JP4119320B2 - Gas insulated switchgear - Google Patents

Gas insulated switchgear Download PDF

Info

Publication number
JP4119320B2
JP4119320B2 JP2003190881A JP2003190881A JP4119320B2 JP 4119320 B2 JP4119320 B2 JP 4119320B2 JP 2003190881 A JP2003190881 A JP 2003190881A JP 2003190881 A JP2003190881 A JP 2003190881A JP 4119320 B2 JP4119320 B2 JP 4119320B2
Authority
JP
Japan
Prior art keywords
gas
detection
insulated switchgear
sealed container
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003190881A
Other languages
Japanese (ja)
Other versions
JP2005027439A (en
Inventor
健二 青柳
俊二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan AE Power Systems Corp
Original Assignee
Japan AE Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan AE Power Systems Corp filed Critical Japan AE Power Systems Corp
Priority to JP2003190881A priority Critical patent/JP4119320B2/en
Publication of JP2005027439A publication Critical patent/JP2005027439A/en
Application granted granted Critical
Publication of JP4119320B2 publication Critical patent/JP4119320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects
    • H02B13/0655Means for detecting or reacting to mechanical or electrical defects through monitoring changes of gas properties

Description

【0001】
【発明の属する技術分野】
本発明は、高電圧導体を電気的に絶縁して配置した密閉容器内に絶縁ガスを封入したガス絶縁開閉装置に関する。
【0002】
【従来の技術】
従来のガス絶縁開閉装置では、高電圧導体を電気的に絶縁して配置した密閉容器内に封入する絶縁ガスとして、六弗化硫黄ガス(以下、SF6ガスと称す)が使用されていた。しかしながら、最近の地球環境問題から温暖化係数の高いSF6ガスの排出が規制されていることから、SF6ガスを使用せずに環境にやさしい窒素ガスや乾燥空気などを絶縁ガスとして使用するガス絶縁開閉装置が注目されている。
【0003】
ところで、ガス絶縁開閉装置は、万一の事故が発生した場合を想定して事故区間を制限するなどのために複数のガス区画に分けられたり、複数の密閉容器間の接続部などが存在するために、複数の対気密接続部が存在する。これらの対気密接続部においては、シール部材の劣化や発錆の進展などによりガス漏れが発生する危険もある。多くの場合、そのガス漏れ量は数ppm(parts per million)程度の自然ガス漏れであるが、絶縁ガスとしてSF6ガスを使用した場合には市販されている専用のSF6ガス検知器により漏れたSF6を検出してガス漏れ部位の特定が容易に行える。しかし、上述した地球環境の問題からSF6ガス以外の窒素ガスや乾燥空気などを絶縁ガスとして使用した場合、それらと同一成分が大気中に存在しているためにSF6ガスのときのようにガス漏れを検出することができない。従って、ガス漏れ部位を特定するためには、全ての対気密接続部に石けん水を付け、泡の有無により判定する必要があった。また、ガス絶縁開閉装置の組立時におけるガス漏れを検査するために、検査用ヘリウムガスを充填した密閉容器をさらに検査容器内に配置し、この検査容器内を真空引きして密閉容器内の充填ガス圧よりも低い状態にして放置し、検査容器内における検査用ヘリウムガスの有無によって密閉容器でのガス漏れを検出するようにし、この検査用ヘリウムガスの混入割合を考慮することによってそのままの状態でガス絶縁開閉装置を据付運転しても絶縁特性を低下させないようにしたものが提案されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2003−92813号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来のガス絶縁開閉装置におけるガス漏れ検出およびガス漏れ部位の特定では、全ての対気密接続部に石けん水を付けて泡の有無を確認しなければならず作業に多くの時間が必要であり、また検査用ヘリウムガスを用いたものでは、その後の据付運転に支障を与えない検査用ガスに限定されると共に、据付運転後における対気密接続部のシール部材の劣化や発錆の進展などによるガス漏れに対しては全体を覆う検査容器が巨大な設備となってしまい、現地での使用には適していない。
【0006】
本発明の目的は、対気密接続部のシール部材の劣化や発錆の進展などによるガス漏れを簡単に検出してガス漏れ発生部位を容易に特定することができるようにしたガス絶縁開閉装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために、高電圧導体を電気的に絶縁して配置した密閉容器内に絶縁ガスを封入したガス絶縁開閉装置において、上記密閉容器内のガス漏れによる圧力低下を検出する圧力検出手段と、この圧力検出手段によるガス漏れによる圧力低下を検出したとき上記密閉容器内に検出用異種ガスを混入する混入手段と、上記検出用異種ガスを混入した上記密閉容器の耐気密接続部を包囲する包囲体と、この包囲体内に混入した上記検出用異種ガスの有無を検出する検出用異種ガス検出手段とを備えたことを特徴とする。
【0008】
このような本発明のガス絶縁開閉装置によれば、密閉容器のいずれかの対気密接続部におけるシール部材の劣化などによりガス漏れが発生していることが圧力検出手段によって検出された場合にだけ、検出用異種ガスの充填を行うことになり、またガス漏れが発生していた場合、同部に対応するガス区画内の絶縁ガスを充填した検出用異種ガスと共に回収し、その後再度、初期状態の絶縁ガスを充填するため、作業時間の短縮と作業量を軽減することができる。またガス漏れ検出用異種ガスは最終的に回収され、絶縁特性に悪影響を与えることがなく、種々の検出用ガスを使用することができる。しかも、石けん水を用いる従来のように養生や石けん水の塗布などの作業段取り、また作業後の清掃に多くの時間を費やすことなく、どこの箇所から絶縁ガスが漏れているのか容易に特定することができる。
【0009】
また請求項2に記載の本発明は、請求項1記載のものにおいて、上記検出用異種ガスとして六弗化硫黄ガスを用い、上記絶縁ガスとして六弗化硫黄ガスを含まない他の絶縁ガスを用いたことを特徴とする。このようなガス絶縁開閉装置によれば、ガス絶縁開閉装置の分野で実績のあるSF6ガスを検出用ガスとして使用しているため、そのSF6ガス専用検出器を用いて精度良く検出することができると共に、その後にSF6ガスを回収して当初の絶縁ガスを再充填するため、運転状態では常に環境を考慮したガス絶縁開閉装置とすることができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の一実施の形態によるガス絶縁開閉装置のガス系統図である。ガス絶縁開閉装置は、主回路を構成する高電圧導体6を密閉容器22内に詳細な図示を省略した絶縁物によって電気的に絶縁した状態で支持し、この密閉容器22内に窒素ガスまたは乾燥空気などのSF6ガスを含まない絶縁ガスを封入して構成している。密閉容器22は、適当な大きさで製作された後に隣接する密閉容器同士を対気密接続したり、絶縁スペーサ15によって適当な大きさのガス区画16,17,18に区分された所で対気密接続したり、端部において端蓋によって気密に封じられたりして、例え同一ガス区画内でも複数の対気密接続部を有している。その主回路は、ケーブルヘッド1……断路器7……遮断器9……断路器10……計器用変圧変流器12を介して変圧器14に接続されており、受電側に電圧検出器2、避雷器3、受電側接地開閉器4および変流器5を設け、遮断器9の受電側に遮断器受電側接地開閉器8を、また遮断器9の変圧器14側に変圧器一次側接地開閉器13を設けて構成している。
【0011】
上述したように密閉容器22は絶縁スペーサ15により複数のガス区画に区分され、ここでは受電ガス区画16、遮断器ガス区画17、接続母線ガス区画18に区分したものとして図示している。これらのガス区画16〜18には、常時開状態のガス給排用バルブ19がそれぞれ取付けられ、現場盤23に設けた圧力検出手段20により各ガス区画16〜18毎にガス圧力が監視されている。圧力検出手段20の他側には常時閉状態のガス漏れ検出用ガスバルブ21が接続されている。各ガス区画16〜18内のガス圧力は等しいが、各密閉容器22内の温度や外部周囲温度によってガス圧力値は変動するため、各圧力検出手段20はそれぞれ密閉容器22内の測定圧力を所定温度に換算して温度補償圧力値を検出する温度補償機能を有している。
【0012】
今、ガス絶縁開閉装置の運転状態において、例えば、受電ガス区画16のガス圧力が低下したことを圧力検出手段20が検出すると、圧力検出手段20は温度補償を行っているので、この受電ガス区画16を構成する密閉容器のいずれかの対気密接続部におけるシール部材の劣化などによりガス漏れが発生していることが分かる。そこで、受電ガス区画16に接続されたガス漏れ検出用ガスバルブ21に検出用異種ガスを混入する混入手段、例えばSF6ガス補給装置を取り付け、ガス漏れ検出用ガスバルブ21を開状態にする。すると、受電ガス区画16を形成する密閉容器22にのみSF6ガスを充填することになる。このときに充填するSF6ガスの量は、SF6ガス補給装置に取付けた流量計で測定および監視することができる。
【0013】
SF6ガスの充填後あるいは充填作業に前後して、受電ガス区画16を形成した密閉容器の各対気密接続部に気密袋などの包囲体をそれぞれ設け、所定時間放置した後に各包囲体内に検出用異種ガス検出手段、例えばSF6ガス専用ガス検知器を挿入することにより、密閉容器22内に充填したSF6ガスがどこの体気密接続部から包囲体内に漏れているかが判別できる。
【0014】
その後、該当した受電ガス区画16のガス漏れ検出用ガスバルブ21を閉じて検出用異種ガスを混入する混入手段、例えばSF6ガス補給装置を取り外し、その後、このガス漏れ検出用ガスバルブ21に真空ポンプなどのガス回収装置を接続してガス漏れ検出用ガスバルブ21を開いて内部ガスを回収する。その後、ガス漏れ検出用ガスバルブ21あるいはガス給排用バルブ19を閉じてガス漏れが発生した対気密接続部を解体し、同部のシール部材などを交換する。この作業終了後、ガス漏れ検出用ガスバルブ21に当初と同じ窒素ガスまたは乾燥空気などのSF6ガスを含まない絶縁ガスの充填装置を接続し、ガス漏れ検出用ガスバルブ21およびガス給排用バルブ19を開いて受電ガス区画16を形成した密閉容器22内に当初と同じ絶縁ガスを充填する。その後は、図1の運転状態に復帰させて作業を終了する。
【0015】
ここで注目すべきことは、密閉容器のいずれかの対気密接続部におけるシール部材の劣化などによりガス漏れが発生していることが圧力検出手段によって検出された後に、検出用異種ガス、例えばSF6ガスの同部への充填が行われることである。ガス漏れが検出される前に検出用異種ガス、例えばSF6ガスを全てあるいは任意のガス区画の密閉容器毎に充填すると、実際にはガス漏れが生じていない場合に、全てのガス区画で異種検出ガスの回収と、当初の絶縁ガスの再充填作業を行わなければならず、信頼性確認のためだけに多くの作業と時間を費やしてしまう。また、この回収作業を省略するには、絶縁保持に悪影響を与えない検出用異種ガスだけを使用しなければならない。しかし、密閉容器のいずれかの対気密接続部におけるシール部材の劣化などによりガス漏れが発生していることが圧力検出手段によって検出された場合にだけ、検出用異種ガスの充填を行うため、上述したような無駄な作業はなく作業時間の短縮と作業量を軽減することができる。
【0016】
このようなガス絶縁開閉装置によれば、あるガス区画を形成する密閉容器の対気密接続部にガス漏れが発生したとしても、気密袋などの包囲体と、既に存在しており検出精度の高いSF6ガス専用ガス検知器を利用して、ガス漏れが発生しているのはどの対気密接続部かを容易に特定することができる。しかも、ガス漏れ検出後は、この検出用異種ガスとして混入したSF6ガスを回収して初期の絶縁ガスを再度充填するようにしたため、再び環境問題を考慮したガス絶縁開閉装置とすることができる。
【0017】
上述した実施の形態で、ガス漏れが発生した対気密接続部を特定するためにガス圧力の低下したガス区画にSF6ガスを充填して、このSF6ガスを検出用異種ガスとして用いたが、これに限らず、検出用異種ガス検出手段が存在しているならその他のガス、例えばヘリウム、CF4、アルゴンなどを用いることもできる。
【0018】
図2は、本発明の他の実施の形態によるガス絶縁開閉装置のガス監視システムの要部を示すフローチャートである。
上述した本発明を実施するに当たって、ガス圧力が低下したガス区画を形成する対気密接続部におけるシール部材の劣化などでガス漏れが発生したことを確実に検出することが重要である。何故なら、実際にガス漏れが発生していない他のガス区画を形成した密閉容器内にも検出用異種ガスを充填するなら、その後、再度当初の絶縁ガスを充填するために多くの時間を要するからである。図2のフローチャートは、この点を詳細に示すものである。
【0019】
通常、ガス絶縁開閉装置は、各部の状態を常時監視して各部の異常をいち早く検出するために監視システムを備えており、その監視項目の中に、各ガス区画のガス圧力も含まれている。この監視システムを利用してステップS1では、各ガス区画のガス圧力の測定および外気温度の測定を常時行う。この外気温度は対応する密閉容器内の温度でも良い。ステップS2では、各ガス区画における測定ガス圧力を所定温度、例えば20℃に換算して温度補償圧力値を算出すると、これによって図1に示した圧力検出手段20と同じ出力を得ることができる。従って、図1に示した圧力検出手段20の出力を監視システムに取り込むこともできるし、また、圧力検出手段20とは別に設けた圧力検出手段の出力を温度補償曲線に基づいて換算した圧力値を出力しても良い。
【0020】
ステップS3では、このようにして得た圧力値を初期圧力値、例えば0.50MPaと比較し、ステップS4に示すようにもし初期圧力値よりも低い場合は、ステップS5でガス圧低下による検出用異種ガス充填指令を与える。この充填指令に基づいて行う検出用異種ガス、例えばSF6ガスの充填作業は図1に示した実施の形態の場合と同様である。しかし、ステップS3の判定で両者の間に差がなければ、ステップS1に戻って監視データの測定を継続する。ここでは圧力検出手段による測定圧力値と初期値を比較するようにし、差が生じた場合に検出用異種ガス充填指令を与えているが、両者の差がある設定値範囲内にあるか否かを判定し、両者の差が設定値範囲を超えたとき検出用異種ガス充填指令を与えるようにすることもできる。
【0021】
このように異常監視システムの中でガス圧力を監視する圧力検出手段を用い、この圧力検出手段により検出した圧力低下を、対応するガス区画における密閉容器の体気密接続部でのガス漏れによるものとして検出することにより、先の実施の形態の場合と同様の効果を得ることができる。また、ガス絶縁開閉装置の場合、多くのガス漏れはごく微小な自然漏れであることを考えると、前回の圧力検出手段による測定圧力値を記憶手段に記憶させておき、次回の測定圧力値と前回の測定圧力値を比較して圧力低下が見られるなら対応するガス区画における密閉容器の体気密接続部でのガス漏れと判定する判定手段を設けると、一層精度良くガス漏れを検出することができる。
【0022】
尚、本発明は図1に示した構成のガス絶縁開閉装置に限らず、その他の構成のガス絶縁開閉装置にも適用することができる。
【0023】
【発明の効果】
以上説明したように本発明によるガス絶縁開閉装置によれば、密閉容器のいずれかの対気密接続部におけるシール部材の劣化などによりガス漏れが発生していることが圧力検出手段によって検出された場合にだけ、検出用異種ガスの充填を行うため作業時間の短縮と作業量を軽減することができ、またガス漏れが発生していた場合、同部に対応するガス区画内の絶縁ガスを検出用異種ガスと共に回収して、その後再度、初期状態の絶縁ガスを充填するため、ガス漏れ検出用異種ガスは最終的に回収され、絶縁特性に悪影響を与えることがなく、種々の検出用異種ガスを使用することができる。また運転状態では常に環境に調和した絶縁ガスを使用したガス絶縁開閉装置とするすることができる。しかも、石けん水を用いる従来のように養生や石けん水の塗布などの作業段取り、また作業後の清掃に多くの時間を費やすことなく、どこの箇所から絶縁ガスが漏れているのか容易に特定することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態によるガス絶縁開閉装置のガス系統図である。
【図2】本発明の他の実施の形態によるガス絶縁開閉装置における監視システムの要部動作を示すフローチャートである。
【符号の説明】
15 絶縁スペーサ
16 受電ガス区画
17 遮断器ガス区画
18 接続用母線ガス区画
19 ガス給排用バルブ
20 圧力検出手段
21 ガス漏れ検出用ガスバルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-insulated switchgear in which an insulating gas is sealed in a sealed container in which a high-voltage conductor is electrically insulated.
[0002]
[Prior art]
In the conventional gas insulated switchgear, sulfur hexafluoride gas (hereinafter referred to as SF6 gas) is used as an insulating gas sealed in a sealed container in which a high voltage conductor is electrically insulated. However, due to recent global environmental problems, the emission of SF6 gas with a high global warming potential is regulated, so gas-insulated switching that uses environmentally friendly nitrogen gas or dry air as an insulating gas without using SF6 gas The device is drawing attention.
[0003]
By the way, the gas-insulated switchgear is divided into a plurality of gas compartments in order to limit the accident section in the event of an accident, or there are connections between a plurality of sealed containers. Therefore, there are a plurality of airtight connections. In these airtight connection parts, there is a risk that gas leakage may occur due to deterioration of the seal member or progress of rusting. In many cases, the amount of gas leakage is natural gas leakage of about several ppm (parts per million). However, when SF6 gas is used as an insulating gas, SF6 leaked by a commercially available dedicated SF6 gas detector. It is possible to easily identify the gas leak site by detecting the above. However, when nitrogen gas other than SF6 gas, dry air, or the like is used as an insulating gas due to the problem of the global environment described above, since the same components exist in the atmosphere, gas leakage occurs as in the case of SF6 gas. Cannot be detected. Therefore, in order to specify the gas leakage site, it is necessary to add soap water to all the airtight connection portions and determine whether or not bubbles exist. In addition, in order to inspect for gas leakage during the assembly of the gas insulated switchgear, a sealed container filled with inspection helium gas is further placed in the inspection container, and the inside of the inspection container is evacuated to fill the sealed container. Let the gas pressure be lower than the gas pressure, detect the gas leak in the sealed container based on the presence or absence of the inspection helium gas in the inspection container, and keep the state as it is by considering the mixing ratio of the inspection helium gas Thus, there has been proposed a gas-insulated switchgear that does not deteriorate the insulation characteristics even when the gas-insulated switchgear is installed and operated (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2003-92913
[Problems to be solved by the invention]
However, in the conventional gas-insulated switchgear, it is necessary to add soapy water to all airtight connections and check the presence of bubbles for gas leak detection and identification of the gas leak site. Yes, and those using inspection helium gas are limited to inspection gases that do not hinder the subsequent installation operation, as well as deterioration of the seal member of the airtight connection after installation operation and progress of rusting, etc. For gas leaks due to, the inspection container covering the whole becomes a huge facility and is not suitable for local use.
[0006]
An object of the present invention is to provide a gas-insulated switchgear that can easily detect a gas leak caused by deterioration of a seal member of an airtight connection portion or progress of rusting and easily identify a gas leak occurrence site. It is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention detects a pressure drop due to gas leakage in a sealed container in which an insulating gas is sealed in a sealed container in which a high voltage conductor is electrically insulated. A pressure detecting means, a mixing means for mixing a different gas for detection into the sealed container when a pressure drop due to gas leakage by the pressure detecting means is detected, and an airtightness of the sealed container mixed with the different gas for detection. An enclosure that surrounds the connecting portion, and a detection foreign gas detection means that detects the presence or absence of the detection foreign gas mixed in the enclosure are provided.
[0008]
According to such a gas-insulated switchgear of the present invention, only when the pressure detecting means detects that gas leakage has occurred due to deterioration of the sealing member in any airtight connection portion of the sealed container. If there is a gas leak, the gas is recovered together with the gas for detection filled with the insulating gas in the gas section corresponding to the same part, and then again in the initial state. Since the insulating gas is filled, the working time can be shortened and the working amount can be reduced. Further, the different gas for gas leak detection is finally recovered, and various detection gases can be used without adversely affecting the insulation characteristics. Moreover, it is easy to identify where the insulating gas is leaking without spending a lot of time for setting up work such as curing and applying soap water, and cleaning after work, as in the past. be able to.
[0009]
According to a second aspect of the present invention, in the first aspect, a sulfur hexafluoride gas is used as the different gas for detection, and another insulating gas not containing sulfur hexafluoride gas is used as the insulating gas. It is used. According to such a gas-insulated switchgear, since SF6 gas, which has a proven record in the field of gas-insulated switchgear, is used as a detection gas, it can be detected with high precision using the detector dedicated to SF6 gas. At the same time, since the SF6 gas is recovered thereafter and the original insulating gas is refilled, the gas insulated switchgear that always considers the environment in the operating state can be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a gas system diagram of a gas insulated switchgear according to an embodiment of the present invention. The gas insulated switchgear supports the high voltage conductor 6 constituting the main circuit in a state in which the high voltage conductor 6 is electrically insulated by an insulator (not shown in detail) in the hermetic container 22, and nitrogen gas or dry in the hermetic container 22. An insulating gas that does not contain SF6 gas such as air is enclosed. The airtight container 22 is manufactured in an appropriate size and then airtightly connects adjacent airtight containers or is divided into gas compartments 16, 17, and 18 of an appropriate size by the insulating spacer 15. It has a plurality of airtight connection portions even in the same gas compartment, for example, connected to each other or hermetically sealed by an end lid. The main circuit is connected to the transformer 14 through the cable head 1 ...... disconnector 7 ...... breaker 9 ...... disconnector 10 ...... instrument transformer current transformer 12, and the voltage detector on the power receiving side 2, a lightning arrester 3, a power receiving side grounding switch 4 and a current transformer 5, and a circuit breaker power receiving side grounding switch 8 on the power receiving side of the circuit breaker 9, and a transformer primary side on the transformer 14 side of the circuit breaker 9. A ground switch 13 is provided.
[0011]
As described above, the airtight container 22 is divided into a plurality of gas compartments by the insulating spacer 15, and is illustrated here as being divided into a power reception gas compartment 16, a circuit breaker gas compartment 17, and a connection bus gas compartment 18. A gas supply / discharge valve 19 that is normally open is attached to each of the gas compartments 16 to 18, and the gas pressure is monitored for each of the gas compartments 16 to 18 by the pressure detection means 20 provided on the field panel 23. Yes. A gas valve 21 for gas leak detection that is normally closed is connected to the other side of the pressure detection means 20. Although the gas pressures in the gas compartments 16 to 18 are equal, the gas pressure value varies depending on the temperature in each sealed container 22 and the external ambient temperature. Therefore, each pressure detection means 20 sets the measured pressure in the sealed container 22 to a predetermined value. It has a temperature compensation function for detecting a temperature compensation pressure value in terms of temperature.
[0012]
Now, in the operating state of the gas insulated switchgear, for example, when the pressure detection means 20 detects that the gas pressure in the power reception gas section 16 has decreased, the pressure detection means 20 performs temperature compensation. It can be seen that gas leakage has occurred due to deterioration of the sealing member in any of the airtight connection portions of the hermetic container 16. Therefore, a mixing means for mixing a different gas for detection, for example, an SF6 gas supply device, is attached to the gas valve 21 for detecting gas leakage connected to the power receiving gas section 16, and the gas valve 21 for detecting gas leakage is opened. Then, only the sealed container 22 that forms the power receiving gas section 16 is filled with SF6 gas. The amount of SF6 gas filled at this time can be measured and monitored with a flow meter attached to the SF6 gas supply device.
[0013]
After filling with SF6 gas or before and after the filling operation, an enclosure such as an airtight bag is provided in each airtight connection portion of the sealed container in which the power receiving gas section 16 is formed, and after being left for a predetermined time, for detection in each enclosure By inserting a different gas detection means, for example, a gas detector dedicated to SF6 gas, it is possible to determine from which body airtight connection portion the SF6 gas filled in the sealed container 22 leaks into the enclosure.
[0014]
Thereafter, the gas leak detection gas valve 21 of the corresponding power receiving gas section 16 is closed to remove the mixing means for mixing the different gas for detection, for example, the SF6 gas supply device, and then the gas leak detection gas valve 21 is connected to a vacuum pump or the like. A gas recovery device is connected to open the gas leak detection gas valve 21 to recover the internal gas. Thereafter, the gas leak detection gas valve 21 or the gas supply / discharge valve 19 is closed to disassemble the airtight connection portion where the gas leak has occurred, and the seal member and the like in the same portion are replaced. After the completion of this operation, the gas leak detection gas valve 21 is connected to the same gas gas detection valve 21 and gas supply / discharge valve 19 as the gas leak detection gas valve 21 and the gas supply / exhaust valve 19. The same insulating gas as that at the beginning is filled in the sealed container 22 that is opened to form the power receiving gas section 16. Thereafter, the operation is returned to the operation state of FIG.
[0015]
What should be noted here is that, after the pressure detection means detects that a gas leak has occurred due to deterioration of the seal member in any airtight connection portion of the sealed container, for example, a different gas for detection, for example, SF6. The filling of the same part of gas is performed. If a different kind of gas for detection, for example, SF6 gas, is filled in every closed container in any gas compartment before the gas leak is detected, the different kinds of gas are detected in all gas compartments when no gas leak actually occurs. Gas recovery and refilling of the initial insulating gas must be performed, and much work and time are consumed only for reliability confirmation. Further, in order to omit this recovery operation, it is necessary to use only a different type gas for detection that does not adversely affect the insulation retention. However, since the gas detection device detects that gas leakage has occurred due to deterioration of the seal member in any airtight connection portion of the sealed container, the above-described detection gas is filled. There is no such wasteful work, and the working time can be shortened and the amount of work can be reduced.
[0016]
According to such a gas-insulated switchgear, even if a gas leak occurs in an airtight connection part of a sealed container forming a certain gas section, an enclosure such as an airtight bag and an already existing enclosure and high detection accuracy are present. Using the gas detector dedicated to SF6 gas, it is possible to easily identify which airtight connection part is causing gas leakage. In addition, after the gas leakage is detected, the SF6 gas mixed as the different gas for detection is recovered and refilled with the initial insulating gas, so that the gas insulated switchgear considering the environmental problem can be obtained again.
[0017]
In the above-described embodiment, in order to identify the airtight connection portion where the gas leak has occurred, the gas section where the gas pressure is reduced is filled with SF6 gas, and this SF6 gas is used as the heterogeneous gas for detection. However, other gases such as helium, CF4, and argon can be used as long as there is a different gas detection means for detection.
[0018]
FIG. 2 is a flowchart showing a main part of a gas monitoring system for a gas insulated switchgear according to another embodiment of the present invention.
In practicing the above-described present invention, it is important to reliably detect that a gas leak has occurred due to deterioration of a seal member in an airtight connection portion that forms a gas compartment in which a gas pressure has decreased. This is because if a different kind of gas for detection is also filled in a sealed container formed with another gas compartment where no gas leakage actually occurs, then it takes a long time to fill the original insulating gas again. Because. The flowchart of FIG. 2 shows this point in detail.
[0019]
Normally, the gas insulated switchgear is equipped with a monitoring system to constantly monitor the state of each part and quickly detect an abnormality of each part, and the monitoring items include the gas pressure of each gas section. . In step S1, using this monitoring system, the gas pressure in each gas section and the outside air temperature are constantly measured. This outside air temperature may be the temperature in the corresponding sealed container. In step S2, if the temperature compensation pressure value is calculated by converting the measured gas pressure in each gas section to a predetermined temperature, for example, 20 ° C., the same output as the pressure detecting means 20 shown in FIG. 1 can be obtained. Accordingly, the output of the pressure detection means 20 shown in FIG. 1 can be taken into the monitoring system, and the pressure value obtained by converting the output of the pressure detection means provided separately from the pressure detection means 20 based on the temperature compensation curve. May be output.
[0020]
In step S3, the pressure value obtained in this way is compared with an initial pressure value, for example, 0.50 MPa. If it is lower than the initial pressure value as shown in step S4, it is detected in step S5 due to gas pressure drop. Gives different gas filling instructions. The filling operation of the detection different gas, for example, SF6 gas based on the filling command is the same as that in the embodiment shown in FIG. However, if there is no difference between the two in the determination in step S3, the process returns to step S1 and the measurement of the monitoring data is continued. Here, the measured pressure value by the pressure detection means is compared with the initial value, and when a difference occurs, a detection foreign gas filling command is given, but whether or not the difference is within a set value range. It is also possible to give a detection different gas filling command when the difference between the two exceeds the set value range.
[0021]
As described above, the pressure detection means for monitoring the gas pressure is used in the abnormality monitoring system, and the pressure drop detected by the pressure detection means is caused by gas leakage at the airtight connection portion of the sealed container in the corresponding gas section. By detecting, the same effect as in the previous embodiment can be obtained. In the case of a gas insulated switchgear, considering that many gas leaks are very small natural leaks, the measurement pressure value measured by the previous pressure detection means is stored in the storage means, and the next measurement pressure value If a pressure drop is observed by comparing the previous measured pressure value, a gas leak can be detected with higher accuracy by providing a judgment means that determines that there is a gas leak at the airtight connection of the sealed container in the corresponding gas compartment. it can.
[0022]
The present invention is not limited to the gas insulated switchgear having the configuration shown in FIG. 1, but can be applied to other gas insulated switchgears.
[0023]
【The invention's effect】
As described above, according to the gas-insulated switchgear according to the present invention, when the pressure detection means detects that a gas leak has occurred due to deterioration of the seal member in any airtight connection portion of the sealed container. Therefore, it is possible to reduce the work time and the amount of work because it is filled with a different kind of gas for detection, and when gas leakage occurs, the insulation gas in the gas section corresponding to the same part is detected. Since it is collected together with the different gas and then filled with the initial insulating gas again, the different gas for gas leak detection is finally recovered and various kinds of different gas for detection can be used without adversely affecting the insulation characteristics. Can be used. Moreover, it can be set as the gas insulated switchgear which always uses the insulating gas in harmony with the environment in the operation state. Moreover, it is easy to identify where the insulating gas is leaking without spending a lot of time on work setup such as curing and application of soap water, and cleaning after work, as in the past. be able to.
[Brief description of the drawings]
FIG. 1 is a gas system diagram of a gas insulated switchgear according to an embodiment of the present invention.
FIG. 2 is a flowchart showing an operation of a main part of a monitoring system in a gas insulated switchgear according to another embodiment of the present invention.
[Explanation of symbols]
15 Insulating spacer 16 Power receiving gas compartment 17 Breaker gas compartment 18 Connection bus gas compartment 19 Gas supply / discharge valve 20 Pressure detection means 21 Gas leak detection gas valve

Claims (2)

高電圧導体を電気的に絶縁して配置した密閉容器内に絶縁ガスを封入したガス絶縁開閉装置において、上記密閉容器内のガス漏れによる圧力低下を検出する圧力検出手段と、この圧力検出手段によるガス漏れによる圧力低下を検出したとき上記密閉容器内に検出用異種ガスを混入する混入手段と、上記検出用異種ガスを混入した上記密閉容器の耐気密接続部を包囲する包囲体と、この包囲体内に混入した上記検出用異種ガスの有無を検出する検出用異種ガス検出手段とを備えたことを特徴とするガス絶縁開閉装置。In a gas-insulated switchgear in which an insulating gas is enclosed in a sealed container in which a high voltage conductor is electrically insulated, a pressure detecting means for detecting a pressure drop due to gas leakage in the sealed container, and the pressure detecting means A mixing means for mixing a different gas for detection into the sealed container when a pressure drop due to gas leakage is detected, an enclosure surrounding the airtight connection portion of the sealed container mixed with the different gas for detection, and the enclosure A gas-insulated switchgear comprising a detection foreign gas detection means for detecting the presence or absence of the detection foreign gas mixed in the body. 請求項1記載のものにおいて、上記検出用異種ガスとして六弗化硫黄ガスを用い、上記絶縁ガスとして六弗化硫黄ガスを含まない他の絶縁ガスを用いたことを特徴とするガス絶縁開閉装置。2. The gas insulated switchgear according to claim 1, wherein a sulfur hexafluoride gas is used as the different gas for detection, and another insulating gas not containing sulfur hexafluoride gas is used as the insulating gas. .
JP2003190881A 2003-07-03 2003-07-03 Gas insulated switchgear Expired - Fee Related JP4119320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190881A JP4119320B2 (en) 2003-07-03 2003-07-03 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190881A JP4119320B2 (en) 2003-07-03 2003-07-03 Gas insulated switchgear

Publications (2)

Publication Number Publication Date
JP2005027439A JP2005027439A (en) 2005-01-27
JP4119320B2 true JP4119320B2 (en) 2008-07-16

Family

ID=34188633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190881A Expired - Fee Related JP4119320B2 (en) 2003-07-03 2003-07-03 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP4119320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11971442B2 (en) 2018-09-07 2024-04-30 Siemens Energy Global GmbH & Co. KG Gas monitoring system for gas-insulated switchgears

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030574B2 (en) * 2006-12-15 2012-09-19 中国電力株式会社 Gas circuit breaker monitoring system
JP5021562B2 (en) * 2008-05-29 2012-09-12 矢崎総業株式会社 Return safety confirmation method and gas shut-off valve device
JP5541893B2 (en) * 2009-09-15 2014-07-09 中部システム工業株式会社 Gas extraction device and gas analyzer using the same
JP5603092B2 (en) * 2010-02-08 2014-10-08 サムスン電機ジャパンアドバンスドテクノロジー株式会社 Hard disk drive and method for producing hard disk drive
JP5590602B2 (en) * 2010-02-12 2014-09-17 サムスン電機ジャパンアドバンスドテクノロジー株式会社 Method of producing disk drive device and disk drive device produced by the production method
KR101073056B1 (en) * 2010-06-25 2011-10-12 한국전력공사 A system and method for detecting faults of gas insulated switchgear
DE102016212333B4 (en) 2016-07-06 2022-09-01 Siemens Aktiengesellschaft Detectable switching gas mixture
CN115639322B (en) * 2022-10-18 2023-08-01 安徽龙波电气有限公司 Integrated intelligent online detection device based on gas-insulated ring main unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11971442B2 (en) 2018-09-07 2024-04-30 Siemens Energy Global GmbH & Co. KG Gas monitoring system for gas-insulated switchgears

Also Published As

Publication number Publication date
JP2005027439A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4879936B2 (en) Gas filling inspection apparatus and gas leakage inspection method
JP4119320B2 (en) Gas insulated switchgear
EP3621096A1 (en) Gas monitoring system for gas-insulated switchgears
US20080078237A1 (en) Checking apparatus for checking operation of a densimeter for medium-voltage and high-voltage electrical equipment, and a method of checking operation of a densimeter
CN107968018A (en) A kind of high antivibration gas density relay
RU2681274C2 (en) Oil active part design in gas
KR101496588B1 (en) Partial discharge detecting device for gas insulated switchgear
KR101371667B1 (en) Method for checking and changing insulating gas of load break switch on live wire state
CN101382579B (en) Detection device for quality of rubber stress cone of high-pressure cross-linking cable
JP2000059935A (en) Gas filling method of gas-insulated electric apparatus, and its foreign-matter inspecting method
KR101310280B1 (en) Method for checking and changing insulating gas of load break switch
JP2004336892A (en) Sealed gas-insulated switchgear
TWI485736B (en) Vacuum switch and vacuum insulated switchgear
JP4545362B2 (en) Gas insulated switchgear
JP4373393B2 (en) Gas insulated switchgear
JP2006094636A (en) Closed electric apparatus and its withstand voltage test method
JP2007174726A (en) Gas insulated power device
CN103487733B (en) The insulation test device of capacitor
CN117410873B (en) Novel gas tank of CGIS whole plug-in type
JPH0965527A (en) Fault point locating system
KR20240020842A (en) Apparatus and Method for judging fitness possibility of vaccum in Gas Insulated Switchgear
CN113252773A (en) Liquefaction temperature test measuring device and method for SF6 gas and mixed insulating gas thereof
JP3290220B2 (en) Fault location system
JP2000166034A (en) Gas insulated switchgear
JP3750320B2 (en) Gas insulation apparatus and withstand voltage test method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Ref document number: 4119320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees