JP4119814B2 - Steel material with excellent weather resistance - Google Patents
Steel material with excellent weather resistance Download PDFInfo
- Publication number
- JP4119814B2 JP4119814B2 JP2003336914A JP2003336914A JP4119814B2 JP 4119814 B2 JP4119814 B2 JP 4119814B2 JP 2003336914 A JP2003336914 A JP 2003336914A JP 2003336914 A JP2003336914 A JP 2003336914A JP 4119814 B2 JP4119814 B2 JP 4119814B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- iron
- less
- steel material
- weather resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 52
- 239000010959 steel Substances 0.000 title claims description 52
- 239000000463 material Substances 0.000 title claims description 49
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 203
- 239000013078 crystal Substances 0.000 claims description 56
- 229910052742 iron Inorganic materials 0.000 claims description 56
- 239000002245 particle Substances 0.000 claims description 32
- 238000000576 coating method Methods 0.000 claims description 30
- 239000011248 coating agent Substances 0.000 claims description 26
- 125000004429 atom Chemical group 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 19
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 17
- 229910002588 FeOOH Inorganic materials 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 description 66
- 238000005260 corrosion Methods 0.000 description 66
- 239000010410 layer Substances 0.000 description 48
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 46
- 238000000034 method Methods 0.000 description 45
- 229910000870 Weathering steel Inorganic materials 0.000 description 23
- 238000012360 testing method Methods 0.000 description 22
- 238000009826 distribution Methods 0.000 description 21
- 239000000654 additive Substances 0.000 description 20
- 230000000996 additive effect Effects 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000460 chlorine Substances 0.000 description 16
- 238000005259 measurement Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 230000004580 weight loss Effects 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 230000005291 magnetic effect Effects 0.000 description 9
- 230000001681 protective effect Effects 0.000 description 9
- 229910006540 α-FeOOH Inorganic materials 0.000 description 8
- 238000004813 Moessbauer spectroscopy Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 229910052596 spinel Inorganic materials 0.000 description 6
- 239000011029 spinel Substances 0.000 description 6
- 238000009736 wetting Methods 0.000 description 6
- 229910003153 β-FeOOH Inorganic materials 0.000 description 6
- 229910006299 γ-FeOOH Inorganic materials 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 5
- 229910052598 goethite Inorganic materials 0.000 description 5
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000001669 Mossbauer spectrum Methods 0.000 description 3
- NJFMNPFATSYWHB-UHFFFAOYSA-N ac1l9hgr Chemical compound [Fe].[Fe] NJFMNPFATSYWHB-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 238000000218 anomalous X-ray scattering Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012916 structural analysis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 230000005303 antiferromagnetism Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Landscapes
- Chemically Coating (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、耐候性に優れた鋼材に関し、さらに詳しくは、大気腐食環境中で安定な密着さび層を有する耐候性に優れた鋼材に関するものである。 The present invention relates to a steel material excellent in weather resistance, and more particularly to a steel material excellent in weather resistance having a stable adhesion rust layer in an atmospheric corrosion environment.
いわゆる耐候性鋼とは、母材中にCu、Ni、Cr、P等の元素を少量添加した鋼材であり、数年以上の期間、大気中に暴露することによって、地鉄に密着し、大気腐食に対して地鉄層を保護する機能を有する保護性さび層が地鉄直上に形成されるため、塗装等の耐食処理作業が不要であり、橋梁などの構造材料として使用されている。しかし、飛来塩分量が多い地域では、Cl-イオンの進入を保護性さび層により防止することが困難である上、保護性さび層の形成が困難であるという問題があった。 The so-called weathering steel is a steel material in which a small amount of elements such as Cu, Ni, Cr, and P is added to the base material. Since a protective rust layer having a function of protecting the steel layer against corrosion is formed directly on the steel plate, it is not necessary to perform corrosion-resistant treatment such as painting, and is used as a structural material such as a bridge. However, in regions where the amount of incoming salt is large, it is difficult to prevent the entry of Cl - ions by the protective rust layer, and it is difficult to form the protective rust layer.
本来、耐食処理作業が不要な耐候性鋼の表面層に要求される機能は、それ自体が防食機能を有することである。防食機能とは、表面防食層である保護さび層形成後に地鉄がそれ以上腐食することを防ぐ機能であるから、表面防食層の第一の要件としては、その層が腐食の原因となるCl、O、H等の元素の外部環境からの侵入を防止できる環境遮断機能を有することである。第二の要件としては、使用環境下で安定であって変化しないこと、すなわち環境安定性を有することである。環境遮断性を有するためには、まず、さび自体が緻密で、環境からの侵入が予想される元素が透過しにくい構造を有することが必要である。特に、飛来塩分量が多い地域では、鋼材の表面が、微細粒で緻密であるだけのさび層で覆われているだけでは、Cl-イオンの進入を防止することは困難であり、保護性さび層の形成が困難であるという問題があった。 Originally, the function required for the surface layer of the weathering steel that does not require the anticorrosion treatment work is that it has an anticorrosion function. The anticorrosion function is a function for preventing further corrosion of the base iron after the formation of the protective rust layer, which is the surface anticorrosion layer. Therefore, the first requirement for the surface anticorrosion layer is that the layer causes corrosion. , O, H, etc., having an environment blocking function capable of preventing intrusion from the external environment. The second requirement is that it is stable and does not change under the usage environment, that is, has environmental stability. In order to have environmental barrier properties, it is first necessary to have a structure in which the rust itself is dense and the elements that are expected to enter from the environment are not easily transmitted. In particular, in areas where the amount of incoming salt is large, it is difficult to prevent the entry of Cl - ions by simply covering the surface of the steel material with a rust layer that is fine and dense, and protective rust. There was a problem that formation of the layer was difficult.
この問題を解決するために、従来から、種々の試みがなされてきた。特開平10−251797号公報(特許文献1)には、質量%で、C:0.15%以下、Si:0.7%以下、Mn:0.2〜1.5%、P:0.03〜0.15%、S:0.02%以下、Al:0.01〜0.1%、Cr:0.1%以下、Ni:0.4〜4%、Cu:0.4%以下、Mo:0.05〜1%を含有し、さらに、Sn:0.01〜0.5%、Sb:0.01〜3%のうちの1種または2種を含有し、残部がFeおよび不可避的不純物からなる耐候性に優れた溶接構造用鋼が開示されている。 In order to solve this problem, various attempts have been made conventionally. In JP-A-10-251797 (Patent Document 1), C: 0.15% or less, Si: 0.7% or less, Mn: 0.2 to 1.5%, P: 0.005% by mass. 03 to 0.15%, S: 0.02% or less, Al: 0.01 to 0.1%, Cr: 0.1% or less, Ni: 0.4 to 4%, Cu: 0.4% or less , Mo: 0.05 to 1%, Sn: 0.01 to 0.5%, Sb: 0.01 to 3% of one or two types, the balance is Fe and A welded structural steel made of inevitable impurities and having excellent weather resistance is disclosed.
ここでは、MoおよびNiは耐食性向上に重要な添加元素であり、Moは錆の地鉄界面付近に富化し、地鉄界面付近のさびの稠密性を高め、水分や塩分等の腐食因子が鋼表面に接触するのを防止する効果があるとしているものの、外部からさび層へのCl-イオンの充分な進入防止はできていない。特許文献1の方法は、Mo等の添加元素により生じるイオン等が地鉄界面付近のさびに付着することにより、外部からのCl-イオンと地鉄界面との接触を防ぐことを期待しているものであるが、さび自身が外部からのCl-イオンの進入を防ぐための十分な機能を有していないため安定して塩化腐食性を向上させることは困難である。
Here, Mo and Ni are additive elements that are important for improving corrosion resistance, Mo is enriched near the rust metal interface, and the rust density near the metal interface is increased, and corrosion factors such as moisture and salt are present in steel. although it is to be effective to prevent the contact with the surface, Cl from outside to rust layer - sufficient intrusion preventing ions are not able to. The method of
さらに、鋼板表面のさび層中に粒子体積3×10-24 m3 以下の極微細粒を10〜30%の体積分率で含有する耐候性鋼材が特許文献2に開示されている。しかし、より飛来塩分が多い厳しい腐食環境での使用に耐えるためには、極微細粒などの結晶粒の分布制御だけでは十分な塩化腐食性の向上は困難である。
本発明は、上記問題を解決し、大気腐食環境中で安定な密着さび層に覆われた耐候性に優れた鋼材およびその製造方法を提供することを目的とする。 An object of the present invention is to solve the above problems and provide a steel material excellent in weather resistance covered with a stable adhesion rust layer in an atmospheric corrosive environment and a method for producing the same.
従来、耐候性鋼の保護性さび層の構造は、その主要部分が平均結晶粒径200nm以下の微細粒のゲーサイト(α−FeOOH)で構成されているとされていた。しかし、本発明者らが、透過型電子顕微鏡による耐候性鋼の保護性さび層の構造解析を行った結果、平均結晶粒径が200nm以下の微細粒のゲーサイトは、Cu、Ni、Cr、P等の元素が添加されていない普通鋼のさび層にも存在していることが明らかになり、このような微細粒のゲーサイトの存在が、耐候性鋼の保護性さび層の耐候性機能の発現因子の全てではないとの知見を新たに得た。 Conventionally, the structure of the protective rust layer of weathering steel has been assumed to be composed of fine-grained goethite (α-FeOOH) whose main part is an average crystal grain size of 200 nm or less. However, as a result of the structural analysis of the protective rust layer of the weathering steel by the transmission electron microscope, the present inventors have found that fine-grained goethite having an average crystal grain size of 200 nm or less is Cu, Ni, Cr, It is clarified that it exists in the rust layer of ordinary steel to which elements such as P are not added, and the presence of such fine-grained goethite is the weather resistance function of the protective rust layer of the weather resistant steel. I obtained new knowledge that it is not all of the expression factors.
さらに、本発明者らは、さび層へのCl- イオンの進入を効果的に防ぐには、供与環境下でさび層自体が負の電荷を帯びていればよいとの知見を新たに得た。耐候性鋼や普通鋼において、地鉄直上に密着するさび層中には様々な粒径の結晶粒が存在し、その結晶構造は電子線回折等の解析結果によると、ゲーサイト(α−FeOOH)が主体であるとされているものの、この他にも添加元素や暴露期間によって、アカガネイト(β−FeOOH)、レピドクロサイト(γ−FeOOH)、マグネタイト(Fe3O4)等の結晶構造が存在し、さらにこれらの結晶構造は平均粒径が数10nm程度の微細結晶粒であるために、結晶構造が判定し難い場合もあることが判明した。 Furthermore, the present inventors have newly obtained the knowledge that the rust layer itself needs to be negatively charged in the donor environment in order to effectively prevent the entry of Cl - ions into the rust layer. . In weathering steel and normal steel, there are crystal grains with various grain sizes in the rust layer that is in close contact with the base metal. According to the analysis results such as electron diffraction, the crystal structure of the rust layer is determined to be goethite (α-FeOOH). ), But other crystal structures such as akaganeate (β-FeOOH), lipidocrosite (γ-FeOOH), magnetite (Fe 3 O 4 ), etc. Further, since these crystal structures are fine crystal grains having an average grain size of about several tens of nanometers, it has been found that the crystal structure may be difficult to determine.
さらに、結晶構造の欠陥等により、これらのさび層に従来明らかでなかった結晶構造を有する場合もあることが判明した。すなわち、本発明者らは、さび層を原子レベルでみると局所的に電気的中性からずれること、つまり、その結晶構造により鉄の原子価数が部分的に変化することを示しており、その状態をマクロに制御することにより、さび層自体が負の電荷を帯びた状態を実現することが可能となるとの知見を新たに得た。 Further, it has been found that these rust layers may have a crystal structure that has not been apparent in the past due to defects in the crystal structure. That is, the present inventors have shown that when the rust layer is viewed at the atomic level, it is locally deviated from electrical neutrality, that is, the valence of iron is partially changed by its crystal structure, We gained new knowledge that it is possible to realize a state in which the rust layer itself is negatively charged by controlling the state macroscopically.
本発明者らは、さび層自体が負の電荷を帯びた状態を実現するために、その結晶構造の変化により鉄の原子価数を変化させ、このときのさび層へのCl-イオンの侵入防止効果について種々検討を行った結果、鉄の原子価数を2.77超2.99未満に制御すれば、塩化耐食性の向上のために十分な効果が得られるとの知見を新たに得た。この要件により、さび層を構成する結晶構造におけるFe3+とFe2+が望ましい存在比率で混在することになる。すなわち、結晶構造におけるFe3+の存在によりさび層の緻密性を保持するのに必要なFeOOH相が形成された上で、Fe2+の存在により外部からのCl-イオンの進入を防止するのに十分な負の荷電を帯びた状態のさび層の生成が実現する。 In order to realize a state in which the rust layer itself is negatively charged, the inventors changed the valence number of iron by changing the crystal structure, and Cl − ions penetrated into the rust layer at this time. As a result of various investigations on the prevention effect, new knowledge has been obtained that if the valence number of iron is controlled to be more than 2.77 and less than 2.99, a sufficient effect can be obtained for improving the chlorination corrosion resistance. . Due to this requirement, Fe 3+ and Fe 2+ in the crystal structure constituting the rust layer are mixed in a desirable abundance ratio. That is, the FeOOH phase necessary for maintaining the denseness of the rust layer is formed by the presence of Fe 3+ in the crystal structure, and the presence of Fe 2+ prevents the entry of Cl − ions from the outside. Therefore, it is possible to generate a rust layer having a sufficiently negative charge.
本発明は、かかる知見を基に完成されたもので、その要旨とするところは、以下の通りである。
(1)質量%で、Ni:0.2〜10%を含有し、残部がFeおよび不可避的不純物からなるNi含有鉄基合金材料の表面が、FeOOH、Fe3O4 および不可避的相からなる皮膜で覆われており、該皮膜中の鉄の平均原子価数が2.77超2.99未満であることを特徴とする耐候性に優れた鋼材。
(2)前記Ni含有鉄基合金材料に、さらに、質量%で、Cu、Cr、Ti、W、Mo、Sb、Al、Nb、Taの1種または2種以上を合計で0.01〜8%を含有することを特徴とする(1)に記載の耐候性に優れた鋼材。
The present invention has been completed on the basis of such knowledge, and the gist thereof is as follows.
(1) mass% Ni: contained 0.2 to 10%, the surface of the Ni-containing iron-base alloy material and the balance of Fe and unavoidable impurities, consisting of FeOOH, F e 3O 4 and inevitable phase A steel material excellent in weather resistance, characterized in that it is covered with a film and the average valence number of iron in the film is more than 2.77 and less than 2.99.
(2) In addition to the Ni-containing iron-based alloy material, one or more of Cu, Cr, Ti, W, Mo, Sb, Al, Nb, and Ta are added in a mass percentage of 0.01 to 8 in total. %. The steel material having excellent weather resistance according to (1), wherein
(3)前記皮膜中のFe3O4のモル分率が、4〜35%であることを特徴とする(1)または(2)に記載の耐候性に優れた鋼材。
(4)前記皮膜中のNi原子、および、Cu、Cr、Ti、W、Mo、Sb、Al、Nb、Taの1種または2種以上の原子が、該皮膜中のFe3O4結晶格子の6個の酸素原子に配位された八面体サイトに、0.4〜25%存在することを特徴とする(1)〜(3)のいずれかに記載の耐候性に優れた鋼材。
(5)前記皮膜の結晶粒子における粒子体積18×10-24m3以下の微細結晶粒の体積分率が20%超90%未満であることを特徴とする(1)〜(4)のいずれかに記載の耐候性に優れた鋼材。
(6)前記皮膜の膜厚が、0.01〜200μmであることを特徴とする(1)〜(5)のいずれかに記載の耐候性に優れた鋼材にある。
(3) The steel material having excellent weather resistance according to (1) or (2), wherein the mole fraction of Fe 3 O 4 in the film is 4 to 35%.
(4) Ni atom in the film and one or more atoms of Cu, Cr, Ti, W, Mo, Sb, Al, Nb, Ta are Fe 3 O 4 crystal lattice in the film. The steel material having excellent weather resistance according to any one of (1) to (3), wherein 0.4 to 25% is present in an octahedral site coordinated with six oxygen atoms.
(5) The volume fraction of fine crystal grains having a particle volume of 18 × 10 −24 m 3 or less in the crystal grains of the coating is more than 20% and less than 90%, and any one of (1) to (4) Steel material excellent in weather resistance as described in Crab.
(6) The steel film having excellent weather resistance according to any one of (1) to (5), wherein the film thickness is 0.01 to 200 μm.
本発明により、鉄の状態(価数)を制御した表面層に覆われた耐候性に優れた鋼材を提供することが可能である。本発明の耐候性鋼は、Cl-イオンのさび層内部への侵入を防止できるものであり、環境負荷低減や経済性の観点からも、産業上極めて価値が高いものであるといえる。 According to the present invention, it is possible to provide a steel material excellent in weather resistance covered with a surface layer whose iron state (valence) is controlled. Weathering steel of the present invention, Cl - are those capable of preventing penetration into the rust layer inside the ion, it can be said that from the viewpoint of environmental load reduction and economy, but extremely high value industrially.
本発明の実施の形態について、以下に詳細に説明する。
本発明に係る耐候性鋼とは、添加元素としてNiを0.2〜10%含有する鉄基合金であり、必要に応じて、さらに、Cu、Cr、Ti、W、Mo、Sb、Al、Nb、Taの1種または2種以上を合計で0.01〜8%含有するものである。また、この耐候性鋼の表面が主としてFeOOHおよびFe3O4で構成される皮膜(以下、この皮膜をさび層ということもある。)で覆われており、この皮膜中の鉄の平均原子価数を2.77超2.99未満に制御したものである。さらには、この皮膜中のFe3O4のモル分率が、4〜35%であり、Ni原子、および、Ni以外の添加元素の1種または2種以上が皮膜(さび層)のFe3O4中の6個の酸素に配位された八面体サイトに0.4〜25%存在するものである。さらに、この皮膜の結晶粒子における粒子体積18×10-24 m3 以下の微細結晶粒の体積分率が20%超90%未満であり、皮膜の膜厚が、0.01〜200μmである。
Embodiments of the present invention will be described in detail below.
The weathering steel according to the present invention is an iron-based alloy containing 0.2 to 10% of Ni as an additive element, and, if necessary, Cu, Cr, Ti, W, Mo, Sb, Al, One or more of Nb and Ta are contained in a total of 0.01 to 8%. Further, the surface of the weathering steel is covered with a film mainly composed of FeOOH and Fe 3 O 4 (hereinafter, this film may be referred to as a rust layer), and the average valence of iron in the film The number is controlled to be more than 2.77 and less than 2.99. Furthermore, the molar fraction of Fe 3 O 4 in this film is 4 to 35%, and one or more of Ni atoms and additive elements other than Ni are Fe 3 in the film (rust layer). 0.4 to 25% is present in octahedral sites coordinated with six oxygen atoms in O 4 . Furthermore, the volume fraction of fine crystal grains having a particle volume of 18 × 10 −24 m 3 or less in the crystal particles of this film is more than 20% and less than 90%, and the film thickness of the film is 0.01 to 200 μm.
本発明に係る耐候性鋼中の添加成分について説明する。なお、以下に示す「%」は、特に説明がない限り「質量%」を意味するものである。
本発明に係る耐候性鋼は、Niを0.2〜10%含有する鉄基合金である。Niは、鉄基合金全体の腐食電位を下げる作用効果があり、かつ、鋼材から金属イオンの溶出量が少なくなる。さらに、Niが存在するとその一部が皮膜中のFe3O4相中に入り込み、Fe3O4相をエネルギー的に安定化し、被膜中のFe3O4相をより安定的に多量に存在させることが可能となる。皮膜のFeOOH中の鉄原子はFe3+の状態であるのに対して、Fe3O4相中の鉄原子は、Fe3+とFe2+の両方の状態が共存しており、このFe2+の状態の原子を同じ二価にNi2+が置き換えることにより、Fe3O4相がエネルギー的に安定化すると考えられる。
Niの含有量が0.2%より少量では、鋼材の腐食電位を下げる効果および金属イオンの溶出量を抑える効果が著しく低下し、また、10%を超えて添加してもその効果は増加しないため、Ni含有量を0.2〜10%とした。
The additive components in the weathering steel according to the present invention will be described. “%” Shown below means “% by mass” unless otherwise specified.
The weathering steel according to the present invention is an iron-based alloy containing 0.2 to 10% of Ni. Ni has the effect of lowering the corrosion potential of the entire iron-base alloy, and the amount of metal ions eluted from the steel material is reduced. Further, a part of Ni is present enters the Fe 3 O 4 phase in the film, Fe 3 O 4 phase energetically stabilizes, more stably abundant the Fe 3 O 4 phase in the coating It becomes possible to make it. The iron atoms in the FeOOH of the film are in the Fe 3+ state, whereas the iron atoms in the Fe 3 O 4 phase coexist with both the Fe 3+ and Fe 2+ states. It is considered that the Fe 3 O 4 phase is stabilized in terms of energy by replacing Ni 2+ with the same divalent atom in the 2+ state.
If the Ni content is less than 0.2%, the effect of lowering the corrosion potential of the steel material and the effect of suppressing the elution amount of metal ions are remarkably reduced, and even if added over 10%, the effect does not increase. Therefore, the Ni content is set to 0.2 to 10%.
本発明では、上記のNiと同様な作用効果を有する添加元素として、Cu、Cr、Ti、W、Mo、Sb、Al、Nb、Taがあり、これらの1種または2種以上を合計で0.01〜8%含有することが好ましい。これらの元素を添加する場合は、含有量の合計が0.01%より少量では、腐食電位を下げる効果およびイオンの溶出量を抑える効果が著しく低下し、また、含有量の合計が8%を超えて添加してもその効果は増加しないため、その好ましい含有量の合計を0.01〜8%とした。 In the present invention, there are Cu, Cr, Ti, W, Mo, Sb, Al, Nb, and Ta as additive elements having the same effect as Ni, and one or more of these elements are 0 in total. It is preferable to contain 0.01 to 8%. When these elements are added, if the total content is less than 0.01%, the effect of lowering the corrosion potential and the effect of suppressing the elution amount of ions are remarkably reduced, and the total content is 8%. Even if it is added in excess, the effect does not increase, so the total content is preferably 0.01 to 8%.
本発明に係る耐候性鋼は、その表面に形成された皮膜(さび層)の結晶構造における鉄の平均原子価数Mが、2.77超2.99未満であることが塩化耐食性を充分に向上するために必要であり、この平均原子価数Mの制御は、後述の方法により行う。結晶構造中の鉄の平均原子価数Mが2.77超2.99未満の範囲にあれば、皮膜中にFe3+とFe2+が混在し、Fe3+の存在により皮膜の緻密性を保持するのに必要なFeOOH相が形成された上で、Fe2+の存在により外部からのCl-イオンの進入を防止するのに十分な負の電荷を帯びた状態のさび層を鋼材表面に生成することを実現する。 In the weathering steel according to the present invention, the average valence number M of iron in the crystal structure of the film (rust layer) formed on the surface of the steel is sufficient for corrosion resistance to corrosion when it is more than 2.77 and less than 2.99. This is necessary for improvement, and the control of the average valence number M is performed by the method described later. If the average valence M of iron in the crystal structure is in the range of more than 2.77 and less than 2.99, Fe 3+ and Fe 2+ are mixed in the film, and the presence of Fe 3+ makes the film dense. In addition to the formation of the FeOOH phase necessary to hold the rust layer, a rust layer having a negative charge sufficient to prevent the entry of Cl − ions from the outside due to the presence of Fe 2+ is formed on the steel surface. Realize to generate.
鉄の平均原子価数Mが2.99以上であると、皮膜の結晶構造においてFe3O4相が安定して存在することができなくなるため、皮膜は外部からのCl-イオンの進入防止に十分な負の荷電を帯びにくくなる。一方、鉄の平均原子価数Mが2.77以下であると、皮膜の結晶構造においてFe3 O4 相は安定して存在するものの、FeOOH相の生成が減少するため、FeOOH相を主体とする緻密な皮膜が形成されず耐食性が著しく悪くなる。皮膜のFeOOH相の鉄原子はFe3+の状態であるのに対して、Fe3 O4 相中の鉄原子は、Fe3+とFe2+の両方の状態が共存している。そのため、鉄の平均原子価数Mが2.77以上であると、皮膜の結晶構造においてFe3 O4 相が安定して存在することができなくなる。一方、鉄の平均原子価数Mが2.77以下であると、皮膜の結晶構造においてFe3 O4 相が安定して存在するものの、FeOOH相が安定して存在しなくなる。 If the average valence number M of iron is 2.99 or more, the Fe 3 O 4 phase cannot exist stably in the crystal structure of the film, so the film prevents the entry of Cl − ions from the outside. It becomes difficult to have a sufficient negative charge. On the other hand, when the average valence number M of iron is 2.77 or less, the Fe 3 O 4 phase is stably present in the crystal structure of the film, but the generation of the FeOOH phase is reduced. A dense film is not formed and the corrosion resistance is remarkably deteriorated. The iron atoms in the FeOOH phase of the film are in the Fe 3+ state, whereas the iron atoms in the Fe 3 O 4 phase are both in the Fe 3+ and Fe 2+ states. Therefore, when the average valence number M of iron is 2.77 or more, the Fe 3 O 4 phase cannot be stably present in the crystal structure of the film. On the other hand, when the average valence number M of iron is 2.77 or less, the Fe 3 O 4 phase stably exists in the crystal structure of the film, but the FeOOH phase does not exist stably.
また、本発明では、上記の主としてFeOOHおよびFe3O4で構成される被膜(さび層)において、平均原子価数Mが2.77超2.99未満であることに加えて、さらに、皮膜中のFe3O4のモル分率が4%以上35%以下とすることにより塩素耐食性はさらに向上する。これは被膜中のFe3O4とFeOOH以外の結晶構造で存在する層、例えばFeOやFe2O3が存在する場合でも皮膜中のFe3O4が上記範囲にあればより安定して塩素耐食性が向上するからである。Fe3O4のモル分率が4%未満であれば、皮膜中にFe3O4とFeOOH以外の結晶構造で存在する層が増えた場合に、皮膜は外部からのCl-イオンの進入防止に十分な負の電荷を帯びにくくなる場合が生じる。一方、Fe3O4のモル分率が35%超であれば、FeOOH相が形成されず緻密性が悪くなることがある。 In the present invention, in the above-described film (rust layer) mainly composed of FeOOH and Fe 3 O 4 , the average valence number M is more than 2.77 and less than 2.99. When the molar fraction of Fe 3 O 4 therein is 4% or more and 35% or less, the chlorine corrosion resistance is further improved. This is because a layer having a crystal structure other than Fe 3 O 4 and FeOOH in the film, for example, even when FeO or Fe 2 O 3 is present, if the Fe 3 O 4 in the film is in the above range, the chlorine is more stable. This is because the corrosion resistance is improved. If the molar fraction of Fe 3 O 4 is less than 4%, the coating prevents the entry of Cl − ions from the outside when there are more layers in the coating with a crystal structure other than Fe 3 O 4 and FeOOH. In some cases, it becomes difficult to carry a sufficient negative charge. On the other hand, if the molar fraction of Fe 3 O 4 exceeds 35%, the FeOOH phase may not be formed and the denseness may deteriorate.
皮膜中でFe3O4型の構造はスピネル構造と呼ばれ、鉄の原子価がFe3+とFe2+の両状態を安定的にとる構造である。図1は、Fe3O4型のスピネル構造を模式的に示した図で、鉄原子は、それを取り囲む6個の酸素原子から構成される八面体サイトの中心、および八面体を取り囲む4個の酸素原子から構成される四面体サイトの中心に位置する。Fe3+とFe2+の鉄原子は、これらのサイトを占めることにより、安定的に存在する。本発明で規定する皮膜中の鉄の平均原子価数Mが2.77超2.99未満である場合には、鉄原子はFe3O4型のスピネル構造をとる方がより安定であり、使用環境におけるpH、酸素、イオン等の影響を受けにくくなり、耐食性がより向上する。 The structure of the Fe 3 O 4 type in the film is called a spinel structure, and is a structure in which the iron valence stably takes both Fe 3+ and Fe 2+ states. FIG. 1 is a diagram schematically showing an Fe 3 O 4 type spinel structure, in which iron atoms are the center of an octahedral site composed of six oxygen atoms surrounding the iron atom, and four that surround the octahedron. It is located at the center of a tetrahedral site composed of oxygen atoms. The iron atoms of Fe 3+ and Fe 2+ are stably present by occupying these sites. In the case where the average valence number M of iron in the film defined in the present invention is more than 2.77 and less than 2.99, it is more stable that the iron atom has a Fe 3 O 4 type spinel structure, Corrosion resistance is further improved due to less influence of pH, oxygen, ions, etc. in the environment of use.
またさらに、本発明に係る耐候性鋼の塩分耐食性を向上させるためには、皮膜中のNi原子、および添加した元素のうち1種または2種以上がFe3O4型のスピネル構造の6個の酸素原子が配位する八面体サイトに、0.4〜25%存在することが好ましい。0.4%未満であれば、皮膜はCl-イオンの進入防止に十分な負の電荷を帯びなくなる。一方、25%超であれば、FeOOH相が形成されず緻密性が悪くなる。
Ni原子および添加した元素のうち1種または2種以上が、Fe3O4型のスピネル構造の6個の酸素原子が配位する八面体サイトに存在すると、皮膜中の鉄の平均原子価数Mを2.77超2.99未満に保つ効果が高い上、使用環境におけるpH、酸素、イオン等の影響を受けにくくなる。
Furthermore, in order to improve the salt corrosion resistance of the weathering steel according to the present invention, one or more of the Ni atoms in the film and the added elements are six Fe 3 O 4 type spinel structures. It is preferable that 0.4 to 25% is present in the octahedral site to which the oxygen atoms are coordinated. If it is less than 0.4%, the coating will not have a negative charge sufficient to prevent the entry of Cl - ions. On the other hand, if it exceeds 25%, the FeOOH phase is not formed and the denseness deteriorates.
When one or more of the Ni atoms and the added elements are present in the octahedral site coordinated with six oxygen atoms of the Fe 3 O 4 type spinel structure, the average valence number of iron in the film In addition to being highly effective in keeping M above 2.77 and below 2.99, it is less susceptible to the influence of pH, oxygen, ions, etc. in the environment of use.
Fe3O4相中の鉄原子は、Fe3+とFe2+の両方の状態が共存している。理想的なFe3O4型のスピネル構造では、鉄原子が存在すると考えられる原子位置は、6個の酸素原子によって配位された八面体サイトと4個の酸素原子によって配位された四面体サイトの二種類があり、Fe3+の半数が四面体サイトを、Fe3+の残りの半数とFe2+が八面体サイトに存在するとされている。Ni原子はNi2+を安定構造としてとるため、Fe2+の状態の原子を同じ二価のNi2+が置き換えることにより八面体サイトに優先的に存在し、Fe3O4相がエネルギー的に安定化する。その結果、皮膜中の鉄の平均原子価数Mを2.77超2.99未満に保つ効果が高くなる。八面体サイトに置換したNi2+はエネルギー的に安定であり、使用環境におけるpH、酸素、イオン等の影響を受けにくくなる。 The iron atom in the Fe 3 O 4 phase has both Fe 3+ and Fe 2+ coexist. In an ideal Fe 3 O 4 type spinel structure, the atomic positions where iron atoms are considered to exist are octahedral sites coordinated by 6 oxygen atoms and tetrahedra coordinated by 4 oxygen atoms. There are two kinds of sites, half of the Fe 3+ is a tetrahedral site, there is a remaining half and Fe 2+ of Fe 3+ is present in an octahedral site. Since the Ni atom takes Ni 2+ as a stable structure, the same divalent Ni 2+ replaces the atom in the Fe 2+ state preferentially at the octahedral site, and the Fe 3 O 4 phase is energetic. To stabilize. As a result, the effect of keeping the average valence number M of iron in the film at more than 2.77 and less than 2.99 is enhanced. Ni 2+ substituted for the octahedral site is energetically stable and is less susceptible to the influence of pH, oxygen, ions, etc. in the environment of use.
また、さらに、本発明に係る耐候性鋼の塩分耐食性を向上させるためには、皮膜が粒子体積18×10-24m3以下の微細結晶粒から主に構成され、その微細結晶粒の体積分率は20%超90%未満であることが望ましい。微細結晶粒の体積分率が20%超90%未満であれば、皮膜を構成する粗大結晶粒の粒界同志の空間を微細結晶粒が埋めることによりより緻密な皮膜が形成され、腐食環境からのCl-等のイオンや酸素および水等の侵入を防止できる。皮膜の微細結晶粒と粗大結晶粒の境界は、それぞれの体積分率により異なるが、おおむね粒子体積7〜18×10-24 m3 であることから、粒子体積18×10-24m3以下の微細結晶粒を20%超90%未満で皮膜中に存在させることが望ましい。微細結晶粒の体積分率が20%以下では粗大結晶粒の粒界同志の空隙を微細粒が十分に埋めることが困難になる。一方、微細結晶粒の体積分率の上限は特に限定する必要はないが、90%以上とすることは工業的に困難であるため、その上限を90%未満とした。
またさらに、本発明に係る耐候性鋼は、腐食反応が進行する地鉄との界面近傍に存在する皮膜の膜厚を0.01〜200μmとするのが好ましい。地鉄との界面近傍の皮膜が0.01μm未満であると十分なイオン遮断性がなく、200μm超では皮膜に不均一が生じやすい。
Furthermore, in order to improve the salt corrosion resistance of the weathering steel according to the present invention, the coating is mainly composed of fine crystal grains having a particle volume of 18 × 10 −24 m 3 or less, and the volume fraction of the fine crystal grains. The rate is desirably more than 20% and less than 90%. If the volume fraction of the fine crystal grains is more than 20% and less than 90%, the fine crystal grains fill the space between the grain boundaries of the coarse crystal grains constituting the film, thereby forming a denser film. of Cl - intrusion such as ion and oxygen and water or the like can be prevented. Although the boundary between the fine crystal grains and the coarse crystal grains of the film varies depending on the volume fraction, the particle volume is approximately 7 to 18 × 10 −24 m 3 , so that the particle volume is 18 × 10 −24 m 3 or less. It is desirable for fine crystal grains to be present in the film at more than 20% and less than 90%. When the volume fraction of the fine crystal grains is 20% or less, it becomes difficult for the fine grains to sufficiently fill the voids between the grain boundaries of the coarse crystal grains. On the other hand, the upper limit of the volume fraction of fine crystal grains need not be particularly limited, but it is industrially difficult to set it to 90% or more, so the upper limit was made less than 90%.
Furthermore, it is preferable that the weather-resistant steel according to the present invention has a film thickness of 0.01 to 200 μm in the vicinity of the interface with the ground iron where the corrosion reaction proceeds. If the film in the vicinity of the interface with the base iron is less than 0.01 μm, there is no sufficient ion blocking property, and if it exceeds 200 μm, the film tends to be uneven.
次に、本発明に係る耐候性鋼の表面に形成する皮膜の形成方法および被膜中の鉄の平均原子価数M、皮膜の結晶構造、結晶粒の体積分布、皮膜の膜厚等の制御方法について説明する。本発明に係る被膜を作製するには、以下に記載する被膜の作製方法の1種類または複数を組み合わせて行う。
被膜中の鉄の平均原子価数Mを制御する方法のひとつとして、鋼を湿潤雰囲気で加熱する方法が挙げられる(以下、湿潤/加熱法と呼ぶ)。本発明に係る耐候性鋼の表面を湿潤状態で保持することにより鋼表面での金属イオンの溶解反応を生じさせ、その後、徐々に乾燥状態に変化させることにより、金属イオンと酸素との化合物の生成反応を生じさせる。この反応サイクルを繰り返すことにより表面層を作製する。
Next, a method for forming a film formed on the surface of the weathering steel according to the present invention and a method for controlling the average valence number M of iron in the film, the crystal structure of the film, the volume distribution of crystal grains, the film thickness of the film, etc. Will be described. In order to produce the coating according to the present invention, one or a plurality of methods for producing the coating described below are combined.
One method for controlling the average valence number M of iron in the coating is a method in which the steel is heated in a humid atmosphere (hereinafter referred to as a wet / heating method). By maintaining the surface of the weathering steel according to the present invention in a wet state, a dissolution reaction of metal ions on the steel surface is caused, and then gradually changing to a dry state, whereby the compound of metal ions and oxygen is changed. A production reaction takes place. The surface layer is prepared by repeating this reaction cycle.
このサイクルの望ましい条件範囲は、温度5〜40℃で相対湿度30〜100%の湿潤状態に1〜10時間放置した後、温度10〜50℃で相対湿度0〜90%の乾燥状態に1〜10時間放置するサイクルを1〜100回繰り返すことである。湿潤状態を温度5〜40℃で相対湿度30〜100%とするのは、この条件において、材料の表面が十分に濡れた状態になるためである。乾燥状態を温度10〜50℃で相対湿度0〜90%とするのは、この条件において、材料の表面が十分に乾燥し、酸素が地鉄界面へ供給される状況で被膜形成反応が進行するためである。 The desirable condition range of this cycle is that it is left in a wet state at a temperature of 5 to 40 ° C. and a relative humidity of 30 to 100% for 1 to 10 hours, and then is dried at a temperature of 10 to 50 ° C. and a relative humidity of 0 to 90%. The cycle of leaving for 10 hours is repeated 1 to 100 times. The reason why the wet state is set to a temperature of 5 to 40 ° C. and a relative humidity of 30 to 100% is that the surface of the material is sufficiently wetted under these conditions. The dry state is set to a temperature of 10 to 50 ° C. and a relative humidity of 0 to 90%. Under these conditions, the surface of the material is sufficiently dried, and the film formation reaction proceeds in a situation where oxygen is supplied to the iron interface. Because.
湿潤・乾燥の反応サイクルは、上述の湿潤状態に1〜10時間放置した後、上述の乾燥状態に1〜10時間放置するサイクルとし、これを1〜100回繰り返すことが望ましい。湿潤状態の時間が1時間より短時間では、良質な被膜形成するために必要なイオンの溶け出しがなく、10時間より長時間ではイオンの溶け出しのみが先行し、密着性のある被膜が形成されない。また、乾燥状態の時間が1時間より短時間では、酸素が地鉄界面へ供給される状況での被膜形成反応が不十分であり、10時間より長時間では乾燥過程のみが先行し、密着性のある被膜が形成されない。またさらに、このサイクル数が1より少ないと被膜が形成されず、100回を超えても被膜の質の著しい改善はなく、かえって被膜面内の不均一性のため膜質が低下する恐れがある。 It is desirable that the wet / dry reaction cycle is a cycle in which the reaction is left in the above-mentioned wet state for 1 to 10 hours and then left in the above-mentioned dry state for 1 to 10 hours, and this is repeated 1 to 100 times. When the wet state is shorter than 1 hour, there is no leaching of ions necessary for forming a good quality film, and when it is longer than 10 hours, only the leaching of ions precedes and an adhesive film is formed. Not. In addition, when the time of the dry state is shorter than 1 hour, the film formation reaction in a situation where oxygen is supplied to the iron-iron interface is insufficient, and when it is longer than 10 hours, only the drying process precedes, A film with a thickness is not formed. Furthermore, if the number of cycles is less than 1, a film is not formed, and even if the number of cycles exceeds 100, there is no significant improvement in the quality of the film.
具体的なサイクルの例として、例えば、鋼を湿潤状態(温度35℃、相対湿度95%)で4時間保持した後、温度を35℃→50℃、相対湿度を95%→40%へと一定の変化率で4時間かけて変化させ、乾燥状態(温度50℃、相対湿度40%)で4時間保持する一連の過程を1サイクルとし、このサイクルを100〜300回繰り返すことにより、鋼表面に数〜200μm程度の皮膜が形成する。 As an example of a specific cycle, for example, after holding steel in a wet state (temperature 35 ° C., relative humidity 95%) for 4 hours, temperature is kept constant at 35 ° C. → 50 ° C. and relative humidity 95% → 40%. By changing the rate of change over a period of 4 hours and holding it in a dry state (temperature 50 ° C., relative humidity 40%) for 4 hours, one cycle is repeated, and this cycle is repeated 100 to 300 times. A film of about several to 200 μm is formed .
さらに、被膜中の鉄の平均原子価数Mを制御する別の方法として、ゾルゲル反応を用いる方法が挙げられる(以下、ゾルゲル反応法と呼ぶ)。本発明に係る耐候性鋼の表面に、鉄および合金材料中の添加元素のアルコキシドをアルコールに溶解し、さらに、若干の酸を添加した溶液を調製し、これを十分に攪拌して金属ゾルを含有する粘性溶液を塗布すれば良い。 Furthermore, as another method for controlling the average valence number M of iron in the coating, a method using a sol-gel reaction (hereinafter referred to as a sol-gel reaction method) can be mentioned. On the surface of the weathering steel according to the present invention, iron and the alkoxide of the additive element in the alloy material are dissolved in alcohol, and further, a solution to which some acid is added is prepared. What is necessary is just to apply | coat the contained viscous solution.
鉄および該合金材料中の添加元素のアルコキシド溶液の濃度は10〜40体積%が望ましい。10体積%未満では、ゾルゲル液による腐食が進行し良好な被膜が形成されず、40体積%超ではゾルゲル反応が均一に進行せず良好な被膜が形成されない。添加する酸としては、0.01〜10Mの濃度の酢酸、塩酸等を用いれば、ゾルゲル反応促進することができるため望ましい。攪拌は上記溶液が均一になるように行えばよく、例えば、30〜80℃の温度で10分〜5時間行えばよい。 As for the density | concentration of the alkoxide solution of the additive element in iron and this alloy material, 10-40 volume% is desirable. If it is less than 10% by volume, corrosion by the sol-gel liquid proceeds and a good film is not formed, and if it exceeds 40% by volume, the sol-gel reaction does not proceed uniformly and a good film is not formed. As the acid to be added, it is desirable to use acetic acid, hydrochloric acid, or the like having a concentration of 0.01 to 10M because the sol-gel reaction can be accelerated. Stirring may be performed so that the solution becomes uniform, for example, at a temperature of 30 to 80 ° C. for 10 minutes to 5 hours.
この溶液を前記鋼材に塗布し、乾燥することにより被膜を作製する。塗布量および乾燥の際の加熱条件(温度、酸素雰囲気)により、平均原子価数Mを制御した被膜が作製可能になる。鋼材への塗布は、膜厚が1〜200μmの範囲で均一な被膜になるように行えばよく、粘性溶液の塗布法として一般的に用いられているロールコータ、バーコーター等を用いればよい。膜厚が1μm未満では十分なイオン遮断性がなく、200μm超では被膜に不均一が生じやすい。本手法では、膜厚の制御が容易である。 The solution is applied to the steel material and dried to prepare a coating. Depending on the coating amount and the heating conditions (temperature, oxygen atmosphere) during drying, it is possible to produce a film with a controlled average valence number M. Application to the steel material may be performed so as to form a uniform film with a film thickness in the range of 1 to 200 μm, and a roll coater, a bar coater, or the like generally used as a method for applying a viscous solution may be used. If the film thickness is less than 1 μm, there is no sufficient ion blocking property, and if it exceeds 200 μm, the coating tends to be non-uniform. In this method, the film thickness can be easily controlled.
乾燥は、塗布した粘性溶液が均一に反応し良質な皮膜を形成するように行うことが好ましく、150〜600℃で1〜60時間乾燥する。150℃未満ではゾルゲル反応が十分進行せず、600℃超では形成された皮膜が分解し不均一になる可能性がある。また、乾燥時間が1時間より短時間では良質な皮膜形成するために必要な反応がなく、60時間より長時間では必要以上の加熱により皮膜が不均一になる可能性がある。 Drying is preferably performed so that the applied viscous solution reacts uniformly to form a good quality film, and is dried at 150 to 600 ° C. for 1 to 60 hours. If it is less than 150 ° C., the sol-gel reaction does not proceed sufficiently, and if it exceeds 600 ° C., the formed film may decompose and become non-uniform. Further, when the drying time is shorter than 1 hour, there is no reaction necessary for forming a good quality film, and when the drying time is longer than 60 hours, the film may become non-uniform due to excessive heating.
またさらに、皮膜中の鉄の平均原子価数Mを制御する別の方法として、鋼材に酸化物を直接塗布する方法が挙げられる(以下、塗布法と呼ぶ)。本発明に係る耐候性鋼の表面に、鉄および合金材料中の添加元素の酸化物を鉄の平均原子価数Mが所定の範囲に入るような比率で混合したものを細かく粉砕する。好ましい平均粒径は0.1μm〜200μmである。0.1μm未満では酸化物の構造が破壊される可能性があり、200μm超では粒子の混合が不十分となる。 Furthermore, as another method for controlling the average valence number M of iron in the film, there is a method in which an oxide is directly applied to a steel material (hereinafter referred to as a coating method). On the surface of the weathering steel according to the present invention, a mixture of iron and oxides of additive elements in the alloy material at a ratio such that the average valence number M of iron falls within a predetermined range is finely pulverized. A preferable average particle diameter is 0.1 μm to 200 μm. If the thickness is less than 0.1 μm, the structure of the oxide may be destroyed, and if it exceeds 200 μm, mixing of the particles becomes insufficient.
その後、例えばエタノール中にて遊星ボールミルにて数時間粉砕する。その後、十分に乾燥させた粉末を適当な増粘性の有機物溶液中に分散させた後、これを上記鋼材に塗布、乾燥させることにより皮膜を得る。有機物溶液としては、ポリビニルアルコール等の、粉体を均一に分散可能なアルコール類がよい。鋼材への塗布は、膜厚が1〜200μmの範囲で均一な被膜になるように行えばよく、粘性溶液の塗布法として一般的に用いられているロールコータ、バーコーター等を用いればよい。膜厚が1μm未満では十分なイオン遮断性がなく、200μm超では被膜に不均一が生じやすい。 Then, for example, it is ground in a planetary ball mill for several hours in ethanol. Thereafter, the sufficiently dried powder is dispersed in an organic solution having an appropriate viscosity, and this is applied to the steel material and dried to obtain a film. The organic solution is preferably an alcohol that can uniformly disperse the powder, such as polyvinyl alcohol. Application to the steel material may be performed so as to form a uniform film with a film thickness in the range of 1 to 200 μm, and a roll coater, a bar coater, or the like generally used as a method for applying a viscous solution may be used. If the film thickness is less than 1 μm, there is no sufficient ion blocking property, and if it exceeds 200 μm, the coating tends to be non-uniform.
乾燥は、塗布した粉体溶液が均一に反応し良質な被膜を形成するように行うことが好ましく、120〜700℃で20分〜40時間乾燥する。120℃未満では乾燥と製膜反応が十分進行せず、700℃超では形成された被膜が分解し不均一になる可能性がある。また、乾燥時間が20分より短時間では良質な被膜形成するために必要な反応がなく、また、40時間より長時間では必要以上の加熱により被膜が不均一になる可能性がある。 Drying is preferably performed so that the applied powder solution uniformly reacts to form a good quality film, and is dried at 120 to 700 ° C. for 20 minutes to 40 hours. If it is less than 120 degreeC, drying and film forming reaction do not fully advance, and if it exceeds 700 degreeC, the formed film may decompose | disassemble and become non-uniform | heterogenous. Further, when the drying time is shorter than 20 minutes, there is no reaction necessary for forming a good quality film, and when the drying time is longer than 40 hours, there is a possibility that the film becomes non-uniform due to excessive heating.
次に、上記本発明に係る方法により形成された被膜が、本発明の要件を満たしているかどうかを確認する方法について述べる。
例えば、XAFS(X−ray Absorption Fine−structures:X線吸収微細構造)法を用いれば良い。X線のエネルギーを増加させながら材料の吸収率を測定すると、X線のエネルギーの増加に対応して材料の吸収率は減少するが、特定なX線のエネルギー(X線吸収端)において、その吸収率が急激に増加する部分が存在し、X線の吸収によって発生した光電子の一部が、複数の原子による散乱と干渉によって、X線の吸収量に対する構造情報として反映される。
Next, a method for confirming whether the film formed by the method according to the present invention satisfies the requirements of the present invention will be described.
For example, an XAFS (X-ray Absorption Fine-structure: X-ray absorption fine structure) method may be used. When the absorptance of a material is measured while increasing the energy of X-rays, the absorptance of the material decreases corresponding to the increase in energy of X-rays. There is a portion where the absorptance increases rapidly, and some of the photoelectrons generated by the absorption of X-rays are reflected as structural information on the amount of X-ray absorption by scattering and interference by a plurality of atoms.
つまり、X線の吸収量をモニタすれば、原子構造に関する情報が得られる(例えば、宇田川康夫編、X線吸収微細構造、学会出版センター(1993))。これがXAFS法による構造解析の原理であり、XAFS法を用いると鉄原子の平均原子価数Mや、添加元素の存在状態(NiがFe3O4中の酸素に配位されたサイトに存在するかどうか)を容易に求めることができる。場所によるバラツキがある場合には、3〜5点で測定して平均値を出せばよい。3点より少ないと平均の情報が得るのが困難であり、5点より多いと測定のための時間が必要以上にかかることになる。また、皮膜に含まれる各相の分率をX線回折や磁気的測定でもとめ、以下の式によって平均原子価数Mを決定してもよい。 That is, if the amount of X-ray absorption is monitored, information on the atomic structure can be obtained (for example, Yasuo Udagawa, X-ray absorption fine structure, Academic Publishing Center (1993)). This is the principle of the structural analysis by the XAFS method. When the XAFS method is used, the average valence number M of the iron atom and the existence state of the additive element (Ni is present at the site coordinated to oxygen in Fe 3 O 4 ). Or not) can be easily determined. If there is variation due to location, the average value may be obtained by measuring at 3 to 5 points. If it is less than 3 points, it is difficult to obtain average information, and if it is more than 5 points, it takes more time than necessary for measurement. Alternatively, the fraction of each phase contained in the film may be determined by X-ray diffraction or magnetic measurement, and the average valence number M may be determined by the following formula.
ここで、Wi はi相のモル分率、mi はi相での鉄の平均価数である。Ci は各相の補正係数で、密度や結晶の配向性等の効果を標準試料を用いて規格化することにより決定される定数である。皮膜を構成するα−FeOOH、β−FeOOH、γ−FeOOH、Fe3O4等の構造はお互いに異なるため、X線回折図形を測定しそのピークの相対強度から各層の分率を見積もることができる。また、Fe3O4は強磁性体であるため、磁化を測定すれば試料中のFe3O4量のみを選択的に見積もることができる。 Here, W i is the molar fraction of the i phase, and m i is the average valence of iron in the i phase. C i is a correction coefficient for each phase, and is a constant determined by normalizing effects such as density and crystal orientation using a standard sample. Since the structures of α-FeOOH, β-FeOOH, γ-FeOOH, Fe 3 O 4 and the like constituting the film are different from each other, the X-ray diffraction pattern is measured and the fraction of each layer can be estimated from the relative intensity of the peak. it can. Further, since Fe 3 O 4 is a ferromagnetic material, only the amount of Fe 3 O 4 in the sample can be selectively estimated by measuring the magnetization.
また、X線光電子分光法(例えば、山科俊郎/福田伸著、表面分析の基礎と応用、東京大学出版会(1991))による測定を行う。試料に数KeV以上のX線を照射し放出される光電子を分光することによりその結合エネルギーを求め、標準試料との比較を行うことにより、鉄原子の平均原子価数Mや、添加元素の存在状態を求めることができる。
さらに目的とする皮膜を除去し、化学分析やX線蛍光分析等の機器分析を組み合わせて、鉄、酸素、等の構成元素の質量分率を求め、電気的中性条件から鉄原子の平均原子価数Mを求めることもできる。
In addition, measurement is performed by X-ray photoelectron spectroscopy (for example, Toshiro Yamashina / Nobu Fukuda, Fundamentals and Applications of Surface Analysis, The University of Tokyo Press (1991)). By irradiating the sample with X-rays of several KeV or more and analyzing the emitted photoelectrons, the binding energy is obtained and compared with a standard sample, so that the average valence number M of iron atoms and the presence of additive elements are present. The state can be determined.
Furthermore, the target film is removed and combined with instrumental analysis such as chemical analysis and X-ray fluorescence analysis to determine the mass fraction of constituent elements such as iron, oxygen, etc. The valence M can also be obtained.
また、X線ディフラクトメーターによる粉末回折図形の測定や、放射光源を利用したX線異常散乱測定によっても、添加元素の存在状態(NiがFe3O4中の酸素に配位されたサイトに存在するかどうか)を調べることができる。場所によるバラツキがある場合には、3〜5点で測定して平均値を出せばよい。3点より少ないと平均の情報が得るのが困難であり、5点より多いと測定のための時間が必要以上にかかることになる。 In addition, the presence of added elements (Ni is coordinated to oxygen in Fe 3 O 4) by powder diffraction pattern measurement using an X-ray diffractometer or X-ray anomalous scattering measurement using a radiation light source. Whether it exists). If there is variation due to location, the average value may be obtained by measuring at 3 to 5 points. If it is less than 3 points, it is difficult to obtain average information, and if it is more than 5 points, it takes more time than necessary for measurement.
また、皮膜を構成する粒子の体積分布を確認するには、例えば、メスバウア分光法を用いれば良い。メスバウアー分光法は固体中の原子核によるγ線の共鳴吸収を測定する手法であり、物質の磁気的性質を同定することのできる方法として広く物性科学、材料科学の分野で応用されている。メスバウアー分光の可能な原子核種は多数存在するが、その中でも特に57Fe原子核はこの効果が顕著である。即ち、本発明の耐候性鋼保護性さび層を構成するとされるゲーサイト(α−FeOOH)、アカガネイト(β−FeOOH)、レピドクロサイト(γ−FeOOH)およびマグネタイト(Fe3O4)等は全て各々特定の相転移温度以下では強磁性、反強磁性等の磁化の規則的な配列を有するために、そのFe原子核は原子の磁気モーメントの方向に強い内部磁場を感じ、そのメスバウアー吸収スペクトルは、6本の分離したスペクトルになる。 Moreover, in order to confirm the volume distribution of the particles constituting the film, for example, Mossbauer spectroscopy may be used. Mossbauer spectroscopy is a method for measuring the resonance absorption of γ rays by nuclei in solids, and is widely applied in the field of physical properties science and materials science as a method for identifying the magnetic properties of substances. There are many nuclides that can be used for Mossbauer spectroscopy. Among them, 57 Fe nuclei are particularly prominent. That is, goethite (α-FeOOH), akaganeate (β-FeOOH), lipidocrosite (γ-FeOOH), magnetite (Fe 3 O 4 ), etc. Since all have a regular arrangement of magnetization such as ferromagnetism and antiferromagnetism below a specific phase transition temperature, the Fe nucleus feels a strong internal magnetic field in the direction of the magnetic moment of the atom, and its Mossbauer absorption spectrum Becomes six separate spectra.
このスペクトルを解析すれば、例えば、Jpn.J.Appl.Phys.Vol.38(199)L189に記載されているように、それらの組成比を定量的に決定できることが知られている。さらに、このような磁性粒子には、その粒子体積が減少するに従って、磁化の方向を安定化している磁気異方性エネルギーが減少して、熱揺らぎのエネルギーと同程度になると、磁化が不安定になる超常磁性現象が生じることが知られている。このような超常磁性現象は、緩和時間と呼ばれる特性的な物理量によって特徴付けられる。通常、超常磁性の緩和時間τは次のように表される。
τ=τ0 exp(KV/kT) … (1)
ここでτ0 は、ほぼ10-10(秒)の温度によらない常数、Kは磁気異方性常数、Vは粒子の体積、kはボルツマン常数、Tは温度である。
つまり種々の温度(例えば、15〜300k)で緩和時間τの測定を行うことにより、各相毎にその粒子の体積分布を測定することができる。
If this spectrum is analyzed, for example, Jpn. J. et al. Appl. Phys. Vol. 38 (199) L189, it is known that their composition ratio can be determined quantitatively. Furthermore, with such magnetic particles, the magnetic anisotropy energy that stabilizes the direction of magnetization decreases as the volume of the particles decreases, and the magnetization becomes unstable when it is about the same as the energy of thermal fluctuations. It is known that a superparamagnetic phenomenon occurs. Such a superparamagnetic phenomenon is characterized by a characteristic physical quantity called relaxation time. Normally, the superparamagnetic relaxation time τ is expressed as follows.
τ = τ 0 exp (KV / kT) (1)
Here, τ 0 is a constant that does not depend on the temperature of approximately 10 −10 (seconds), K is the magnetic anisotropy constant, V is the volume of the particle, k is the Boltzmann constant, and T is the temperature.
That is, by measuring the relaxation time τ at various temperatures (for example, 15 to 300 k), the volume distribution of the particles can be measured for each phase.
本発明の保護性さび層の主要な構成粒子であるα−FeOOH,β−FeOOH,γ−FeOOHは反強磁性体であるために、巨視的な磁化は発現しないが、磁気的な秩序構造は存在しているので、メスバウアースペクトルには明瞭なスペクトルの分裂が観測される。この分裂は低温では6本であるが、ある温度(ネール温度)より高温では2本になる。このネール温度は各相で異なる(理想的なバルク試料の場合、α−FeOOH,β−FeOOH,γ−FeOOH、それぞれ約405、280、70kである)。(1)式からわかるように、さらにこの温度は皮膜を構成する粒子の体積が小さくなると低温側にずれる。そこで、つまり種々の温度(例えば、15〜300k)で、スペクトルを測定し、定量的な解析を行うことにより、各相毎にその粒子の体積分布を測定することができる。 Since α-FeOOH, β-FeOOH, and γ-FeOOH, which are the main constituent particles of the protective rust layer of the present invention, are antiferromagnetic, macroscopic magnetization does not appear, but the magnetic ordered structure is As it exists, a clear spectrum splitting is observed in the Mossbauer spectrum. The number of splits is 6 at low temperatures, but 2 at higher temperatures than a certain temperature (Nehl temperature). This Neel temperature is different in each phase (in the case of an ideal bulk sample, α-FeOOH, β-FeOOH, and γ-FeOOH are about 405, 280, and 70 k, respectively). As can be seen from the equation (1), this temperature further shifts to the low temperature side when the volume of the particles constituting the film is reduced. In other words, by measuring the spectrum at various temperatures (for example, 15 to 300 k) and performing quantitative analysis, the volume distribution of the particles can be measured for each phase.
具体的には、以下のように行う。
(1)種々の温度(例えば、15〜300k)で、スペクトルを測定する。
(2)内部磁場、アイソマーシフト、異方性常数等の物理常数およびTEM観察やX線回折のデーター等を参考にして適当と思われる粒子の体積分布の初期値を用いて各スペクトル線のピーク位置を決定する。
(3)各体積に応じた緩和時間を計算し、それぞれの緩和時間に対して(2)で仮定した粒子の体積分布に相当する重みを掛けて加え、スペクトルを計算する。
(4)(3)で計算されたスペクトルと(1)で実測されたスペクトルを比較し、あらかじめ設定された誤差以下である場合は、初期値の粒子の体積分布を決定値とする。そうでない場合は(2)に戻り、体積分布を修正して計算を行うプロセスを繰り返す。
Specifically, this is performed as follows.
(1) The spectrum is measured at various temperatures (for example, 15 to 300 k).
(2) Peaks of each spectral line using the initial values of the volume distribution of the particles, which may be appropriate with reference to physical constants such as internal magnetic field, isomer shift, anisotropic constant, and TEM observation and X-ray diffraction data Determine the position.
(3) The relaxation time corresponding to each volume is calculated, and the spectrum is calculated by adding the weight corresponding to the volume distribution of the particle assumed in (2) to each relaxation time.
(4) The spectrum calculated in (3) and the spectrum actually measured in (1) are compared, and when the error is equal to or smaller than a preset error, the initial volume distribution of the particles is used as the determination value. If not, return to (2) and repeat the process of correcting the volume distribution and calculating.
また、その他にも、電子顕微鏡による結晶粒組織観察や、X線ディフラクトメーターによる粉末回折図形の測定によっても、粒子の体積分布を調べることができる。場所によるバラツキがある場合には、3〜5点で測定して平均値を出せばよい。3点より少ないと平均の情報が得るのが困難であり、5点より多いと測定のための時間が必要以上にかかることになる。 In addition, the volume distribution of the particles can also be examined by observing the crystal grain structure with an electron microscope or measuring the powder diffraction pattern with an X-ray diffractometer. If there is variation due to location, the average value may be obtained by measuring at 3 to 5 points. If it is less than 3 points, it is difficult to obtain average information, and if it is more than 5 points, it takes more time than necessary for measurement.
(実施例1)
次に、実施例によって本発明の作用効果をさらに具体的に説明するが、これらは単に例示のためであり、本発明はこれらに限定されるものではない。
先ず、本実施例1〜3において、皮膜を構成する結晶粒子において微細結晶粒の分率は45%、皮膜中のFe3O4 モル分率は10%、膜厚は100μmと一定になるように、以下の各方法により皮膜の形成を行い、耐食性の評価を行なった。
表1に記載したNi含有鉄基合金を溶解作製した後、1100℃の初期温度での高温圧延を5回繰り返した。その素材から、所定の大きさの板を複数枚切り出し、各種処理を行って表面に皮膜(さび層)を形成したものを試料とし、この耐食性の評価を行った。
皮膜の形成法は、湿潤/加熱法、ゾルゲル反応法、塗布法によって行った。
湿潤/加熱法は、鋼を湿潤雰囲気で加熱する方法である。20×50×5mmの大きさの試料を湿潤状態(35℃、相対湿度95%、4hr)で保持した後、4時間かけて温度50℃、相対湿度40%に直線的に変化させ、温度50℃、相対湿度40%の乾燥状態で4時間保持する過程を1サイクルとして、このサイクルを150回繰り返し、試料表面に数〜100μm程度の皮膜を形成した。
(Example 1)
Next, the effects of the present invention will be described more specifically by way of examples. However, these are merely for illustrative purposes, and the present invention is not limited thereto.
First, in Examples 1 to 3, the crystal grains constituting the film had a fine crystal grain fraction of 45%, a Fe3O4 mole fraction in the film of 10%, and a film thickness of 100 μm so as to be constant. A film was formed by each of these methods, and the corrosion resistance was evaluated.
After melting and producing the Ni-containing iron-base alloy described in Table 1, high-temperature rolling at an initial temperature of 1100 ° C. was repeated 5 times. A plurality of sheets having a predetermined size were cut out from the material, and various treatments were performed to form a film (rust layer) on the surface, and this corrosion resistance was evaluated.
The film was formed by a wet / heating method , a sol-gel reaction method, or a coating method.
The wetting / heating method is a method in which steel is heated in a humid atmosphere. A sample having a size of 20 × 50 × 5 mm was held in a wet state (35 ° C., relative humidity 95%, 4 hr), and then linearly changed to a temperature of 50 ° C. and a relative humidity of 40% over 4 hours. A process of holding for 4 hours in a dry state at 40 ° C. and a relative humidity of 40% was taken as one cycle, and this cycle was repeated 150 times to form a film of about several to 100 μm on the sample surface.
ゾルゲル法は以下のように行った。20×50×5mmの大きさの試料に、鉄および添加元素のトリメトキシドのエタノール溶液1mlに水3ml、そして酢酸0.01mlを混合し、50℃にて攪拌を1時間行って得られた粘性溶液を、上記鋼材に塗布した。塗布は、ロールコータ又はバーコーターにより行った。その後、窒素雰囲気中、400℃で32時間乾燥させることにより、膜厚が約100μmの皮膜を形成した。
塗布法は以下のように行った。20×50×5mmの大きさの試料を用意した。次に、鉄および添加元素の酸化物を鉄の平均原子価数Mが、2.77超2.99未満になるような比率で混合したものをエタノール中に入れ遊星ボールミルにて3数時間粉砕した。その後、十分に乾燥させた粉末をポリビニルアルコール中に分散させた後、試料に塗布し乾燥させて、膜厚が約100μmの皮膜を形成した。
The sol-gel method was performed as follows. A viscous solution obtained by mixing 3 ml of water and 0.01 ml of acetic acid in 1 ml of an ethanol solution of trimethoxide of iron and additive elements in a sample of 20 × 50 × 5 mm and stirring at 50 ° C. for 1 hour. Was applied to the steel material. Application was performed with a roll coater or a bar coater. Thereafter, the film was dried at 400 ° C. for 32 hours in a nitrogen atmosphere to form a film having a thickness of about 100 μm.
The coating method was performed as follows. A sample having a size of 20 × 50 × 5 mm was prepared. Next, a mixture of iron and an oxide of an additive element in a ratio such that the average valence number M of iron is greater than 2.77 and less than 2.99 is placed in ethanol and pulverized for 3 hours with a planetary ball mill. did. Thereafter, the sufficiently dried powder was dispersed in polyvinyl alcohol, and then applied to the sample and dried to form a film having a film thickness of about 100 μm.
上記試料の皮膜の平均原子価数Mは、XAFS法を用いて調べた。FeO、Fe2O3の粉末試料のFe−Ka吸収端のエネルギーを測定し、それぞれ、M=2、M=3標準試料として用いた。次に、上記試料の地鉄表面から5μmの範囲の皮膜を採取し、Fe−Ka吸収端のエネルギーを測定し、平均原子価数Mを決定した。場所によるバラツキがあることを考慮して3点で測定し平均値を算出した。3点のバラツキが大きい場合には、磁化の測定によりFe3O4の分率を、X線回折によりα−FeOOH,β−FeOOH,γ−FeOOH,α−FeOOHの各相の分率をもとめ、その加重平均から鉄原子の平均原子価数Mを推定した。 The average valence number M of the film of the sample was examined using the XAFS method. The energy of the Fe—Ka absorption edge of the FeO and Fe 2 O 3 powder samples was measured and used as M = 2 and M = 3 standard samples, respectively. Next, a film having a thickness of 5 μm was collected from the surface of the base iron of the sample, the energy of the Fe—Ka absorption edge was measured, and the average valence number M was determined. Taking into account the variation depending on the location, the average value was calculated by measuring at 3 points. When the variation at the three points is large, the fraction of Fe 3 O 4 is obtained by measuring the magnetization, and the fraction of each phase of α-FeOOH, β-FeOOH, γ-FeOOH, and α-FeOOH is obtained by X-ray diffraction. The average valence number M of iron atoms was estimated from the weighted average.
また、XAFS法により、吸収端より高エネルギー域のXAFS振動から動径分布関数を求めるとともに、放射光源を利用したX線異常散乱測定を行い、両方の結果から、Fe3O4中のNiの存在する原子位置を決定した。これら両方の結果から、NiがFe3O4結晶格子の6個の酸素原子に配位された八面体サイトに存在するかどうかを測定した。場所によるバラツキがあることを考慮して3点で測定し平均値を算出した。皮膜中のNi原子がFe3 O4 中の酸素原子が配位するサイトに、0.4%以上25%以下存在する場合を良好(〇印)とし、一方、0.4%未満または25%超存在する場合は不良(×印)とする。 In addition, by the XAFS method, the radial distribution function is obtained from the XAFS vibration in the high energy region from the absorption edge, and the X-ray anomalous scattering measurement using the radiation light source is performed, and both results show that Ni in Fe 3 O 4 The existing atomic position was determined. From both of these results, it was determined whether Ni was present at octahedral sites coordinated to six oxygen atoms in the Fe 3 O 4 crystal lattice. Taking into account the variation depending on the location, the average value was calculated by measuring at 3 points. The case where Ni atoms in the film are present at 0.4% or more and 25% or less at the site where the oxygen atoms in Fe 3 O 4 are coordinated is regarded as good (marked with ○), whereas less than 0.4% or 25% If it is superexisting, it is regarded as defective (x mark).
次に、各試験片に対して、0.3質量%塩水を500ml/cm2塗布し、湿潤状態(35℃、相対湿度95%、6hr)→乾燥状態(40℃、相対湿度40%、18hr)を1サイクルとして、繰り返し50サイクル腐食試験を行った。試験試料の耐食性の評価は、同等の条件で腐食試験を行った純鉄の腐食減量を基準にして、各試験片の腐食減量から評価を行った。耐食性評価は以下の5段階で行い、評点3以上を耐食性良好とみなす。 Next, 0.3% by mass salt water was applied to each test piece at 500 ml / cm 2 , and wet state (35 ° C., relative humidity 95%, 6 hr) → dry state (40 ° C., relative humidity 40%, 18 hr). ) Was taken as one cycle, and a 50-cycle corrosion test was repeated. The corrosion resistance of the test samples was evaluated from the corrosion weight loss of each test piece based on the corrosion weight loss of pure iron that was subjected to the corrosion test under the same conditions. Corrosion resistance evaluation is performed in the following five stages, and a score of 3 or more is considered good corrosion resistance.
評点1:試験試料の腐食減量が純鉄の腐食減量より多い(100%超)。
評点2:試験試料の腐食減量が純鉄の腐食減量と同等(90%超100%以下)である。評点3:試験試料の腐食減量が純鉄の腐食減量の50%超90%以下である。
評点4:試験試料の腐食減量が純鉄の腐食減量の30%超50%以下である。
評点5:試験試料の腐食減量が純鉄の腐食減量の30%以下である。
表1に結果を示す。本発明の耐候性鋼は、皮膜中のNiおよび添加元素の原子がFe3 O4結晶格子の6個の酸素原子に配位された八面体サイトに存在しており、皮膜中の鉄の原子価数Mは2.77超2.99未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。
Score 1: The corrosion weight loss of the test sample is greater than that of pure iron (over 100%).
Score 2: Corrosion weight loss of the test sample is equivalent to that of pure iron (over 90% and 100% or less). Score 3: The corrosion weight loss of the test sample is more than 50% and less than 90% of the corrosion weight loss of pure iron.
Score 4: The corrosion weight loss of the test sample is more than 30% and less than 50% of the corrosion weight loss of pure iron.
Score 5: The corrosion weight loss of the test sample is 30% or less of the corrosion weight loss of pure iron.
Table 1 shows the results. The weathering steel of the present invention is present in the octahedral site in which the atoms of Ni and additive elements in the film are coordinated to six oxygen atoms of the Fe 3 O 4 crystal lattice, and the atoms of iron in the film The valence M was more than 2.77 and less than 2.99. Furthermore, as a result of the corrosion test, the scores were all 3-5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.
(実施例2)
表2に記載したNi含有鉄基合金を溶解作製した後、実施例1と同様の方法により圧延を行い、その素材から所定の大きさの板を複数枚切り出し、実施例1と同様の表面仕上げを行った。次に、実施例1と同様の各種処理を行って表面に被膜(さび層)を形成したものを試料とし、実施例1と同様の方法で、被膜中のNiおよび添加元素の原子がFe3O4結晶格子の6個の酸素原子に配位された八面体サイトに存在するかどうかの測定、被膜中の鉄の平均原子価数Mの測定、および、腐食試験による耐食性の評価を行った。
表2に結果を示す。本発明の耐候性鋼は、被膜中のNiおよび添加元素の原子がFe3O4結晶格子の6個の酸素原子に配位された八面体サイトに存在しており、被膜中の鉄の原子価数Mは2.77超2.99未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。
(Example 2)
After melting and producing the Ni-containing iron-base alloy described in Table 2, rolling is performed by the same method as in Example 1, and a plurality of plates of a predetermined size are cut out from the material, and the same surface finish as in Example 1 Went. Next, a sample in which a coating (rust layer) was formed on the surface by performing various treatments similar to those in Example 1 was used as a sample, and in the same manner as Example 1, the atoms of Ni and additive elements in the coating were Fe 3. Measurement of whether or not the octahedral site coordinated to six oxygen atoms of the O 4 crystal lattice exists, measurement of the average valence number M of iron in the coating, and evaluation of corrosion resistance by a corrosion test. .
Table 2 shows the results. The weathering steel according to the present invention is present in octahedral sites in which atoms of Ni and additive elements in the coating are coordinated to six oxygen atoms of the Fe 3 O 4 crystal lattice, and iron atoms in the coating The valence M was more than 2.77 and less than 2.99. Furthermore, as a result of the corrosion test, the scores were all 3-5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.
(実施例3)
表3に記載したNi含有鉄基合金を溶解作製した後、実施例1と同様の方法により圧延を行い、その素材から所定の大きさの板を複数枚切り出し、実施例1と同様の表面仕上げを行った。次に、実施例1と同様の各種処理を行って表面に被膜(さび層)を形成したものを試料とし、実施例1と同様の方法で、被膜中のNiおよび添加元素の原子がFe3O4結晶格子の6個の酸素原子に配位された八面体サイトに存在するかどうかの測定、被膜中の鉄の平均原子価数Mの測定、および、腐食試験による耐食性の評価を行った。
表3に結果を示す。本発明の耐候性鋼は、被膜中のNiおよび添加元素の原子がFe3O4結晶格子の6個の酸素原子に配位された八面体サイトに存在しており、被膜中の鉄の原子価数Mは2.77超2.99未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。
(Example 3)
After melting and producing the Ni-containing iron-base alloy described in Table 3, rolling is performed in the same manner as in Example 1, and a plurality of plates of a predetermined size are cut out from the material, and the same surface finish as in Example 1 Went. Next, a sample in which a coating (rust layer) was formed on the surface by performing various treatments similar to those in Example 1 was used as a sample, and in the same manner as Example 1, the atoms of Ni and additive elements in the coating were Fe 3. Measurement of whether or not the octahedral site coordinated to six oxygen atoms of the O 4 crystal lattice exists, measurement of the average valence number M of iron in the coating, and evaluation of corrosion resistance by a corrosion test. .
Table 3 shows the results. The weathering steel according to the present invention is present in octahedral sites in which atoms of Ni and additive elements in the coating are coordinated to six oxygen atoms of the Fe 3 O 4 crystal lattice, and iron atoms in the coating The valence M was more than 2.77 and less than 2.99. Furthermore, as a result of the corrosion test, the scores were all 3-5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.
(実施例4)
次に、本実施例4〜6において、皮膜中のFe3O4のモル分率は10%、Ni原子、及び/又は、その他添加元素の1種または2種以上の原子が、皮膜中のFe3O4結晶格子の6個の酸素原子に配位された八面体サイトに10%存在し、膜厚は100μmと一定になるように、以下の各方法により皮膜の形成を行い、耐食性の評価を行なった。
表4に記載したNi含有鉄基合金を溶解作製した後、1100℃の初期温度での高温圧延を5回繰り返した。その素材から、所定の大きさの板を複数枚切り出し、各種処理を行って表面に皮膜(さび層)を形成したものを試料とし、この耐食性の評価を行った。
Example 4
Then, in this embodiment 4-6, the molar fraction of Fe 3 O 4 in the film is 10%, Ni atoms, and / or, the one or more atoms other additive elements, in the coating The film is formed by the following methods so that 10% exists in the octahedral site coordinated with six oxygen atoms of the Fe 3 O 4 crystal lattice and the film thickness is constant at 100 μm. Evaluation was performed.
After melting and producing the Ni-containing iron-base alloy described in Table 4, high temperature rolling at an initial temperature of 1100 ° C. was repeated 5 times. A plurality of sheets having a predetermined size were cut out from the material, and various treatments were performed to form a film (rust layer) on the surface, and this corrosion resistance was evaluated.
皮膜の形成法は、湿潤/加熱法、ゾルゲル反応法、によって行った。
湿潤/加熱法は、鋼を湿潤雰囲気で加熱する方法である。20×50×5mmの大きさの試料を湿潤状態(温度30℃、相対湿度95%)で2時間保持した後、温度を30℃→55℃、相対湿度を95%→40%へと一定の変化率で1時間かけて変化させ、乾燥状態(温度55℃、相対湿度40%)で2時間保持する一連の過程を1サイクルとし、このサイクルを250回繰り返すことにより、試料表面に数十〜100μm程度の皮膜が形成した。
The film was formed by a wet / heating method or a sol-gel reaction method.
The wetting / heating method is a method in which steel is heated in a humid atmosphere. After holding a sample of 20 × 50 × 5 mm in a wet state (
ゾルゲル法は以下のように行った。20×50×5mmの大きさの試料に、鉄および添加元素のトリメトキシドのエタノール溶液1mlに水3ml、そして酢酸0.02mlを混合し、70℃にて攪拌を1時間行って得られた粘性溶液を、上記鋼材に塗布した。塗布は、ロールコータ又はバーコーターにより行った。その後、窒素雰囲気中、400℃で40時間乾燥させることにより、膜厚が約90μmの皮膜を形成した。 The sol-gel method was performed as follows. A viscous solution obtained by mixing 3 ml of water and 0.02 ml of acetic acid in 1 ml of an ethanol solution of trimethoxide of iron and additional elements in a sample of 20 × 50 × 5 mm, and stirring at 70 ° C. for 1 hour Was applied to the steel material. Application was performed with a roll coater or a bar coater. Thereafter, the film was dried at 400 ° C. for 40 hours in a nitrogen atmosphere to form a film having a thickness of about 90 μm.
上記試料の皮膜を構成する粒子の体積分布をメスバウア分光法を用いて調べた。試料を採取しAl箔にはさみこみ57Feからのg線を用いてメスバウアスペクトルの測定を15〜300Kの温度で実施した。メスバウアスペクトルから皮膜中の粒子の体積分布を求める方法は以下の通りである。
(1)内部磁場、アイソマーシフト、異方性常数等のスペクトルの解析に必要なパラメーターを計算する。
(2)(1)に基づき、更に計算するスペクトルの温度を決定し、各スペクトル線のピーク位置を決定する。
(3)粒子の体積分布の初期値として、TEM観察やX線回折のデーター等を参考にして適当と思われる値を設定する。
The volume distribution of the particles constituting the film of the sample was examined using Mossbauer spectroscopy. A Mossbauer spectrum was measured at a temperature of 15 to 300K using a g-line from 57Fe sampled and sandwiched between Al foils. The method for obtaining the volume distribution of particles in the film from the Mossbauer spectrum is as follows.
(1) Calculate parameters necessary for spectrum analysis such as internal magnetic field, isomer shift and anisotropic constant.
(2) Based on (1), the temperature of the spectrum to be calculated is further determined, and the peak position of each spectral line is determined.
(3) As an initial value of the particle volume distribution, a value that is considered appropriate is set with reference to TEM observation, X-ray diffraction data, and the like.
(4)各体積に応じた緩和時間を計算し、それぞれの緩和時間に対して3組のモーショナルナローイングを計算し、さらに、計算結果に(3)で仮定した粒子の体積分布に相当する重みを掛けて加え、スペクトルを計算し表示する。
(5)(4)で計算されたスペクトルと実測されたスペクトルを比較し、あらかじめ設定された誤差以下になるように、(1)〜(4)のプロセスを繰り返す。もとめられた体積分布の例を図2に示す。 皮膜中の粒の体積分布の測定、および、腐食試験による耐食性の評価を行った。
(4) The relaxation time corresponding to each volume is calculated, three sets of motional narrowing are calculated for each relaxation time, and the weight corresponding to the particle volume distribution assumed in (3) is further calculated. Multiply and add to calculate and display the spectrum.
(5) The spectrum calculated in (4) is compared with the actually measured spectrum, and the processes (1) to (4) are repeated so that the error is equal to or less than a preset error. An example of the obtained volume distribution is shown in FIG. The volume distribution of the grains in the film was measured, and the corrosion resistance was evaluated by a corrosion test.
表4に結果を示す。本発明の耐候性鋼は、FeOOHおよびFe3O4を主成分とする皮膜に覆われているもので、メスバウア分光法により決定した皮膜を構成する粒子が微細粒および粗大粒から構成され、かつ微細粒の体積分率が20%超90%未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。 Table 4 shows the results. The weathering steel of the present invention is covered with a film mainly composed of FeOOH and Fe 3 O 4 , the particles constituting the film determined by Mossbauer spectroscopy are composed of fine grains and coarse grains, and The volume fraction of fine particles was more than 20% and less than 90%. Furthermore, as a result of the corrosion test, the scores were all 3-5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.
(実施例5)
表5に記載したNi含有鉄基合金を溶解作製した後、実施例1と同様の方法により圧延を行い、その素材から所定の大きさの板を複数枚切り出し、実施例1と同様の表面仕上げを行った。次に、実施例4と同様の各種処理を行って表面に皮膜(さび層)を形成したものを試料とし、実施例4と同様の方法で、皮膜中の粒子の体積分布および、腐食試験による耐食性の評価を行った。
表5に結果を示す。本発明の耐候性鋼は、メスバウア分光法により決定した皮膜を構成する粒子が微細粒および粗大粒から構成され、かつ微細粒の体積分率が20%超90%未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。
(Example 5)
After melting and producing the Ni-containing iron-base alloy described in Table 5, rolling is performed by the same method as in Example 1, and a plurality of sheets of a predetermined size are cut out from the material, and the same surface finish as in Example 1 Went. Next, a sample having a film (rust layer) formed on the surface by performing various treatments similar to those in Example 4 was used as a sample, and the volume distribution of particles in the film and a corrosion test were performed in the same manner as in Example 4. Corrosion resistance was evaluated.
Table 5 shows the results. In the weathering steel of the present invention, the particles constituting the film determined by Mossbauer spectroscopy were composed of fine particles and coarse particles, and the volume fraction of fine particles was more than 20% and less than 90%. Furthermore, as a result of the corrosion test, the scores were all 3-5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.
(実施例6)
表6に記載したNi含有鉄基合金を溶解作製した後、実施例1と同様の方法により圧延を行い、その素材から所定の大きさの板を複数枚切り出し、実施例1と同様の表面仕上げを行った。次に、実施例4と同様の各種処理を行って表面に皮膜(さび層)を形成したものを試料とし、実施例4と同様の方法で、皮膜中の粒子の体積分布および、腐食試験による耐食性の評価を行った。
表6に結果を示す。本発明の耐候性鋼は、メスバウア分光法により決定した皮膜を構成する粒子が微細粒および粗大粒から構成され、かつ微細粒の体積分率が20%超90%未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。
(Example 6)
After melting and producing the Ni-containing iron-based alloy described in Table 6, rolling is performed by the same method as in Example 1, and a plurality of plates of a predetermined size are cut out from the material, and the same surface finish as in Example 1 Went. Next, a sample having a film (rust layer) formed on the surface by performing various treatments similar to those in Example 4 was used as a sample, and the volume distribution of particles in the film and a corrosion test were performed in the same manner as in Example 4. Corrosion resistance was evaluated.
Table 6 shows the results. In the weathering steel of the present invention, the particles constituting the film determined by Mossbauer spectroscopy were composed of fine particles and coarse particles, and the volume fraction of fine particles was more than 20% and less than 90%. Furthermore, as a result of the corrosion test, the scores were all 3-5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.
(比較例)
表7に記載したNi含有鉄基合金を溶解作製した後、実施例1と同様の方法により圧延を行い、その素材から所定の大きさの板を複数枚切り出し、実施例1と同様の表面仕上げを行った。次に、各合金表面に各種処理を行って、合金表面に皮膜(さび層)を形成したものを試料とした。なお、皮膜の形成法は、湿潤/加熱法、ゾルゲル反応法、塗布法によって行ったが、これらの処理条件は本発明の範囲外の条件とした。これらの試料に対し、実施例1、4と同様の方法で、皮膜中のNiおよび添加元素の原子がFe3O4結晶格子の6個の酸素元素に配位された八面体サイトに存在するかどうかの測定、皮膜中の鉄の平均原子価数Mの測定、粒子の体積分布および、腐食試験による耐食性の評価を行った。表7に結果を示す。比較例の耐候性鋼は全て、皮膜中の鉄の原子価数M、粒の体積分布等の何れかの条件が本発明の範囲外にあり、評点が1および2であり、耐食性に劣ることが確認された。
なお、以上説明した実施例および比較例の結果をグラフにしたものを図3に示す。
(Comparative example)
After the Ni-containing iron-base alloy described in Table 7 was melted and produced, it was rolled by the same method as in Example 1, and a plurality of plates of a predetermined size were cut out from the material, and the same surface finish as in Example 1 Went. Next, various treatments were performed on each alloy surface, and a film (rust layer) formed on the alloy surface was used as a sample. The film was formed by a wetting / heating method , a sol-gel reaction method, or a coating method, but these treatment conditions were outside the scope of the present invention. For these samples, in the same manner as in Examples 1 and 4, the atoms of Ni and additive elements in the film are present at the octahedral site coordinated with the six oxygen elements of the Fe 3 O 4 crystal lattice. Measurement, measurement of the average valence number M of iron in the film, volume distribution of particles, and evaluation of corrosion resistance by a corrosion test. Table 7 shows the results. All the weather-resistant steels of the comparative examples are inferior in corrosion resistance because the conditions such as the valence number M of iron in the film and the volume distribution of grains are outside the scope of the present invention, and the scores are 1 and 2. Was confirmed.
FIG. 3 is a graph showing the results of the examples and comparative examples described above.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003336914A JP4119814B2 (en) | 2003-04-18 | 2003-09-29 | Steel material with excellent weather resistance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003114576 | 2003-04-18 | ||
JP2003336914A JP4119814B2 (en) | 2003-04-18 | 2003-09-29 | Steel material with excellent weather resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004332098A JP2004332098A (en) | 2004-11-25 |
JP4119814B2 true JP4119814B2 (en) | 2008-07-16 |
Family
ID=33513314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003336914A Expired - Fee Related JP4119814B2 (en) | 2003-04-18 | 2003-09-29 | Steel material with excellent weather resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4119814B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5182035B2 (en) * | 2008-11-20 | 2013-04-10 | Jfeスチール株式会社 | Method for testing atmospheric corrosion of steel |
JP5326692B2 (en) * | 2009-03-12 | 2013-10-30 | Jfeスチール株式会社 | Steel surface treatment method and steel material |
JP6139943B2 (en) * | 2013-03-29 | 2017-05-31 | 株式会社神戸製鋼所 | Steel material for soft magnetic parts with excellent pickling properties, soft magnetic parts with excellent corrosion resistance and magnetic properties, and manufacturing method thereof |
JP6112074B2 (en) * | 2014-06-26 | 2017-04-12 | Jfeスチール株式会社 | A method for forming a dense rust early on a weather resistant steel material and a weather resistant steel material produced by the method. |
-
2003
- 2003-09-29 JP JP2003336914A patent/JP4119814B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004332098A (en) | 2004-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mishra et al. | Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy | |
Morcillo et al. | Weathering steels: From empirical development to scientific design. A review | |
Hashimoto et al. | The role of corrosion-resistant alloying elements in passivity | |
Plachy et al. | Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions | |
Gómez et al. | Effects of Si as alloying element on corrosion resistance of weathering steel | |
Ivanisenko et al. | Bulk nanocrystalline ferrite stabilized through grain boundary carbon segregation | |
JP5425300B2 (en) | Hexagonal ferrite magnetic powder and magnetic recording medium using the same | |
US20090194733A1 (en) | Superparamagnetic transition metal iron oxygen nanoparticles | |
Mariano et al. | Influence of Nb content on the corrosion resistance and saturation magnetic density of FeCuNbSiB alloys | |
Refait et al. | Electrochemical formation of carbonated corrosion products on carbon steel in deaerated solutions | |
Maurice et al. | Molybdenum effects on the stability of passive films unraveled at the nanometer and atomic scales | |
Park et al. | The corrosion behavior of sputter-deposited Cr-Mo alloys in 12 M HCl solution | |
JP4119814B2 (en) | Steel material with excellent weather resistance | |
Peng et al. | A comparative study of microstructure and mechanical properties of ODS CrFeNi-based medium-and high-entropy alloys | |
Bhoi et al. | Evolution of microstructure and magnetic properties of nanocrystalline Fe70− xCuxCo30 alloy prepared by mechanical alloying | |
Sofronova et al. | Chemical disorder reinforces magnetic order in ludwigite (Ni, Mn) 3BO5 with Mn4+ inclusion | |
Örnek et al. | Understanding the passive behaviour of low-chromium high-strength Hybrid steel in corrosive environments | |
Balaji et al. | Enhanced performance of SnO2-Mn (1− X) Cu (X) Fe2O4 gas sensors towards carbon dioxide and oxygen | |
Park et al. | Effects of alloying elements on the stability and mechanical properties of Fe3Al from first-principles calculations | |
Kołodziej et al. | Structural transformations and magnetic properties of plastically deformed FeNi-based alloys synthesized from meteoritic matter | |
Nishino | Electrical resistance anomaly in Fe3Al-based alloys | |
Liu et al. | Magnetism and solid solution effects in NiAl (40% Al) alloys | |
Takahashi et al. | Corrosion behavior of carbon steel coated with a zinc‐rich paint containing metallic compounds under wet and dry cyclic conditions | |
Xiao et al. | The structural and magnetic properties of cobalt ferrite nanoparticles formed in situ in silica matrix | |
Vara et al. | Influence of nickel content on the electrochemical behavior of Finemet type amorphous and nanocrystalline alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080422 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080425 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4119814 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140502 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |