees is preferable so that the amount of light set by the voltage does not have a large temperature dependence and a fast response speed characteristic can be obtained.

液晶素子3への入射光の偏光方向、液晶素子を構成する各透明基板上(透明基板と液晶層との境界面)での液晶分子の配向方向および偏光子の透過軸方向の関係に特に制限はないが、一方の透明基板上での液晶分子の配向方向が、液晶素子3への入射光の偏光方向と平行または直交であるとき、電圧により設定する光量が大きな温度依存性を示さないので極めて好ましい。   Particularly limited to the relationship between the polarization direction of incident light to the liquid crystal element 3, the alignment direction of liquid crystal molecules on each transparent substrate (interface between the transparent substrate and the liquid crystal layer) constituting the liquid crystal element, and the transmission axis direction of the polarizer However, when the alignment direction of the liquid crystal molecules on one transparent substrate is parallel or orthogonal to the polarization direction of the incident light to the liquid crystal element 3, the amount of light set by the voltage does not show a large temperature dependence. Highly preferred.

例えば、液晶素子3への入射光の偏光方向と、液晶素子の半導体レーザ側の透明基板上の液晶分子配向方向とを一致させ平行にして配置する。液晶素子の2枚の透明基板間で液晶分子の配向方向は基板面に平行に例えば45度捩じられている。液晶のレタデーション値を調整し、液晶層に電圧を印加しないとき、液晶素子を透過した光の偏光方向が入射偏光方向に対して45度回転するようにする。   For example, the polarization direction of the incident light to the liquid crystal element 3 and the liquid crystal molecule alignment direction on the transparent substrate on the semiconductor laser side of the liquid crystal element are aligned and arranged in parallel. The alignment direction of liquid crystal molecules is twisted, for example, 45 degrees parallel to the substrate surface between the two transparent substrates of the liquid crystal element. When the retardation value of the liquid crystal is adjusted and no voltage is applied to the liquid crystal layer, the polarization direction of the light transmitted through the liquid crystal element is rotated by 45 degrees with respect to the incident polarization direction.

偏光子の透過軸(入射光の偏光方向が一致したときに最大の透過率を与える軸)方向を半導体レーザの偏光方向と一致させておく。液晶素子に電圧を印加するとき、液晶分子の配向方向は電界方向に揃うため、液晶素子を透過した半導体レーザからの光は偏光方向を変えずに透過し、この光は偏光方向が一致しているため、そのまま偏光子を通過し光を100%透過できる。   The direction of the transmission axis of the polarizer (the axis that gives the maximum transmittance when the polarization direction of the incident light coincides) is aligned with the polarization direction of the semiconductor laser. When a voltage is applied to the liquid crystal element, the alignment direction of the liquid crystal molecules is aligned with the electric field direction, so that the light from the semiconductor laser that has passed through the liquid crystal element is transmitted without changing the polarization direction. Therefore, the light can pass through the polarizer as it is and 100% of the light can be transmitted.

また電圧を印加しないとき、液晶素子を透過する半導体レーザからの光は捩じれた液晶により偏光方向を変えるため、偏光子の透過軸方向からずれ、偏光子を透過する光量は減少する。したがって、液晶素子への印加電圧の大きさを調整することにより、半導体レーザの出力を変化させずに偏光子を透過する光の光量を調整できる。   When no voltage is applied, the light from the semiconductor laser that passes through the liquid crystal element changes its polarization direction due to the twisted liquid crystal, so that it deviates from the transmission axis direction of the polarizer and the amount of light that passes through the polarizer decreases. Therefore, by adjusting the magnitude of the voltage applied to the liquid crystal element, the amount of light transmitted through the polarizer can be adjusted without changing the output of the semiconductor laser.

また、各透明基板上での液晶分子のそれぞれの2つの配向方向のなす角度を2等分する方向が、液晶素子3への入射光の偏光方向と平行または直交であるとき、液晶層への印加電圧に対する変調光量の応答性が改善され、さらに低電圧駆動ができて極めて好ましい。   Further, when the direction that bisects the angle between the two alignment directions of the liquid crystal molecules on each transparent substrate is parallel or orthogonal to the polarization direction of the incident light to the liquid crystal element 3, The response of the modulated light quantity with respect to the applied voltage is improved, and further low voltage driving can be achieved.

液晶素子に印加する電圧と光記録媒体に集光する光量の関係に関して詳述する。図9は本発明における液晶素子の印加電圧に対する光記録媒体上光強度を、温度をパラメータとして示したグラフであり、極小値電圧Vで光強度は極小値を示し、Vより高い電圧では光強度は単調に増加する。 The relationship between the voltage applied to the liquid crystal element and the amount of light collected on the optical recording medium will be described in detail. FIG. 9 is a graph showing the light intensity on the optical recording medium with respect to the voltage applied to the liquid crystal element in the present invention, using temperature as a parameter. The light intensity shows a minimum value at a minimum value voltage V L, and at a voltage higher than V L The light intensity increases monotonously.

まず、光記録媒体上の光強度をできるだけ大きくしたい場合には、液晶素子を通過した光の偏光方向が偏光子の透過軸方向と一致するように、できるだけ高い電圧を液晶素子に印加することが好ましい。しかし、電圧制御装置の制限から高い電圧を印加することが困難な場合には、例えば4Vrmsから6Vrms程度まで印加すれば、光強度が90%以上得られ好ましい。   First, in order to increase the light intensity on the optical recording medium as much as possible, a voltage as high as possible can be applied to the liquid crystal element so that the polarization direction of the light passing through the liquid crystal element matches the transmission axis direction of the polarizer. preferable. However, when it is difficult to apply a high voltage due to the limitation of the voltage control device, it is preferable to apply from 4 Vrms to 6 Vrms, for example, because a light intensity of 90% or more is obtained.

次に、光記録媒体上の光強度を弱めたい場合には、V近傍の電圧を印加すればよい。しかし、液晶の温度特性により、Vは液晶素子の温度により変化する。図9は0、25、40および70度の各温度における電圧特性を示しており、温度が上昇するにつれて、Vは低電圧側へシフトする。液晶素子を光ヘッド装置に用いる場合、温度により光強度が変化することは好ましくない。 Next, in order to weaken the light intensity on the optical recording medium, a voltage in the vicinity of VL may be applied. However, VL varies with the temperature of the liquid crystal element due to the temperature characteristics of the liquid crystal. FIG. 9 shows voltage characteristics at temperatures of 0, 25, 40, and 70 degrees, and V L shifts to a lower voltage side as the temperature increases. When a liquid crystal element is used in an optical head device, it is not preferable that the light intensity varies with temperature.

光強度の温度依存性を一定にする方法として、第1にはサーミスタなどの温度検知素子により得られた温度情報に基づいて、印加電圧を調整する方法がある。この方法は、温度依存性をほぼ一定にすることができるが、温度検出手段および温度により電圧を制御する手段を付加する必要があり、コストが上昇する。   As a method of making the temperature dependence of the light intensity constant, there is a method of adjusting an applied voltage based on temperature information obtained by a temperature detection element such as a thermistor. Although this method can make the temperature dependence almost constant, it is necessary to add a temperature detecting means and a means for controlling the voltage according to the temperature, and the cost increases.

第2の方法は、光ヘッド装置の動作温度範囲の概ね中間温度における極小値電圧Vにほぼ等しい電圧を、温度にかかわらず一定にして印加する方法である。この一定電圧の最適値は、用いる液晶材料の温度特性や液晶の捩れ角度などの素子条件により異なるが、温度範囲が30度から45度までのいずれかの温度における極小値電圧Vの±0.3Vrmsの範囲で決めればよい。図9に示されるように、この方法では光強度の温度依存性を完全に抑えることは困難であるが、温度調整手段を用いずに温度依存性を低く抑える方法として極めて有効である。 The second method is a method in which a voltage substantially equal to the minimum value voltage V L at an approximately intermediate temperature in the operating temperature range of the optical head device is applied constant regardless of the temperature. The optimum value of the constant voltage varies depending on the element conditions such as the temperature characteristics of the liquid crystal material used and the twist angle of the liquid crystal, but ± 0 of the minimum voltage V L at any temperature from 30 degrees to 45 degrees. What is necessary is just to determine in the range of .3Vrms. As shown in FIG. 9, it is difficult to completely suppress the temperature dependence of the light intensity by this method, but it is extremely effective as a method of keeping the temperature dependence low without using the temperature adjusting means.

上記においては、電圧印加時に光を100%透過するとしたが、偏光子の透過軸の方向によっては、電圧非印加時に光を100%透過するようにもできる。   In the above description, 100% of light is transmitted when a voltage is applied. However, depending on the direction of the transmission axis of the polarizer, 100% of light can be transmitted when no voltage is applied.

「例1」
まず液晶素子については、図4および図5(図4の液晶素子を透明基板301から透明基板302の方向に見た図)において、厚さ0.53mmのガラスの透明基板301および302に、スパッタ法によりITOからなる透明導電膜を厚さ30nm成膜し、フォトリソグラフィおよびウエットエッチングによりパターニングして透明電極303、304を形成した。
"Example 1"
First, regarding the liquid crystal element, in FIGS. 4 and 5 (the liquid crystal element in FIG. 4 is viewed from the transparent substrate 301 to the transparent substrate 302), the glass transparent substrates 301 and 302 having a thickness of 0.53 mm are sputtered. A transparent conductive film made of ITO was formed to a thickness of 30 nm by the method and patterned by photolithography and wet etching to form transparent electrodes 303 and 304.

透明基板301と302の透明電極303、304上には厚さ約50nmのポリイミド膜305、306をフレキソ印刷法により塗布し、その後焼成した。ポリイミド膜305、306に対して布によるラビングの配向処理を施した。このとき液晶分子309は、液晶層308の厚さ方向の軸の回りに捩じられており、各々の透明基板面での液晶分子の配向方向401、402が25度の角度をなすようにした。   On the transparent electrodes 303 and 304 of the transparent substrates 301 and 302, polyimide films 305 and 306 having a thickness of about 50 nm were applied by a flexographic printing method and then baked. The polyimide films 305 and 306 were rubbed with a cloth. At this time, the liquid crystal molecules 309 are twisted around the axis in the thickness direction of the liquid crystal layer 308 so that the alignment directions 401 and 402 of the liquid crystal molecules on each transparent substrate surface form an angle of 25 degrees. .

透明基板301にスクリーン印刷法によりエポキシ系のシール材307(405)を印刷した。エポキシ系のシール材307(405)には、所定のセルギャップを維持するための直径3μmのファイバスペーサを3%(質量比換算。以下同じ。)、および透明基板301と302との間の導電性を得るために表面に導電性コーティングを施した直径3.5μmのアクリル球を2%、それぞれを混合した。   An epoxy sealant 307 (405) was printed on the transparent substrate 301 by a screen printing method. The epoxy sealant 307 (405) has a fiber spacer with a diameter of 3 μm for maintaining a predetermined cell gap (3% in terms of mass ratio, the same applies hereinafter), and conductivity between the transparent substrates 301 and 302. In order to obtain the properties, 2% of acrylic spheres having a diameter of 3.5 μm having a conductive coating on the surface were mixed.

透明基板301と302とを重ねて位置合わせした後、170度の温度にて、6×10N/mの圧力で圧着しセルを形成した。作成したセルに真空注入法により常光屈折率および異常光屈折率の差△n=0.1の液晶を注入し液晶層308(404)とし、注入口をUV接着剤403にて封止して外形8mm×10mm角の液晶素子を作成した。この液晶素子は、電極端子取り出し部406を介して、外部から液晶層に電圧を印加できる。 After the transparent substrates 301 and 302 were overlapped and aligned, a cell was formed by pressure bonding at a temperature of 170 ° C. and a pressure of 6 × 10 4 N / m 2 . A liquid crystal having a difference Δn = 0.1 between ordinary light refractive index and extraordinary light refractive index is injected into the prepared cell by a vacuum injection method to form a liquid crystal layer 308 (404), and the injection port is sealed with a UV adhesive 403. A liquid crystal element having an outer shape of 8 mm × 10 mm square was prepared. This liquid crystal element can apply a voltage to the liquid crystal layer from the outside via the electrode terminal extraction portion 406.

作成された液晶素子を、図1に示すように光ヘッド装置に組み込んだ。液晶素子3は、光ヘッド装置に配された偏光子4である偏光ビームスプリッタとコリメートレンズ2との間に設置され、この液晶素子は電圧制御装置11からの出力電圧によって制御された。液晶素子への電圧非印加時において、液晶素子の半導体レーザ側透明基板上の液晶分子の配向方向と、偏光ビームスプリッタの透過軸方向は、ともに液晶素子への入射光の偏光方向と一致するように配置した。   The produced liquid crystal element was incorporated into an optical head device as shown in FIG. The liquid crystal element 3 was installed between a polarization beam splitter, which is a polarizer 4 disposed in the optical head device, and the collimating lens 2, and this liquid crystal element was controlled by an output voltage from the voltage control device 11. When no voltage is applied to the liquid crystal element, the alignment direction of the liquid crystal molecules on the semiconductor laser side transparent substrate of the liquid crystal element and the transmission axis direction of the polarization beam splitter are both coincident with the polarization direction of the incident light to the liquid crystal element. Arranged.

半導体レーザ1からの出射光は、コリメートレンズ2、液晶素子3、偏光子4である偏光ビームスプリッタ、λ/4板8の順に透過し、アクチュエータ6に保持された集光レンズ5を透過して光記録媒体7上に集光される。集光された光は光記録媒体7により反射され、集光レンズ5、λ/4板8の順に透過し偏光方向が90度変化された後、偏光ビームスプリッタにより反射され集光レンズ9により光検出器10に導かれた。   Light emitted from the semiconductor laser 1 is transmitted in the order of the collimator lens 2, the liquid crystal element 3, the polarizing beam splitter as the polarizer 4, and the λ / 4 plate 8, and then transmitted through the condenser lens 5 held by the actuator 6. It is condensed on the optical recording medium 7. The condensed light is reflected by the optical recording medium 7, passes through the condenser lens 5 and the λ / 4 plate 8 in this order, and after the polarization direction is changed by 90 degrees, is reflected by the polarization beam splitter and is reflected by the condenser lens 9. It was led to the detector 10.

このとき、液晶素子3に電圧を印加し光記録媒体7の位置に光検出器を配置し集光された光の光量を測定したところ、図6に示すように液晶素子に印加する電圧が0Vのときは79%、電圧が5Vのときは99%となり(半導体レーザからの出射光量を100%とした)、液晶に印加する電圧により光記録媒体7に集光される光の光量を変化させることができた。   At this time, when a voltage was applied to the liquid crystal element 3 and a photodetector was placed at the position of the optical recording medium 7 and the amount of the collected light was measured, the voltage applied to the liquid crystal element was 0 V as shown in FIG. 79% when the voltage is 5V, and 99% when the voltage is 5V (the amount of light emitted from the semiconductor laser is 100%), and the amount of light collected on the optical recording medium 7 is changed by the voltage applied to the liquid crystal. I was able to.

この光ヘッド装置を用いて、光記録媒体に情報を記録するときは、液晶素子3に電圧を5V印加し光記録媒体7に集光された光の光量を99%とし、光記録媒体7から情報を再生するときは、半導体レーザ1の出力は変化させずに、液晶素子3に電圧を印加せず光記録媒体7に集光された光の光量を79%とする。こうして低ノイズで情報の再生が行われた。   When information is recorded on the optical recording medium using this optical head device, a voltage of 5 V is applied to the liquid crystal element 3 so that the amount of light collected on the optical recording medium 7 is 99%. When reproducing information, the output of the semiconductor laser 1 is not changed, and the amount of light collected on the optical recording medium 7 without applying a voltage to the liquid crystal element 3 is 79%. Thus, information was reproduced with low noise.

「例2」
例1に述べたものと同じ手順により、外形寸法8mm×10mmの液晶素子を作成した(図8)。ただし、上下各々の透明基板面での液晶分子の配向方向801と802とが43度の角度をなすようにした。作成された液晶素子を、例1と同様に図1に示すように光ヘッド装置に組み込んだ。このとき、液晶素子への入射光の偏光方向803と偏光ビームスプリッタの透過軸方向は、ともに液晶分子の各配向方向によりなす角を2等分する方向と一致するように配置した。図8の符号で、図5と同じ符号は図8と同じ要素を示す。
"Example 2"
A liquid crystal element having an outer dimension of 8 mm × 10 mm was prepared by the same procedure as described in Example 1 (FIG. 8). However, the orientation directions 801 and 802 of the liquid crystal molecules on the upper and lower transparent substrate surfaces are at an angle of 43 degrees. The produced liquid crystal element was incorporated in the optical head device as shown in FIG. At this time, the polarization direction 803 of the incident light to the liquid crystal element and the transmission axis direction of the polarization beam splitter are both arranged to coincide with the direction that bisects the angle formed by each alignment direction of the liquid crystal molecules. 8 that are the same as those in FIG. 5 indicate the same elements as those in FIG.

半導体レーザ1からの出射光は、コリメートレンズ2、液晶素子3、偏光子4である偏光ビームスプリッタ、λ/4板8の順に透過し、アクチュエータ6に保持された集光レンズ5を透過して光記録媒体7上に集光される。集光された光は光記録媒体7により反射され、集光レンズ5、λ/4板8の順に透過し偏光方向が90度変化された後、偏光ビームスプリッタにより反射され集光レンズ9により光検出器10に導かれた。   Light emitted from the semiconductor laser 1 is transmitted in the order of the collimator lens 2, the liquid crystal element 3, the polarizing beam splitter as the polarizer 4, and the λ / 4 plate 8, and then transmitted through the condenser lens 5 held by the actuator 6. It is condensed on the optical recording medium 7. The condensed light is reflected by the optical recording medium 7, passes through the condenser lens 5 and the λ / 4 plate 8 in this order, and after the polarization direction is changed by 90 degrees, is reflected by the polarization beam splitter and is reflected by the condenser lens 9. It was led to the detector 10.

液晶素子3に電圧を印加し光記録媒体7の位置に光検出器を配置し集光された光の光量を測定したところ、図9に示すように液晶素子に印加する電圧に対する光量変化が観測された。今回作製した光ヘッド装置の使用温度範囲が摂氏0度から70度までであったため、これらの温度のほぼ中間にある摂氏40度で光記録媒体7の位置で光量の極小値を与える電圧1.2Vと、飽和して最大となる4Vとの2つの電圧を駆動電圧とした。このため、上記第2の方法で説明したように1.2Vで駆動したときの低透過光量時の液晶素子の温度変動を抑えることができた。温度変動を抑えたこの結果を図10に示す。また、今回液晶素子への入射光の偏光方向と偏光ビームスプリッタの透過軸方向を、ともに液晶分子の各配向方向がなす角を2等分する方向と一致するように配置したため、4Vという低電圧にてほぼ100%の光量を得ることができた。   When a voltage was applied to the liquid crystal element 3 and a light detector was placed at the position of the optical recording medium 7 to measure the amount of the collected light, a change in the amount of light with respect to the voltage applied to the liquid crystal element was observed as shown in FIG. It was done. Since the operating temperature range of the optical head device fabricated this time was from 0 to 70 degrees Celsius, the voltage that gives the minimum value of the light amount at the position of the optical recording medium 7 at 40 degrees Celsius, which is almost in the middle of these temperatures. Two voltages, 2 V and 4 V that is saturated and maximum, were used as drive voltages. For this reason, as described in the second method, the temperature fluctuation of the liquid crystal element at the time of low transmitted light amount when driven at 1.2 V can be suppressed. The result of suppressing the temperature fluctuation is shown in FIG. In addition, since the polarization direction of the incident light to the liquid crystal element and the transmission axis direction of the polarization beam splitter are arranged so as to coincide with the direction that bisects the angle formed by the alignment directions of the liquid crystal molecules, the voltage is as low as 4V. It was possible to obtain a light amount of almost 100%.

この光ヘッド装置を用いて、光記録媒体に情報を記録するときは、液晶素子3に電圧を4V印加し光記録媒体7に集光された光の光量を上げ、また光記録媒体7から情報を再生するときは、半導体レーザ1の出力は変化させずに、液晶素子3に電圧を1.2V印加し光記録媒体7に集光された光の光量をほぼ40%に減少させ、低ノイズで情報の再生が行われた。   When information is recorded on the optical recording medium using this optical head device, a voltage of 4 V is applied to the liquid crystal element 3 to increase the amount of light collected on the optical recording medium 7, and information is also transmitted from the optical recording medium 7. Is reproduced, the output of the semiconductor laser 1 is not changed, and a voltage of 1.2 V is applied to the liquid crystal element 3 to reduce the amount of light collected on the optical recording medium 7 to approximately 40%, thereby reducing the noise. The information was played back.

本発の光ヘッド装置では、液晶素子に形成された電極に電圧を印加するだけで、光源である半導体レーザの出射光の出力を変化させずに、光記録媒体上における光の光量を変化させることができ、光記録媒体の情報の記録および再生の特性の優れた光ヘッド装置を得ることができる。   In the optical head device of the present invention, the amount of light on the optical recording medium is changed without changing the output of the emitted light of the semiconductor laser, which is the light source, by simply applying a voltage to the electrode formed on the liquid crystal element. Thus, an optical head device having excellent information recording and reproducing characteristics of the optical recording medium can be obtained.

本発明の光ヘッド装置の一例を示す概念図。1 is a conceptual diagram illustrating an example of an optical head device of the present invention. 本発明における液晶素子の一例を示す側面図。The side view which shows an example of the liquid crystal element in this invention. 図2の液晶素子の平面図。The top view of the liquid crystal element of FIG. 実施例1における液晶素子を示す側面図。2 is a side view showing a liquid crystal element in Example 1. FIG. 図4の液晶素子の平面図。The top view of the liquid crystal element of FIG. 実施例1の光ヘッド装置における、液晶素子への印加電圧と光記録媒体上光強度との関係を示すグラフ。6 is a graph showing the relationship between the voltage applied to the liquid crystal element and the light intensity on the optical recording medium in the optical head device of Example 1. 本発明の光ヘッド装置における、液晶素子への印加電圧と光記録媒体上光強度との関係の一例を示すグラフ。4 is a graph showing an example of the relationship between the voltage applied to the liquid crystal element and the light intensity on the optical recording medium in the optical head device of the present invention. 実施例2における液晶素子を示す平面図。FIG. 6 is a plan view showing a liquid crystal element in Example 2. 実施例2おける液晶素子への印加電圧と光記録媒体上光強度との関係を温度をパラメータとして示すグラフ。6 is a graph showing the relationship between the voltage applied to the liquid crystal element and the light intensity on the optical recording medium in Example 2 using temperature as a parameter. 実施例2おける温度と光記録媒体上光強度との関係を示すグラフ。6 is a graph showing the relationship between the temperature and the light intensity on the optical recording medium in Example 2.

符号の説明Explanation of symbols

1:半導体レーザ
2:コリメートレンズ
3:液晶素子
4:偏光子
5:集光レンズ
6:アクチュエータ
7:光記録媒体
8:λ/4板
9:集光レンズ
10:光検出器
11:電圧制御装置
101、102、301、302:透明基板
103、104、303、304:透明電極
105、106:配向膜
107、205、307、405:シール材
108、204、308、404:液晶層
109、309:液晶分子
201、202、401、402、801、802:液晶分子の配向方向
305、306:ポリイミド膜
203、403:UV接着剤
206、406:電極端子取り出し部
803:入射光の偏光方向
1: Semiconductor laser 2: Collimating lens 3: Liquid crystal element 4: Polarizer 5: Condensing lens 6: Actuator 7: Optical recording medium 8: λ / 4 plate 9: Condensing lens 10: Photo detector 11: Voltage control device 101, 102, 301, 302: Transparent substrates 103, 104, 303, 304: Transparent electrodes 105, 106: Alignment films 107, 205, 307, 405: Sealing materials 108, 204, 308, 404: Liquid crystal layers 109, 309: Liquid crystal molecules 201, 202, 401, 402, 801, 802: liquid crystal molecule orientation directions 305, 306: polyimide film 203, 403: UV adhesive 206, 406: electrode terminal extraction portion 803: polarization direction of incident light

Claims (3)

光源と、光源からの出射光を光記録媒体上に集光するための集光手段と、集光された出射光の光記録媒体からの反射光を検出する光検出器を備える光ヘッド装置において、
光源と集光手段との間の光路中に液晶素子が配置され、液晶素子は2枚の透明基板の対向するそれぞれの面に透明電極が形成され、さらに透明電極間には液晶層が挟持され、液晶分子の方向が液晶層の厚さ方向の軸の回りに螺旋状に捩じれていて、
液晶素子の透明電極には、液晶層に電圧が印加できるように電圧制御装置が接続されており、液晶素子と光記録媒体との間の光路中に偏光子が配置され、
この偏光子は、偏光子に入射した光が出射する際に光記録媒体に向けて出射する光量を入射光の偏光方向によって変化させるものであり、光源である半導体レーザの出射光の出力を変化させずに、光記録媒体の情報の再生のために光記録媒体上に集光される光量Pの光記録媒体の情報の記録のために集光される光量Pに対する比が0.2〜0.8となるように電圧制御装置により液晶層への印加電圧の大きさを調整することを特徴とする光ヘッド装置。
In an optical head device comprising a light source, condensing means for condensing light emitted from the light source on an optical recording medium, and a photodetector for detecting reflected light from the optical recording medium of the condensed emitted light ,
A liquid crystal element is disposed in the optical path between the light source and the light condensing means. The liquid crystal element has a transparent electrode formed on each opposing surface of the two transparent substrates, and a liquid crystal layer is sandwiched between the transparent electrodes. , The direction of the liquid crystal molecules are spirally twisted around the axis of the thickness direction of the liquid crystal layer,
A voltage control device is connected to the transparent electrode of the liquid crystal element so that a voltage can be applied to the liquid crystal layer, and a polarizer is disposed in the optical path between the liquid crystal element and the optical recording medium,
This polarizer changes the amount of light emitted toward the optical recording medium when the light incident on the polarizer is emitted, depending on the polarization direction of the incident light, and changes the output of the emitted light from the semiconductor laser as the light source. without let, the ratio amount P 2 which is focused for recording the information of the light amount P 1 of the optical recording medium to be condensed on the optical recording medium for reproducing information of the optical recording medium is 0.2 an optical head apparatus characterized that you adjust the level of the applied voltage to the liquid crystal layer by the voltage control unit so as to 0.8.
前記液晶層とこれに接する2枚の前記透明基板との境界面における液晶分子のそれぞれの配向方向のうちの1つが、前記液晶素子に入射する光の偏光方向に平行であるかまたは直交している請求項1記載の光ヘッド装置。 One of the alignment directions of the liquid crystal molecules at the interface between the liquid crystal layer and the two transparent substrates in contact with the liquid crystal layer is parallel to or orthogonal to the polarization direction of the light incident on the liquid crystal element. the optical head apparatus according to claim 1 Symbol placement are. 前記液晶層とこれに接する2枚の前記透明基板との境界面における液晶分子のそれぞれの2つの配向方向がなす角度を2等分する方向が、前記液晶素子に入射する光の偏光方向に平行であるかまたは直交している請求項1記載の光ヘッド装置。 The direction that bisects the angle formed by the two alignment directions of the liquid crystal molecules at the interface between the liquid crystal layer and the two transparent substrates in contact with the liquid crystal layer is parallel to the polarization direction of the light incident on the liquid crystal element. the optical head apparatus according to claim 1 Symbol placement has or is orthogonal with.
JP2006213128A 2001-03-30 2006-08-04 Optical head device Expired - Fee Related JP4120686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213128A JP4120686B2 (en) 2001-03-30 2006-08-04 Optical head device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001099202 2001-03-30
JP2006213128A JP4120686B2 (en) 2001-03-30 2006-08-04 Optical head device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001393247A Division JP3985517B2 (en) 2001-03-30 2001-12-26 Optical head device

Publications (2)

Publication Number Publication Date
JP2006294251A JP2006294251A (en) 2006-10-26
JP4120686B2 true JP4120686B2 (en) 2008-07-16

Family

ID=37414614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213128A Expired - Fee Related JP4120686B2 (en) 2001-03-30 2006-08-04 Optical head device

Country Status (1)

Country Link
JP (1) JP4120686B2 (en)

Also Published As

Publication number Publication date
JP2006294251A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
US7710536B2 (en) Liquid crystal diffraction lens element and optical head device
JP3620145B2 (en) Optical head device
JP2007025143A (en) Liquid crystal optical element and device
JP2000268398A (en) Optical pickup, information recording device, and information reproducing device
JP2006512712A (en) Controllable bilayer birefringent optical component
US20060007385A1 (en) Optical attenuator and optical head device
JP2009015995A (en) Liquid crystal diffractive lens element and optical head device
JP3985517B2 (en) Optical head device
WO2005081051A1 (en) Liquid crystal optical modulating device
JP4120686B2 (en) Optical head device
JP4627083B2 (en) Liquid crystal lens, optical pickup, information recording apparatus and information reproducing apparatus
JP2007141450A (en) Optical head device
JP4168680B2 (en) Optical head device
JP4281168B2 (en) Optical head device
JP4714054B2 (en) Optical pickup device and liquid crystal optical element
JP2003123304A (en) Optical head device
JP4085527B2 (en) Optical head device
JP4179645B2 (en) Optical head device and driving method thereof
JP2007250168A (en) Optical head device
JP4882737B2 (en) Liquid crystal element and optical head device
JP4479134B2 (en) Optical head device
JP2002367215A (en) Optical head device
JP2008176848A (en) Liquid crystal device and optical head device
JP4748085B2 (en) Variable diffraction element and optical head device using the same
JP4379062B2 (en) Optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4120686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees