JP4085527B2 - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP4085527B2
JP4085527B2 JP21425199A JP21425199A JP4085527B2 JP 4085527 B2 JP4085527 B2 JP 4085527B2 JP 21425199 A JP21425199 A JP 21425199A JP 21425199 A JP21425199 A JP 21425199A JP 4085527 B2 JP4085527 B2 JP 4085527B2
Authority
JP
Japan
Prior art keywords
phase correction
correction element
light
liquid crystal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21425199A
Other languages
Japanese (ja)
Other versions
JP2001043549A (en
Inventor
琢治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP21425199A priority Critical patent/JP4085527B2/en
Publication of JP2001043549A publication Critical patent/JP2001043549A/en
Application granted granted Critical
Publication of JP4085527B2 publication Critical patent/JP4085527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光ディスクなどの光記録媒体の光学的情報の記録・再生を行う光ヘッド装置に関する。
【0002】
【従来の技術】
光ディスクであるDVDは、同じく光ディスクであるCDに比べディジタル情報が高密度で記録されており、DVDを再生するための光ヘッド装置は、光源の波長をCDの780nmよりも短い650nmまたは635nmとしたり、対物レンズの開口数(NA)をCDの0.45よりも大きい0.6にして光ディスク面上に集光するスポット径を小さくしている。
【0003】
さらに、次世代の光記録においては光源の波長を400nm程度、NAを0.6以上とすることで、より大きな記録密度を得ることが提案されている。しかし、光源の短波長化や対物レンズの高NA化により、光ディスク面が光軸に対して直角より傾くチルトの許容量や光ディスクの厚みむらの許容量が小さくなる。
【0004】
これら許容量が小さくなるのは、光ディスクのチルトの場合にはコマ収差が発生し、光ディスクの厚みむらの場合には球面収差が発生するために、光ヘッド装置の集光特性が劣化して信号の読み取りが困難になることによる。高密度記録においては光ディスクのチルトや厚みむらに対する光ヘッド装置の許容量を拡げるためにいくつかの方式が提案されている。
【0005】
一つの方式として、通常光ディスクの接線方向と半径方向との2軸方向に移動する対物レンズのアクチュエータに、検出されたチルト角に応じて対物レンズを傾けるように傾斜用の軸を追加する方式がある。しかし、この追加方式では球面収差は補正できないことや、アクチュエータの構造が複雑になる問題がある。
【0006】
また別の方式として、対物レンズと光源との間に備えた位相補正素子により波面収差を補正するものがある。この補正方式では、アクチュエータに大幅な改造を施すことなく光ヘッド装置に素子を組み入れるだけでチルトの許容量や光ディスク厚みむらの許容量を拡げることができる。
【0007】
例えば、位相補正素子を用いて光ディスクのチルトを補正する上記の補正方式に特開平10−20263がある。これは、位相補正素子を構成している液晶などの複屈折性材料を挟持している基板に、電極が分割されて形成された分割電極に電圧を印加して、複屈折性材料の実質的な屈折率を光ディスクのチルト角に応じて変化させ、この屈折率の変化により発生した透過光の位相変化により、光ディスクのチルトで発生したコマ収差を補正する方式である。
【0008】
【発明が解決しようとする課題】
前述した位相補正素子には、透過光の位相変化を発生させるために、複屈折性材料に電圧を印加する複数個の分割電極を形成する必要がある。それぞれの分割電極間のギャップには電極がなく電圧を印加できないため、電圧が印加されたときギャップと分割電極の境界で電界分布が不均一となり、液晶分子の配向が不均一になる。その結果、電圧の印加によりギャップと分割電極との境界付近で屈折率が一定でなく分布が生じ、屈折率分布のある部分で光が回折されて光記録媒体に入射する光量が減少するので、信号の読み取り精度が低下する。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたものであり、光源と、光源からの出射光を光記録媒体上に集光させるための対物レンズと、光源と対物レンズとの間に出射光の波面を変化させる位相補正素子とを備えた光ヘッド装置であって、前記位相補正素子は少なくとも一方が透明な一対の基板に挟持された異方性光学媒質を備えており、前記異方性光学媒質の常光屈折率と異常光屈折率との差Δnと、前記異方性光学媒質の光透過方向の厚みdとの積Δn・dが0.92μm以上であり、前記一対の基板の少なくとも透明な一方には間隔をおいて配置された複数の分割電極が形成され、前記分割電極間の間隔が5μm以下であり、さらに前記位相補正素子に波面を変化させるための制御信号を発生する制御信号発生手段を備え、前記分割電極間に0〜6Vの範囲で同一の電圧を印加するときの透過率の差が2%以内であることを特徴とする光ヘッド装置を提供する
【0010】
【発明の実施の形態】
図1に本発明の光ヘッド装置の原理構成の概念的断面図を示す。図1に示した光ヘッド装置はCDまたはDVDなどの光ディスク8に記録された情報を再生するためのものであり、光源である半導体レ−ザ1などから出射した光は例えばホログラムタイプの偏光ビームスプリッタ2を透過した後、コリメートレンズ3により平行光となり、立ち上げミラー11で90°方向に反射され、位相補正素子4、4分の1波長板5を透過した後、対物レンズ6により光ディスク8上に集光される。ここで、位相補正素子4を構成している一対の基板はともに透明である。
【0011】
集光された光は光ディスク8により反射され対物レンズ6、4分の1波長板5、位相補正素子4、コリメートレンズ3を順次先程とは逆に透過した後、偏光ビームスプリッタ2により回折され光検出器9に入射する。前述の半導体レーザ1からの出射光が光ディスク8により反射される際、光ディスクの面上に記録された情報により反射光は振幅変調され、光検出器9により光強度信号として記録情報を読み取ることができる。
【0012】
偏光ビームスプリッタ2は例えば偏光性のホログラムを備えており、異方性方向(屈折率の差がある方向)に偏光成分を有する光を強く回折して光検出器9に導く。光検出器9より得られる光ディスクの例えば再生信号の強度が最適となるように、位相補正素子4に向けて制御信号発生手段である位相補正素子制御回路10により制御信号が発生(出力)される。位相補正素子制御回路10より出力される制御信号は、光ディスクのチルト量や対物レンズのシフト量に応じた電気信号であり、位相補正素子4の分割電極に印加する実質的に変化する電圧となる。
【0013】
また立ち上げミラー11は、半導体レーザ1より出射した光をほぼ90゜方向に反射させ光ディスクに入射させるものであり、光ヘッド装置の厚み(光ディスク8の面に垂直な方向)を薄くするには不可欠な光学部品である。通常は、ガラス表面にAlなどの高反射膜を蒸着したものが使用される。
【0014】
次に本発明において使用する位相補正素子の構成を図を用いて説明する。図2は本発明における位相補正素子の断面図である。
異方性光学媒質には、ニオブ酸リチウムなどの光学結晶や液晶などが使用できる。ここでは、液晶を使用するものとして説明する。
【0015】
ガラス基板21a、21bが、シール材22により接着され液晶セルを形成している。シール材22にはガラス製のスペーサと樹脂の表面に金などを被膜した導電性スペーサが含有されている。ガラス基板21a、21bの液晶セルの内側表面には、電極24a、24bおよびシリカを主成分とする絶縁膜25と配向膜26が被膜されており、液晶セルの外側表面には反射防止膜が被膜されている。
【0016】
電極24aは電極引出部27で接続線によって位相補正素子制御回路と接続できるようパターン配線されている。また電極24bは前述の導電性スペーサによりガラス基板21a上に形成された電極と電気的に接続しており、電極24a同様、電極引出部27で接続線によって位相補正素子制御回路と接続できる。液晶セル内部には液晶23が充填されており、図2に示した液晶分子28は、一方向に配向されたホモジニアス配向の状態にある。電極24a、24bの材質は透過率が高い方が望ましく、ITOなどの透明導電膜を使用すればよい。
【0017】
また配向膜の材料としては、液晶分子28のプレチルト角が2〜10゜となればよく、ポリイミド膜を図の紙面に平行で左右方向にラビングしたものや、シリカ膜を斜め蒸着したものなどがよい。液晶材料はディスプレイ用途などに用いられるネマティック液晶がよく、カイラル剤の添加によりツイストさせてもよい。
【0018】
所望の波面変化(位相変化)量を得る手段として液晶の複屈折性を利用する場合、液晶の常光屈折率と異常光屈折率の差を大きくして液晶セルの間隔を小さくした方が応答性を高くでき望ましい。しかし、液晶セルの間隔が小さくなるほど液晶セルの製作が困難になるため、液晶の常光屈折率と異常光屈折率の差は0.1〜0.2、液晶セルの間隔は2〜5μm程度とすることが望ましい。
図1に示した光ヘッド装置の場合、光は位相補正素子4を透過するため、電極24a、24bの材質は透過率が高い方が望ましく、ITOなどの透明導電膜を使用すればよい。この場合は位相補正素子4を透過型素子として使用している。
【0019】
しかし、電極24a、24bのいずれか一方をAlまたはCrなどの反射率の高い材質を用いて作製し、位相補正素子4を反射型素子として使用できる。その場合、図1の立ち上げミラー11の代わりにこの位置に位相補正素子4を設置する。最初に光が入射する側の電極(例えば電極24a)を高透過率で分割された透明電極にして、他方の電極(例えば電極24b)を高反射率の電極にすれば、位相補正素子4に入射した光は、透明電極24a、液晶を透過して電極24bで反射された後、再度、液晶、透明電極24aを透過して光ディスク8に向かう。
【0020】
反射型として位相補正素子を使用すれば、図1の立ち上げミラー11を位相補正素子4で置き換えることができるため部品点数が減り望ましい。しかし、位相補正素子4に入射する光はほぼ45゜の入射角度で液晶を2度通過するため、透過型の場合と異なる液晶セル間隔(液晶セルの中の液晶層の厚み)を設定する必要がある。
【0021】
次に本発明における位相補正素子を用いることにより得られる効果を説明する。図3は、本発明における位相補正素子の分割電極の電極パターンの一例を示す模式的平面図であり、図2の電極24aをフォトリソグラフィー技術などを用いて5つの分割電極31〜35に分割した。対物レンズにより光記録媒体に集光する光は位相補正素子を通過する際に、分割電極31〜35および液晶23を透過する。分割電極31〜35は例えばITO膜で形成されているが、図中実線に相当する分割電極間のギャップはエッチングなどによりITOが取り除かれているため分割電極31〜35は各々異なる電圧に設定できる。
【0022】
図4は、本発明における位相補正素子の分割電極間のギャップ付近の模式的断面図と実質的な屈折率分布を示すグラフである。図4(a)は2つの分割電極間のギャップ付近の模式的断面図であり、ガラス基板40の表面には分割電極である透明電極41a、41b、絶縁膜42、配向膜43が形成されている。透明電極41a、41bの間には幅がWのギャップがあり、このギャップの領域の液晶には外部から電圧を印加できない。
【0023】
透明電極41a、41bに電圧を印加するとガラス基板表面の透明電極より液晶中に電界が生じるため、液晶分子44はガラス基板の表面にほぼ垂直に配向する。電界の方向および電界強度は電気力線45の方向および密度で表される。ギャップの領域における液晶分子の配向を決める外部電界には、透明電極41a、41bからの漏れ電界だけが寄与する。
【0024】
しかし、ギャップ幅Wが液晶セル間隔に比べ大きい場合には漏れ電界の強度は、透明電極との境界付近を除いてギャップの部分では弱くなるため、透明電極41a、41bに電圧を印加しても液晶分子の配向方向はほとんど変化しないと考えられる。このとき、ギャップの透明電極付近とギャップの内側では液晶分子が異なる配向状態になるため、位相補正素子への入射光が感ずる実質的な屈折率分布は不均一となる。
【0025】
図4(b)は、2つの分割電極間のギャップ付近の実質的な屈折率分布を示すグラフである。ギャップ部分では液晶分子がガラス基板面にほぼ平行であり、透明電極部と比較して、実質的な屈折率は高くなっている。透明電極のギャップ付近とギャップ部分との液晶の実質的な屈折率差をΔφとして液晶セル間隔をd、入射光の波長をλとすると、θ=2πΔφ・d/λなる位相差が生じる。
【0026】
図4(a)の透明電極41a、41bに電圧を印加することによりΔφが大きくなりθがπ程度になった場合には、入射光はそのギャップと透明電極の境界付近で回折されるため実質的な透過率(回折されずに透過する部分)は低下する。漏れ電界に起因する分割電極間のギャップでの電界強度はギャップ幅Wの2〜3乗に反比例する。本発明では、ギャップ幅Wを小さくすることにより漏れ電界の効果が強められ、分割電極間のギャップでの屈折率変化を小さくすることができる。
【0027】
したがって、ギャップ幅Wが小さくない場合電圧の印加によりΔφが大きくなりθがπ程度になって透過率は低下するが、ギャップ幅Wが小さい場合、ギャップでの屈折率変化が小さくなり回折効果が弱くなる結果、実質的な透過率は向上する。
【0028】
一般にギャップ幅Wを小さくした方がギャップでの漏れ電界が強くなるために、回折による透過率の低下は小さくなるが、ギャップ幅Wが小さくなる分ITOなどの透明導電膜のパターニング精度が厳しくなるため分割電極の作製が困難になる。したがって、位相補正素子の歩留まりがよい範囲で最小のギャップ幅になるよう分割電極を形成することがよく、例えば通常液晶素子が使用される実効電圧が0Vから6V範囲内で、7μm以下とすることが現実的である。
【0029】
また、液晶の常光屈折率と異常光屈折率の差Δnと液晶セル間隔dの積が0.5μm以上の場合には、ギャップ幅Wを7μm以下とすることにより漏れ電界強度が増す結果Δφが小さくなり、位相差θがπ以下になるので、回折効果が弱くなり透過率が向上して好ましい。さらにこの積が0.5μm以上のときギャップ幅Wを5μm以下とするとさらに漏れ電界強度が増す結果、位相差θは非常に小さくなり透過率がさらに向上して特に好ましい。
【0030】
位相補正素子により光源からの出射光の波面を変化させて、波面収差であるコマ収差、球面収差および非点収差を補正する。
図3に示した電極パターンは主にコマ収差を補正するための例であり、例えば光ディスクがチルトした場合でも、位相補正素子に適切な制御信号を出力することによりコマ収差が補正されて良好な再生信号を得ることができる。また、上述と同様な構成(図1、図2)、原理(図4)により、電極パターンを図5のようにすることで、球面収差や非点収差を補正できる。
【0031】
図5(a)は球面収差を補正する場合の分割電極の電極パターンの一例を示す模式的平面図である。この電極パターンを使用すると、光ディスクの厚みが変化しても、位相補正素子に適切な制御信号を伝送することにより良好な再生信号を得ることができる。
図5(b)は非点収差を補正する場合の分割電極の電極パターンの一例を示す模式的平面図である。この電極パターンを使用すると、半導体レーザや他の光学部品により発生する非点収差を補正できるため良好な再生信号を得ることができる。
【0032】
以上のようにして、補正する波面収差に応じた電極パターンを形成し、分割電極間のギャップを7μm以下にすることにより、実質的な透過率が高い位相補正素子を得ることができる。
【0033】
【実施例】
本実施例では図1に示す光ヘッド装置により光ディスク8に記録された情報を再生する。光ヘッド装置には、図2に示す断面図の構成を有する透過型の位相補正素子4が組み込まれており、光検出器9で得た信号を位相補正素子制御回路10にて処理し光ディスク8の半径方向のチルト量に応じた電気信号を発生させ、位相補正素子4を駆動させる。
【0034】
位相補正素子4は、厚み0.5mmの無アルカリ性のガラス基板21a、21bとエポキシを主成分とするシール材22により構成される液晶セル構造を有しており、シール材22に含有されたガラス製のスペーサにより液晶セルの間隔が4.6μmとなっている。液晶セルの内部には常光屈折率と異常光屈折率の差が0.2のネマティック液晶が充填されており、ガラス基板21a、21bの表面に施されたポリイミドの配向膜26により図2に示す紙面の左右方向に液晶分子28が配向している。
【0035】
また、配向膜26とガラス基板の間には絶縁膜25、ITOの電極24a、24bが形成されており、電極24a、24bは電極引出部27において位相補正素子制御回路10と接続線によって接続されている。電極24bは分割のない一様な電極であるのに対し、電極24aの電極24bと対向する部分はフォトリソグラフィー技術により図3に示す分割電極31〜35に分割されている。
【0036】
これらの分割電極の最外周は直径4mmの円であり、対物レンズに入射する光はこの電極の領域内を透過する際に、分割電極31〜35の各々に印加される電圧値に対応した位相シフトを光のそれぞれの領域で受ける。本実施例では、分割電極33に常に2.5Vの電圧を印加し、光ディスクのチルト量に応じて分割電極31、32、34、35に対し2〜3Vの電圧を印加することにより、変形した光ディスクから良好な再生信号を得ることができた。
【0037】
図6は、本実施例で使用した位相補正素子の光の透過率の印加電圧依存性を示すグラフであり、本実施例の分割電極間のギャップ幅Wは5μmである。参考例としての従来のギャップ幅が10μmのものの光の透過率も示す。従来の位相補正素子の構成は本実施例と同様であるが、分割電極間のギャップ幅が異なっている。測定に用いた光源は波長650nmの半導体レーザである。
図6の透過率は、電圧0Vでの対物レンズへの入射光量に対する、各電圧での入射光量の百分率で示してある。
【0038】
参考例では2.5Vの電圧を印加した状態で、分割電極間のギャップでの散乱により透過率が9%程度低下したが、本実施例の位相補正素子の場合2%程度の低下にとどまった。
【0039】
【発明の効果】
以上のように、本発明の光ヘッド装置においては、液晶の位相補正素子を構成している基板上の分割電極間のギャップ幅を7μm以下にすることにより、液晶素子で通常使用される範囲で任意の印加電圧において高い光の透過率を得ることができ、したがって良好な再生信号を得ることができる。
【図面の簡単な説明】
【図1】本発明の光ヘッド装置の原理構成の概念的断面図である。
【図2】本発明における位相補正素子の断面図である。
【図3】本発明における位相補正素子の分割電極の電極パターンの一例を示す模式的平面図である。
【図4】本発明における位相補正素子の分割電極間のギャップ付近の模式的断面図と実質的な屈折率分布を示すグラフであり、(a)は2つの分割電極間のギャップ付近の模式的断面図であり、(b)は2つの分割電極間のギャップ付近の実質的な屈折率分布を示すグラフである。
【図5】本発明における位相補正素子の分割電極の電極パターンの一例を示す模式的平面図であり、(a)は主に球面収差を補正する場合であり、(b)は主に非点収差を補正する場合である。
【図6】本実施例で使用した位相補正素子の光の透過率の印加電圧依存性を示すグラフである。
【符号の説明】
1:半導体レーザ
2:偏光ビームスプリッタ
3:コリメートレンズ
4:位相補正素子
5:4分の1波長板
6:対物レンズ
7:アクチュエータ
8:光ディスク
9:光検出器
10:位相補正素子制御回路
21a、21b:ガラス基板
22:シール材
23:液晶
24a、24b:電極
25、42:絶縁膜
26、43:配向膜
27:電極引出部
28、44:液晶分子
31〜35:分割電極
40:ガラス基板
41a、41b:透明電極
45:電気力線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical head device that records and reproduces optical information of an optical recording medium such as an optical disk.
[0002]
[Prior art]
A DVD, which is an optical disk, records digital information at a higher density than a CD, which is also an optical disk, and an optical head device for reproducing a DVD has a light source wavelength of 650 nm or 635 nm, which is shorter than 780 nm of the CD. The numerical aperture (NA) of the objective lens is set to 0.6, which is larger than 0.45 of CD, so that the spot diameter focused on the optical disk surface is reduced.
[0003]
Further, in the next generation optical recording, it has been proposed to obtain a higher recording density by setting the wavelength of the light source to about 400 nm and the NA to 0.6 or more. However, as the wavelength of the light source becomes shorter and the NA of the objective lens becomes higher, the allowable amount of tilt in which the optical disc surface is tilted from the right angle with respect to the optical axis and the allowable amount of uneven thickness of the optical disc are reduced.
[0004]
These tolerances are reduced because coma aberration occurs when the optical disc is tilted, and spherical aberration occurs when the optical disc is uneven in thickness. Due to the difficulty of reading. In high-density recording, several methods have been proposed in order to increase the allowable amount of the optical head device with respect to tilt and uneven thickness of the optical disk.
[0005]
As one method, there is a method in which an axis for tilting is added to an objective lens actuator that normally moves in the biaxial direction of the tangential direction and the radial direction of the optical disc so that the objective lens is tilted according to the detected tilt angle. is there. However, this additional method has problems that spherical aberration cannot be corrected and that the structure of the actuator is complicated.
[0006]
Another method is to correct wavefront aberration by a phase correction element provided between the objective lens and the light source. In this correction method, it is possible to increase the allowable amount of tilt and the allowable amount of unevenness of the optical disc by simply incorporating an element into the optical head device without making a major modification to the actuator.
[0007]
For example, Japanese Patent Laid-Open No. 10-20263 discloses the above correction method for correcting the tilt of an optical disc using a phase correction element. This is because a voltage is applied to a divided electrode formed by dividing an electrode on a substrate sandwiching a birefringent material such as liquid crystal that constitutes a phase correction element. In this method, the refractive index is changed according to the tilt angle of the optical disk, and the coma aberration generated by the tilt of the optical disk is corrected by the phase change of the transmitted light generated by the change of the refractive index.
[0008]
[Problems to be solved by the invention]
In the above-described phase correction element, it is necessary to form a plurality of divided electrodes for applying a voltage to the birefringent material in order to generate a phase change of transmitted light. Since there is no electrode in the gap between the divided electrodes and no voltage can be applied, the electric field distribution is non-uniform at the boundary between the gap and the divided electrode when a voltage is applied, and the alignment of the liquid crystal molecules becomes non-uniform. As a result, the refractive index is not constant near the boundary between the gap and the divided electrode due to the application of voltage, and the amount of light incident on the optical recording medium is reduced because light is diffracted at a portion where the refractive index distribution exists. Signal reading accuracy decreases.
[0009]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and includes a light source, an objective lens for condensing the emitted light from the light source on the optical recording medium, and the emitted light between the light source and the objective lens. An optical head device including a phase correction element that changes a wavefront of the optical head device, wherein the phase correction element includes an anisotropic optical medium sandwiched between a pair of transparent substrates, and the anisotropic The product Δn · d of the difference Δn between the ordinary light refractive index and the extraordinary light refractive index of the optical medium and the thickness d in the light transmission direction of the anisotropic optical medium is 0.92 μm or more, and at least one of the pair of substrates A plurality of divided electrodes arranged at intervals are formed on one transparent side, the interval between the divided electrodes is 5 μm or less, and a control signal for generating a control signal for changing the wavefront is generated in the phase correction element Signal generating means, and To provide an optical head and wherein the difference in transmittance when applying the same voltage in the range of 0~6V is within 2% between.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a conceptual cross-sectional view of the principle configuration of the optical head device of the present invention. The optical head device shown in FIG. 1 is for reproducing information recorded on an optical disk 8 such as a CD or DVD. The light emitted from the semiconductor laser 1 as a light source is, for example, a hologram type polarized beam. After passing through the splitter 2, it becomes parallel light by the collimating lens 3, is reflected in the 90 ° direction by the rising mirror 11, passes through the phase correction element 4, the quarter-wave plate 5, and is then optical disc 8 by the objective lens 6. Focused on top. Here, the pair of substrates constituting the phase correction element 4 are both transparent.
[0011]
The condensed light is reflected by the optical disk 8 and sequentially passes through the objective lens 6, the quarter-wave plate 5, the phase correction element 4, and the collimating lens 3 in the reverse order, and then diffracted by the polarizing beam splitter 2. The light enters the detector 9. When the light emitted from the semiconductor laser 1 is reflected by the optical disk 8, the reflected light is amplitude-modulated by the information recorded on the surface of the optical disk, and the recorded information can be read as a light intensity signal by the photodetector 9. it can.
[0012]
The polarization beam splitter 2 includes, for example, a polarization hologram, and strongly diffracts light having a polarization component in an anisotropic direction (a direction having a difference in refractive index) and guides the light to the photodetector 9. For example, a control signal is generated (output) by the phase correction element control circuit 10 which is a control signal generation unit toward the phase correction element 4 so that the intensity of, for example, a reproduction signal of the optical disk obtained from the photodetector 9 is optimized. . The control signal output from the phase correction element control circuit 10 is an electric signal corresponding to the tilt amount of the optical disk or the shift amount of the objective lens, and becomes a substantially changing voltage applied to the divided electrodes of the phase correction element 4. .
[0013]
The rising mirror 11 reflects the light emitted from the semiconductor laser 1 in the direction of approximately 90 ° and makes it incident on the optical disk. In order to reduce the thickness of the optical head device (direction perpendicular to the surface of the optical disk 8). It is an indispensable optical component. Usually, a glass surface with a highly reflective film such as Al deposited thereon is used.
[0014]
Next, the configuration of the phase correction element used in the present invention will be described with reference to the drawings. FIG. 2 is a cross-sectional view of the phase correction element in the present invention.
As the anisotropic optical medium, an optical crystal such as lithium niobate or a liquid crystal can be used. Here, it demonstrates as what uses a liquid crystal.
[0015]
Glass substrates 21a and 21b are bonded by a sealing material 22 to form a liquid crystal cell. The sealing material 22 contains a glass spacer and a conductive spacer having a resin surface coated with gold or the like. The inner surfaces of the liquid crystal cells of the glass substrates 21a and 21b are coated with electrodes 24a and 24b and an insulating film 25 and an alignment film 26 mainly composed of silica, and an antireflection film is coated on the outer surfaces of the liquid crystal cells. Has been.
[0016]
The electrode 24a is wired in a pattern so that it can be connected to the phase correction element control circuit by a connection line at the electrode lead-out portion 27. Further, the electrode 24b is electrically connected to the electrode formed on the glass substrate 21a by the conductive spacer described above, and can be connected to the phase correction element control circuit by the connection line at the electrode lead-out portion 27 like the electrode 24a. Liquid crystal 23 is filled in the liquid crystal cell, and the liquid crystal molecules 28 shown in FIG. 2 are in a homogeneous alignment state aligned in one direction. The material of the electrodes 24a and 24b is preferably high in transmittance, and a transparent conductive film such as ITO may be used.
[0017]
As the material of the alignment film, it is sufficient that the pretilt angle of the liquid crystal molecules 28 is 2 to 10 °, and a polyimide film is rubbed in the horizontal direction parallel to the paper surface of the figure, or a silica film is obliquely deposited. Good. The liquid crystal material is preferably a nematic liquid crystal used for display applications and may be twisted by adding a chiral agent.
[0018]
When using the birefringence of the liquid crystal as a means to obtain the desired wavefront change (phase change) amount, the response between the liquid crystal cells should be reduced by increasing the difference between the ordinary and extraordinary refractive indices of the liquid crystal. Can be high. However, as the distance between the liquid crystal cells becomes smaller, it becomes more difficult to manufacture the liquid crystal cell. Therefore, the difference between the ordinary light refractive index and the extraordinary light refractive index of the liquid crystal is 0.1 to 0.2, and the distance between the liquid crystal cells is about 2 to 5 μm. It is desirable to do.
In the case of the optical head device shown in FIG. 1, since light passes through the phase correction element 4, it is desirable that the electrodes 24a and 24b have high transmittance, and a transparent conductive film such as ITO may be used. In this case, the phase correction element 4 is used as a transmissive element.
[0019]
However, one of the electrodes 24a and 24b can be made using a material having high reflectivity such as Al or Cr, and the phase correction element 4 can be used as a reflective element. In this case, the phase correction element 4 is installed at this position instead of the rising mirror 11 shown in FIG. If the first electrode (for example, the electrode 24a) on which light is incident is made a transparent electrode divided with high transmittance and the other electrode (for example, the electrode 24b) is made high-reflectance, the phase correction element 4 The incident light passes through the transparent electrode 24a and the liquid crystal and is reflected by the electrode 24b, and then passes again through the liquid crystal and the transparent electrode 24a toward the optical disc 8.
[0020]
If the phase correction element is used as the reflection type, the rising mirror 11 in FIG. 1 can be replaced with the phase correction element 4, which is desirable because the number of parts is reduced. However, since the light incident on the phase correction element 4 passes through the liquid crystal twice at an incident angle of approximately 45 °, it is necessary to set a liquid crystal cell interval (the thickness of the liquid crystal layer in the liquid crystal cell) different from that in the transmissive type. There is.
[0021]
Next, effects obtained by using the phase correction element of the present invention will be described. FIG. 3 is a schematic plan view showing an example of the electrode pattern of the divided electrodes of the phase correction element according to the present invention. The electrode 24a of FIG. 2 is divided into five divided electrodes 31 to 35 using a photolithography technique or the like. . The light condensed on the optical recording medium by the objective lens passes through the divided electrodes 31 to 35 and the liquid crystal 23 when passing through the phase correction element. The divided electrodes 31 to 35 are formed of, for example, an ITO film. Since the gap between the divided electrodes corresponding to the solid line in the figure is removed by etching or the like, the divided electrodes 31 to 35 can be set to different voltages. .
[0022]
FIG. 4 is a schematic cross-sectional view in the vicinity of the gap between the divided electrodes of the phase correction element in the present invention and a graph showing a substantial refractive index distribution. FIG. 4A is a schematic cross-sectional view in the vicinity of the gap between two divided electrodes. Transparent electrodes 41a and 41b, insulating films 42, and an alignment film 43, which are divided electrodes, are formed on the surface of the glass substrate 40. FIG. Yes. There is a gap having a width of W between the transparent electrodes 41a and 41b, and no voltage can be applied to the liquid crystal in the gap region from the outside.
[0023]
When a voltage is applied to the transparent electrodes 41a and 41b, an electric field is generated in the liquid crystal from the transparent electrode on the glass substrate surface, so that the liquid crystal molecules 44 are aligned almost perpendicularly to the surface of the glass substrate. The direction of the electric field and the electric field strength are represented by the direction and density of the electric field lines 45. Only the leakage electric field from the transparent electrodes 41a and 41b contributes to the external electric field that determines the orientation of the liquid crystal molecules in the gap region.
[0024]
However, when the gap width W is larger than the liquid crystal cell interval, the strength of the leakage electric field becomes weak at the gap except for the vicinity of the boundary with the transparent electrode, so even if a voltage is applied to the transparent electrodes 41a and 41b. It is considered that the alignment direction of the liquid crystal molecules hardly changes. At this time, since the liquid crystal molecules are in different alignment states near the transparent electrode of the gap and inside the gap, the substantial refractive index distribution perceived by the incident light to the phase correction element becomes non-uniform.
[0025]
FIG. 4B is a graph showing a substantial refractive index distribution near the gap between two divided electrodes. In the gap portion, the liquid crystal molecules are substantially parallel to the glass substrate surface, and the substantial refractive index is higher than that of the transparent electrode portion. A phase difference of θ = 2πΔφ · d / λ is generated when a liquid crystal cell interval is d and a wavelength of incident light is λ, where Δφ is a substantial refractive index difference of liquid crystal between the gap portion and the gap portion of the transparent electrode.
[0026]
When Δφ is increased by applying a voltage to the transparent electrodes 41a and 41b in FIG. 4A and θ becomes about π, the incident light is diffracted near the boundary between the gap and the transparent electrode. The typical transmittance (the portion that is transmitted without being diffracted) decreases. The electric field strength in the gap between the divided electrodes caused by the leakage electric field is inversely proportional to the second to third power of the gap width W. In the present invention, by reducing the gap width W, the effect of the leakage electric field is strengthened, and the refractive index change in the gap between the divided electrodes can be reduced.
[0027]
Therefore, when the gap width W is not small, Δφ is increased by application of voltage and θ becomes about π and the transmittance is reduced. However, when the gap width W is small, the refractive index change in the gap is small and the diffraction effect is reduced. As a result of the weakening, the substantial transmittance is improved.
[0028]
In general, when the gap width W is reduced, the leakage electric field in the gap becomes stronger, so that the decrease in transmittance due to diffraction is reduced. However, the patterning accuracy of a transparent conductive film such as ITO becomes stricter as the gap width W is reduced. Therefore, it becomes difficult to produce a divided electrode. Therefore, it is preferable to form the divided electrodes so that the minimum gap width is obtained in the range where the yield of the phase correction element is good. For example, the effective voltage in which the normal liquid crystal element is used is within the range of 0V to 6V, and should be 7 μm or less. Is realistic.
[0029]
Further, when the product of the difference Δn between the ordinary light refractive index and the extraordinary light refractive index of the liquid crystal and the liquid crystal cell interval d is 0.5 μm or more, the result that the leakage electric field strength increases by setting the gap width W to 7 μm or less is Δφ. Since the phase difference θ becomes smaller than π, the diffraction effect is weakened and the transmittance is improved, which is preferable. Further, when the product is 0.5 μm or more and the gap width W is 5 μm or less, the leakage electric field strength is further increased. As a result, the phase difference θ becomes very small and the transmittance is further improved.
[0030]
The wavefront of the light emitted from the light source is changed by the phase correction element to correct coma aberration, spherical aberration and astigmatism, which are wavefront aberrations.
The electrode pattern shown in FIG. 3 is an example mainly for correcting the coma aberration. For example, even when the optical disk is tilted, the coma aberration is corrected by outputting an appropriate control signal to the phase correction element. A reproduction signal can be obtained. Further, spherical aberration and astigmatism can be corrected by making the electrode pattern as shown in FIG. 5 with the same configuration (FIGS. 1 and 2) and principle (FIG. 4) as described above.
[0031]
FIG. 5A is a schematic plan view showing an example of an electrode pattern of the divided electrodes when correcting spherical aberration. When this electrode pattern is used, even if the thickness of the optical disk changes, a good reproduction signal can be obtained by transmitting an appropriate control signal to the phase correction element.
FIG. 5B is a schematic plan view showing an example of the electrode pattern of the divided electrodes when astigmatism is corrected. When this electrode pattern is used, astigmatism generated by the semiconductor laser and other optical components can be corrected, and a good reproduction signal can be obtained.
[0032]
As described above, an electrode pattern corresponding to the wavefront aberration to be corrected is formed, and the gap between the divided electrodes is set to 7 μm or less, whereby a phase correction element having a substantially high transmittance can be obtained.
[0033]
【Example】
In this embodiment, the information recorded on the optical disk 8 is reproduced by the optical head device shown in FIG. The optical head device incorporates a transmission type phase correction element 4 having the configuration shown in the cross-sectional view of FIG. 2, and a signal obtained by the photodetector 9 is processed by the phase correction element control circuit 10 and the optical disk 8 is processed. An electric signal corresponding to the amount of tilt in the radial direction is generated to drive the phase correction element 4.
[0034]
The phase correction element 4 has a liquid crystal cell structure including non-alkaline glass substrates 21 a and 21 b having a thickness of 0.5 mm and a sealing material 22 mainly composed of epoxy, and the glass contained in the sealing material 22. The distance between the liquid crystal cells is 4.6 μm due to the manufactured spacer. The inside of the liquid crystal cell is filled with nematic liquid crystal having a difference between ordinary light refractive index and extraordinary light refractive index of 0.2, and is shown in FIG. 2 by a polyimide alignment film 26 applied to the surfaces of the glass substrates 21a and 21b. Liquid crystal molecules 28 are aligned in the left-right direction on the paper surface.
[0035]
An insulating film 25 and ITO electrodes 24a and 24b are formed between the alignment film 26 and the glass substrate, and the electrodes 24a and 24b are connected to the phase correction element control circuit 10 at the electrode lead-out portion 27 by connection lines. ing. The electrode 24b is a uniform electrode without division, whereas the portion of the electrode 24a facing the electrode 24b is divided into divided electrodes 31 to 35 shown in FIG. 3 by a photolithography technique.
[0036]
The outermost circumference of these divided electrodes is a circle having a diameter of 4 mm, and the phase corresponding to the voltage value applied to each of the divided electrodes 31 to 35 when the light incident on the objective lens is transmitted through the region of this electrode. A shift is received in each area of light. In the present embodiment, a voltage of 2.5 V is always applied to the divided electrode 33, and a voltage of 2 to 3 V is applied to the divided electrodes 31, 32, 34, and 35 in accordance with the tilt amount of the optical disk. A good reproduction signal could be obtained from the optical disk.
[0037]
FIG. 6 is a graph showing the applied voltage dependence of the light transmittance of the phase correction element used in this example, and the gap width W between the divided electrodes in this example is 5 μm. The light transmittance of a conventional gap width of 10 μm as a reference example is also shown. The configuration of the conventional phase correction element is the same as that of the present embodiment, but the gap width between the divided electrodes is different. The light source used for the measurement is a semiconductor laser having a wavelength of 650 nm.
The transmittance in FIG. 6 is shown as a percentage of the amount of incident light at each voltage with respect to the amount of incident light on the objective lens at a voltage of 0V.
[0038]
In the reference example, with a voltage of 2.5 V applied, the transmittance was reduced by about 9% due to scattering in the gap between the divided electrodes. However, in the case of the phase correction element of this example, the reduction was only about 2%. .
[0039]
【The invention's effect】
As described above, in the optical head device of the present invention, by setting the gap width between the divided electrodes on the substrate constituting the liquid crystal phase correction element to 7 μm or less, it is within the range normally used in the liquid crystal element. A high light transmittance can be obtained at an arbitrary applied voltage, and thus a good reproduction signal can be obtained.
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view of a principle configuration of an optical head device of the present invention.
FIG. 2 is a cross-sectional view of a phase correction element in the present invention.
FIG. 3 is a schematic plan view showing an example of an electrode pattern of divided electrodes of a phase correction element in the present invention.
FIG. 4 is a schematic cross-sectional view in the vicinity of a gap between divided electrodes of a phase correction element and a graph showing a substantial refractive index distribution in the present invention, and (a) is a schematic view in the vicinity of a gap between two divided electrodes. It is sectional drawing, (b) is a graph which shows substantial refractive index distribution of the gap vicinity between two division electrodes.
FIG. 5 is a schematic plan view showing an example of an electrode pattern of divided electrodes of a phase correction element in the present invention, where (a) mainly corrects spherical aberration and (b) mainly astigmatism. This is a case where aberration is corrected.
FIG. 6 is a graph showing the applied voltage dependence of the light transmittance of the phase correction element used in this example.
[Explanation of symbols]
1: semiconductor laser 2: polarizing beam splitter 3: collimating lens 4: phase correction element 5: quarter-wave plate 6: objective lens 7: actuator 8: optical disk 9: photodetector 10: phase correction element control circuit 21a, 21b: Glass substrate 22: Sealing material 23: Liquid crystal 24a, 24b: Electrode 25, 42: Insulating film 26, 43: Alignment film 27: Electrode extraction portion 28, 44: Liquid crystal molecules 31-35: Split electrode 40: Glass substrate 41a 41b: transparent electrode 45: lines of electric force

Claims (1)

光源と、光源からの出射光を光記録媒体上に集光させるための対物レンズと、光源と対物レンズとの間に出射光の波面を変化させる位相補正素子とを備えた光ヘッド装置であって、
前記位相補正素子は少なくとも一方が透明な一対の基板に挟持された異方性光学媒質を備えており、
前記異方性光学媒質の常光屈折率と異常光屈折率との差Δnと、前記異方性光学媒質の光透過方向の厚みdとの積Δn・dが0.92μm以上であり、
前記一対の基板の少なくとも透明な一方には間隔をおいて配置された複数の分割電極が形成され、前記分割電極間の間隔が5μm以下であり、さらに前記位相補正素子に波面を変化させるための制御信号を発生する制御信号発生手段を備え、前記分割電極間に0〜6Vの範囲で同一の電圧を印加するときの透過率の差が2%以内であることを特徴とする光ヘッド装置。
An optical head device comprising a light source, an objective lens for condensing the light emitted from the light source on an optical recording medium, and a phase correction element for changing the wavefront of the emitted light between the light source and the objective lens. And
The phase correction element includes an anisotropic optical medium sandwiched between a pair of substrates at least one of which is transparent,
The product Δn · d of the difference Δn between the ordinary light refractive index and the extraordinary light refractive index of the anisotropic optical medium and the thickness d in the light transmission direction of the anisotropic optical medium is 0.92 μm or more,
A plurality of divided electrodes arranged at intervals are formed on at least one transparent side of the pair of substrates, the interval between the divided electrodes is 5 μm or less, and further for changing the wavefront to the phase correction element An optical head device comprising control signal generating means for generating a control signal, wherein a difference in transmittance when applying the same voltage in the range of 0 to 6 V between the divided electrodes is within 2%.
JP21425199A 1999-07-28 1999-07-28 Optical head device Expired - Lifetime JP4085527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21425199A JP4085527B2 (en) 1999-07-28 1999-07-28 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21425199A JP4085527B2 (en) 1999-07-28 1999-07-28 Optical head device

Publications (2)

Publication Number Publication Date
JP2001043549A JP2001043549A (en) 2001-02-16
JP4085527B2 true JP4085527B2 (en) 2008-05-14

Family

ID=16652677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21425199A Expired - Lifetime JP4085527B2 (en) 1999-07-28 1999-07-28 Optical head device

Country Status (1)

Country Link
JP (1) JP4085527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035869B2 (en) 2006-12-28 2011-10-11 Brother Kogyo Kabushiki Kaisha Image reading device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045062A (en) * 2001-07-27 2003-02-14 Asahi Glass Co Ltd Optical head device
JP4321217B2 (en) 2003-10-31 2009-08-26 コニカミノルタオプト株式会社 Optical element and optical pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035869B2 (en) 2006-12-28 2011-10-11 Brother Kogyo Kabushiki Kaisha Image reading device

Also Published As

Publication number Publication date
JP2001043549A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
JP4692489B2 (en) Liquid crystal diffractive lens element and optical head device
JP4479726B2 (en) Liquid crystal lens element and optical head device
JP3620145B2 (en) Optical head device
JP4501611B2 (en) Liquid crystal lens element and optical head device
JP4552556B2 (en) Liquid crystal lens element and optical head device
JP2006512712A (en) Controllable bilayer birefringent optical component
JP4915028B2 (en) Optical head device
JP3624561B2 (en) Optical modulation element and optical head device
US7948854B2 (en) Optical head apparatus and optical information recording/reproducing apparatus
JP4695739B2 (en) Optical element and optical head and optical recording / reproducing apparatus using the same
JP4085527B2 (en) Optical head device
JP4622160B2 (en) Diffraction grating integrated optical rotator and optical head device
JP4082072B2 (en) Optical head device
JP4082085B2 (en) Optical head device
JP4207550B2 (en) Optical head device
US6031809A (en) Aperture-limiting element and optical head utilizing the same
JPWO2004079436A1 (en) Optical attenuator and optical head device
JP2003123304A (en) Optical head device
JP3965843B2 (en) Optical head device
JP2001249315A (en) Optical device for correction of aberration
JP4396341B2 (en) Optical head device
JP2001143309A (en) Optical head device
JP2006099946A (en) Optical head device
JP4882737B2 (en) Liquid crystal element and optical head device
JP2003173564A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5