JP2004332098A - Steel having excellent weatherability - Google Patents

Steel having excellent weatherability Download PDF

Info

Publication number
JP2004332098A
JP2004332098A JP2003336914A JP2003336914A JP2004332098A JP 2004332098 A JP2004332098 A JP 2004332098A JP 2003336914 A JP2003336914 A JP 2003336914A JP 2003336914 A JP2003336914 A JP 2003336914A JP 2004332098 A JP2004332098 A JP 2004332098A
Authority
JP
Japan
Prior art keywords
film
iron
steel
less
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003336914A
Other languages
Japanese (ja)
Other versions
JP4119814B2 (en
Inventor
Masao Kimura
正雄 木村
Hiroshi Kihira
寛 紀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003336914A priority Critical patent/JP4119814B2/en
Publication of JP2004332098A publication Critical patent/JP2004332098A/en
Application granted granted Critical
Publication of JP4119814B2 publication Critical patent/JP4119814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel coated with a surface layer in which the condition (valence) of iron is controlled, and having excellent weatherability. <P>SOLUTION: In the steel having excellent weatherability, the surface of an Ni-containing iron based alloy material comprising, by mass, 0.2 to 10% Ni, and the balance Fe with inevitable impurities is coated with a film mainly consisting of FeOOH and Fe<SB>3</SB>O<SB>4</SB>, and the average valence of iron in the film is >2.77 to <2.99. Further, one or more kinds of metals selected from Cu, Cr, Ti, W, Mo, Sb, Al, Nb and Ta by 0.01 to 8% in total are incorporated into the Ni-containing iron based alloy material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐候性に優れた鋼材に関し、さらに詳しくは、大気腐食環境中で安定な密着さび層を有する耐候性に優れた鋼材に関するものである。   The present invention relates to a steel material excellent in weather resistance, and more particularly to a steel material excellent in weather resistance having a stable adhesion rust layer in an atmospheric corrosion environment.

いわゆる耐候性鋼とは、母材中にCu、Ni、Cr、P等の元素を少量添加した鋼材であり、数年以上の期間、大気中に暴露することによって、地鉄に密着し、大気腐食に対して地鉄層を保護する機能を有する保護性さび層が地鉄直上に形成されるため、塗装等の耐食処理作業が不要であり、橋梁などの構造材料として使用されている。しかし、飛来塩分量が多い地域では、Cl-イオンの進入を保護性さび層により防止することが困難である上、保護性さび層の形成が困難であるという問題があった。 A so-called weathering steel is a steel material in which a small amount of elements such as Cu, Ni, Cr, and P are added to a base metal. Since a protective rust layer having a function of protecting the ground steel layer against corrosion is formed directly above the ground steel, no corrosion-resistant work such as painting is required, and it is used as a structural material for bridges and the like. However, in an area where the amount of incoming salt is large, there is a problem that it is difficult to prevent the ingress of Cl - ions by the protective rust layer and it is difficult to form the protective rust layer.

本来、耐食処理作業が不要な耐候性鋼の表面層に要求される機能は、それ自体が防食機能を有することである。防食機能とは、表面防食層である保護さび層形成後に地鉄がそれ以上腐食することを防ぐ機能であるから、表面防食層の第一の要件としては、その層が腐食の原因となるCl、O、H等の元素の外部環境からの侵入を防止できる環境遮断機能を有することである。第二の要件としては、使用環境下で安定であって変化しないこと、すなわち、環境安定性を有することである。環境遮断性を有するためには、まず、さび自体が緻密で、環境からの侵入が予想される元素が透過しにくい構造を有することが必要である。特に、飛来塩分量が多い地域では、鋼材の表面が、微細粒で緻密であるだけのさび層で覆われているだけでは、Cl-イオンの進入を防止することは困難であり、保護性さび層の形成が困難であるという問題があった。 Essentially, the function required of the surface layer of weather-resistant steel that does not require a corrosion-resistant treatment is that it has a corrosion-proof function itself. Since the anticorrosion function is a function of preventing further corrosion of the ground iron after the formation of the protective rust layer, which is a surface anticorrosion layer, the first requirement of the surface anticorrosion layer is that the layer is a corrosion-resistant Cl , O, H, and the like from the outside environment. The second requirement is to be stable under the use environment and not change, that is, to have environmental stability. In order to have an environmental barrier property, first, it is necessary that the rust itself is dense and has a structure in which elements expected to invade from the environment do not easily penetrate. In particular, in the airborne salt amount is large area, the surface of the steel material, just covered with rust layer only is dense with fine grains, Cl - it is difficult to prevent the ingress of ions, protective rust There was a problem that it was difficult to form a layer.

この問題を解決するために、従来から、種々の試みがなされてきた。特開平10−251797号公報(特許文献1)には、質量%で、C:0.15%以下、Si:0.7%以下、Mn:0.2〜1.5%、P:0.03〜0.15%、S:0.02%以下、Al:0.01〜0.1%、Cr:0.1%以下、Ni:0.4〜4%、Cu:0.4%以下、Mo:0.05〜1%を含有し、さらに、Sn:0.01〜0.5%、Sb:0.01〜3%のうちの1種または2種を含有し、残部がFeおよび不可避的不純物からなる耐候性に優れた溶接構造用鋼が開示されている。   Various attempts have conventionally been made to solve this problem. Japanese Patent Application Laid-Open No. 10-251797 (Patent Document 1) discloses that, by mass%, C: 0.15% or less, Si: 0.7% or less, Mn: 0.2 to 1.5%, P: 0. 03 to 0.15%, S: 0.02% or less, Al: 0.01 to 0.1%, Cr: 0.1% or less, Ni: 0.4 to 4%, Cu: 0.4% or less , Mo: 0.05-1%, Sn: 0.01-0.5%, Sb: One or two of 0.01-3%, the balance being Fe and Disclosed are welded structural steels having excellent weather resistance and consisting of unavoidable impurities.

ここでは、MoおよびNiは耐食性向上に重要な添加元素であり、Moは錆の地鉄界面付近に富化し、地鉄界面付近のさびの稠密性を高め、水分や塩分等の腐食因子が鋼表面に接触するのを防止する効果があるとしているものの、外部からさび層へのCl-イオンの充分な進入防止はできていない。特許文献1の方法は、Mo等の添加元素により生じるイオン等が地鉄界面付近のさびに付着することにより、外部からのCl-イオンと地鉄界面との接触を防ぐことを期待しているものであるが、さび自身が外部からのCl-イオンの進入を防ぐための十分な機能を有していないため安定して塩化腐食性を向上させることは困難である。 Here, Mo and Ni are important addition elements for improving the corrosion resistance, and Mo is enriched in the vicinity of the rust base iron interface, increases the density of rust near the base iron interface, and causes corrosion factors such as moisture and salt content in the steel. Although it is said that it has an effect of preventing contact with the surface, it does not sufficiently prevent Cl - ions from entering the rust layer from the outside. The method of Patent Document 1 is expected to prevent the contact between the external Cl - ions and the ground iron interface by attaching ions and the like generated by the additional elements such as Mo to the rust near the ground iron interface. However, since rust itself does not have a sufficient function to prevent the ingress of Cl - ions from the outside, it is difficult to stably improve the chloride corrosion resistance.

さらに、鋼板表面のさび層中に粒子体積3×10-24 3 以下の極微細粒を10〜30%の体積分率で含有する耐候性鋼材が特許文献2に開示されている。しかし、より飛来塩分が多い厳しい腐食環境での使用に耐えるためには、極微細粒などの結晶粒の分布制御だけでは十分な塩化腐食性の向上は困難である。
特開平10−251797号公報 特開2001−123246号公報
Further, Patent Document 2 discloses a weather resistant steel material containing ultrafine particles having a particle volume of 3 × 10 −24 m 3 or less in a rust layer on the surface of a steel sheet at a volume fraction of 10 to 30%. However, in order to withstand use in a severe corrosive environment with more flying salt, it is difficult to sufficiently improve the chloride corrosion resistance only by controlling the distribution of crystal grains such as ultrafine grains.
JP-A-10-251797 JP 2001-123246 A

本発明は、上記問題を解決し、大気腐食環境中で安定な密着さび層に覆われた耐候性に優れた鋼材およびその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a steel material excellent in weather resistance covered with a stable adhesion rust layer in an atmospheric corrosive environment and a method for producing the same.

従来、耐候性鋼の保護性さび層の構造は、その主要部分が平均結晶粒径200nm以下の微細粒のゲーサイト(α−FeOOH)で構成されているとされていた。しかし、本発明者らが、透過型電子顕微鏡による耐候性鋼の保護性さび層の構造解析を行った結果、平均結晶粒径が200nm以下の微細粒のゲーサイトは、Cu、Ni、Cr、P等の元素が添加されていない普通鋼のさび層にも存在していることが明らかになり、このような微細粒のゲーサイトの存在が、耐候性鋼の保護性さび層の耐候性機能の発現因子の全てではないとの知見を新たに得た。   Conventionally, the structure of the protective rust layer of weathering steel has been described as having a main portion composed of fine-grained goethite (α-FeOOH) having an average crystal grain size of 200 nm or less. However, as a result of a structural analysis of the protective rust layer of the weathering steel by a transmission electron microscope, the present inventors found that fine-grained goethite having an average crystal grain size of 200 nm or less was Cu, Ni, Cr, It is clarified that elements such as P are also present in the rust layer of ordinary steel to which no element is added, and the presence of such fine-grained goethite indicates that the protective rust layer of the weather-resistant steel has a weather-resistant function. It was newly obtained that not all of the expression factors were expressed.

さらに、本発明者らは、さび層へのCl-イオンの進入を効果的に防ぐには、供与環境下でさび層自体が負の電荷を帯びていればよいとの知見を新たに得た。耐候性鋼や普通鋼において、地鉄直上に密着するさび層中には様々な粒径の結晶粒が存在し、その結晶構造は電子線回折等の解析結果によると、ゲーサイト(α−FeOOH)が主体であるとされているものの、この他にも添加元素や暴露期間によって、アカガネイト(β−FeOOH)、レピドクロサイト(γ−FeOOH)、マグネタイト(Fe34)等の結晶構造が存在し、さらにこれらの結晶構造は平均粒径が数10nm程度の微細結晶粒であるために、結晶構造が判定し難い場合もあることが判明した。 Furthermore, the present inventors have newly obtained the knowledge that the rust layer itself should have a negative charge under the donor environment in order to effectively prevent Cl ions from entering the rust layer. . In weathering steel and ordinary steel, there are various sizes of crystal grains in the rust layer in close contact with the ground iron. According to the analysis results of electron beam diffraction and the like, the crystal structure shows that the geite (α-FeOOH) ) Is predominant, but the crystal structure of akaganate (β-FeOOH), lepidocrocite (γ-FeOOH), magnetite (Fe 3 O 4 ), etc., depends on the added elements and the exposure period. It has been found that these crystal structures are fine crystal grains having an average particle size of about several tens of nanometers, so that it is sometimes difficult to determine the crystal structure.

さらに、結晶構造の欠陥等により、これらのさび層に従来明らかでなかった結晶構造を有する場合もあることが判明した。すなわち、本発明者らは、さび層を原子レベルでみると局所的に電気的中性からずれること、つまり、その結晶構造により鉄の原子価数が部分的に変化することを示しており、その状態をマクロに制御することにより、さび層自体が負の電荷を帯びた状態を実現することが可能となるとの知見を新たに得た。   Further, it has been found that these rust layers sometimes have a crystal structure that has not been clarified conventionally due to a defect in the crystal structure or the like. That is, the present inventors show that the rust layer locally deviates from electrical neutrality at the atomic level, that is, the valence number of iron is partially changed by its crystal structure, It has been newly obtained that the macroscopic control of the state makes it possible to realize a state in which the rust layer itself has a negative charge.

本発明者らは、さび層自体が負の電荷を帯びた状態を実現するために、その結晶構造の変化により鉄の原子価数を変化させ、このときのさび層へのCl-イオンの侵入防止効果について種々検討を行った結果、鉄の原子価数を2.77超2.99未満に制御すれば、塩化耐食性の向上のために十分な効果が得られるとの知見を新たに得た。この要件により、さび層を構成する結晶構造におけるFe3+とFe2+が望ましい存在比率で混在することになる。すなわち、結晶構造におけるFe3+の存在によりさび層の緻密性を保持するのに必要なFeOOH相が形成された上で、Fe2+の存在により外部からのCl-イオンの進入を防止するのに十分な負の電荷を帯びた状態のさび層の生成が実現する。 The present inventors have found that in order to achieve a state of rust layer itself is negatively charged, the atomic valence of the iron is changed by a change in the crystal structure, Cl to rust layer of this time - ion penetration As a result of various studies on the effect of prevention, it was newly found that if the valence number of iron is controlled to be more than 2.77 and less than 2.99, a sufficient effect can be obtained for improving the corrosion resistance to chloride. . According to this requirement, Fe 3+ and Fe 2+ in the crystal structure constituting the rust layer are mixed at a desirable abundance ratio. That is, the presence of Fe 3+ in the crystal structure forms the FeOOH phase necessary to maintain the denseness of the rust layer, and the presence of Fe 2+ prevents the entry of Cl ions from the outside. The formation of a rust layer with a sufficient negative charge is realized.

本発明は、かかる知見を基に完成されたもので、その要旨とするところは、以下の通りである。
(1)質量%で、Ni:0.2〜10%を含有し、残部がFeおよび不可避的不純物からなるNi含有鉄基合金材料の表面が、主としてFeOOHおよびFe34からなる皮膜で覆われており、該皮膜中の鉄の平均原子価数が2.77超2.99未満であることを特徴とする耐候性に優れた鋼材。
(2)前記Ni含有鉄基合金材料に、さらに、質量%で、Cu、Cr、Ti、W、Mo、Sb、Al、Nb、Taの1種または2種以上を合計で0.01〜8%を含有することを特徴とする(1)に記載の耐候性に優れた鋼材。
The present invention has been completed based on such findings, and the gist thereof is as follows.
(1) mass% Ni: contained 0.2 to 10%, the balance is Fe and the surface of the Ni-containing iron-based alloy material consisting of unavoidable impurities, covering with a film consisting mainly FeOOH and Fe 3 O 4 A steel material excellent in weather resistance, characterized in that the average valence of iron in the coating is more than 2.77 and less than 2.99.
(2) One or more of Cu, Cr, Ti, W, Mo, Sb, Al, Nb, and Ta may be further added to the Ni-containing iron-based alloy material in a mass percentage of 0.01 to 8 in total. %, The steel material having excellent weather resistance according to (1).

(3)前記皮膜中のFe34のモル分率が、4〜35%であることを特徴とする(1)または(2)に記載の耐候性に優れた鋼材。
(4)前記皮膜中のNi原子、および、Cu、Cr、Ti、W、Mo、Sb、Al、Nb、Taの1種または2種以上の原子が、該皮膜中のFe34結晶格子の6個の酸素原子に配位された八面体サイトに、0.4〜25%存在することを特徴とする(1)〜(3)のいずれかに記載の耐候性に優れた鋼材。
(5)前記皮膜の結晶粒子における粒子体積18×10-24 3 以下の微細結晶粒の体積分率が20%超90%未満であることを特徴とする(1)〜(4)のいずれかに記載の耐候性に優れた鋼材。
(6)前記皮膜の膜厚が、0.01〜200μmであることを特徴とする(1)〜(5)のいずれかに記載の耐候性に優れた鋼材にある。
(3) The steel material according to (1) or (2), wherein the mole fraction of Fe 3 O 4 in the coating is 4 to 35%.
(4) The Ni atoms in the film and one or more of Cu, Cr, Ti, W, Mo, Sb, Al, Nb, and Ta atoms are contained in the Fe 3 O 4 crystal lattice in the film. The steel material having excellent weather resistance according to any one of (1) to (3), wherein 0.4 to 25% is present in the octahedral site coordinated to the six oxygen atoms.
(5) Any of (1) to (4), wherein the volume fraction of fine crystal grains having a particle volume of 18 × 10 −24 m 3 or less in the crystal grains of the film is more than 20% and less than 90%. A steel material excellent in weather resistance described in Crab.
(6) The steel material according to any one of (1) to (5), wherein the coating has a thickness of 0.01 to 200 μm.

本発明により、鉄の状態(価数)を制御した表面層に覆われた耐候性に優れた鋼材を提供することが可能である。本発明の耐候性鋼は、Cl-イオンのさび層内部への侵入を防止できるものであり、環境負荷低減や経済性の観点からも、産業上極めて価値が高いものであるといえる。 According to the present invention, it is possible to provide a steel material excellent in weather resistance covered with a surface layer in which the state (valence) of iron is controlled. The weathering steel of the present invention can prevent Cl - ions from entering the inside of the rust layer, and can be said to be extremely valuable industrially from the viewpoint of reducing environmental load and economic efficiency.

本発明の実施の形態について、以下に詳細に説明する。
本発明に係る耐候性鋼とは、添加元素としてNiを0.2〜10%含有する鉄基合金であり、必要に応じて、さらに、Cu、Cr、Ti、W、Mo、Sb、Al、Nb、Taの1種または2種以上を合計で0.01〜8%含有するものである。また、この耐候性鋼の表面が主としてFeOOHおよびFe34で構成される皮膜(以下、この皮膜をさび層ということもある。)で覆われており、この皮膜中の鉄の平均原子価数を2.77超2.99未満に制御したものである。さらには、この皮膜中のFe34のモル分率が、4〜35%であり、Ni原子、および、Ni以外の添加元素の1種または2種以上が皮膜(さび層)のFe34中の6個の酸素に配位された八面体サイトに0.4〜25%存在するものである。さらに、この皮膜の結晶粒子における粒子体積18×10-243以下の微細結晶粒の体積分率が20%超90%未満であり、皮膜の膜厚が、0.01〜200μmである。
Embodiments of the present invention will be described in detail below.
The weathering steel according to the present invention is an iron-based alloy containing 0.2 to 10% of Ni as an additive element, and further includes Cu, Cr, Ti, W, Mo, Sb, Al, One or two or more of Nb and Ta are contained in a total amount of 0.01 to 8%. Further, the surface of the weather-resistant steel is covered with a film mainly composed of FeOOH and Fe 3 O 4 (hereinafter, this film may also be referred to as a rust layer), and the average valence of iron in this film. The number was controlled to be more than 2.77 and less than 2.99. Further, the molar fraction of Fe 3 O 4 in the film during is a 4 to 35%, Ni atoms, and, Fe 3 of one or two or more kinds coating of additive elements other than Ni (rust layer) It is present at 0.4 to 25% at octahedral sites coordinated to six oxygen atoms in O 4 . Further, the volume fraction of fine crystal grains having a particle volume of 18 × 10 −24 m 3 or less in the crystal grains of the coating is more than 20% and less than 90%, and the thickness of the coating is 0.01 to 200 μm.

本発明に係る耐候性鋼中の添加成分について説明する。なお、以下に示す「%」は、特に説明がない限り「質量%」を意味するものである。
本発明に係る耐候性鋼は、Niを0.2〜10%含有する鉄基合金である。Niは、鉄基合金全体の腐食電位を下げる作用効果があり、かつ、鋼材から金属イオンの溶出量が少なくなる。さらに、Niが存在するとその一部が皮膜中のFe34相中に入り込み、Fe3 4 相をエネルギー的に安定化し、皮膜中のFe3 4 相をより安定的に多量に存在させることが可能となる。皮膜のFeOOH中の鉄原子はFe3+の状態であるのに対して、Fe3 4 相中の鉄原子は、Fe3+とFe2+の両方の状態が共存しており、このFe2+の状態の原子を同じ二価のNi2+が置き換えることにより、Fe3 4 相がエネルギー的に安定化すると考えられる。
Niの含有量が0.2%より少量では、鋼材の腐食電位を下げる効果および金属イオンの溶出量を抑える効果が著しく低下し、また、10%を超えて添加してもその効果は増加しないため、Ni含有量を0.2〜10%とした。
The additive components in the weathering steel according to the present invention will be described. In addition, "%" shown below means "% by mass" unless otherwise specified.
The weathering steel according to the present invention is an iron-based alloy containing 0.2 to 10% of Ni. Ni has the effect of lowering the corrosion potential of the entire iron-based alloy and reduces the amount of metal ions eluted from the steel. Furthermore, the Ni is present partially enters the Fe 3 O 4 phase in the coating, and energetically stabilizes the Fe 3 O 4 phase, more stable abundant the Fe 3 O 4 phase in the film It is possible to do. While the iron atoms in the FeOOH of the film are in the state of Fe 3+ , the iron atoms in the Fe 3 O 4 phase have both the Fe 3+ and Fe 2+ states. It is considered that the Fe 3 O 4 phase is energetically stabilized by replacing the atom in the 2+ state with the same divalent Ni 2+ .
If the Ni content is less than 0.2%, the effect of lowering the corrosion potential of the steel material and the effect of suppressing the elution amount of metal ions are significantly reduced, and the effect does not increase even if added over 10%. Therefore, the Ni content is set to 0.2 to 10%.

本発明では、上記のNiと同様な作用効果を有する添加元素として、Cu、Cr、Ti、W、Mo、Sb、Al、Nb、Taがあり、これらの1種または2種以上を合計で0.01〜8%含有することが好ましい。これらの元素を添加する場合は、含有量の合計が0.01%より少量では、腐食電位を下げる効果およびイオンの溶出量を抑える効果が著しく低下し、また、含有量の合計が8%を超えて添加してもその効果は増加しないため、その好ましい含有量の合計を0.01〜8%とした。   In the present invention, there are Cu, Cr, Ti, W, Mo, Sb, Al, Nb, and Ta as additional elements having the same function and effect as Ni described above. It is preferable to contain 0.01 to 8%. When these elements are added, if the total content is less than 0.01%, the effect of lowering the corrosion potential and the effect of suppressing the elution amount of ions are significantly reduced, and the total content is 8%. Since the effect does not increase even if it is added in excess, the total of the preferable contents is set to 0.01 to 8%.

本発明に係る耐候性鋼は、その表面に形成された皮膜(さび層)の結晶構造における鉄の平均原子価数Mが、2.77超2.99未満であることが塩化耐食性を充分に向上するために必要であり、この平均原子価数Mの制御は、後述の方法により行う。結晶構造中の鉄の平均原子価数Mが2.77超2.99未満の範囲にあれば、皮膜中にFe3+とFe2+が混在し、Fe3+の存在により皮膜の緻密性を保持するのに必要なFeOOH相が形成された上で、Fe2+の存在により外部からのCl-イオンの進入を防止するのに十分な負の電荷を帯びた状態のさび層を鋼材表面に生成することを実現する。 In the weathering steel according to the present invention, the average valence number M of iron in the crystal structure of the film (rust layer) formed on the surface is more than 2.77 and less than 2.99, so that the chloride corrosion resistance is sufficiently improved. It is necessary to improve the average valence number M. The control of the average valence number M is performed by a method described later. When the average valence number M of iron in the crystal structure is in the range of more than 2.77 and less than 2.99, Fe 3+ and Fe 2+ are mixed in the film, and the denseness of the film is caused by the presence of Fe 3+ . After the formation of the FeOOH phase necessary to maintain the rust layer, the rust layer having a negative charge sufficient to prevent the ingress of Cl ions from the outside due to the presence of Fe 2+ is formed on the steel material surface. Is generated.

鉄の平均原子価数Mが2.99以上であると、皮膜の結晶構造においてFe34相が安定して存在することができなくなるため、皮膜は外部からのCl-イオンの進入防止に十分な負の電荷を帯びにくくなる。一方、鉄の平均原子価数Mが2.77以下であると、皮膜の結晶構造においてFe34相は安定して存在するものの、FeOOH相の生成が減少するため、FeOOH相を主体とする緻密な皮膜が形成されず耐食性が著しく悪くなる。皮膜のFeOOH中の鉄原子はFe3+の状態であるのに対して、Fe34相中の鉄原子は、Fe3+とFe2+の両方の状態が共存している。そのため、鉄の平均原子価数Mが2.99以上であると、皮膜の結晶構造においてFe34相が安定して存在することができなくなる。一方、鉄の平均原子価数Mが2.77以下であると、皮膜の結晶構造においてFe34相は安定して存在するものの、FeOOH相が安定して存在しなくなる。 When the average valence number M of iron is 2.99 or more, the Fe 3 O 4 phase cannot be stably present in the crystal structure of the film, so that the film prevents the Cl ions from entering from the outside. It becomes difficult to carry a sufficient negative charge. On the other hand, when the average valence number M of iron is 2.77 or less, the Fe 3 O 4 phase is stably present in the crystal structure of the film, but the generation of the FeOOH phase is reduced. A dense film is not formed, and the corrosion resistance is remarkably deteriorated. The iron atoms in the FeOOH of the coating are in the state of Fe 3+ , while the iron atoms in the Fe 3 O 4 phase have both the states of Fe 3+ and Fe 2+ . Therefore, when the average valence number M of iron is 2.99 or more, the Fe 3 O 4 phase cannot be stably present in the crystal structure of the film. On the other hand, when the average valence number M of iron is 2.77 or less, although the Fe 3 O 4 phase is stably present in the crystal structure of the film, the FeOOH phase is not stably present.

また、本発明では、上記の主としてFeOOHおよびFe34で構成される皮膜(さび層)において、平均原子価数Mが2.77超2.99未満であることに加えて、さらに、皮膜中のFe34のモル分率が4%以上35%以下とすることにより塩素耐食性はさらに向上する。これは皮膜中のFe34とFeOOH以外の結晶構造で存在する層、例えばFeOやFe23が存在する場合でも皮膜中のFe34が上記範囲にあればより安定して塩素耐食性が向上するからである。Fe34のモル分率が4%未満であれば、皮膜中にFe34とFeOOH以外の結晶構造で存在する層が増えた場合に、皮膜は外部からのCl-イオンの進入防止に十分な負の電荷を帯びにくくなる場合が生じる。一方、Fe3 4 のモル分率が35%超であれば、FeOOH相が形成されず緻密性が悪くなることがある。 Further, in the present invention, in the above-mentioned film (rust layer) mainly composed of FeOOH and Fe 3 O 4 , the average valence number M is more than 2.77 and less than 2.99. By setting the molar fraction of Fe 3 O 4 therein to 4% or more and 35% or less, the chlorine corrosion resistance is further improved. This is because even if a layer having a crystal structure other than Fe 3 O 4 and FeOOH in the film, for example, FeO or Fe 2 O 3 is present, if the Fe 3 O 4 in the film is within the above range, chlorine is more stably formed. This is because the corrosion resistance is improved. If the molar fraction of Fe 3 O 4 is less than 4%, the film prevents Cl - ions from entering from the outside when the number of layers having a crystal structure other than Fe 3 O 4 and FeOOH increases in the film. In some cases, it is difficult to take a sufficient negative charge. On the other hand, if the molar fraction of Fe 3 O 4 exceeds 35%, the FeOOH phase is not formed, and the denseness may be deteriorated.

皮膜中でFe34型の結晶構造はスピネル構造と呼ばれ、鉄の原子価がFe3+とFe2+の両状態を安定的にとる構造である。図1は、Fe34型のスピネル構造を模式的に示した図で、鉄原子は、それを取り囲む6個の酸素原子から構成される八面体サイトの中心、および八面体を取り囲む4個の酸素原子から構成される四面体サイトの中心に位置する。Fe3+とFe2+の鉄原子は、これらのサイトを占めることにより、安定的に存在する。本発明で規定する皮膜中の鉄の平均原子価数Mが2.77超2.99未満である場合には、鉄原子はFe34型のスピネル構造をとる方がより安定であり、使用環境におけるpH、酸素、イオン等の影響を受けにくくなり、耐食性がより向上する。 The Fe 3 O 4 type crystal structure in the film is called a spinel structure, and is a structure in which the valence of iron stably assumes both Fe 3+ and Fe 2+ states. FIG. 1 is a diagram schematically showing an Fe 3 O 4 type spinel structure, in which iron atoms are formed at the center of an octahedral site composed of six oxygen atoms surrounding the iron atom, and four iron atoms are formed around the octahedron. Is located at the center of the tetrahedral site composed of oxygen atoms. The iron atoms of Fe 3+ and Fe 2+ are stably present by occupying these sites. When the average valence number M of iron in the film specified in the present invention is more than 2.77 and less than 2.99, it is more stable for the iron atom to have a Fe 3 O 4 type spinel structure, It is less affected by pH, oxygen, ions and the like in the use environment, and the corrosion resistance is further improved.

またさらに、本発明に係る耐候性鋼の塩分耐食性を向上させるためには、皮膜中のNi原子、および添加した元素のうち1種または2種以上がFe34型のスピネル構造の6個の酸素原子が配位する八面体サイトに、0.4〜25%存在することが好ましい。0.4%未満であれば、皮膜はCl-イオンの進入防止に十分な負の電荷を帯びなくなる。一方、25%超であれば、FeOOH相が形成されず緻密性が悪くなる。
Ni原子および添加した元素のうち1種または2種以上が、Fe34型のスピネル構造の6個の酸素原子が配位する八面体サイトに存在すると、皮膜中の鉄の平均原子価数Mを2.77超2.99未満に保つ効果が高い上、使用環境におけるpH、酸素、イオン等の影響を受けにくくなる。
Still further, in order to improve the salt corrosion resistance of the weatherable steel according to the present invention, one or more of the Ni atoms in the coating and one or more of the added elements have an Fe 3 O 4 type spinel structure. Is preferably present at 0.4 to 25% at the octahedral site to which the oxygen atom coordinates. If it is less than 0.4%, the film will not be sufficiently negatively charged to prevent Cl - ions from entering. On the other hand, if it exceeds 25%, the FeOOH phase is not formed and the denseness is deteriorated.
When one or more of the Ni atoms and the added elements are present in the octahedral site where six oxygen atoms of the Fe 3 O 4 type spinel structure are coordinated, the average valence number of iron in the film The effect of keeping M at more than 2.77 and less than 2.99 is high, and it is hardly affected by pH, oxygen, ions and the like in the use environment.

Fe34相中の鉄原子は、Fe3+とFe2+の両方の状態が共存している。理想的なFe34型のスピネル構造では、鉄原子が存在すると考えられる原子位置は、6個の酸素原子によって配位された八面体サイトと4個の酸素原子によって配位された四面体サイトの二種類があり、Fe3+の半数が四面体サイトを、Fe3+の残りの半数とFe2+が八面体サイトに存在するとされている。Ni原子はNi2+を安定構造としてとるため、Fe2+の状態の原子を同じ二価のNi2+が置き換えることにより八面体サイトに優先的に存在し、Fe34相がエネルギー的に安定化する。その結果、皮膜中の鉄の平均原子価数Mを2.77超2.99未満に保つ効果が高くなる。八面体サイトに置換したNi2+はエネルギー的に安定であり、使用環境におけるpH、酸素、イオン等の影響を受けにくくなる。 The iron atoms in the Fe 3 O 4 phase coexist in both Fe 3+ and Fe 2+ states. In an ideal Fe 3 O 4 type spinel structure, the atomic positions where iron atoms are considered to exist are an octahedral site coordinated by 6 oxygen atoms and a tetrahedral coordinated by 4 oxygen atoms There are two types of sites, with half of Fe 3+ being at tetrahedral sites and the other half of Fe 3+ and Fe 2+ being at octahedral sites. Since Ni atoms have a stable structure of Ni 2+ , the same divalent Ni 2+ replaces the atoms in the Fe 2+ state, so that the Ni atoms exist preferentially at the octahedral site, and the Fe 3 O 4 phase is energetically active. To stabilize. As a result, the effect of keeping the average valence number M of iron in the coating at more than 2.77 and less than 2.99 increases. Ni 2+ substituted on the octahedral site is energetically stable and is less susceptible to pH, oxygen, ions and the like in the use environment.

また、さらに、本発明に係る耐候性鋼の塩分耐食性を向上させるためには、皮膜が粒子体積18×10-243以下の微細結晶粒から主に構成され、その微細結晶粒の体積分率は20%超90%未満であることが望ましい。微細結晶粒の体積分率が20%超90%未満であれば、皮膜を構成する粗大結晶粒の粒界同志の空間を微細結晶粒が埋めることによりより緻密な皮膜が形成され、腐食環境からのCl-等のイオンや酸素および水等の侵入を防止できる。皮膜の微細結晶粒と粗大結晶粒の境界は、それぞれの体積分率により異なるが、おおむね粒子体積7〜18×10-24 3 であることから、粒子体積18×10-243以下の微細結晶粒を20%超90%未満で皮膜中に存在させることが望ましい。微細結晶粒の体積分率が20%以下では粗大結晶粒の粒界同志の空隙を微細粒が十分に埋めることが困難になる。一方、微細結晶粒の体積分率の上限は特に限定する必要はないが、90%以上とすることは工業的に困難であるため、その上限を90%未満とした。
またさらに、本発明に係る耐候性鋼は、腐食反応が進行する地鉄との界面近傍に存在する皮膜の膜厚を0.01〜200μmとするのが好ましい。地鉄との界面近傍の皮膜が0.01μm未満であると十分なイオン遮断性がなく、200μm超では皮膜に不均一が生じやすい。
Further, in order to improve the salt corrosion resistance of the weatherable steel according to the present invention, the coating is mainly composed of fine crystal grains having a particle volume of 18 × 10 −24 m 3 or less, and the volume of the fine crystal grains is Desirably, the rate is greater than 20% and less than 90%. If the volume fraction of the fine crystal grains is more than 20% and less than 90%, a finer film is formed by filling the space between the grain boundaries of the coarse crystal grains constituting the film with a finer crystal film, and from the corrosive environment. of Cl - intrusion such as ion and oxygen and water or the like can be prevented. Boundaries of the fine crystal grains and coarse crystal grains of the coating will vary by the respective volume fractions, generally because it is the particle volume 7~18 × 10 -24 m 3, the particle volume 18 × 10 -24 m 3 or less It is desirable that more than 20% and less than 90% of fine crystal grains be present in the coating. If the volume fraction of the fine crystal grains is 20% or less, it becomes difficult for the fine grains to sufficiently fill the voids between the grain boundaries of the coarse crystal grains. On the other hand, the upper limit of the volume fraction of the fine crystal grains is not particularly limited, but it is industrially difficult to set the upper limit to 90% or more. Therefore, the upper limit is set to less than 90%.
Furthermore, in the weathering steel according to the present invention, it is preferable that the thickness of the coating existing near the interface with the ground iron in which the corrosion reaction proceeds is 0.01 to 200 μm. If the coating in the vicinity of the interface with the base iron is less than 0.01 μm, there is no sufficient ion-blocking property.

次に、本発明に係る耐候性鋼の表面に形成する皮膜の形成方法および皮膜中の鉄の平均原子価数M、皮膜の結晶構造、結晶粒の体積分布、皮膜の膜厚等の制御方法について説明する。本発明に係る皮膜を作製するには、以下に記載する皮膜の作製方法の1種類または複数を組み合わせて行う。
皮膜中の鉄の平均原子価数Mを制御する方法のひとつとして、鋼を湿潤雰囲気で加熱する方法が挙げられる(以下、湿潤/加熱法と呼ぶ)。本発明に係る耐候性鋼の表面を湿潤状態で保持することにより鋼表面での金属イオンの溶解反応を生じさせ、その後、徐々に乾燥状態に変化させることにより、金属イオンと酸素との化合物の生成反応を生じさせる。この反応サイクルを繰り返すことにより表面層を作製する。
Next, a method for forming a film formed on the surface of the weatherable steel according to the present invention and a method for controlling average valence number M of iron in the film, crystal structure of the film, volume distribution of crystal grains, film thickness of the film, and the like. Will be described. In order to produce a film according to the present invention, one or more of the following film production methods are combined.
As one of methods for controlling the average valence number M of iron in the coating, there is a method of heating steel in a humid atmosphere (hereinafter, referred to as a wetting / heating method). By maintaining the surface of the weatherable steel according to the present invention in a wet state, a dissolution reaction of metal ions on the steel surface is caused, and then, by gradually changing the state to a dry state, a compound of the metal ion and oxygen is formed. A production reaction occurs. By repeating this reaction cycle, a surface layer is produced.

このサイクルの望ましい条件範囲は、温度5〜40℃で相対湿度30〜100%の湿潤状態に1〜10時間放置した後、温度10〜50℃で相対湿度0〜90%の乾燥状態に1〜10時間放置するサイクルを1〜100回繰り返すことである。湿潤状態を温度5〜40℃で相対湿度30〜100%とするのは、この条件において、材料の表面が十分に濡れた状態になるためである。乾燥状態を温度10〜50℃で相対湿度0〜90%とするのは、この条件において、材料の表面が十分に乾燥し、酸素が地鉄界面へ供給される状況で皮膜形成反応が進行するためである。   The desirable condition range of this cycle is as follows: after being left in a wet state at a temperature of 5 to 40 ° C. and a relative humidity of 30 to 100% for 1 to 10 hours, a dry state at a temperature of 10 to 50 ° C. and a relative humidity of 0 to 90% This is to repeat the cycle of leaving for 10 hours 1 to 100 times. The reason why the wet state is a temperature of 5 to 40 ° C. and a relative humidity of 30 to 100% is that under this condition, the surface of the material becomes sufficiently wet. The reason for setting the drying state to a temperature of 10 to 50 ° C. and a relative humidity of 0 to 90% is that under this condition, the surface of the material is sufficiently dried, and the film forming reaction proceeds in a state where oxygen is supplied to the interface with the base iron. That's why.

湿潤・乾燥の反応サイクルは、上述の湿潤状態に1〜10時間放置した後、上述の乾燥状態に1〜10時間放置するサイクルとし、これを1〜100回繰り返すことが望ましい。湿潤状態の時間が1時間より短時間では、良質な皮膜形成するために必要なイオンの溶け出しがなく、10時間より長時間ではイオンの溶け出しのみが先行し、密着性のある皮膜が形成されない。また、乾燥状態の時間が1時間より短時間では、酸素が地鉄界面へ供給される状況での皮膜形成反応が不十分であり、10時間より長時間では乾燥過程のみが先行し、密着性のある皮膜が形成されない。またさらに、このサイクル数が1より少ないと皮膜が形成されず、100回を超えても皮膜の質の著しい改善はなく、かえって皮膜面内の不均一性のため膜質が低下する恐れがある。   The wet / dry reaction cycle is a cycle in which the substrate is left in the above-mentioned wet state for 1 to 10 hours, and then left in the above-mentioned dry state for 1 to 10 hours, and this cycle is desirably repeated 1 to 100 times. If the wet state time is shorter than 1 hour, there is no leaching of ions necessary for forming a good quality film, and if the wet state is longer than 10 hours, only leaching of ions precedes and a film with adhesion is formed. Not done. On the other hand, if the drying time is shorter than 1 hour, the film-forming reaction in a situation where oxygen is supplied to the ferrous metal interface is insufficient. A film with a crack is not formed. Further, if the number of cycles is less than 1, no film is formed, and even if the number of cycles exceeds 100, there is no remarkable improvement in the quality of the film, and the film quality may be deteriorated due to non-uniformity in the film surface.

具体的なサイクルの例として、例えば、鋼を湿潤状態(温度35℃、相対湿度95%)で4時間保持した後、温度を35℃→50℃、相対湿度を95%→40%へと一定の変化率で4時間かけて変化させ、乾燥状態(温度50℃、相対湿度40%)で4時間保持する一連の過程を1サイクルとし、このサイクルを100〜300回繰り返すことにより、鋼表面に数〜200μm程度の皮膜が形成する。さらに、皮膜中の鉄の平均原子価数Mを制御する別の方法として、スパッタリングによる皮膜形成方法が挙げられる(以下、スパッタリング法と呼ぶ)。本発明に係る耐候性鋼の表面に、鉄および添加元素の酸化物、または鉄と添加元素の合金をターゲットとして、スパッタリングを行い鋼表面に皮膜を作製する。平均原子価数Mは、スパッタリング時のガス雰囲気中の酸素量により調整する。   As an example of a specific cycle, for example, after holding steel in a wet state (temperature 35 ° C., relative humidity 95%) for 4 hours, the temperature is fixed at 35 ° C. → 50 ° C., and the relative humidity is fixed at 95% → 40%. Is changed over a period of 4 hours, and a series of processes in which the steel plate is kept in a dry state (temperature 50 ° C., relative humidity 40%) for 4 hours is defined as one cycle, and this cycle is repeated 100 to 300 times. A film of about several to 200 μm is formed. Further, as another method for controlling the average valence number M of iron in the film, there is a film forming method by sputtering (hereinafter, referred to as a sputtering method). Sputtering is performed on the surface of the weatherable steel according to the present invention using iron and an oxide of an additive element or an alloy of iron and the additive element as a target to form a film on the steel surface. The average valence number M is adjusted by the amount of oxygen in the gas atmosphere during sputtering.

好ましいガス雰囲気、スパッタリング時間は、酸素含有量3〜20体積%のガス雰囲気中で、2分〜5時間スパッタリングを行うことである。酸素含有量が3体積%より小さいと酸化物が生成できず、20体積%より大きいと酸化が進みすぎ、どちらの場合も、平均原子価数Mを所定の範囲にすることが困難になる。また、スパッタリング時間が2分より短い場合には酸化層の厚さが薄すぎ、5時間より長い場合には酸化層の厚さに不均一が生じてしまい、数〜数10μm程度の好ましい膜厚の膜が得られない。   Preferred gas atmosphere and sputtering time are to perform sputtering in a gas atmosphere having an oxygen content of 3 to 20% by volume for 2 minutes to 5 hours. If the oxygen content is less than 3% by volume, an oxide cannot be formed, and if it is more than 20% by volume, the oxidation proceeds too much, and in either case, it is difficult to keep the average valence number M within a predetermined range. When the sputtering time is shorter than 2 minutes, the thickness of the oxide layer is too small, and when the sputtering time is longer than 5 hours, the thickness of the oxide layer becomes non-uniform. Film cannot be obtained.

さらに、皮膜中の鉄の平均原子価数Mを制御する別の方法として、イオンプレーティングによる皮膜形成方法が挙げられる(以下、イオンプレーティング法と呼ぶ)。本発明に係る耐候性鋼の表面に、鉄の平均原子価数Mが所定の上記範囲に入る比率で、例えば、鉄、ニッケル、コバルト等の粉末を混合したものを坩堝内に入れ、電子ビーム等で加熱蒸発させ、高周波コイルで加速して鋼表面に付着させる。この時、ガス雰囲気をアルゴンに若干の酸素を混入した状態に保つことにより、平均原子価数Mを制御した10〜数10μm程度の膜厚の皮膜が作製可能となる。   Further, as another method of controlling the average valence number M of iron in the film, there is a film forming method by ion plating (hereinafter, referred to as an ion plating method). On the surface of the weathering steel according to the present invention, a mixture of powders such as iron, nickel, and cobalt is placed in a crucible at a ratio such that the average valence number M of iron falls within the above-mentioned predetermined range. Heating and evaporating it by using a high-frequency coil and attaching it to the steel surface. At this time, by keeping the gas atmosphere in a state in which a slight amount of oxygen is mixed with argon, a film having a thickness of about 10 to several tens μm in which the average valence number M is controlled can be produced.

好ましいガス雰囲気、スパッタリング時間は、酸素含有量3〜20体積%のガス雰囲気中で、2分〜8時間スパッタリングを行うことである。酸素含有量が3体積%より小さいと酸化物が生成できず、20体積%より大きいと酸化が進みすぎ、どちらの場合も、平均原子価数Mを所定の範囲にすることが困難になる。また、スパッタリング時間が2分より短い場合には酸化層の厚さが薄すぎ、8時間より長い場合には酸化層の厚さに不均一が生じてしまい、10〜数10μm程度の好ましい膜厚の膜が得られない。   Preferred gas atmosphere and sputtering time are to perform sputtering in a gas atmosphere having an oxygen content of 3 to 20% by volume for 2 minutes to 8 hours. If the oxygen content is less than 3% by volume, an oxide cannot be formed, and if it is more than 20% by volume, the oxidation proceeds too much, and in either case, it is difficult to keep the average valence number M within a predetermined range. When the sputtering time is shorter than 2 minutes, the thickness of the oxide layer is too small, and when the sputtering time is longer than 8 hours, the thickness of the oxide layer becomes non-uniform. Film cannot be obtained.

さらに、皮膜中の鉄の平均原子価数Mを制御する別の方法として、ゾルゲル反応を用いる方法が挙げられる(以下、ゾルゲル反応法と呼ぶ)。本発明に係る耐候性鋼の表面に、鉄および合金材料中の添加元素のアルコキシドをアルコールに溶解し、さらに、若干の酸を添加した溶液を調製し、これを十分に攪拌して金属ゾルを含有する粘性溶液を塗布すれば良い。   Further, as another method for controlling the average valence number M of iron in the film, there is a method using a sol-gel reaction (hereinafter, referred to as a sol-gel reaction method). On the surface of the weatherable steel according to the present invention, iron and the alkoxide of the additional element in the alloy material are dissolved in alcohol, and further, a solution containing a small amount of acid is prepared, and the solution is sufficiently stirred to form a metal sol. The contained viscous solution may be applied.

鉄および該合金材料中の添加元素のアルコキシド溶液の濃度は10〜40体積%が望ましい。10体積%未満では、ゾルゲル液による腐食が進行し良好な皮膜が形成されず、40体積%超ではゾルゲル反応が均一に進行せず良好な皮膜が形成されない。添加する酸としては、0.01〜10Mの濃度の酢酸、塩酸等を用いれば、ゾルゲル反応促進することができるため望ましい。攪拌は上記溶液が均一になるように行えばよく、例えば、30〜80℃の温度で10分〜5時間行えばよい。   The concentration of the alkoxide solution of the additive element in iron and the alloy material is preferably 10 to 40% by volume. If it is less than 10% by volume, corrosion by the sol-gel solution proceeds and a good film is not formed. If it exceeds 40% by volume, the sol-gel reaction does not progress uniformly and a good film is not formed. As the acid to be added, acetic acid, hydrochloric acid, or the like having a concentration of 0.01 to 10 M is preferably used because the sol-gel reaction can be promoted. The stirring may be performed so that the solution becomes uniform, and may be performed, for example, at a temperature of 30 to 80 ° C. for 10 minutes to 5 hours.

この溶液を前記鋼材に塗布し、乾燥することにより皮膜を作製する。塗布量および乾燥の際の加熱条件(温度、酸素雰囲気)により、平均原子価数Mを制御した皮膜が作製可能になる。鋼材への塗布は、膜厚が1〜200μmの範囲で均一な皮膜になるように行えばよく、粘性溶液の塗布法として一般的に用いられているロールコータ、バーコーター等を用いればよい。膜厚が1μm未満では十分なイオン遮断性がなく、200μm超では皮膜に不均一が生じやすい。本手法では、膜厚の制御が容易である。   This solution is applied to the steel material and dried to form a film. A coating film whose average valence number M is controlled can be produced by the application amount and the heating conditions (temperature, oxygen atmosphere) at the time of drying. The coating on the steel material may be performed so as to form a uniform film with a film thickness in the range of 1 to 200 μm, and a roll coater, a bar coater, or the like generally used as a method for applying the viscous solution may be used. When the film thickness is less than 1 μm, there is no sufficient ion-blocking property. In this method, it is easy to control the film thickness.

乾燥は、塗布した粘性溶液が均一に反応し良質な皮膜を形成するように行うことが好ましく、150〜600℃で1〜60時間乾燥する。150℃未満ではゾルゲル反応が十分進行せず、600℃超では形成された皮膜が分解し不均一になる可能性がある。また、乾燥時間が1時間より短時間では良質な皮膜形成するために必要な反応がなく、60時間より長時間では必要以上の加熱により皮膜が不均一になる可能性がある。   The drying is preferably performed so that the applied viscous solution reacts uniformly to form a good quality film, and is dried at 150 to 600 ° C. for 1 to 60 hours. If the temperature is lower than 150 ° C., the sol-gel reaction does not sufficiently proceed, and if the temperature exceeds 600 ° C., the formed film may be decomposed and become non-uniform. If the drying time is shorter than 1 hour, there is no reaction necessary for forming a good quality film, and if the drying time is longer than 60 hours, the film may be non-uniform due to excessive heating.

またさらに、皮膜中の鉄の平均原子価数Mを制御する別の方法として、鋼材に酸化物を直接塗布する方法が挙げられる(以下、塗布法と呼ぶ)。本発明に係る耐候性鋼の表面に、鉄および合金材料中の添加元素の酸化物を鉄の平均原子価数Mが所定の範囲に入るような比率で混合したものを細かく粉砕する。好ましい平均粒径は0.1μm〜200μmである。0.1μm未満では酸化物の構造が破壊される可能性があり、200μm超では粒子の混合が不十分となる。   Further, as another method of controlling the average valence number M of iron in the film, there is a method of directly applying an oxide to a steel material (hereinafter, referred to as a coating method). The surface of the weatherable steel according to the present invention is finely pulverized by mixing iron and an oxide of an additive element in an alloy material at a ratio such that the average valence number M of iron falls within a predetermined range. The preferred average particle size is from 0.1 μm to 200 μm. If it is less than 0.1 μm, the structure of the oxide may be destroyed, and if it is more than 200 μm, mixing of particles becomes insufficient.

その後、例えばエタノール中にて遊星ボールミルにて数時間粉砕する。その後、十分に乾燥させた粉末を適当な増粘性の有機物溶液中に分散させた後、これを上記鋼材に塗布、乾燥させることにより皮膜を得る。有機物溶液としては、ポリビニルアルコール等の、粉体を均一に分散可能なアルコール類がよい。鋼材への塗布は、膜厚が1〜200μmの範囲で均一な皮膜になるように行えばよく、粘性溶液の塗布法として一般的に用いられているロールコータ、バーコーター等を用いればよい。膜厚が1μm未満では十分なイオン遮断性がなく、200μm超では皮膜に不均一が生じやすい。   Thereafter, the mixture is ground for several hours in a planetary ball mill in, for example, ethanol. Thereafter, the sufficiently dried powder is dispersed in a suitable thickening organic material solution, and then applied to the steel material and dried to obtain a film. As the organic solution, alcohols such as polyvinyl alcohol, which can uniformly disperse the powder, are preferable. The coating on the steel material may be performed so as to form a uniform film in a thickness range of 1 to 200 μm, and a roll coater, a bar coater, or the like generally used as a method for applying a viscous solution may be used. When the film thickness is less than 1 μm, there is no sufficient ion-blocking property, and when the film thickness is more than 200 μm, the film tends to be uneven.

乾燥は、塗布した粉体溶液が均一に良質な皮膜を形成するように行うことが好ましく、120〜700℃で20分〜40時間乾燥する。120℃未満では乾燥と製膜反応が十分進行せず、700℃超では形成された皮膜が分解し不均一になる可能性がある。また、乾燥時間が20分より短時間では良質な皮膜形成するために必要な反応がなく、また、40時間より長時間では必要以上の加熱により被膜が不均一になる可能性がある。   The drying is preferably performed so that the applied powder solution uniformly forms a good quality film, and is dried at 120 to 700 ° C. for 20 minutes to 40 hours. If the temperature is lower than 120 ° C., the drying and the film-forming reaction do not sufficiently proceed. If the temperature exceeds 700 ° C., the formed film may be decomposed and become non-uniform. If the drying time is shorter than 20 minutes, there is no reaction necessary for forming a good-quality film, and if the drying time is longer than 40 hours, the film may be non-uniform due to excessive heating.

次に、上記本発明に係る方法により形成された皮膜が、本発明の要件を満たしているかどうかを確認する方法について述べる。
例えば、XAFS(X−ray Absorption Fine−structures:X線吸収微細構造)法を用いれば良い。X線のエネルギーを増加させながら材料の吸収率を測定すると、X線のエネルギーの増加に対応して材料の吸収率は減少するが、特定なX線のエネルギー(X線吸収端)において、その吸収率が急激に増加する部分が存在し、X線の吸収によって発生した光電子の一部が、複数の原子による散乱と干渉によって、X線の吸収量に対する構造情報として反映される。
Next, a method for confirming whether or not the film formed by the method according to the present invention satisfies the requirements of the present invention will be described.
For example, the XAFS (X-ray Absorption Fine-structures) method may be used. When the absorptance of a material is measured while increasing the energy of X-rays, the absorptivity of the material decreases in response to the increase in the energy of X-rays, but at a specific X-ray energy (X-ray absorption edge), There is a portion where the absorptance increases sharply, and a part of the photoelectrons generated by the absorption of X-rays is reflected as structural information on the amount of X-ray absorption by scattering and interference by a plurality of atoms.

つまり、X線の吸収量をモニタすれば、原子構造に関する情報が得られる(例えば、宇田川康夫編、X線吸収微細構造、学会出版センター(1993))。これがXAFS法による構造解析の原理であり、XAFS法を用いると鉄原子の平均原子価数Mや、添加元素の存在状態(NiがFe34中の酸素に配位されたサイトに存在するかどうか)を容易に求めることができる。場所によるバラツキがある場合には、3〜5点で測定して平均値を出せばよい。3点より少ないと平均の情報が得るのが困難であり、5点より多いと測定のための時間が必要以上にかかることになる。
また、皮膜に含まれる各相の分率をX線回折や磁気的測定でもとめ、以下の式によって平均原子価数Mを決定してもよい。
That is, by monitoring the amount of X-ray absorption, information on the atomic structure can be obtained (for example, edited by Yasuo Udagawa, X-ray absorption fine structure, Gakkai Shuppan Center (1993)). This is the principle of the structure analysis by the XAFS method. When the XAFS method is used, the average valence M of the iron atom and the existing state of the added element (Ni exists at the site where Ni is coordinated to oxygen in Fe 3 O 4 ) Or not) can be easily obtained. If there is a variation depending on the location, it is sufficient to measure at three to five points and obtain an average value. If it is less than three points, it is difficult to obtain the average information, and if it is more than five, it takes more time for measurement than necessary.
The fraction of each phase contained in the film may be determined by X-ray diffraction or magnetic measurement, and the average valence number M may be determined by the following equation.

Figure 2004332098
Figure 2004332098

ここで、wiはi相のモル分率、miはi相での鉄の平均価数である。Ciは各相の補正係数で、密度や結晶の配向性等の効果を標準試料を用いて規格化することにより決定される定数である。皮膜を構成するα−FeOOH,β−FeOOH,γ−FeOOH,α−FeOOH,Fe34等の構造はお互いに異なるため、X線回折図形を測定しそのピークの相対強度から各層の分率を見積もることができる。またFe34は強磁性体であるため、磁化を測定すれば試料中のFe34量のみを選択的に見積もることができる。 Here, w i is the mole fraction of i-phase, m i is the average valence of the iron in the i phase. C i is a correction coefficient for each phase and is a constant determined by normalizing effects such as density and crystal orientation using a standard sample. Since the structures of the coating such as α-FeOOH, β-FeOOH, γ-FeOOH, α-FeOOH, and Fe 3 O 4 are different from each other, an X-ray diffraction pattern is measured and the fraction of each layer is determined from the relative intensity of the peak. Can be estimated. Also, since Fe 3 O 4 is a ferromagnetic material, only the amount of Fe 3 O 4 in the sample can be selectively estimated by measuring the magnetization.

また、X線光電子分光法(例えば、山科俊郎/福田伸著、表面分析の基礎と応用、東京大学出版会(1991))による測定を行う。試料に数KeV以上のX線を照射し放出される光電子を分光することによりその結合エネルギーを求め、標準試料との比較を行うことにより、鉄原子の平均原子価数Mや、添加元素の存在状態を求めることができる。
さらに目的とする皮膜を除去し、化学分析やX線蛍光分析等の機器分析を組み合わせて、鉄、酸素、等の構成元素の質量分率を求め、電気的中性条件から鉄原子の平均原子価数Mを求めることもできる。
Further, measurement is performed by X-ray photoelectron spectroscopy (for example, Toshiro Yamashina / Shin Fukuda, Basics and Applications of Surface Analysis, University of Tokyo Press (1991)). The sample is irradiated with X-rays of several KeV or more and the emitted electrons are spectrally analyzed to determine its binding energy, and compared with a standard sample to determine the average valence number M of iron atoms and the presence of added elements. The state can be determined.
Furthermore, the target film is removed, and the mass fraction of constituent elements such as iron, oxygen, etc. is determined by combining instrumental analysis such as chemical analysis and X-ray fluorescence analysis, and the average atomic atom of iron The valence M can also be determined.

また、X線ディフラクトメーターによる粉末回折図形の測定や、放射光源を利用したX線異常散乱測定によっても、添加元素の存在状態(NiがFe34中の酸素に配位されたサイトに存在するかどうか)を調べることができる。場所によるバラツキがある場合には、3〜5点で測定して平均値を出せばよい。3点より少ないと平均の情報が得るのが困難であり、5点より多いと測定のための時間が必要以上にかかることになる。 In addition, the presence of the added element (the site where Ni is coordinated to oxygen in Fe 3 O 4) is also measured by powder diffraction pattern measurement using an X-ray diffractometer or X-ray anomalous scattering measurement using a radiation light source. To see if they exist). If there is a variation depending on the location, it is sufficient to measure at three to five points and obtain an average value. If it is less than three points, it is difficult to obtain the average information, and if it is more than five, it takes more time for measurement than necessary.

また、皮膜を構成する粒子の体積分布を確認するには、例えば、メスバウア分光法を用いれば良い。メスバウアー分光法は固体中の原子核によるγ線の共鳴吸収を測定する手法であり、物質の磁気的性質を同定することのできる方法として広く物性科学、材料科学の分野で応用されている。メスバウアー分光の可能な原子核種は多数存在するが、その中でも特に57Fe原子核はこの効果が顕著である。即ち、本発明の耐候性鋼保護性さび層を構成するとされるゲーサイト(α−FeOOH)、アカガネイト(β−FeOOH)、レピドクロサイト(γ−FeOOH)およびマグネタイト(Fe34)等は全て各々特定の相転移温度以下では強磁性、反強磁性等の磁化の規則的な配列を有するために、そのFe原子核は原子の磁気モーメントの方向に強い内部磁場を感じ、そのメスバウアー吸収スペクトルは、6本の分離したスペクトルになる。 Further, in order to confirm the volume distribution of the particles constituting the film, for example, Mossbauer spectroscopy may be used. Mossbauer spectroscopy is a technique for measuring the resonance absorption of γ-rays by nuclei in a solid, and is widely applied in the fields of physical science and material science as a method capable of identifying the magnetic properties of materials. There are many nuclei that can be subjected to Moessbauer spectroscopy, and of these, the 57 Fe nucleus is particularly effective. That is, goethite (α-FeOOH), akaganate (β-FeOOH), lepidocrocite (γ-FeOOH), magnetite (Fe 3 O 4 ), etc., which are considered to constitute the weatherable steel protective rust layer of the present invention, Since each has a regular arrangement of magnetization such as ferromagnetism and antiferromagnetism below a specific phase transition temperature, the Fe nucleus feels a strong internal magnetic field in the direction of the atomic magnetic moment, and its Mossbauer absorption spectrum Results in six separate spectra.

このスペクトルを解析すれば、例えば、Jpn.J.Appl.Phys.Vol.38(199)L189に記載されているように、それらの組成比を定量的に決定できることが知られている。さらに、このような磁性粒子には、その粒子体積が減少するに従って、磁化の方向を安定化している磁気異方性エネルギーが減少して、熱揺らぎのエネルギーと同程度になると、磁化が不安定になる超常磁性現象が生じることが知られている。このような超常磁性現象は、緩和時間と呼ばれる特性的な物理量によって特徴付けられる。通常、超常磁性の緩和時間τは次のように表される。
τ=τ0 exp(KV/kT) … (1)
ここでτ0 は、ほぼ10-10(秒)の温度によらない常数、Kは磁気異方性常数、Vは粒子の体積、kはボルツマン常数、Tは温度である。
つまり種々の温度(例えば、15〜300k)で緩和時間τの測定を行うことにより、各相毎にその粒子の体積分布を測定することができる。
If this spectrum is analyzed, for example, Jpn. J. Appl. Phys. Vol. 38 (199) L189, it is known that their composition ratio can be quantitatively determined. In addition, the magnetic anisotropy energy that stabilizes the direction of magnetization decreases as the particle volume of such magnetic particles decreases, and the magnetization becomes unstable when the energy becomes about the same as the energy of thermal fluctuation. Is known to occur. Such a superparamagnetic phenomenon is characterized by a characteristic physical quantity called a relaxation time. Usually, the relaxation time τ of superparamagnetism is expressed as follows.
τ = τ 0 exp (KV / kT) (1)
Here, τ 0 is a constant independent of temperature of about 10 −10 (sec), K is a magnetic anisotropy constant, V is a particle volume, k is a Boltzmann constant, and T is a temperature.
That is, by measuring the relaxation time τ at various temperatures (for example, 15 to 300 k), the volume distribution of the particles can be measured for each phase.

本発明の保護性さび層の主要な構成粒子であるα−FeOOH,β−FeOOH,γ−FeOOHは反強磁性体であるために、巨視的な磁化は発現しないが、磁気的な秩序構造は存在しているので、メスバウアースペクトルには明瞭なスペクトルの分裂が観測される。この分裂は低温では6本であるが、ある温度(ネール温度)より高温では2本になる。このネール温度は各相で異なる(理想的なバルク試料の場合、α−FeOOH,β−FeOOH,γ−FeOOH、それぞれ約405、280、70kである)。(1)式からわかるように、さらにこの温度は皮膜を構成する粒子の体積が小さくなると低温側にずれる。そこで、つまり種々の温度(例えば、15〜300k)で、スペクトルを測定し、定量的な解析を行うことにより、各相毎にその粒子の体積分布を測定することができる。   Since α-FeOOH, β-FeOOH, and γ-FeOOH, which are main constituent particles of the protective rust layer of the present invention, are antiferromagnetic substances, they do not exhibit macroscopic magnetization but have a magnetic ordered structure. Due to its presence, a clear spectral split is observed in the Mossbauer spectrum. The splitting is six at a low temperature, but becomes two at a temperature higher than a certain temperature (Neel temperature). The Neel temperature is different for each phase (in the case of an ideal bulk sample, α-FeOOH, β-FeOOH, and γ-FeOOH are about 405, 280, and 70 k, respectively). As can be seen from equation (1), this temperature further shifts to a lower temperature side when the volume of the particles constituting the film becomes smaller. Thus, by measuring the spectrum at various temperatures (for example, 15 to 300 k) and performing quantitative analysis, the volume distribution of the particles can be measured for each phase.

具体的には、以下のように行う。
(1)種々の温度(例えば、15〜300k)で、スペクトルを測定する。
(2)内部磁場、アイソマーシフト、異方性常数等の物理定数およびTEM観察やX線回折のデーター等を参考にして適当と思われる粒子の体積分布の初期値を用いて各スペクトル線のピーク位置を決定する。
(3)各体積に応じた緩和時間を計算し、それぞれの緩和時間に対して(2)で仮定した粒子の体積分布に相当する重みを掛けて加え、スペクトルを計算する。
(4)(3)で計算されたスペクトルと(1)で実測されたスペクトルを比較し、あらかじめ設定された誤差以下である場合は、初期値の粒子の体積分布を決定値とする。そうでない場合は(2)に戻り、体積分布を修正して計算を行うプロセスを繰り返す。
Specifically, it is performed as follows.
(1) Measure spectra at various temperatures (for example, 15 to 300 k).
(2) Peaks of each spectral line using physical parameters such as internal magnetic field, isomer shift, anisotropy constant, and initial values of volume distribution of particles considered appropriate with reference to TEM observation and X-ray diffraction data. Determine the position.
(3) A relaxation time corresponding to each volume is calculated, and each relaxation time is multiplied by a weight corresponding to the particle volume distribution assumed in (2), and the spectrum is calculated.
(4) The spectrum calculated in (3) is compared with the spectrum actually measured in (1). If the error is equal to or smaller than a preset error, the initial value of the volume distribution of the particles is determined as the determined value. If not, return to (2) and repeat the process of correcting the volume distribution and performing the calculation.

また、その他にも、電子顕微鏡による結晶粒組織観察や、X線ディフラクトメーターによる粉末回折図形の測定によっても、粒子の体積分布を調べることができる。場所によるバラツキがある場合には、3〜5点で測定して平均値を出せばよい。3点より少ないと平均の情報が得るのが困難であり、5点より多いと測定のための時間が必要以上にかかることになる。   In addition, the volume distribution of the particles can also be examined by observing the crystal grain structure using an electron microscope or measuring the powder diffraction pattern using an X-ray diffractometer. If there is a variation depending on the location, it is sufficient to measure at three to five points and obtain an average value. If it is less than three points, it is difficult to obtain the average information, and if it is more than five, it takes more time for measurement than necessary.

(実施例1)
次に、実施例によって本発明の作用効果をさらに具体的に説明するが、これらは単に例示のためであり、本発明はこれらに限定されるものではない。
先ず、本実施例1〜3において、皮膜を構成する結晶粒子において微細結晶粒の分率は45%、皮膜中のFe34のモル分率は10%、膜厚は100μmと一定になるように、以下の各方法により皮膜の形成を行い、耐食性の評価を行なった。
表1に記載したNi含有鉄基合金を溶解作製した後、1100℃の初期温度での高温圧延を5回繰り返した。その素材から、所定の大きさの板を複数枚切り出し、各種処理を行って表面に皮膜(さび層)を形成したものを試料とし、この耐食性の評価を行った。
皮膜の形成法は、湿潤/加熱法、スパッタリング法、イオンプレーティング法、ゾルゲル反応法、塗布法によって行った。
湿潤/加熱法は、鋼を湿潤雰囲気で加熱する方法である。20×50×5mmの大きさの試料を湿潤状態(35℃、相対湿度95%、4hr)で保持した後、4時間かけて温度50℃、相対湿度40%に直線的に変化させ、温度50℃、相対湿度40%の乾燥状態で4時間保持する過程を1サイクルとして、このサイクルを150回繰り返し、試料表面に数〜100μm程度の皮膜を形成した。
(Example 1)
Next, the operation and effect of the present invention will be described more specifically with reference to examples. However, these are merely examples, and the present invention is not limited thereto.
First, in Examples 1 to 3, the fraction of fine crystal grains in the crystal grains constituting the coating is 45%, the molar fraction of Fe 3 O 4 in the coating is 10%, and the film thickness is constant at 100 μm. As described above, the coating was formed by the following methods, and the corrosion resistance was evaluated.
After melting and manufacturing the Ni-containing iron-based alloy described in Table 1, high-temperature rolling at an initial temperature of 1100 ° C. was repeated five times. From the material, a plurality of plates of a predetermined size were cut out and subjected to various treatments to form a film (rust layer) on the surface, which was used as a sample, and the corrosion resistance was evaluated.
The film was formed by a wet / heat method, a sputtering method, an ion plating method, a sol-gel reaction method, and a coating method.
The wet / heat method is a method of heating steel in a humid atmosphere. A sample having a size of 20 × 50 × 5 mm was kept in a wet state (35 ° C., relative humidity 95%, 4 hours), and then linearly changed to a temperature of 50 ° C. and a relative humidity of 40% over 4 hours. This cycle was repeated 150 times, with the process of maintaining the sample in a dry state at 40 ° C. and a relative humidity of 40% for 4 hours as a cycle, to form a film of several to 100 μm on the sample surface.

スパッタリング法は以下のように行った。10×10×2mmの大きさの試料の表面に、鉄および添加元素の酸化物、鉄と添加元素の合金、または、鉄と添加元素を含む酸化物のいずれかをターゲットとして、試料にスパッタリングを行い皮膜を作製した。スパッタリングは高周波を用い、アルゴンガスを60s/cm3、酸素ガスを3〜10s/cm3の流量で流し、系全体の圧力を1〜10mTorrに保ち、スパッタリングを行い、試料表面に5μm程度の膜厚の膜を形成した。
イオンプレーティング法は以下のように行った。10×10×2mmの大きさの試料を、鉄と添加元素の粉末を入れた坩堝内に保持し、ガス雰囲気はアルゴンに若干の酸素を混入したものに保ち、電子ビーム等で加熱蒸発させ、試料高周波コイルで加速して試料表面に付着させた。
The sputtering method was performed as follows. Sputtering is performed on the surface of a sample having a size of 10 × 10 × 2 mm, using any one of an oxide of iron and an additional element, an alloy of iron and an additional element, or an oxide containing iron and an additional element as a target. A film was prepared. Sputtering is performed using high frequency, argon gas is flowed at a flow rate of 60 s / cm 3 , oxygen gas is flowed at a flow rate of 3 to 10 s / cm 3 , the pressure of the entire system is maintained at 1 to 10 mTorr, and sputtering is performed. A thick film was formed.
The ion plating method was performed as follows. A sample having a size of 10 × 10 × 2 mm is held in a crucible containing powder of iron and an additive element, the gas atmosphere is kept in a state in which some oxygen is mixed with argon, and heated and evaporated by an electron beam or the like. The sample was accelerated by a sample high-frequency coil and adhered to the sample surface.

ゾルゲル法は以下のように行った。20×50×5mmの大きさの試料に、鉄および添加元素のトリメトキシドのエタノール溶液1mlに水3ml、そして酢酸0.01mlを混合し、50℃にて攪拌を1時間行って得られた粘性溶液を、上記鋼材に塗布した。塗布は、ロールコータ又はバーコーターにより行った。その後、窒素雰囲気中、400℃で32時間乾燥させることにより、膜厚が約100μmの皮膜を形成した。
塗布法は以下のように行った。20×50×5mmの大きさの試料を用意した。次に、鉄および添加元素の酸化物を鉄の平均原子価数Mが、2.77超2.99未満になるような比率で混合したものをエタノール中に入れ遊星ボールミルにて3数時間粉砕した。その後、十分に乾燥させた粉末をポリビニルアルコール中に分散させた後、試料に塗布し乾燥させて、膜厚が約100μmの皮膜を形成した。
The sol-gel method was performed as follows. A viscous solution obtained by mixing a sample having a size of 20 × 50 × 5 mm with 1 ml of an ethanol solution of iron and the additive element trimethoxide, 3 ml of water and 0.01 ml of acetic acid, and stirring at 50 ° C. for 1 hour. Was applied to the steel material. The coating was performed with a roll coater or a bar coater. Thereafter, by drying in a nitrogen atmosphere at 400 ° C. for 32 hours, a film having a thickness of about 100 μm was formed.
The coating method was performed as follows. A sample having a size of 20 × 50 × 5 mm was prepared. Next, a mixture of iron and oxides of the additional elements at a ratio such that the average valence number M of iron is more than 2.77 and less than 2.99 is put in ethanol and ground for 3 hours by a planetary ball mill. did. Thereafter, the sufficiently dried powder was dispersed in polyvinyl alcohol, and then applied to a sample and dried to form a film having a thickness of about 100 μm.

上記試料の皮膜の平均原子価数Mは、XAFS法を用いて調べた。FeO、Fe23の粉末試料のFe−Ka吸収端のエネルギーを測定し、それぞれ、M=2、M=3標準試料として用いた。次に、上記試料の地鉄表面から5μmの範囲の皮膜を採取し、Fe−Ka吸収端のエネルギーを測定し、平均原子価数Mを決定した。場所によるバラツキがあることを考慮して3点で測定し平均値を算出した。3点のバラツキが大きい場合には、磁化の測定によりFe34の分率を、X線回折によりα−FeOOH,β−FeOOH,γ−FeOOH,α−FeOOHの各相の分率をもとめ、その加重平均から鉄原子の平均原子価数Mを推定した。 The average valence number M of the film of the sample was determined by using the XAFS method. FeO, and measure the energy of Fe-Ka absorption edge powder samples of Fe 2 O 3, respectively, were used as M = 2, M = 3 standard sample. Next, a film in the range of 5 μm was collected from the surface of the ground iron of the sample, the energy at the Fe—Ka absorption edge was measured, and the average valence number M was determined. The average was calculated by measuring at three points in consideration of the variation depending on the place. When the three points have large variations, the fraction of Fe 3 O 4 is determined by measuring the magnetization, and the fraction of each phase of α-FeOOH, β-FeOOH, γ-FeOOH, and α-FeOOH is determined by X-ray diffraction. The average valence number M of the iron atom was estimated from the weighted average.

また、XAFS法により、吸収端より高エネルギー域のXAFS振動から動径分布関数を求めるとともに、放射光源を利用したX線異常散乱測定を行い、両方の結果から、Fe34中のNiの存在する原子位置を決定した。これら両方の結果から、NiがFe34結晶格子の6個の酸素原子に配位された八面体サイトに存在するかどうかを測定した。場所によるバラツキがあることを考慮して3点で測定し平均値を算出した。皮膜中のNi原子がFe3 4 中の酸素原子が配位するサイトに、0.4%以上25%以下存在する場合を良好(〇印)とし、一方、0.4%未満または25%超存在する場合は不良(×印)とする。 Further, the XAFS method, with determining the radial distribution function from XAFS vibration of high-energy region than the absorption edge, subjected to X-ray anomalous scattering measurement using a radiation source, from both results, the Ni in the Fe 3 O 4 The position of the existing atoms was determined. From both of these results, it was determined whether Ni was present at octahedral sites coordinated to six oxygen atoms of the Fe 3 O 4 crystal lattice. The average was calculated by measuring at three points in consideration of the variation depending on the place. A case where Ni atoms in the film are present in a site where oxygen atoms in Fe 3 O 4 are coordinated with 0.4% or more and 25% or less is defined as good (〇 mark), while less than 0.4% or 25% If there is more than one, it is determined to be defective (x mark).

次に、各試験片に対して、0.3質量%塩水を500ml/cm2塗布し、湿潤状態(35℃、相対湿度95%、6hr)→乾燥状態(40℃、相対湿度40%、18hr)を1サイクルとして、繰り返し50サイクル腐食試験を行った。試験試料の耐食性の評価は、同等の条件で腐食試験を行った純鉄の腐食減量を基準にして、各試験片の腐食減量から評価を行った。耐食性評価は以下の5段階で行い、評点3以上を耐食性良好とみなす。 Next, each test piece was coated with 0.3% by mass of brine at 500 ml / cm 2 , and was wet (35 ° C., relative humidity 95%, 6 hr) → dry (40 ° C., relative humidity 40%, 18 hr). ) Was defined as one cycle, and a 50-cycle corrosion test was repeated. The corrosion resistance of the test sample was evaluated from the corrosion weight loss of each test piece based on the corrosion weight loss of pure iron subjected to a corrosion test under the same conditions. The corrosion resistance evaluation is performed in the following five stages, and a score of 3 or more is regarded as good.

評点1:試験試料の腐食減量が純鉄の腐食減量より多い(100%超)。
評点2:試験試料の腐食減量が純鉄の腐食減量と同等(90%超100%以下)である。評点3:試験試料の腐食減量が純鉄の腐食減量の50%超90%以下である。
評点4:試験試料の腐食減量が純鉄の腐食減量の30%超50%以下である。
評点5:試験試料の腐食減量が純鉄の腐食減量の30%以下である。
表1に結果を示す。本発明の耐候性鋼は、皮膜中のNiおよび添加元素の原子がFe34結晶格子の6個の酸素原子に配位された八面体サイトに存在しており、皮膜中の鉄の原子価数Mは2.77超2.99未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。
Rating 1: The corrosion weight loss of the test sample is greater than that of pure iron (more than 100%).
Rating 2: The corrosion weight loss of the test sample is equivalent to that of pure iron (more than 90% and 100% or less). Rating 3: The corrosion weight loss of the test sample is more than 50% and 90% or less of the corrosion weight loss of pure iron.
Rating 4: The corrosion weight loss of the test sample is more than 30% and 50% or less of the corrosion weight loss of pure iron.
Rating 5: The corrosion weight loss of the test sample is 30% or less of the corrosion weight loss of pure iron.
Table 1 shows the results. In the weathering steel of the present invention, the Ni and the additional element atoms in the film are present at octahedral sites where the atoms of the Fe and the additional elements are coordinated to six oxygen atoms of the Fe 3 O 4 crystal lattice. The valency M was more than 2.77 and less than 2.99. Further, as a result of the corrosion test, all the scores were 3 to 5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.

Figure 2004332098
Figure 2004332098

(実施例2)
表2に記載したNi含有鉄基合金を溶解作製した後、実施例1と同様の方法により圧延を行い、その素材から所定の大きさの板を複数枚切り出し、実施例1と同様の表面仕上げを行った。次に、実施例1と同様の各種処理を行って表面に被膜(さび層)を形成したものを試料とし、実施例1と同様の方法で、皮膜中のNiおよび添加元素の原子がFe34結晶格子の6個の酸素原子に配位された八面体サイトに存在するかどうかの測定、皮膜中の鉄の平均原子価数Mの測定、および、腐食試験による耐食性の評価を行った。
表2に結果を示す。本発明の耐候性鋼は、皮膜中のNiおよび添加元素の原子がFe34結晶格子の6個の酸素原子に配位された八面体サイトに存在しており、皮膜中の鉄の原子価数Mは2.77超2.99未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。
(Example 2)
After melting and producing the Ni-containing iron-based alloy described in Table 2, rolling was performed in the same manner as in Example 1, and a plurality of sheets of a predetermined size were cut out from the material, and the same surface finishing as in Example 1 was performed. Was done. Next, a film (rust layer) formed on the surface by performing various treatments similar to those in Example 1 was used as a sample. In the same manner as in Example 1, Ni and the atoms of the additional elements in the film were Fe 3. The measurement was performed to determine whether or not there was an octahedral site coordinated to six oxygen atoms of the O 4 crystal lattice, the average valence number M of iron in the film was measured, and the corrosion resistance was evaluated by a corrosion test. .
Table 2 shows the results. In the weathering steel of the present invention, the Ni and the additional element atoms in the film are present at octahedral sites where the atoms of the Fe and the additional elements are coordinated to six oxygen atoms of the Fe 3 O 4 crystal lattice. The valency M was more than 2.77 and less than 2.99. Further, as a result of the corrosion test, all the scores were 3 to 5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.

Figure 2004332098
Figure 2004332098

(実施例3)
表3に記載したNi含有鉄基合金を溶解作製した後、実施例1と同様の方法により圧延を行い、その素材から所定の大きさの板を複数枚切り出し、実施例1と同様の表面仕上げを行った。次に、実施例1と同様の各種処理を行って表面に被膜(さび層)を形成したものを試料とし、実施例1と同様の方法で、皮膜中のNiおよび添加元素の原子がFe34結晶格子の6個の酸素原子に配位された八面体サイトに存在するかどうかの測定、皮膜中の鉄の平均原子価数Mの測定、および、腐食試験による耐食性の評価を行った。
表3に結果を示す。本発明の耐候性鋼は、皮膜中のNiおよび添加元素の原子がFe34結晶格子の6個の酸素原子に配位された八面体サイトに存在しており、皮膜中の鉄の原子価数Mは2.77超2.99未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。
(Example 3)
After melting and producing the Ni-containing iron-based alloy described in Table 3, rolling was performed in the same manner as in Example 1, and a plurality of sheets of a predetermined size were cut out from the material, and the same surface finish as in Example 1 was obtained. Was done. Next, a film (rust layer) formed on the surface by performing various treatments similar to those in Example 1 was used as a sample. In the same manner as in Example 1, Ni and the atoms of the additional elements in the film were Fe 3. The measurement was performed to determine whether or not there was an octahedral site coordinated to six oxygen atoms of the O 4 crystal lattice, the average valence number M of iron in the film was measured, and the corrosion resistance was evaluated by a corrosion test. .
Table 3 shows the results. In the weathering steel of the present invention, the Ni and the additional element atoms in the film are present at octahedral sites where the atoms of the Fe and the additional elements are coordinated to six oxygen atoms of the Fe 3 O 4 crystal lattice. The valency M was more than 2.77 and less than 2.99. Further, as a result of the corrosion test, all the scores were 3 to 5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.

Figure 2004332098
Figure 2004332098

(実施例4)
次に、本実施例4〜6において、皮膜中のFe34のモル分率は10%、Ni原子、及び/又は、その他添加元素の1種または2種以上の原子が、皮膜中のFe34結晶格子の6個の酸素原子に配位された八面体サイトに10%存在し、膜厚は100μmと一定になるように、以下の各方法により皮膜の形成を行い、耐食性の評価を行なった。
表4に記載したNi含有鉄基合金を溶解作製した後、1100℃の初期温度での高温圧延を5回繰り返した。その素材から、所定の大きさの板を複数枚切り出し、各種処理を行って表面に皮膜(さび層)を形成したものを試料とし、この耐食性の評価を行った。
(Example 4)
Then, in this embodiment 4-6, the molar fraction of Fe 3 O 4 in the film is 10%, Ni atoms, and / or, the one or more atoms other additive elements, in the coating A film is formed by each of the following methods so that 10% is present at octahedral sites coordinated to six oxygen atoms of the Fe 3 O 4 crystal lattice and the film thickness is constant at 100 μm. An evaluation was performed.
After melting and producing the Ni-containing iron-based alloy described in Table 4, high-temperature rolling at an initial temperature of 1100 ° C. was repeated five times. From the material, a plurality of plates of a predetermined size were cut out and subjected to various treatments to form a film (rust layer) on the surface, which was used as a sample, and the corrosion resistance was evaluated.

皮膜の形成法は、乾湿サイクル法、ゾルゲル反応法、によって行った。
湿潤/加熱法は、鋼を湿潤雰囲気で加熱する方法である。20×50×5mmの大きさの試料を湿潤状態(温度30℃、相対湿度95%)で2時間保持した後、温度を30℃→55℃、相対湿度を95%→40%へと一定の変化率で1時間かけて変化させ、乾燥状態(温度55℃、相対湿度40%)で2時間保持する一連の過程を1サイクルとし、このサイクルを250回繰り返すことにより、試料表面に数十〜100μm程度の皮膜が形成した。
The film was formed by a dry-wet cycle method and a sol-gel reaction method.
The wet / heat method is a method of heating steel in a humid atmosphere. After holding a sample of 20 × 50 × 5 mm in a wet state (temperature 30 ° C., relative humidity 95%) for 2 hours, the temperature is fixed at 30 ° C. → 55 ° C. and the relative humidity is fixed at 95% → 40%. A series of processes in which the rate of change is changed over 1 hour and held in a dry state (temperature 55 ° C., relative humidity 40%) for 2 hours is defined as one cycle, and this cycle is repeated 250 times, whereby several tens to A film of about 100 μm was formed.

ゾルゲル法は以下のように行った。20×50×5mmの大きさの試料に、鉄および添加元素のトリメトキシドのエタノール溶液1mlに水3ml、そして酢酸0.02mlを混合し、70℃にて攪拌を1時間行って得られた粘性溶液を、上記鋼材に塗布した。塗布は、ロールコータ又はバーコーターにより行った。その後、窒素雰囲気中、400℃で40時間乾燥させることにより、膜厚が約90μmの皮膜を形成した。   The sol-gel method was performed as follows. A 20 × 50 × 5 mm sample was mixed with 1 ml of an ethanol solution of iron and the additive element trimethoxide, 3 ml of water, and 0.02 ml of acetic acid, and stirred at 70 ° C. for 1 hour to obtain a viscous solution. Was applied to the steel material. The coating was performed with a roll coater or a bar coater. Thereafter, by drying in a nitrogen atmosphere at 400 ° C. for 40 hours, a film having a thickness of about 90 μm was formed.

上記試料の皮膜を構成する粒子の体積分布をメスバウア分光法を用いて調べた。試料を採取しAl箔にはさみこみ57Feからのg線を用いてメスバウアスペクトルの測定を15〜300Kの温度で実施した。メスバウアスペクトルから皮膜中の粒子の体積分布を求める方法は以下の通りである。
(1)内部磁場、アイソマーシフト、異方性常数等のスペクトルの解析に必要なパラメーターを計算する。
(2)(1)に基づき、更に計算するスペクトルの温度を決定し、各スペクトル線のピーク位置を決定する。
(3)粒子の体積分布の初期値として、TEM観察やX線回折のデーター等を参考にして適当と思われる値を設定する。
The volume distribution of the particles constituting the film of the sample was examined using Mossbauer spectroscopy. A sample was taken, inserted into an Al foil, and measured for a Mossbauer spectrum at a temperature of 15 to 300 K using a g-line from 57Fe. The method for obtaining the volume distribution of the particles in the film from the Mossbauer spectrum is as follows.
(1) Calculate parameters necessary for analyzing a spectrum such as an internal magnetic field, an isomer shift, and an anisotropy constant.
(2) Based on (1), the temperature of the spectrum to be further calculated is determined, and the peak position of each spectral line is determined.
(3) As the initial value of the volume distribution of particles, a value that is considered appropriate is set with reference to TEM observation, X-ray diffraction data, and the like.

(4)各体積に応じた緩和時間を計算し、それぞれの緩和時間に対して3組のモーショナルナローイングを計算し、さらに、計算結果に(3)で仮定した粒子の体積分布に相当する重みを掛けて加え、スペクトルを計算し表示する。
(5)(4)で計算されたスペクトルと実測されたスペクトルを比較し、あらかじめ設定された誤差以下になるように、(1)〜(4)のプロセスを繰り返す。もとめられた体積分布の例を図2に示す。 皮膜中の粒の体積分布の測定、および、腐食試験による耐食性の評価を行った。
(4) The relaxation time corresponding to each volume is calculated, three sets of motional narrowing are calculated for each relaxation time, and a weight corresponding to the particle volume distribution assumed in (3) is added to the calculation result. Multiply and add to calculate and display the spectrum.
(5) The spectrum calculated in (4) is compared with the actually measured spectrum, and the processes (1) to (4) are repeated so that the error is equal to or less than a preset error. FIG. 2 shows an example of the determined volume distribution. The volume distribution of the particles in the film was measured, and the corrosion resistance was evaluated by a corrosion test.

表4に結果を示す。本発明の耐候性鋼は、FeOOHおよびFe34を主成分とする皮膜に覆われているもので、メスバウア分光法により決定した皮膜を構成する粒子が微細粒および粗大粒から構成され、かつ微細粒の体積分率が20%超90%未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。 Table 4 shows the results. The weathering steel of the present invention is covered with a coating mainly composed of FeOOH and Fe 3 O 4 , and the particles constituting the coating determined by Mossbauer spectroscopy are composed of fine grains and coarse grains, and The volume fraction of fine grains was more than 20% and less than 90%. Further, as a result of the corrosion test, all the scores were 3 to 5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.

Figure 2004332098
Figure 2004332098

(実施例5)
表5に記載したNi含有鉄基合金を溶解作製した後、実施例1と同様の方法により圧延を行い、その素材から所定の大きさの板を複数枚切り出し、実施例1と同様の表面仕上げを行った。次に、実施例4と同様の各種処理を行って表面に皮膜(さび層)を形成したものを試料とし、実施例4と同様の方法で、皮膜中の粒子の体積分布および、腐食試験による耐食性の評価を行った。
表5に結果を示す。本発明の耐候性鋼は、メスバウア分光法により決定した皮膜を構成する粒子が微細粒および粗大粒から構成され、かつ微細粒の体積分率が20%超90%未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。
(Example 5)
After melting and producing the Ni-containing iron-based alloy described in Table 5, rolling was performed in the same manner as in Example 1, and a plurality of sheets of a predetermined size were cut out from the material, and the same surface finishing as in Example 1 was performed. Was done. Next, a sample obtained by forming a film (rust layer) on the surface by performing various treatments similar to Example 4 was used as a sample, and the volume distribution of particles in the film and a corrosion test were performed in the same manner as in Example 4. The corrosion resistance was evaluated.
Table 5 shows the results. In the weathering steel of the present invention, the particles constituting the film determined by Mossbauer spectroscopy were composed of fine grains and coarse grains, and the volume fraction of the fine grains was more than 20% and less than 90%. Further, as a result of the corrosion test, all the scores were 3 to 5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.

Figure 2004332098
Figure 2004332098

(実施例6)
表6に記載したNi含有鉄基合金を溶解作製した後、実施例1と同様の方法により圧延を行い、その素材から所定の大きさの板を複数枚切り出し、実施例1と同様の表面仕上げを行った。次に、実施例4と同様の各種処理を行って表面に皮膜(さび層)を形成したものを試料とし、実施例4と同様の方法で、皮膜中の粒子の体積分布および、腐食試験による耐食性の評価を行った。
表6に結果を示す。本発明の耐候性鋼は、メスバウア分光法により決定した皮膜を構成する粒子が微細粒および粗大粒から構成され、かつ微細粒の体積分率が20%超90%未満であった。さらに、腐食試験の結果、すべて評点3〜5であり、本発明により耐食性に優れた鋼材が提供できることが確認された。
(Example 6)
After melting and producing the Ni-containing iron-based alloy described in Table 6, rolling was performed in the same manner as in Example 1, and a plurality of sheets of a predetermined size were cut out of the material, and the same surface finishing as in Example 1 was performed. Was done. Next, a sample obtained by forming a film (rust layer) on the surface by performing various treatments similar to Example 4 was used as a sample, and the volume distribution of particles in the film and a corrosion test were performed in the same manner as in Example 4. The corrosion resistance was evaluated.
Table 6 shows the results. In the weathering steel of the present invention, the particles constituting the film determined by Mossbauer spectroscopy were composed of fine grains and coarse grains, and the volume fraction of the fine grains was more than 20% and less than 90%. Further, as a result of the corrosion test, all the scores were 3 to 5, and it was confirmed that the present invention can provide a steel material having excellent corrosion resistance.

Figure 2004332098
Figure 2004332098

(比較例)
表7に記載したNi含有鉄基合金を溶解作製した後、実施例1と同様の方法により圧延を行い、その素材から所定の大きさの板を複数枚切り出し、実施例1と同様の表面仕上げを行った。次に、各合金表面に各種処理を行って、合金表面に皮膜(さび層)を形成したものを試料とした。なお、皮膜の形成法は、湿潤/加熱法、スパッタリング法、イオンプレーティング法、ゾルゲル反応法、塗布法によって行ったが、これらの処理条件は本発明の範囲外の条件とした。これらの試料に対し、実施例1、4と同様の方法で、皮膜中のNiおよび添加元素の原子がFe34結晶格子の6個の酸素元素に配位された八面体サイトに存在するかどうかの測定、皮膜中の鉄の平均原子価数Mの測定、粒子の体積分布および、腐食試験による耐食性の評価を行った。表7に結果を示す。比較例の耐候性鋼は全て、皮膜中の鉄の原子価数M、粒の体積分布等の何れかの条件が本発明の範囲外にあり、評点が1および2であり、耐食性に劣ることが確認された。
なお、以上説明した実施例および比較例の結果をグラフにしたものを図3に示す。
(Comparative example)
After melting and producing the Ni-containing iron-based alloy described in Table 7, rolling was performed in the same manner as in Example 1, and a plurality of sheets of a predetermined size were cut out from the material, and the same surface finish as in Example 1 was obtained. Was done. Next, various treatments were performed on each alloy surface to form a film (rust layer) on the alloy surface, which was used as a sample. The film was formed by a wetting / heating method, a sputtering method, an ion plating method, a sol-gel reaction method, and a coating method, but these treatment conditions were outside the scope of the present invention. For these samples, in the same manner as in Examples 1 and 4, Ni and the additional element atoms in the coating are present at octahedral sites coordinated to six oxygen elements of the Fe 3 O 4 crystal lattice. The measurement was performed to determine whether or not the average valence number M of iron in the coating, the volume distribution of the particles, and the corrosion resistance by a corrosion test were evaluated. Table 7 shows the results. All of the weathering steels of the comparative examples have any condition such as the valence number M of iron in the coating and the volume distribution of the grains outside the scope of the present invention, and have a score of 1 or 2 and have poor corrosion resistance. Was confirmed.
FIG. 3 is a graph showing the results of the examples and the comparative examples described above.

Figure 2004332098
Figure 2004332098

スピネル構造の模式図である。It is a schematic diagram of a spinel structure. メスバウア分光法により決定された本発明の粒子皮膜中の体積分布例である。It is an example of the volume distribution in the particle film | membrane of this invention determined by Mossbauer spectroscopy. 実施例1〜6、比較例の結果のグラフである。It is a graph of the result of Examples 1-6 and a comparative example.

Claims (6)

質量%で、Ni:0.2〜10%を含有し、残部がFeおよび不可避的不純物からなるNi含有鉄基合金材料の表面が、主としてFeOOHおよびFe34からなる皮膜で覆われており、該皮膜中の鉄の平均原子価数が2.77超2.99未満であることを特徴とする耐候性に優れた鋼材。 By mass% Ni: contained from 0.2 to 10%, the surface of the Ni-containing iron-base alloy material and the balance of Fe and unavoidable impurities, is covered with a film consisting mainly FeOOH and Fe 3 O 4 A steel material having excellent weather resistance, wherein the average valence of iron in the coating is more than 2.77 and less than 2.99. 前記Ni含有鉄基合金材料に、さらに、質量%で、Cu、Cr、Ti、W、Mo、Sb、Al、Nb、Taの1種または2種以上を合計で0.01〜8%を含有することを特徴とする請求項1に記載の耐候性に優れた鋼材。 The Ni-containing iron-based alloy material further contains, in mass%, one or more of Cu, Cr, Ti, W, Mo, Sb, Al, Nb, and Ta in a total amount of 0.01 to 8%. The steel material excellent in weather resistance according to claim 1, characterized in that: 前記皮膜中のFe34のモル分率が、4〜35%であることを特徴とする請求項1または2に記載の耐候性に優れた鋼材。 Steel molar fraction of Fe 3 O 4 in the coating, excellent weather resistance according to claim 1 or 2, characterized in that 4 to 35%. 前記皮膜中のNi原子、および、Cu、Cr、Ti、W、Mo、Sb、Al、Nb、Taの1種または2種以上の原子が、該皮膜中のFe34結晶格子の6個の酸素原子に配位された八面体サイトに、0.4〜25%存在することを特徴とする請求項1〜3のいずれかに記載の耐候性に優れた鋼材。 Ni atoms in the film and one or more of Cu, Cr, Ti, W, Mo, Sb, Al, Nb, and Ta atoms in the film have six Fe 3 O 4 crystal lattices. The steel material excellent in weather resistance according to any one of claims 1 to 3, wherein 0.4 to 25% is present in the octahedral site coordinated to the oxygen atom. 前記皮膜の結晶粒子における粒子体積18×10-243以下の微細結晶粒の体積分率が20%超90%未満であることを特徴とする請求項1〜4のいずれかに記載の耐候性に優れた鋼材。 Weathering according to any one of the preceding claims, characterized in that the volume fraction of particle volume 18 × 10 -24 m 3 or less of the fine crystal grains in the crystal grains of said film is less than 20 percent 90 percent Steel with excellent properties. 前記皮膜の膜厚が、0.01〜200μmであることを特徴とする請求項1〜5のいずれかに記載の耐候性に優れた鋼材。 The steel material having excellent weather resistance according to any one of claims 1 to 5, wherein the coating has a thickness of 0.01 to 200 µm.
JP2003336914A 2003-04-18 2003-09-29 Steel material with excellent weather resistance Expired - Fee Related JP4119814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336914A JP4119814B2 (en) 2003-04-18 2003-09-29 Steel material with excellent weather resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003114576 2003-04-18
JP2003336914A JP4119814B2 (en) 2003-04-18 2003-09-29 Steel material with excellent weather resistance

Publications (2)

Publication Number Publication Date
JP2004332098A true JP2004332098A (en) 2004-11-25
JP4119814B2 JP4119814B2 (en) 2008-07-16

Family

ID=33513314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336914A Expired - Fee Related JP4119814B2 (en) 2003-04-18 2003-09-29 Steel material with excellent weather resistance

Country Status (1)

Country Link
JP (1) JP4119814B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122085A (en) * 2008-11-20 2010-06-03 Jfe Steel Corp Method for testing accelerated corrosion of steel material in atmospheric environment
JP2010209437A (en) * 2009-03-12 2010-09-24 Jfe Steel Corp Method for surface-treating steel material, and steel material
WO2014157203A1 (en) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 Soft magnetic component steel material having excellent pickling properties, soft magnetic component having excellent corrosion resistance and magnetic properties, and production method therefor
JP2016008346A (en) * 2014-06-26 2016-01-18 Jfeスチール株式会社 Dense rust early formation method of anti-weathering steel material, and anti-weathering steel material produced by method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122085A (en) * 2008-11-20 2010-06-03 Jfe Steel Corp Method for testing accelerated corrosion of steel material in atmospheric environment
JP2010209437A (en) * 2009-03-12 2010-09-24 Jfe Steel Corp Method for surface-treating steel material, and steel material
WO2014157203A1 (en) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 Soft magnetic component steel material having excellent pickling properties, soft magnetic component having excellent corrosion resistance and magnetic properties, and production method therefor
JP2014198876A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 Steel material for soft magnetic component excellent in pickling property, soft magnetic component excellent in corrosion resistance and magnetic properties and method of manufacturing the same
JP2016008346A (en) * 2014-06-26 2016-01-18 Jfeスチール株式会社 Dense rust early formation method of anti-weathering steel material, and anti-weathering steel material produced by method

Also Published As

Publication number Publication date
JP4119814B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
DE602004010778T2 (en) Process for producing fine metal composite particles
EP3118866B1 (en) Magnetic core, coil component and magnetic core manufacturing method
DE3049906A1 (en) Amorphous alloys
DE112018000214T5 (en) Magnetic powder containing SM-Fe-N-based crystal particles, sintered magnet made thereof, process for producing the magnetic powder; and method for producing the sintered magnet
Dushaq et al. Effects of molybdenum concentration and valence state on the structural and magnetic properties of BaFe 11.6 Mo x Zn 0.4− x O 19 hexaferrites
US20090194733A1 (en) Superparamagnetic transition metal iron oxygen nanoparticles
DE69909569T2 (en) CORROSION-RESISTANT PERMANENT MAGNET AND METHOD FOR THE PRODUCTION THEREOF
Della Noce et al. Structural, morphological and magnetic characterization of electrodeposited Co–Fe–W alloys
JP5425300B2 (en) Hexagonal ferrite magnetic powder and magnetic recording medium using the same
JP6139943B2 (en) Steel material for soft magnetic parts with excellent pickling properties, soft magnetic parts with excellent corrosion resistance and magnetic properties, and manufacturing method thereof
KR101609430B1 (en) Steel with rust layer excellent in weathering resistance in highly salty environment
Mishra et al. Effect of annealing conditions and temperatures on phase formation and magnetic behaviour of CrFeMnNiTi high entropy alloy
RU2698234C1 (en) Sheet from textured electrical steel having a chromium-free insulating coating creating a tension, and methods of making such a steel sheet
Tian et al. Investigation of microstructure and properties of FeCoCrNiAlMo x alloy coatings prepared by broadband-beam laser cladding technology
Yanagihara et al. Microscopic Features in the Transition from External to Internal Oxidation in an Fe–6 mol.% Si Alloy Annealed Under Various H2O–H2 Atmospheres
EP4027358A1 (en) Soft magnetic alloy and method for producing a soft magnetic alloy
JP2004332098A (en) Steel having excellent weatherability
Wei et al. The oxidation behaviour of amorphous and crystalline Fe78Si9B13
Dhanapal et al. Magnetic anisotropy studies on pulsed electrodeposited Ni/Ag/Ni trilayer
JP2021080545A (en) Soft magnetic alloy thin strip and magnetic component
CN111681846A (en) Soft magnetic alloy and magnetic part
JP7047959B1 (en) Soft magnetic alloys and magnetic parts.
Park et al. Effect of synthesis time and composition on magnetic properties of FeCo nanoparticles by polyol method
Martínez et al. In‐situ investigation on the oxidation behaviour of low alloyed steels annealed under N2‐5% H2 protective atmospheres
Kanetake et al. Fabrication of electrodeposited permalloys with high strength and high ductility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R151 Written notification of patent or utility model registration

Ref document number: 4119814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees