JP4120024B2 - Improved enzyme substrate - Google Patents

Improved enzyme substrate Download PDF

Info

Publication number
JP4120024B2
JP4120024B2 JP16569097A JP16569097A JP4120024B2 JP 4120024 B2 JP4120024 B2 JP 4120024B2 JP 16569097 A JP16569097 A JP 16569097A JP 16569097 A JP16569097 A JP 16569097A JP 4120024 B2 JP4120024 B2 JP 4120024B2
Authority
JP
Japan
Prior art keywords
enzyme
substrate
salt
solution
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16569097A
Other languages
Japanese (ja)
Other versions
JPH1070998A (en
Inventor
規男 萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP16569097A priority Critical patent/JP4120024B2/en
Publication of JPH1070998A publication Critical patent/JPH1070998A/en
Application granted granted Critical
Publication of JP4120024B2 publication Critical patent/JP4120024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、改良された酵素基質、改良された酵素基質の製造方法、更には改良された酵素基質を含んでなる酵素活性測定用の試薬キット等に関するものであり、例えば酵素免疫測定方法等に使用可能な、安定性の向上した、優れた酵素基質等を提供するものである。
【0002】
【従来の技術】
近年、血清、尿等の生体試料中の微量蛋白質等の含有量等は、抗体や抗原を利用した、いわゆるサンドイッチ法、競合法等の酵素免疫測定を実施することで知ることが可能である。例えばサンドイッチ法と呼ばれる方法においては、測定されるべき蛋白質等に対する固相化モノクローナル抗体(固相化抗体)と、測定されるべき蛋白質等に対する、前記モノクローナル抗体とは異なるモノクローナル抗体であって酵素と結合させた抗体(標識抗体)を使用し、測定されるべき蛋白質等の量に相関した(固相化抗体−蛋白質等−標識抗体)とのサンドイッチ複合体を形成させ、このようなサンドイツチ複合体を形成していない標識抗体を分離した後、サンドイッチ複合体中の酵素量をその活性を基に測定し、最終的に測定されるべき蛋白質等の量を推定する。
【0003】
酵素反応に使用する酵素基質は、溶液として又は凍結乾燥等した粉末状態で提供されることが多い。実際に酵素反応を行うに際しては、該溶液を希釈又は希釈することなしに、或いは該凍結乾燥粉末に水等を加えて溶液としてから使用するが、提供された溶液や粉末状態の酵素基質が劣化していた場合、再現性が悪化する等、酵素活性の測定結果に与える影響は大きい。従って、酵素基質を製造し提供する側から言えば、より長時間に渡って安定で酵素との反応性等が変化しない酵素基質を提供することが必要である。
【0004】
以上に説明した酵素免疫測定では、酵素は目的とする抗原等を測定するための標識として使用されるが、このような場合以外にも、例えば体液中の酵素含有量を、その酵素活性を測定することで知る方法も頻繁に実施されている。
【0005】
【発明が解決しようとする課題】
例えば特開平2−188578号公報には、酵素基質をアルカリ条件下におくことで安定化させることが記載されている。しかし、各種酵素には活性発現に際して最適pHが存在するため、このようにアルカリ条件下で安定化された酵素基質をそのまま酵素活性の測定に使用すると、当該pHが測定しようとする酵素の最適pHと一致しない場合には酵素活性自体が小さくなってしまい、測定精度が低下するという課題を生じる。むろん、このようにアルカリ条件下で安定化された酵素溶液のpHを酵素の最適pHに調整することも可能ではあるが、酵素活性測定に先立ってpH調整という工程が必要となる。
【0006】
また例えば米国特第5143825号公報には、酵素基質溶液へEDTAやEGTA等の金属キレート剤を添加する、酵素溶液の安定化させる方法が記載されている。この方法は、4メチルウンベリフェロンリン酸又はその塩を非酵素的に分解してしまう金属イ才ンを捕捉することでこれらを安定化するものである。この方法においては、しかし、例えば免疫測定に頻繁に使用されるアルカリ性フォオスファターゼ等、その活性の発現にマグネシウムイオンや亜鉛イ才ンが必要とされる酵素基質として4メチルウンベリフェロンリン酸又はその塩を使用する場合、上記キレート剤によって前記イオンも捕捉され、酵素活性が阻害される恐れがあるため、使用に先立ってキレート剤を除去する等の操作が必要となる。
【0007】
なお、酵素基質を凍結乾燥等することにより、溶液として保存等する場合に比べて安定性を向上させることが可能である。しかし、このような凍結乾燥処理を行う場合であっても、更に長期間、更に安定的に酵素基質の品質を保持し得る酵素基質を提供できれば、使用者にとって便利である。即ち、凍結乾燥された酵素基質は使用に先立って適当な溶液に溶解されるため、凍結乾燥された基質であっても溶解後の保存安定性を良好にできれば、大量の貯蔵液を調製し保存しておくことが可能となるからである。
【0008】
【課題を解決するための手段】
本発明者は、より安定な酵素基質を提供すべく鋭意研究を行った結果、クエン酸及び/又はコハク酸を共存させることにより、免疫測定等の分野において標識物質として頻繁に使用されているアルカリ性フォスファターゼ等の加水分解酵素の基質であるリン酸エステルを安定化し得ることを見出し、本発明を完成するに至った。即ち本発明は、20〜25℃、イオン強度が0.1の水溶液中での亜鉛に対するキレート安定度定数(logK)が8〜14である有機酸又はその塩である添加剤、緩衝剤と、アルカリ性フォスファターゼ測定用基質であるリン酸エステルを含む改良された酵素基質であり、かかる酵素基質を含んでなる酵素活性測定用試薬セットや、かかる酵素基質を含んでなる、酵素を標識物質として用いる免疫測定用試薬セットである。
【0009】
また本発明は、20〜25℃、イオン強度が0.1の水溶液中での亜鉛に対するキレート安定度定数(logK)が8〜14である有機酸又はその塩である添加剤、緩衝剤とを添加する、安定化されたリン酸エステルの製造方法である。以下本発明を詳細に説明する。
【0010】
20〜25℃、イオン強度が0.1の水溶液中での亜鉛に対するキレート安定度定数(logK)が8〜14である有機酸又はその塩は、4メチルウンベリフェロンリン酸又はその塩(以下単に4MUPという)等のリン酸エステルを非酵素的に分解する金属イオン等を捕捉することにより、保存中にその品質等が劣化するのを抑制する。かかる条件下でのEDTAの安定度定数(logK)は16.5程度であり、EDTAよりも弱い金属イオン捕捉力の有機酸又はその塩を用いることにより、4MUP等のリン酸エステルを、活性発現のために金属イオンを必要とする酵素用の基質として使用する場合であっても、これら活性発現に必要な金属イオンが捕捉されてしまうという不都合がない。
【0011】
本発明において使用される好適な有機酸又はその塩として、例えば、該定数が11程度のクエン酸やシュウ酸、13程度のコハク酸、或いはこれらのナトリウムやカリウムの塩(水和物を含む)を示すことができる。クエン酸、シュウ酸、コハク酸等の有機酸、或いはこれらの塩は、単独で、或いは2種以上を同時に使用できる。
【0012】
前記有機酸又はその塩は、例えば4MUP等の長期保存に先だって添加することが好ましいが、他にも種々時期に添加できる。例えば4MUPの原液の調製直後やこれを凍結乾燥する場合における凍結乾燥処理直前が特に好ましいが、酵素活性の測定に先だつ添加であれば前記本発明の効果が期待できる。
【0013】
4MUP等のリン酸エステルに添加し、共存させる有機酸又はその塩の量については特に制限されないが、総量で0.1〜1000mMが良く、特に総量で1〜100mMが好ましい。
【0014】
後の実施例からも明らかではあるが、本発明者の知見によれば、クエン酸やコハク酸が共存しても酵素活性の測定に影響はなく、酵素と4MUP等の反応性は変化しない。従って、有機酸又はその塩を添加して製造した4MUP等のリン酸エステルを、例えば酵素免疫測定法等の酵素活性測定用試薬キットの一構成試薬として使用することで、安定化され、再現性の向上が期待できるという高品質の試薬キットを提供することが可能である。
【0015】
【発明の効果】
本発明により、従来と比較して、より長期間に渡って酵素基質を安定化することが可能である。この結果、従来安定性を向上させるために凍結乾燥品として提供されていた4MUP等のリン酸エステルを、同等の安定性を保証しつつ溶液状態で提供することも可能である。従って本発明によれば、凍結乾燥のような煩雑で各工程での制御が厳しい操作を省くことが可能となり、溶液状態の4MUPであっても長期間安定的に保存することか可能とある。これにより、酵素基質溶液を必要時に必要量調製して使用しなくとも再現性に支障をきたすことが無くなり、逐次基質を調製するという不便さを解消することも可能である。むろん、本発明によって製造された4MUP等のリン酸エステル溶液を凍結乾燥等することを排除するものではなく、本発明により提供される酵素基質を凍結乾燥等した場合には、特に該乾燥物を溶解した後の安定性を向上することができる。
【0016】
本発明は、酵素免疫測定法で頻繁に使用されるアルカリ性フォスファターゼの酵素活性測定に多用される4MUP等のリン酸エステルについて顕著に安定性を向上できるため、酵素免疫測定の分野における酵素基質の長期安定性向上のために有用である。
【0017】
【発明の実施の形態】
以下に本発明を更に詳細に説明するために4MPUに関する実施例を記載するが、本発明はこれら実施例に限定されるものではない。
【0018】
実施例1 4MUPの加水分解速度に与えるクエン酸及び/又はコハク酸(クエン酸及び/又はコハク酸イオン)の効果
(酵素基質の製造)
2−アミノ−2一メチル−1−プロパノール(ナカライ化学(株)製)44.46g及びアジ化ナトリウム(ナカライ化学(株)製)1gを容器に秤りとり、これに精製水を加えて約900m1とした。この溶液をpHメーターでモニターしながら濃塩酸を加え、pH10に調整した後、更に精製水を加え液量を1リットルにした。
【0019】
以上のようにして調製した溶液に4−メチルウンベリフェロンリン酸(米国JBL社製、以下4MUPという)256.2mg加え、1mMの4MUP溶液とした(以下この溶液をベース基質という)。
【0020】
ベース基質へマンガン溶液(ナカライ化学(株)製)、亜鉛溶液(ナカライ化学(株)製)、カドミウム溶液(ナカライ化学(株)製)、アルミニウム溶液 (ナカライ化学(株)製)、鉄溶液(ナカライ化学(株)製)、コバルト溶液 (ナカライ化学(株)製)、ニッケル溶液(ナカライ化学(株)製)、マグネシウム溶液(ナカライ化学(株)製)又は鉛溶液(ナカライ化学(株)製)を最終濃度が100ppmとなるように添加し、対照溶液とした。
【0021】
(基質の安定性の測定)
前記のようにして調製した溶液を4、25、35、45℃の保温器へ入れ、一定時間毎に取り出し、希釈液(0.14Mリン酸緩衝液、0.1M EDTA (ナカライ化学(株)製)、0.1%アジ化ナトリウム、pH9.1)にて10倍に希釈した後、蛍光分光光度計(日立F2000型、1cmガラス角セル使用)にて測定した。蛍光分光光度計による測定は、励起波長363nm(バンドパス5nm)、蛍光波長447nm(バンドパス5nm)で室温にて実施し、4MUPが加水分解されて生じる4MU濃度測定のため既知濃度の4MU(希釈液(0.14Mリン酸緩衝液、0.1M EDTA(ナカライ化学(株)製、2ナトリウム・2水和物)、0.1%アジ化ナトリウム、pH9.1)により希釈系列を作製した)を測定したものとの相対蛍光強度の比較にて計算した。
【0022】
45℃で保温した場合の結果を図1〜3に示す。この結果から、ベース基質と比較して対照溶液、特に鉄溶液を添加した対照溶液では4MUの生成が早いこと、即ち、即ちこれら金属イオンの共存により4MUPの安定性が失われる(加水分解される)されることが分かる。また4、25及び35℃で保温した結果(不図示)では、保温温度が低下するに従って生成4MU量は低下し、前記金属イオン共存下での4MUPの非酵素的分解は温度依存性であることも示された。
【0023】
実施例2 4MUPの加水分解における鉄イオン濃度の影響
実施例1と同様にして調製したベース基質及びベース基質に鉄溶液(ナカライ化学(株)製)を最終濃度1、10又は100ppmとなるように添加した対照溶液を実施例1と同様に一定温度で一定時間保温した後、蛍光分光光度計を用いて4MU濃度を測定した。
【0024】
結果を図4〜7に示す。これら図によれば、鉄イオンの濃度に依存して4MUの生成、即ち4MUPの非酵素的加水分解の度合いが増加することが分かる。
【0025】
実施例3 4MUPの加水分解におけるコハク酸又はクエン酸の効果
実施例1と同様にして調製したベース基質、ベース基質に鉄溶液(ナカライ化学(株)製)を最終濃度1又は10ppmとなるように添加した対照溶液、対照溶液に対してコハク酸又はクエン酸を最終濃度が10mMとなるように添加した基質溶液(以下、コハク酸添加基質又はクエン酸添加基質という)を実施例1と同様に一定温度で一定時間保温した後、蛍光分光光度計を用いて4MU濃度を測定した。
【0026】
45℃で保温した場合の結果を図8に示す。この結果から、ベース基質と比較して対照溶液では4MUの生成が増加するものの、クエン酸添加基質又はコハク酸添加基質ではその増加が抑制されていることが分かる。
【0027】
実施例4 アルカリ性フォスファターゼの酵素活性測定
実施例1と同様にして調製したベース基質をもとに、ベース基質に鉄溶液(ナカライ化学(株)製)を最終濃度1ppmとなるように添加した対照溶液、対照溶液に対してコハク酸、クエン酸又はEDTAを最終濃度が10mMとなるように添加した基質溶液(以下、コハク酸添加基質、クエン酸添加基質、EDTA添加基質という)を調製した。
【0028】
各基質溶液1.5mlに対し、市販のアルカリ性フォスファターゼ(シグマ社製)の最終濃度が14g/mlとなるように調製した0.1%ウシ血清アルブミン(シグマ社製)を含む50mM Tris−HCl緩衝液(pH7.5)を20μl添加した後、実施例1と同様にして4MU濃度を測定した。なお、本例の操作は37℃の温度条件下で実施した。
【0029】
結果を図9に示す。図9からは、ベース基質、対照溶液、コハク酸添加基質及びクエン酸添加基質については同様に4MU濃度が増加すること、即ち4MUを産生する酵素活性が阻害されていないことが分かる。一方、EDTA添加基質では、酵素活性が阻害された結果4MUの増加が抑制されていることが分かる。
【0030】
本例の結果と前記実施例1〜3の結果からは、コハク酸等を添加することにより、酵素活性を阻害することなく、4MUP等を安定的に保存可能なことが理解できる。
【0031】
実施例5 TSHの酵素免疫測定(抗体固定化固相ビーズの調製)
ウォーターストランド法により得た平均直径1.4mm、平均長さ1.5mmのエチレン−酢酸ビニル共重合体(EVA)ペレット(東ソー(株)製)を特開平62−197425号公報に記載された方法に従って真球化し、フェライト (東ソー(株)製)を熱融着させ、更にグリシジルメタアクリレート(GMA)でポリマーコーティングした。得られたポリマーコーティングビーズを苛性ソーダ・メタノール溶液で処理して表面層のエポキシ基を開環させジオールにした。以上のようにして得られたビーズに、以下に示すようにマウス抗ヒトTSH (甲状腺刺激ホルモン)モノクローナル抗体(抗体1)を固定化した。まずビーズ100000個に対し、特開平63−15167号公報に記載された方法に従って500mgのN,N’−カルボニルジイミダゾール(CDI:東京化成工業(株)製)を含む乾燥アセトン25mlを窒素雰囲気下、室温下で30分間激しく撹拌して活性化処理を行った。この活性化されたビーズを洗浄後、2.5mg/20mlのマウス抗ヒトTSHモノクローナル抗体を加え、室温にて4時間振とうして抗体を粒子に結合させた。
【0032】
ビーズを洗浄後、1.0%の牛血清アルブミン(BSA)を含むリン酸緩衝液
(pH7.0)を加えブロッキング処理を行った。
【0033】
標識に用いる酵素としてウシ小腸由来のアルカリ性フォスファターゼを使用しこれを常法に従って抗ヒトTSHモノクローナル抗体(抗体2)と結合した。
【0034】
調製した抗体固定化ビーズを用いて、ヒトTSHの酵素免疫測定を行なった。まず抗体固定化ビーズ12個をプラスチック製カップに入れ、これに50μlの標識抗体(抗体2)を加えたものを用意した。これを下部に磁石を有する測定装置(AIA一1200、東ソー(株)製)にセットし、抗原溶液として、0又は48μIU/ml濃度のTSH溶液100μlを添加して酵素免疫反応を開始した。TSHの抗原抗体反応を進行させるために37℃にて40分間、下部の磁石を約83ストローク/分にて振とうさせながらインキュベートし、その後、反応容器を洗浄液にて洗浄した(B/F分離)。
【0035】
洗浄終了後、実施例4で調製した各種の基質溶液100μlを分注して酵素反応を実施した。反応は、37℃にて3、6、10分間、下部の磁石を約83ストローク/分にて振とうさせながらインキュベートさせて実施した。酵素反応停止液である希釈液(0.14Mリン酸緩衝液、0.1M EDTA、0.1%アジ化ナトリウム、pH9.1)500μlを添加して酵素反応を停止させた後、反応が停止された反応用液を実施例1に示した希釈液にて希釈し、実施例1同様に蛍光量を測定した。
【0036】
結果を図10、11に示す。これらの結果からは、ベース基質、クエン酸添加基質及びコハク酸添加基質ではほぼ同じ蛍光量(4MU量)が得られること、即ち(1)クエン酸及び/又はコハク酸の共存が酵素活性を阻害しないこと、及び(2)及びクエン酸及び/又はコハク酸の共存が免疫反応を阻害しないこと、が分かる。
【図面の簡単な説明】
【図1】図1は実施例1の結果中、ベース基質とマンカン、亜鉛、カドミウム溶液を含む対照溶液の結果について示したものである。図中、縦軸は4MU濃度を、横軸は保存時間(時間)を示し、白丸はベース基質の、黒丸はマンガンを含む対照溶液の、黒三角は亜鉛を含む対照溶液の、黒四角はカドミウムを含む対照溶液の結果をそれぞれ示す。
【図2】図2は実施例1の結果中、ベース基質とアルミニウム、鉄、コバルト溶液を含む対照溶液の結果について示したものである。図中、縦軸は4MU濃度を、横軸は保存時間(時間)を示し、白丸はベース基質の、黒丸はアルミニウムを含む対照溶液の、黒三角は鉄を含む対照溶液の、黒四角はコバルトを含む対照溶液の結果をそれぞれ示す。
【図3】図3は実施例1の結果中、ベース基質とニッケル、マグネシウム、鉛溶液を含む対照溶液の結果について示したものである。図中、縦軸は4MU濃度を、横軸は保存時間(時間)を示し、白丸はベース基質の、黒丸はニッケルを含む対照溶液の、黒三角はマグネシウムを含む対照溶液の、黒四角は鉛を含む対照溶液の結果をそれぞれ示す。
【図4】図4は実施例2の結果中、ベース基質又は鉄を含む対照溶液を4℃で保存した結果について示したものである。図中、縦軸は4MU濃度を、横軸は保存時間 (時間)を示し、自丸はベース基質の、黒丸は1ppmの鉄を含む対照溶液の、黒三角は10ppmの鉄を含む対照溶液の、黒四角は100ppmの鉄を含む対照溶液の結果をそれぞれ示す。
【図5】図5は実施例2の結果中、ベース基質又は鉄を含む対照溶液を25℃で保存した結果について示したものである。図中、縦軸は4MU濃度を、横軸は保存時間(時間)を示し、白丸はベース基質の、黒丸は1ppmの鉄を含む対照溶液の、黒三角は10ppmの鉄を含む対照溶液の、黒四角は100ppmの鉄を含む対照溶液の結果をそれぞれ示す。
【図6】図6は実施例2の結果中、ベース基質又は鉄を含む対照溶液を35℃で保存した結果について示したものである。図中、縦軸は4MU濃度を、横軸は保存時間(時間)を示し、白丸はベース基質の、黒丸は1ppmの鉄を含む対照溶液の、4黒三角は10ppmの鉄を含む対照溶液の、黒四角は100ppmの鉄を含む対照溶液の結果をそれぞれ示す。
【図7】図7は実施例2の結果中、ベース基質又は鉄を含む対照溶液を45℃で保存した結果について示したものである。図中、縦軸は4MU濃度を、横軸は保存時間(時間)を示し、白丸はベース基質の、黒丸は1ppmの鉄を含む対照溶液の、黒三角は10ppmの鉄を含む対照溶液の、黒四角は100ppmの鉄を含む対照溶液の結果をそれぞれ示す。
【図8】図8は実施例3の結果中、45℃で保存した結果について示したものである。図中、縦軸は4MU濃度を、横軸は保存時間(時間)を示し、白丸はベース基質の、自三角は鉄を含む対照溶液の、黒丸はコハク酸添加基質の、黒三角はクエン酸添加基質の、黒四角はEDTA添加基質の結果をそれぞれ示す。
【図9】図9は実施例4の結果を示したものである。図中、縦軸は4MU濃度を、横軸は酵素反応時間(秒)を示し、白丸はベース基質の、黒四角は鉄を含む対照溶液の、黒三角はコハク酸添加基質の、白三角はクエン酸添加基質の、黒丸はEDTA添加基質の結果をそれぞれ示す。
【図10】図10は実施例5の結果中、0μIU/ml濃度のTSHを測定した場合の結果について示したものである。図中、縦軸は4MU濃度を、横軸は酵素反応時間(分)を示し、白丸はベース基質の、白三角は鉄を含む対照溶液の、黒丸はコハク酸添加基質の、黒三角はクエン酸添加基質の、黒四角はEDTA添加基質の結果をそれぞれ示す。
【図11】図11は実施例5の結果中、50μIU/ml濃度のTSHを測定した場合の結果について示したものである。図中、縦軸は4MU濃度を、横軸は酵素反応時間(分)を示し、白丸はベース基質の、白三角は鉄を含む対照溶液の、黒丸はコハク酸添加基質の、黒三角はクエン酸添加基質の、黒四角はEDTA添加基質の結果をそれぞれ示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved enzyme substrate, a method for producing an improved enzyme substrate, and a reagent kit for measuring enzyme activity comprising the improved enzyme substrate. The present invention provides an excellent enzyme substrate that can be used and has improved stability.
[0002]
[Prior art]
In recent years, the content of trace proteins and the like in biological samples such as serum and urine can be known by carrying out enzyme immunoassay such as so-called sandwich method and competitive method using antibodies and antigens. For example, in a method called a sandwich method, a solid-phase monoclonal antibody (solid-phase antibody) against a protein or the like to be measured and a monoclonal antibody different from the monoclonal antibody against the protein or the like to be measured, Using the bound antibody (labeled antibody), a sandwich complex with (solid phase antibody-protein etc.-labeled antibody) correlated with the amount of protein to be measured is formed, and such a Santiago complex After the labeled antibody that does not form is separated, the amount of enzyme in the sandwich complex is measured based on its activity, and the amount of protein or the like to be finally measured is estimated.
[0003]
The enzyme substrate used for the enzyme reaction is often provided as a solution or in a powder state such as freeze-drying. When actually carrying out the enzyme reaction, the solution is used without diluting or diluting, or by adding water or the like to the lyophilized powder, but the solution or powdered enzyme substrate is deteriorated. In such a case, the influence on the measurement result of the enzyme activity is large, such as deterioration of reproducibility. Therefore, it is necessary to provide an enzyme substrate that is stable for a longer time and does not change its reactivity with the enzyme from the side of producing and providing the enzyme substrate.
[0004]
In the enzyme immunoassay described above, the enzyme is used as a label for measuring the target antigen or the like. In addition to this, for example, the enzyme content in a body fluid is measured for the enzyme activity. The method of knowing by doing is also frequently implemented.
[0005]
[Problems to be solved by the invention]
For example, JP-A-2-188578 describes that an enzyme substrate is stabilized by placing it under alkaline conditions. However, since various enzymes have an optimum pH at the time of activity expression, when an enzyme substrate stabilized in this way under alkaline conditions is used as it is for the measurement of enzyme activity, this pH is the optimum pH of the enzyme to be measured. If it does not match, the enzyme activity itself becomes small, resulting in a problem that the measurement accuracy is lowered. Of course, it is possible to adjust the pH of the enzyme solution thus stabilized under alkaline conditions to the optimum pH of the enzyme, but a step of pH adjustment is required prior to enzyme activity measurement.
[0006]
For example, US Pat. No. 5,143,825 discloses a method for stabilizing an enzyme solution by adding a metal chelating agent such as EDTA or EGTA to the enzyme substrate solution. This method stabilizes these metals by capturing the metal ions that cause non-enzymatic degradation of 4-methylumbelliferone phosphate or its salt. In this method, however, 4-methylumbelliferone phosphate or the like as an enzyme substrate that requires magnesium ions or zinc ions to express its activity, such as alkaline phosphatase frequently used in immunoassays, is used. When the salt is used, the ions are also captured by the chelating agent, and the enzyme activity may be inhibited. Therefore, an operation such as removing the chelating agent is required prior to use.
[0007]
In addition, it is possible to improve stability by freeze-drying the enzyme substrate or the like as compared with the case where it is stored as a solution. However, even in the case of performing such lyophilization treatment, it is convenient for the user if an enzyme substrate that can maintain the quality of the enzyme substrate more stably for a longer period of time can be provided. In other words, since the lyophilized enzyme substrate is dissolved in an appropriate solution prior to use, a large amount of stock solution can be prepared and stored even if the lyophilized substrate has good storage stability after dissolution. It is possible to keep it.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to provide a more stable enzyme substrate, the present inventor has found that alkalinity frequently used as a labeling substance in fields such as immunoassay by coexisting citric acid and / or succinic acid. The inventors have found that a phosphate ester that is a substrate for a hydrolase such as phosphatase can be stabilized, and have completed the present invention. That is, the present invention relates to an additive which is an organic acid or a salt thereof having a chelate stability constant (log K) for zinc in an aqueous solution of 20 to 25 ° C. and an ionic strength of 0.1, and a buffer. a improved enzyme substrate containing phosphoric acid ester and an alkaline phosphatase measuring substrate, and the enzyme activity measuring reagent set comprising such enzyme substrate, comprising such an enzyme substrate, an enzyme as a labeling substance This is a reagent set for immunoassay to be used.
[0009]
The present invention also provides an additive which is an organic acid or a salt thereof having a chelate stability constant (log K) of 8 to 14 for zinc in an aqueous solution at 20 to 25 ° C. and an ionic strength of 0.1 , a buffer, Is a method for producing a stabilized phosphate ester. The present invention will be described in detail below.
[0010]
An organic acid or salt thereof having a chelate stability constant (log K) for zinc in an aqueous solution of 20 to 25 ° C. and an ionic strength of 0.1 is 4 methylumbelliferone phosphoric acid or a salt thereof By capturing a metal ion or the like that non-enzymatically degrades a phosphate ester such as 4MUP) , the quality and the like are prevented from deteriorating during storage. Under such conditions, the stability constant (log K) of EDTA is about 16.5. By using an organic acid or a salt thereof having a metal ion scavenging ability weaker than that of EDTA, phosphate esters such as 4MUP are activated. Therefore, there is no inconvenience that these metal ions necessary for the expression of activity are captured even when used as a substrate for an enzyme that requires metal ions.
[0011]
Examples of suitable organic acids or salts thereof used in the present invention include, for example, citric acid and oxalic acid having a constant of about 11, succinic acid having a constant of 13, or salts of these sodium and potassium (including hydrates). Can be shown. Organic acids such as citric acid, oxalic acid and succinic acid, or salts thereof can be used alone or in combination of two or more.
[0012]
The organic acid or a salt thereof is preferably added prior to long-term storage such as 4MUP, but can be added at various other times. For example, immediately after preparation of a 4 MUP stock solution or immediately before lyophilization treatment when lyophilizing it, the effect of the present invention can be expected if added prior to measurement of enzyme activity.
[0013]
The amount of the organic acid or a salt thereof added to a phosphate ester such as 4MUP and coexisting is not particularly limited, but is preferably 0.1 to 1000 mM in total amount, and particularly preferably 1 to 100 mM in total amount.
[0014]
As is clear from the following examples, according to the knowledge of the present inventor, the presence of citric acid or succinic acid does not affect the measurement of enzyme activity, and the reactivity of the enzyme with 4MUP or the like does not change. Therefore, the phosphate ester such as 4MUP produced by adding an organic acid or its salt is stabilized and reproducible by using it as a component reagent of an enzyme activity measurement reagent kit such as an enzyme immunoassay. It is possible to provide a high-quality reagent kit that can be expected to be improved.
[0015]
【The invention's effect】
According to the present invention, it is possible to stabilize the enzyme substrate for a longer period of time compared to the conventional case. As a result, it is also possible to provide a phosphate ester such as 4MUP, which has been conventionally provided as a lyophilized product in order to improve stability, in a solution state while assuring equivalent stability. Therefore, according to the present invention, it is possible to omit complicated operations such as freeze-drying and severe control in each step, and even a 4 MUP in a solution state can be stored stably for a long period of time. This eliminates the problem of reproducibility without preparing and using the necessary amount of the enzyme substrate solution when necessary, and can eliminate the inconvenience of sequentially preparing the substrate. Of course, this does not exclude lyophilization of a phosphate ester solution such as 4MUP produced according to the present invention, and when the enzyme substrate provided by the present invention is lyophilized, the dried product is particularly preferred. Stability after dissolution can be improved.
[0016]
The present invention can remarkably improve the stability of phosphate esters such as 4MUP frequently used for enzyme activity measurement of alkaline phosphatase frequently used in enzyme immunoassay. Useful for stability improvement.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In order to describe the present invention in more detail, examples relating to 4MPU will be described below, but the present invention is not limited to these examples.
[0018]
Example 1 Effect of citric acid and / or succinic acid (citric acid and / or succinic ion) on hydrolysis rate of 4MUP (production of enzyme substrate)
Weigh 44.46 g of 2-amino-2-monomethyl-1-propanol (manufactured by Nacalai Chemical Co., Ltd.) and 1 g of sodium azide (manufactured by Nacalai Chemical Co., Ltd.) into a container, add purified water to this, It was 900 m1. Concentrated hydrochloric acid was added while monitoring this solution with a pH meter to adjust to pH 10, and then purified water was added to make the volume 1 liter.
[0019]
To the solution prepared as described above, 256.2 mg of 4-methylumbelliferone phosphate (manufactured by JBL, USA, hereinafter referred to as 4MUP) was added to form a 1 mM 4MUP solution (hereinafter, this solution is referred to as a base substrate).
[0020]
Manganese solution (Nacalai Chemical Co., Ltd.), zinc solution (Nacalai Chemical Co., Ltd.), cadmium solution (Nacalai Chemical Co., Ltd.), aluminum solution (Nacalai Chemical Co., Ltd.), iron solution (base substrate) Nacalai Chemical Co., Ltd.), Cobalt Solution (Nacalai Chemical Co., Ltd.), Nickel Solution (Nacalai Chemical Co., Ltd.), Magnesium Solution (Nacalai Chemical Co., Ltd.) or Lead Solution (Nacalai Chemical Co., Ltd.) ) Was added to a final concentration of 100 ppm, and used as a control solution.
[0021]
(Measurement of substrate stability)
The solution prepared as described above is put into a 4, 25, 35, and 45 ° C. incubator, taken out at regular intervals, and diluted (0.14 M phosphate buffer, 0.1 M EDTA (Nacalai Chemical Co., Ltd.). Product), 0.1% sodium azide, pH 9.1), diluted 10 times, and then measured with a fluorescence spectrophotometer (Hitachi F2000 model, using 1 cm glass square cell). The measurement with a fluorescence spectrophotometer is carried out at an excitation wavelength of 363 nm (bandpass 5 nm) and a fluorescence wavelength of 447 nm (bandpass 5 nm) at room temperature, and 4MU (diluted) of a known concentration is used to measure 4MU concentration generated by hydrolysis of 4MUP. Solution (0.14M phosphate buffer solution, 0.1M EDTA (manufactured by Nacalai Chemical Co., Ltd., disodium dihydrate), 0.1% sodium azide, pH 9.1) was used to prepare a dilution series) Was calculated by comparing the relative fluorescence intensity with the measured value.
[0022]
The result at the time of hold | maintaining at 45 degreeC is shown to FIGS. From this result, compared to the base substrate, the control solution, particularly the control solution to which the iron solution was added, produced 4MU faster, that is, the coexistence of these metal ions lost the stability of 4MUP (hydrolyzed). ) In addition, as a result of incubation at 4, 25 and 35 ° C. (not shown), the amount of 4MU produced decreases as the incubation temperature decreases, and non-enzymatic degradation of 4MUP in the presence of the metal ions is temperature dependent. Was also shown.
[0023]
Example 2 Influence of Iron Ion Concentration on Hydrolysis of 4MUP A base substrate prepared in the same manner as in Example 1 and an iron solution (manufactured by Nacalai Chemical Co., Ltd.) on the base substrate to a final concentration of 1, 10 or 100 ppm The added control solution was kept at a constant temperature for a certain time in the same manner as in Example 1, and then the 4MU concentration was measured using a fluorescence spectrophotometer.
[0024]
The results are shown in FIGS. According to these figures, it can be seen that the production of 4MU, that is, the degree of non-enzymatic hydrolysis of 4MUP increases depending on the iron ion concentration.
[0025]
Example 3 Effect of succinic acid or citric acid on hydrolysis of 4MUP A base substrate prepared in the same manner as in Example 1, and an iron solution (manufactured by Nacalai Chemical Co., Ltd.) as the base substrate to a final concentration of 1 or 10 ppm. A substrate solution (hereinafter referred to as a succinic acid-added substrate or a citric acid-added substrate) in which succinic acid or citric acid is added to the control solution to a final concentration of 10 mM is constant as in Example 1. After keeping the temperature constant for a certain time, the 4MU concentration was measured using a fluorescence spectrophotometer.
[0026]
The results when kept at 45 ° C. are shown in FIG. From this result, it can be seen that although the production of 4MU is increased in the control solution compared to the base substrate, the increase is suppressed in the citrate-added substrate or succinate-added substrate.
[0027]
Example 4 Measurement of Enzymatic Activity of Alkaline Phosphatase Based on a base substrate prepared in the same manner as in Example 1, a control solution in which an iron solution (manufactured by Nacalai Chemical Co., Ltd.) was added to the base substrate to a final concentration of 1 ppm. A substrate solution in which succinic acid, citric acid or EDTA was added to the control solution to a final concentration of 10 mM (hereinafter referred to as succinic acid-added substrate, citric acid-added substrate, and EDTA-added substrate) was prepared.
[0028]
50 mM Tris-HCl buffer containing 0.1% bovine serum albumin (manufactured by Sigma) prepared so that the final concentration of commercially available alkaline phosphatase (manufactured by Sigma) is 14 g / ml with respect to 1.5 ml of each substrate solution. After adding 20 μl of the solution (pH 7.5), the 4MU concentration was measured in the same manner as in Example 1. The operation of this example was performed under a temperature condition of 37 ° C.
[0029]
The results are shown in FIG. From FIG. 9, it can be seen that the 4MU concentration is similarly increased for the base substrate, the control solution, the succinate-added substrate, and the citrate-added substrate, that is, the enzyme activity producing 4MU is not inhibited. On the other hand, with the EDTA-added substrate, it can be seen that the increase in 4MU is suppressed as a result of inhibition of the enzyme activity.
[0030]
From the results of this example and the results of Examples 1 to 3, it can be understood that 4 MUP and the like can be stably stored by adding succinic acid or the like without inhibiting the enzyme activity.
[0031]
Example 5 Enzyme immunoassay of TSH (Preparation of antibody-immobilized solid phase beads)
An ethylene-vinyl acetate copolymer (EVA) pellet (manufactured by Tosoh Corporation) having an average diameter of 1.4 mm and an average length of 1.5 mm obtained by the water strand method is described in JP-A-62-197425. And ferrite (manufactured by Tosoh Corporation) was heat-sealed, and polymer coating was further performed with glycidyl methacrylate (GMA). The obtained polymer-coated beads were treated with a caustic soda / methanol solution to ring-open the epoxy groups of the surface layer to form diols. A mouse anti-human TSH (thyroid stimulating hormone) monoclonal antibody (antibody 1) was immobilized on the beads obtained as described above. First, 25 ml of dry acetone containing 500 mg of N, N′-carbonyldiimidazole (CDI: manufactured by Tokyo Chemical Industry Co., Ltd.) was added to 100000 beads according to the method described in JP-A-63-15167 under a nitrogen atmosphere. The activation treatment was performed by vigorously stirring at room temperature for 30 minutes. After washing the activated beads, 2.5 mg / 20 ml of mouse anti-human TSH monoclonal antibody was added and shaken at room temperature for 4 hours to bind the antibody to the particles.
[0032]
After washing the beads, a phosphate buffer (pH 7.0) containing 1.0% bovine serum albumin (BSA) was added for blocking treatment.
[0033]
Bovine small intestine-derived alkaline phosphatase was used as an enzyme for labeling, and this was conjugated with an anti-human TSH monoclonal antibody (antibody 2) according to a conventional method.
[0034]
Using the prepared antibody-immobilized beads, an enzyme immunoassay for human TSH was performed. First, 12 antibody-immobilized beads were placed in a plastic cup, and 50 μl of labeled antibody (antibody 2) was added thereto. This was set in a measuring apparatus (AIA 1200, manufactured by Tosoh Corporation) having a magnet at the bottom, and 100 μl of a 0 or 48 μIU / ml TSH solution was added as an antigen solution to start an enzyme immunoreaction. In order to advance the antigen-antibody reaction of TSH, incubation was performed at 37 ° C. for 40 minutes while shaking the lower magnet at about 83 strokes / minute, and then the reaction vessel was washed with a washing solution (B / F separation). ).
[0035]
After washing, 100 μl of various substrate solutions prepared in Example 4 were dispensed to carry out enzyme reaction. The reaction was carried out by incubating at 37 ° C. for 3, 6 and 10 minutes while shaking the lower magnet at about 83 strokes / minute. The enzyme reaction was stopped after adding 500 μl of a diluent (0.14 M phosphate buffer, 0.1 M EDTA, 0.1% sodium azide, pH 9.1) as an enzyme reaction stop solution, and then the reaction was stopped. The obtained reaction solution was diluted with the diluent shown in Example 1, and the amount of fluorescence was measured in the same manner as in Example 1.
[0036]
The results are shown in FIGS. From these results, it can be seen that the base substrate, the citrate-added substrate and the succinate-added substrate give almost the same amount of fluorescence (4 MU amount), that is, (1) coexistence of citric acid and / or succinic acid inhibits enzyme activity. And (2) and the coexistence of citric acid and / or succinic acid does not inhibit the immune response.
[Brief description of the drawings]
FIG. 1 shows the results of a control solution containing a base substrate and a mancan, zinc and cadmium solution among the results of Example 1. FIG. In the figure, the vertical axis indicates the 4MU concentration, the horizontal axis indicates the storage time (hours), the white circle is the base substrate, the black circle is the control solution containing manganese, the black triangle is the control solution containing zinc, and the black square is cadmium. The results of the control solutions containing are shown respectively.
FIG. 2 shows the results of a control solution containing a base substrate and an aluminum, iron, and cobalt solution among the results of Example 1. In the figure, the vertical axis indicates the 4MU concentration, the horizontal axis indicates the storage time (hours), the white circle is the base substrate, the black circle is the control solution containing aluminum, the black triangle is the control solution containing iron, and the black square is cobalt. The results of the control solutions containing are shown respectively.
FIG. 3 shows the results of a control solution containing a base substrate and nickel, magnesium, and lead solutions among the results of Example 1. In the figure, the vertical axis indicates the 4MU concentration, the horizontal axis indicates the storage time (hours), the white circle is the base substrate, the black circle is the control solution containing nickel, the black triangle is the control solution containing magnesium, and the black square is the lead The results of the control solutions containing are shown respectively.
FIG. 4 shows the results of storing a base substrate or a control solution containing iron at 4 ° C. among the results of Example 2. In the figure, the vertical axis indicates the 4MU concentration, the horizontal axis indicates the storage time (hours), the self-circle indicates the base substrate, the black circle indicates the control solution containing 1 ppm iron, and the black triangle indicates the control solution containing 10 ppm iron. The black squares show the results of the control solutions containing 100 ppm of iron, respectively.
FIG. 5 shows the results of storing a base substrate or a control solution containing iron at 25 ° C. among the results of Example 2. In the figure, the vertical axis shows the 4MU concentration, the horizontal axis shows the storage time (hours), the white circle is the base substrate, the black circle is the control solution containing 1 ppm iron, and the black triangle is the control solution containing 10 ppm iron. The black squares show the results of the control solution containing 100 ppm of iron, respectively.
FIG. 6 shows the results of storage of a control solution containing a base substrate or iron at 35 ° C. among the results of Example 2. In the figure, the vertical axis shows the 4MU concentration, the horizontal axis shows the storage time (hours), the white circle is the base substrate, the black circle is the control solution containing 1 ppm iron, and the 4 black triangle is the control solution containing 10 ppm iron. The black squares show the results of the control solutions containing 100 ppm of iron, respectively.
FIG. 7 shows the results of storing a base substrate or a control solution containing iron at 45 ° C. among the results of Example 2. In the figure, the vertical axis shows the 4MU concentration, the horizontal axis shows the storage time (hours), the white circle is the base substrate, the black circle is the control solution containing 1 ppm iron, and the black triangle is the control solution containing 10 ppm iron. The black squares show the results of the control solution containing 100 ppm of iron, respectively.
FIG. 8 shows the results of storage at 45 ° C. among the results of Example 3. In the figure, the vertical axis indicates the 4MU concentration, the horizontal axis indicates the storage time (hours), the white circle indicates the base substrate, the self triangle indicates the iron-containing control solution, the black circle indicates the succinic acid-added substrate, and the black triangle indicates citric acid. The black squares of the added substrate indicate the results of the EDTA added substrate, respectively.
FIG. 9 shows the results of Example 4. In the figure, the vertical axis indicates the 4MU concentration, the horizontal axis indicates the enzyme reaction time (seconds), the white circle is the base substrate, the black square is the control solution containing iron, the black triangle is the succinic acid-added substrate, and the white triangle is The black circles of the citrate-added substrate indicate the results of the EDTA-added substrate, respectively.
FIG. 10 shows the results of measuring TSH at a concentration of 0 μIU / ml among the results of Example 5. In the figure, the vertical axis indicates the 4MU concentration, the horizontal axis indicates the enzyme reaction time (minutes), the white circle is the base substrate, the white triangle is the control solution containing iron, the black circle is the succinic acid-added substrate, and the black triangle is the quencher. The black squares of the acid-added substrate indicate the results of the EDTA-added substrate, respectively.
FIG. 11 shows the result of measuring TSH at a concentration of 50 μIU / ml among the results of Example 5. In the figure, the vertical axis indicates the 4MU concentration, the horizontal axis indicates the enzyme reaction time (minutes), the white circle is the base substrate, the white triangle is the control solution containing iron, the black circle is the succinic acid-added substrate, and the black triangle is the quencher. The black squares of the acid-added substrate indicate the results of the EDTA-added substrate, respectively.

Claims (11)

20〜25℃、イオン強度が0.1の水溶液中での亜鉛に対するキレート安定度定数(logK)が8〜14である有機酸又はその塩である添加剤と、緩衝剤と、アルカリ性フォスファターゼ測定用基質であるリン酸エステルとを含む改良された酵素基質組成物An additive which is an organic acid or a salt thereof having a chelate stability constant (log K) for zinc in an aqueous solution of 20 to 25 ° C. and an ionic strength of 0.1, a buffer, and alkaline phosphatase measurement An improved enzyme substrate composition comprising a substrate phosphate ester. 前記有機酸又はその塩である添加剤が、クエン酸及び/又はコハク酸、或いはそれらの塩である請求項1の酵素基質組成物The enzyme substrate composition according to claim 1, wherein the additive which is an organic acid or a salt thereof is citric acid and / or succinic acid, or a salt thereof . 有機酸又はその塩である添加剤の含有量が0.1〜1000mMである請求項1又は2の酵素基質。The enzyme substrate according to claim 1 or 2, wherein the content of the additive which is an organic acid or a salt thereof is 0.1 to 1000 mM. アルカリ性フォスファターゼ測定用基質であるリン酸エステルが4メチルウンベリフェロンリン酸又はその塩である請求項1の酵素基質組成物The enzyme substrate composition according to claim 1, wherein the phosphate ester which is a substrate for measuring alkaline phosphatase is 4-methylumbelliferone phosphate or a salt thereof . 水溶液である請求項1〜4いずれかの項に記載の酵素基質組成物The enzyme substrate composition according to any one of claims 1 to 4, which is an aqueous solution. 請求項1〜5いずれかの項に記載の酵素基質組成物を含んでなる酵素活性測定用試薬セット。A reagent set for measuring enzyme activity comprising the enzyme substrate composition according to any one of claims 1 to 5. 請求項1〜6いずれかの項に記載の酵素基質組成物を含んでなる、酵素を標識物質として用いる免疫測定用試薬セット。A reagent set for immunoassay using the enzyme as a labeling substance, comprising the enzyme substrate composition according to any one of claims 1 to 6. 20〜25℃、イオン強度が0.1の水溶液中での亜鉛に対するキレート安定度定数(logK)が8〜14である有機酸又はその塩である添加剤と、緩衝剤とを添加する、安定化されたリン酸エステルを含む組成物の製造方法。Addition of an additive which is an organic acid or salt thereof having a chelate stability constant (log K) to zinc in an aqueous solution of 20 to 25 ° C. and an ionic strength of 0.1 and a buffer, and a stability A method for producing a composition comprising a modified phosphate ester. 前記有機酸又はその塩である添加剤がクエン酸及び/又はコハク酸、或いはそれらの塩である請求項8の安定化されたリン酸エステルを含む組成物の製造方法。The method for producing a composition containing a stabilized phosphate according to claim 8, wherein the additive which is an organic acid or a salt thereof is citric acid and / or succinic acid, or a salt thereof. 0.1〜1000mMの有機酸又はその塩である添加剤を添加する請求項8又は9の製造方法。The manufacturing method of Claim 8 or 9 which adds the additive which is 0.1-1000 mM organic acid or its salt. アルカリ性フォスファターゼ測定用基質であるリン酸エステルが4メチルウンベリフェロンリン酸又はその塩である請求項10の製造方法。The method according to claim 10, wherein the phosphate ester as a substrate for measuring alkaline phosphatase is 4-methylumbelliferone phosphate or a salt thereof.
JP16569097A 1996-06-24 1997-06-23 Improved enzyme substrate Expired - Fee Related JP4120024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16569097A JP4120024B2 (en) 1996-06-24 1997-06-23 Improved enzyme substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-162852 1996-06-24
JP16285296 1996-06-24
JP16569097A JP4120024B2 (en) 1996-06-24 1997-06-23 Improved enzyme substrate

Publications (2)

Publication Number Publication Date
JPH1070998A JPH1070998A (en) 1998-03-17
JP4120024B2 true JP4120024B2 (en) 2008-07-16

Family

ID=26488491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16569097A Expired - Fee Related JP4120024B2 (en) 1996-06-24 1997-06-23 Improved enzyme substrate

Country Status (1)

Country Link
JP (1) JP4120024B2 (en)

Also Published As

Publication number Publication date
JPH1070998A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
CN101949942A (en) Kit for quantitatively testing free triiodothyronine and preparation method thereof
CN108445230B (en) Procalcitonin chemiluminescence detection reagent based on nano antibody and detection method
US4543325A (en) Process and reagent for the determination of creatinine
JPH0667960B2 (en) Method for separating analyte bound to binding protein and sample preparation reagent for measuring vitamin B12 in serum
JP4120024B2 (en) Improved enzyme substrate
WO1993011259A1 (en) Method and reagent for determination of serum iron or unsaturated iron binding capacity
US5895819A (en) Enzyme substrate
EP2660603B1 (en) Immunological assay method
CN114152740A (en) Enzymatic chemiluminescence kit, preparation method and detection method
JP2004012434A (en) Method for measuring pepsinogen and measuring kit
JP3804102B2 (en) Improved process for producing enzyme substrates
JPH09322769A (en) Improved enzymatic substrate
JPS629862B2 (en)
CN102628871B (en) Liquid reagent of thyroid hormone-immobilized carrier and use thereof
JPH07198721A (en) Buffer solution for immunological measurement
JP4455688B2 (en) An assay surface that allows an analyte release step
US5068179A (en) Process for the determination of a component of an immune reaction in a plasma sample
CN115993460B (en) Alkaline phosphatase-labeled myoglobin antibody diluent and preparation method thereof
CN115541891B (en) Allergen specificity IgE antibody detection kit and preparation method thereof
JPS5852640B2 (en) Method for measuring peroxidase activity
JPS643477B2 (en)
JP2577431B2 (en) Method for measuring prostatic acid phosphatase
EP0359138B1 (en) Stabilization and reduction of background fluorescence of hydroxy coumarin ester enzyme substrates
JP4022680B2 (en) Method for producing a highly sensitive immunoassay reagent
JP5143046B2 (en) Test substance measurement method and kit for carrying out the measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees