JP4117999B2 - Hydraulic machine - Google Patents

Hydraulic machine Download PDF

Info

Publication number
JP4117999B2
JP4117999B2 JP2000095659A JP2000095659A JP4117999B2 JP 4117999 B2 JP4117999 B2 JP 4117999B2 JP 2000095659 A JP2000095659 A JP 2000095659A JP 2000095659 A JP2000095659 A JP 2000095659A JP 4117999 B2 JP4117999 B2 JP 4117999B2
Authority
JP
Japan
Prior art keywords
runner
hydraulic machine
coating layer
band
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000095659A
Other languages
Japanese (ja)
Other versions
JP2001280231A (en
Inventor
俊寛 渡邊
泰造 稲垣
正弘 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000095659A priority Critical patent/JP4117999B2/en
Publication of JP2001280231A publication Critical patent/JP2001280231A/en
Application granted granted Critical
Publication of JP4117999B2 publication Critical patent/JP4117999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高速水と土砂水とが混合した高速土砂の噴流に基づいて発生する壊食や土砂摩耗に対し、充分に抗することができる水力機械に関する。
【0002】
【従来の技術】
水車あるいはポンプ水車等の水力機械におけるランナ、ガイドベーンおよびステーベーン等の動力水接触部品は、河川中に含まれる土砂による土砂摩耗損傷や部品の形状と動力水の流速との関係から発生するキャビテーションによる壊食等を受けることが多い。特に、土砂を多量に含む河川水を動力水として利用する水力機械では、高速の土砂噴流により大きな損傷を受け、構造部品の剛性低下や水車効率の低下を招くだけでなく、補修のために長期に亘って運転停止を強いられ、著しく稼動率の低下を招いていた。
【0003】
従来、水力機械の動力水に接する部品の材料は、ランナやランナベーンが13Crマルテンサイト系ステンレス鋼や炭素鋼鋳鋼が用いられ、ランナライナ、上カバーライナ、下カバーライナ、ステーベーン、ガイドベーン等が炭素鋼や13Crマルテンサイト系ステンレス鋼などで作製され、その硬さもビッカース硬さHv200〜350になっていた。
【0004】
一方、河川水中に含まれる土砂の硬度は、ビッカーズ硬さHv1100〜1200である。したがって、動力水に接する部品の硬さが土砂の硬さよりも低いので、土砂含有量の多い河川水を使用すると、土砂摩耗損傷を受け、その都度、交換を余儀なくされていた。
【0005】
土砂摩耗損傷やキャビテーションによる壊食等の対処策として、従来、例えば特開平3−47477号公報、特開平8−193568号公報、および特開平8−254173号公報等に見られるように、動力水に接する部品にゴム等の樹脂、高硬度材料、セラミックス等のライニングあるいは溶射、肉盛溶接、粉体プラズマ肉盛溶接等の手段が用いられていた。
【0006】
【発明が解決しようとする課題】
上述の特許公報に開示されている技術には、幾つかの問題点が含まれている。
【0007】
ゴム等のライニングによる手段では、ランナ等の基材との密着力が低く、特に、高速流域でコーティング部材が短時間で剥離し、効果的な土砂摩耗損傷防止策になっていない。
【0008】
また、肉盛溶接や粉体プラズマ肉盛溶接などの手段では、熱が水車部品に加わるため、溶接前後に予後熱処理を行い、溶接による割れなどの欠陥防止や溶接後の熱応力を解放しなければならない。このため、肉盛溶接や粉体プラズマ肉盛溶接による土砂摩耗対策やキャビテーション対策を行う場合、予後熱処理ができる炉への水車部品の移動が必要になる。例えば、オーバーホール時、水車部品を発電所内で修理後、肉盛溶接や粉体プラズマ肉盛溶接による土砂摩耗対策やキャビテーション対策を行うと、熱処理ができる炉への移動をしなければならず、運転停止期間が長くなり、著しい稼動率の低下につながる。
【0009】
最近では、溶接のような基材への熱影響が少なく予後熱処理を必要としない溶射技術が飛躍的に進歩し、超高速ガス炎溶射のように基材のと密着力に非常に優れた溶射プロセスを用いた耐エロージョン、耐キャビテーション対策が行われている。
【0010】
しかし、水車部品には、運転中、ランナ入口からの漏水を少なくさせ、主軸(回転軸)に発生するスラストを安定状態に維持させる封水装置がある。この封水装置は、例えば、図8に示すように、ランナベーン1を支持するランナクラウン2とランナバンド3とのうち、ランナバンド3の下流側に階段状のシール部4を形成し、ランナベーン2と下カバー(図示せず)との隙間から漏水する動力水をシールし、運転中に主軸(図示せず)に発生するスラストを安定状態に維持させている。
【0011】
このような構造の封水装置に対し、超高速ガス炎溶射をはじめとする溶射プロセスを用いた耐エロージョン、耐キャビテーション対策を行うと、コーナ部(隅部)5は、図9に示すように、溶射皮膜6に吹溜り部6aを生成したり、あるいは図10および図11に示すように、溶射皮膜6が連続せずに成膜不良部6bを生成するなどの不都合・不具合があった。
【0012】
この場合、シール部4は、対峙する下カバー(静止側)との間隙が非常に狭く、このためコーナ部5に溶射皮膜6の吹溜り部6aが生成されると、研磨加工が必要になり、溶射施工に伴う工期が延び、コストアップの要因になっていた。
【0013】
また、成膜不良部6bが生成された場合、土砂摩耗による損傷、キャビテーションによる壊食を受け、効果的なシールができないことと相俟って強度維持も不充分等の問題点があった。
【0014】
また、水車の組立、分解の際、ランナは一旦、下カバーに載せる必要があり、ランナベーン1の下流側端面が下カバーに接触する。ところが、シール部4に溶射施工する場合、ランナベーン1の下流側端面にも溶射皮膜6を巻き込んでしまい、ランナベーン1の下流側端面が接触したとき、図12および図13に示すように、ランナベーン1の下流側端面に生成された巻込み部6cの溶射皮膜6にき裂を発生させ、また溶射皮膜6の剥離を引き起こすこともあった。
【0015】
このように、超高速ガス炎溶接をはじめとする溶射プロセスは、基材の種類の如何を問わず、また予後熱処理を必要としないため、水車部品の硬質皮膜形成手段に有効であるが、必ずしも水車部品の全てに適用できる訳ではなく、部品の種類やその形状、位置によっては、その適用に苦慮していた。
【0016】
本発明は、このような事情に基づいてなされたもので、部品に施した溶射皮膜にき裂や剥離を発生させることなく、耐エロージョン、耐キャビテーションに優れた水力機械を提供することを目的とする。
【0018】
【課題を解決するための手段】
また、本発明に係る水力機械は、上述の目的を達成するために、請求項1に記載したように、上カバーと下カバーとで形成した流路に、ランナを収容し、このランナのランナベーンをランナクラウンとランナバンドとで支持させるとともに、上記下カバーに対峙する上記ランナバンドに階段状に形成したシール部に溶射被膜を被着させた水力機械において、上記シール部に複合皮膜層を被着させるとともに、上記ランナバンドの底面部に上記複合皮膜層を被着させた切欠部を形成したものである。
【0020】
また、本発明に係る水力機械は、上述の目的を達成するために、請求項2に記載したように、前記シール部は、このエッジあるいはコーナ部に面取り加工部および曲面加工部のうち、いずれか一方を形成したものである。
【0021】
また、本発明に係る水力機械は、上述の目的を達成するために、請求項3に記載したように、前記面取り加工部または曲面加工部は、寸法を1mm以上に設定したものである。
【0028】
【発明の実施の形態】
以下、本発明に係る水力機械の実施形態を図面および図面に付した符号を引用して説明する。
【0029】
図1は、本発明に係る水力機械に適用されるフランシスポンプ水車を示す一部切欠部分断面図である。
【0030】
本実施形態に係るフランシスポンプ水車は、上カバー10と下カバー11との間に渦巻ケーシング(図示せず)から供給された動力水Wをドラフトチューブ12に案内する流路13を形成している。
【0031】
この流路13には、渦巻ケーシングから供給された動力水Wを負荷に応じて流量制御するガイドベーン14と、動力水Wのエネルギを回転トルクに変えるランナ15とが設けられている。
【0032】
ランナ15は、ランナクラウン16とランナバンド17とで一体形成されたランナベーン18を周方向に沿って複数枚にして環状列に配置している。また、ランナ15は、ランナクラウン16を介して主軸(回転軸)19に接続し、運転中、主軸19に発生するスラストを軸受20で調整している。
【0033】
一方、ランナバンド17は、下カバー11との間に背圧室21を形成するとともに、背圧室21に流れ込んだ動力水Wの漏水を下流側に設けた階段状に形成したシール部22で封水している。
【0034】
このような構成を備えたフランシスポンプ水車において、本実施形態では、図2で示したランナバンド17の下流側に設けた階段状のシール部22のエッジあるいはコーナ部に面取り加工部23と曲面加工部24とを施工するとともに、階段状のシール部22に沿って密着性皮膜層25と耐エロージョン、耐キャビティに優れた保護皮膜層26とからなる複合皮膜層27を形成したものである。
【0035】
密着性皮膜層25は、耐エロージョン、耐キャビテーションに優れた保護皮膜層26の基礎となるもので、ランナバンド17の基材に強固に密着している。
【0036】
また、保護皮膜層26は、河川水に含まれる土砂による侵食や高速水中で発生したキャビティが材料表面で衝突、崩壊するときの衝撃圧による侵食を防ぐためのものであ。
【0037】
密着性皮膜層25は、ランナバンド17の基材と強固に密着させる必要があるため、その層を形成する場合の粗面化処理として、たがね、グラインダー、ドリル、ブラスト、エッチングのうち、少なくとも1種類以上の粗面化処理手段を用いて形成される。また、密着性皮膜層25は、密着力が強いプロセスを使用して形成する必要があることから、ガス炎溶射、高速ガス炎溶射、超高速ガス炎溶射のうち、少なくとも1種類以上のプロセスを用いて形成される。
【0038】
一方、耐エロージョン、耐キャビテーションに優れた保護皮膜層26は、土砂摩耗やキャビテーションによる壊食を防ぐため、河川水中の土砂の主成分であるSiOやAlと同等もしくはそれ以上の硬度を有する材料にし、金属材料としてCo,Ni,Cr,Mo,V,Al,W,C,Fe,Tiのうち、少なくとも1種類以上を主成分とする複合した合金材料、セラミックス材料としてAl,Si,SiC,SiO,TiO,ZrO,Cr,Cr,MgOのうち、少なくとも1種類以上を主成分とする複合したセラミックス材料、サーメット材料としてWC,NbC,VCのうち、少なくとも1種類以上を主成分とする複合したサーメット材料が選択される。また、上述成分を成膜させることができるプロセスとしてガス炎溶射、高速ガス炎溶射、超高速ガス炎溶射の手段のうち、少なくとも1種類以上の手段が選択される。
【0039】
図4は、ランナバンド17に設けられ、階段状に形成したシール部22のエッジあるいはコーナ部(隅部)における面取り加工部23の寸法と密着力との関係を示す面取り加工密着力分布線図である。また、表1は、面取り加工部23の寸法と複合皮膜層27における成膜不良の発生率を示している。
【0040】
【表1】

Figure 0004117999
【0041】
図4および表1によれば、シール部22のエッジあるいはコーナ部における面取り加工部23は、1mm以上にすると、密着力を高く確保できる。
【0042】
また、図5は、ランナバンド17に設けられ、階段状に形成したシール部22のエッジあるいはコーナ部における曲面加工部24の寸法と密着力との関係を示す曲面加工密着力分布線図である。さらに、表2は、曲面加工部24の寸法と複合皮膜層27における成膜不良の発生率を示している。
【0043】
【表2】
Figure 0004117999
【0044】
図5および表2によれば、シール部22のエッジあるいはコーナ部における曲面加工部24は、1mm以上にすると、密着力を高く確保できる。
【0045】
図4および図5から、面取り加工部2および曲面加工部24のそれぞれは、その寸法を1mm以上に設定すると、エッジあるいはコーナ部における複合皮膜層27とシール部22の基材との密着力が急激に増加することがわかった。これは、エッジあるいはコーナ部における複合皮膜層27の付着面積が増えることによるものと考えられる。
【0046】
また、表1および表2から、面取り加工部23および曲面加工部24のそれぞれの寸法を1mm以上に設定すると、複合皮膜層27の成膜不良や吹溜りの生成が見られないこともわかった。
【0047】
なお、図4および図5と表1および表2とは、検証試験によって得たデータである。
【0048】
このように、本実施形態は、ランナバンド17に設けられ、階段状に形成したシール部22に密着性皮膜層25と保護皮膜層26とからなる複合皮膜層27を設ける際、シール部22のエッジあるいはコーナ部に適切な寸法で面取り加工部23および曲面加工部24を形成するとともに、適切な材料および適切なプロセスで複合皮膜層27を施工したので、土砂摩耗やキャビテーションによる壊食に充分に対処することができる。
【0049】
図6および図7は、本発明に係る水力機械の第2実施形態を示す部分図である。なお、図6は、本発明に係る水力機械に適用されるフランシスポンプ水車のランナを示し、図7はランナを支持するランナバンドの一部分を示している。なお、第1実施形態で示した構成部分または対応する部分と同一部分には同一符号を付す。
【0050】
本実施形態に係るランナバンド17は、階段状に形成したシール部22に密着性皮膜層25と保護皮膜層26とからなる複合皮膜層27を設けるともに、シール部22の下流側の底面部28に切欠部29を形成し、この切欠部29に複合皮膜層27を被着させたものである。
【0051】
このように、本実施形態は、ランナバンド17の底面部28に、複合皮膜層27を被着させた切欠部29を設けたので、ポンプ水車の組立、分解の際、ランナ下端面を下にして置いた場合でも複合皮膜層27にき裂や剥離を与えることがなく、複合皮膜層27を確実に保護することができる。
【0052】
【発明の効果】
以上の説明のとおり、本発明に係る水力機械は、ランナバンドに設けられ、階段状に形成したシール部のエッジあるいはコーナ部に面取り加工部および曲面加工部を施工し、面取り加工部および曲面加工部を含めてシール部に複合皮膜層を被着させるとともに、ランナバンドの底面に切欠部を形成したので、複合皮膜層を確実に保護することができ、土砂摩耗およびキャビテーションによる壊食に対して充分に対処させることができる。
【図面の簡単な説明】
【図1】本発明に係る水力機械に適用されるフランシスポンプ水車を示す一部切欠部分断面図。
【図2】図1から抜き出したランナの断面図。
【図3】図2に示したA部の拡大図。
【図4】本発明に係る水力機械に適用される面取り加工密着力分布線図。
【図5】本発明に係る水力機械に適用される曲面加工密着力分布線図。
【図6】本発明に係る水力機械に適用されるランナの第2実施形態を示す断面図。
【図7】図6に示したB部の拡大図。
【図8】従来のランナを示す断面図。
【図9】図8に示したX部の拡大図。
【図10】従来の別のランナを示す断面図。
【図11】図10に示したY部の拡大図。
【図12】従来のさらに別のランナを示す断面図。
【図13】図12に示したZ部の拡大図。
【符号の説明】
1 ランナベーン
2 ランナクラウン
3 ランナバンド
4 シール部
5 コーナ部
6 溶射皮膜
6a 吹溜り部
6b 成膜不良部
6c 巻込み部
10 上カバー
11 下カバー
12 ドラフトチューブ
13 流路
14 ガイドベーン
15 ランナ
16 ランナクラウン
17 ランナバンド
18 ランナベーン
19 主軸
20 軸受
21 背圧室
22 シール部
23 面取り加工部
24 曲面加工部
25 密着性皮膜層
26 保護皮膜層
27 複合皮膜層
28 底面部
29 切欠部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydraulic machine capable of sufficiently resisting erosion and earth and sand wear generated based on a jet of high-speed earth and sand mixed with high-speed water and earth and sand water.
[0002]
[Prior art]
Power water contact parts such as runners, guide vanes and stay vanes in hydraulic machines such as water turbines or pump water turbines are caused by sediment wear damage due to sediment contained in rivers and cavitation generated from the relationship between the shape of parts and the flow rate of power water. Often receives erosion. In particular, hydraulic machines that use river water containing a large amount of earth and sand as power water are not only damaged by high-speed earth and sand jets, leading to reduced structural rigidity and water turbine efficiency, but also long-term repairs. The operation was forced to stop for a long time, and the operating rate was significantly reduced.
[0003]
Conventionally, 13Cr martensitic stainless steel and carbon steel cast steel have been used for runners and runner vanes for parts that come into contact with the power water of hydraulic machines, and runner liners, upper cover liners, lower cover liners, stay vanes, guide vanes, etc. are made of carbon steel. And 13Cr martensitic stainless steel, etc., and the hardness was Vickers hardness Hv200-350.
[0004]
On the other hand, the hardness of the earth and sand contained in river water is Vickers hardness Hv1100-1200. Therefore, since the hardness of the parts in contact with the power water is lower than the hardness of the earth and sand, when river water having a high earth and sand content is used, the earth and sand are damaged and must be replaced each time.
[0005]
As countermeasures against earth and sand abrasion damage and erosion due to cavitation, as seen in, for example, JP-A-3-47477, JP-A-8-193568, and JP-A-8-254173, For the parts in contact with the surface, means such as resin such as rubber, high-hardness material, lining or spraying of ceramics, overlay welding, powder plasma overlay welding, and the like have been used.
[0006]
[Problems to be solved by the invention]
The technology disclosed in the above-mentioned patent publication includes several problems.
[0007]
By means of a lining such as rubber, the adhesion with a base material such as a runner is low, and in particular, the coating member peels off in a short time in a high-speed basin, and is not an effective measure for preventing sediment wear damage.
[0008]
In addition, in methods such as overlay welding and powder plasma overlay welding, heat is applied to the turbine parts, so prognostic heat treatment must be performed before and after welding to prevent defects such as cracks due to welding and to release thermal stress after welding. I must. For this reason, when taking measures against sediment wear and cavitation by overlay welding or powder plasma overlay welding, it is necessary to move the turbine components to a furnace capable of prognostic heat treatment. For example, during overhaul, after repairing water turbine parts in the power plant, if measures against earth and sand wear and cavitation are taken by overlay welding or powder plasma overlay welding, it must be moved to a furnace where heat treatment is possible. The outage period becomes longer, leading to a significant reduction in operating rate.
[0009]
Recently, thermal spraying technology that has little thermal effect on the base material such as welding and does not require prognostic heat treatment has made great strides, and thermal spraying that has excellent adhesion to the base material like ultra high-speed gas flame spraying. Erosion and cavitation resistance measures using processes are being implemented.
[0010]
However, water turbine parts include a water seal device that reduces water leakage from the runner inlet during operation and maintains thrust generated on the main shaft (rotating shaft) in a stable state. For example, as shown in FIG. 8, this sealing device forms a step-like seal portion 4 on the downstream side of the runner band 3 among the runner crown 2 and the runner band 3 that supports the runner vane 1. The power water leaking from the gap between the upper cover and the lower cover (not shown) is sealed, and the thrust generated on the main shaft (not shown) during operation is maintained in a stable state.
[0011]
When the sealing device having such a structure is subjected to erosion resistance and cavitation resistance using a thermal spraying process such as ultrahigh-speed gas flame spraying, the corner portion (corner portion) 5 is as shown in FIG. In addition, there are inconveniences and disadvantages such as generation of the sprayed portion 6a in the sprayed coating 6, or generation of a defective film forming portion 6b without the sprayed coating 6 being continuous as shown in FIGS.
[0012]
In this case, the gap between the seal portion 4 and the lower cover (the stationary side) facing each other is very narrow. Therefore, when the sprayed portion 6a of the sprayed coating 6 is generated at the corner portion 5, polishing is required. The construction period associated with thermal spraying has been extended, which has been a factor in increasing costs.
[0013]
In addition, when the poorly formed film portion 6b is generated, damage due to earth and sand wear, erosion due to cavitation, and inadequate strength maintenance are combined with the inability to perform effective sealing.
[0014]
Further, when the water turbine is assembled and disassembled, the runner needs to be temporarily placed on the lower cover, and the downstream end surface of the runner vane 1 comes into contact with the lower cover. However, when thermal spraying is applied to the seal portion 4, the thermal spray coating 6 is also caught in the downstream end surface of the runner vane 1, and when the downstream end surface of the runner vane 1 comes into contact, as shown in FIGS. 12 and 13, the runner vane 1. In some cases, a crack is generated in the sprayed coating 6 of the winding portion 6 c generated on the downstream end surface of the steel, and peeling of the sprayed coating 6 may be caused.
[0015]
As described above, the thermal spraying process including ultra high-speed gas flame welding is effective for the hard film forming means of the water turbine part because it does not require any prognostic heat treatment regardless of the type of the base material. Not all turbine parts can be applied, and depending on the type, shape and position of the parts, it has been difficult to apply.
[0016]
The present invention was made based on such circumstances, and an object of the present invention is to provide a hydraulic machine that is excellent in erosion resistance and cavitation resistance without causing cracks or peeling in the thermal spray coating applied to the component. To do.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, the hydraulic machine according to the present invention houses a runner in a flow path formed by an upper cover and a lower cover as described in claim 1 , and the runner vane of the runner Is supported by a runner crown and a runner band, and a composite coating layer is applied to the seal portion in a hydraulic machine in which a spray coating is applied to the seal portion formed in a stepped manner on the runner band facing the lower cover. In addition, the cutout portion is formed by depositing the composite coating layer on the bottom surface of the runner band .
[0020]
Further, the hydraulic machine according to the present invention, in order to achieve the above object, as described in claim 2, wherein the seal portion, of the chamfered portion and the curved surface machining unit on the edge or corner, either or it is obtained by forming one.
[0021]
Further, the hydraulic machine according to the present invention, in order to achieve the above object, as described in claim 3, wherein the chamfered portion or the curved surface machining unit is obtained by setting the dimensions than 1 mm.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a hydraulic machine according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.
[0029]
FIG. 1 is a partially cutaway partial sectional view showing a Francis pump turbine applied to a hydraulic machine according to the present invention.
[0030]
In the Francis pump turbine according to this embodiment, a flow path 13 for guiding power water W supplied from a spiral casing (not shown) to a draft tube 12 is formed between an upper cover 10 and a lower cover 11. .
[0031]
The flow path 13 is provided with a guide vane 14 that controls the flow rate of the power water W supplied from the spiral casing in accordance with the load, and a runner 15 that changes the energy of the power water W into rotational torque.
[0032]
In the runner 15, a plurality of runner vanes 18 formed integrally with the runner crown 16 and the runner band 17 are arranged in an annular row along the circumferential direction. The runner 15 is connected to a main shaft (rotary shaft) 19 via a runner crown 16, and thrust generated on the main shaft 19 is adjusted by a bearing 20 during operation.
[0033]
On the other hand, the runner band 17 forms a back pressure chamber 21 between the lower cover 11 and a seal portion 22 formed in a staircase shape in which the leakage of the power water W flowing into the back pressure chamber 21 is provided on the downstream side. Sealing water.
[0034]
In the Francis pump turbine having such a configuration, in this embodiment, the chamfered portion 23 and the curved surface processing are performed on the edge or corner portion of the step-like seal portion 22 provided on the downstream side of the runner band 17 shown in FIG. In addition to the construction of the portion 24, a composite coating layer 27 comprising an adhesive coating layer 25 and a protective coating layer 26 excellent in erosion resistance and cavity resistance is formed along the step-like seal portion 22.
[0035]
The adhesive coating layer 25 is the basis of the protective coating layer 26 excellent in erosion resistance and cavitation resistance, and is firmly adhered to the base material of the runner band 17.
[0036]
The protective coating layer 26 is for preventing erosion caused by earth and sand contained in river water and erosion due to impact pressure when a cavity generated in high-speed water collides and collapses on the surface of the material.
[0037]
Since the adhesive film layer 25 needs to be firmly adhered to the base material of the runner band 17, as a roughening treatment when forming the layer, among the chisel, grinder, drill, blast, and etching, It is formed using at least one kind of roughening treatment means. Moreover, since it is necessary to form the adhesive coating layer 25 using a process with strong adhesion, at least one process among gas flame spraying, high-speed gas flame spraying, and ultrahigh-speed gas flame spraying is performed. Formed using.
[0038]
On the other hand, the protective coating layer 26 excellent in erosion resistance and cavitation resistance has a hardness equal to or higher than that of SiO 2 or Al 2 O 3 which is a main component of sediment in river water in order to prevent erosion due to sediment wear and cavitation. A composite material comprising at least one of Co, Ni, Cr, Mo, V, Al, W, C, Fe, and Ti as a metal material, and Al 2 O as a ceramic material. 3 , Si 3 N 4 , SiC, SiO 2 , TiO 2 , ZrO 2 , Cr 2 O 3 , Cr 3 C 2 , MgO 2 as a composite ceramic material or cermet material containing at least one kind as a main component Among WC, NbC, and VC, a composite cermet material containing at least one kind as a main component is selected. In addition, at least one means is selected from among gas flame spraying, high-speed gas flame spraying, and ultrahigh-speed gas flame spraying as a process capable of forming the above-described components into a film.
[0039]
FIG. 4 is a chamfering adhesion force distribution diagram showing the relationship between the dimension and the adhesion force of the chamfered portion 23 at the edge or corner portion (corner portion) of the seal portion 22 provided in the runner band 17 in a stepped shape. It is. Table 1 shows the dimensions of the chamfered portion 23 and the incidence of film formation defects in the composite coating layer 27.
[0040]
[Table 1]
Figure 0004117999
[0041]
According to FIG. 4 and Table 1, when the chamfered portion 23 at the edge or corner portion of the seal portion 22 is 1 mm or more, high adhesion can be secured.
[0042]
FIG. 5 is a curved surface processing adhesion force distribution diagram showing the relationship between the dimension and the adhesion force of the curved surface processing portion 24 at the edge or corner portion of the seal portion 22 provided on the runner band 17 and formed in a staircase shape. . Further, Table 2 shows the dimensions of the curved surface processing portion 24 and the incidence of film formation defects in the composite coating layer 27.
[0043]
[Table 2]
Figure 0004117999
[0044]
According to FIG. 5 and Table 2, when the curved surface processing portion 24 at the edge of the seal portion 22 or the corner portion is 1 mm or more, high adhesion can be secured.
[0045]
4 and 5, each of the chamfered portion 2 and the curved surface processed portion 24 has an adhesive force between the composite coating layer 27 at the edge or corner portion and the base material of the seal portion 22 when the dimension is set to 1 mm or more. It was found to increase rapidly. This is considered to be due to an increase in the adhesion area of the composite coating layer 27 at the edge or corner.
[0046]
Further, from Tables 1 and 2, it was found that when the respective dimensions of the chamfered portion 23 and the curved surface processed portion 24 were set to 1 mm or more, there was no formation failure of the composite coating layer 27 or generation of a blister. .
[0047]
4 and 5 and Tables 1 and 2 are data obtained by a verification test.
[0048]
As described above, in the present embodiment, when the composite coating layer 27 including the adhesive coating layer 25 and the protective coating layer 26 is provided on the seal portion 22 provided in the runner band 17 and formed in a staircase shape, Since the chamfered portion 23 and the curved surface processed portion 24 are formed with appropriate dimensions on the edge or corner portion, and the composite coating layer 27 is applied with an appropriate material and an appropriate process, it is sufficient for erosion due to earth and sand wear and cavitation. Can be dealt with.
[0049]
6 and 7 are partial views showing a second embodiment of the hydraulic machine according to the present invention. 6 shows a runner of a Francis pump turbine applied to the hydraulic machine according to the present invention, and FIG. 7 shows a part of a runner band that supports the runner. In addition, the same code | symbol is attached | subjected to the same part as the component shown in 1st Embodiment, or a corresponding part.
[0050]
In the runner band 17 according to this embodiment, a composite coating layer 27 composed of an adhesive coating layer 25 and a protective coating layer 26 is provided on a sealing portion 22 formed in a step shape, and a bottom surface portion 28 on the downstream side of the sealing portion 22. A notch 29 is formed in the notch 29 and the composite film layer 27 is adhered to the notch 29.
[0051]
As described above, in this embodiment, since the notch 29 having the composite coating layer 27 attached is provided on the bottom surface 28 of the runner band 17, the lower end surface of the runner faces downward when assembling and disassembling the pump turbine. Even when placed, the composite coating layer 27 is not cracked or peeled off, and the composite coating layer 27 can be reliably protected.
[0052]
【The invention's effect】
As described above, the hydraulic machine according to the present invention is provided in the runner band, and the chamfered portion and the curved surface processed portion are applied to the edge of the seal portion or the corner portion formed in a staircase shape. The composite coating layer is applied to the seal portion including the area, and the notch is formed on the bottom surface of the runner band, so that the composite coating layer can be reliably protected and against erosion caused by earth and sand wear and cavitation. It can be dealt with sufficiently.
[Brief description of the drawings]
FIG. 1 is a partially cutaway partial sectional view showing a Francis pump turbine applied to a hydraulic machine according to the present invention.
FIG. 2 is a cross-sectional view of a runner extracted from FIG.
3 is an enlarged view of a part A shown in FIG.
FIG. 4 is a chamfering adhesion distribution diagram applied to the hydraulic machine according to the present invention.
FIG. 5 is a curved surface processing adhesion distribution diagram applied to the hydraulic machine according to the present invention.
FIG. 6 is a sectional view showing a second embodiment of a runner applied to the hydraulic machine according to the present invention.
7 is an enlarged view of a portion B shown in FIG.
FIG. 8 is a cross-sectional view showing a conventional runner.
9 is an enlarged view of a portion X shown in FIG.
FIG. 10 is a cross-sectional view showing another conventional runner.
11 is an enlarged view of a Y portion shown in FIG.
FIG. 12 is a cross-sectional view showing still another conventional runner.
13 is an enlarged view of a Z portion shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Runner vane 2 Runner crown 3 Runner band 4 Seal part 5 Corner part 6 Thermal spray coating 6a Spraying part 6b Film formation defective part 6c Entrainment part 10 Upper cover 11 Lower cover 12 Draft tube 13 Channel 14 Guide vane 15 Runner 16 Runner crown 17 runner band 18 runner vane 19 spindle 20 bearing 21 back pressure chamber 22 seal part 23 chamfering part 24 curved part 25 adhesive film layer 26 protective film layer 27 composite film layer 28 bottom surface part 29 notch

Claims (3)

上カバーと下カバーとで形成した流路に、ランナを収容し、このランナのランナベーンをランナクラウンとランナバンドとで支持させるとともに、上記下カバーに対峙する上記ランナバンドに階段状に形成したシール部に溶射被膜を被着させた水力機械において、上記シール部に複合皮膜層を被着させるとともに、上記ランナバンドの底面部に上記複合皮膜層を被着させた切欠部を形成したことを特徴とする水力機械。  A runner is accommodated in a flow path formed by the upper cover and the lower cover, and a runner vane of the runner is supported by the runner crown and the runner band, and a seal formed in a step shape on the runner band facing the lower cover. In a hydraulic machine having a thermal spray coating applied to the portion, the composite coating layer is applied to the seal portion, and a cutout portion is formed on the bottom surface of the runner band to which the composite coating layer is applied. And hydraulic machine. 前記シール部は、このエッジあるいはコーナ部に面取り加工部および曲面加工部のうち、いずれか一方を形成したことを特徴とする請求項1記載の水力機械。  The hydraulic machine according to claim 1, wherein the seal portion is formed with one of a chamfered portion and a curved surface processed portion at the edge or the corner portion. 前記面取り加工部または曲面加工部は、寸法を1mm以上に設定したことを特徴とする請求項2記載の水力機械。The chamfered portion or the curved surface machining unit, hydraulic machine of claim 2, wherein the setting the dimensions than 1 mm.
JP2000095659A 2000-03-30 2000-03-30 Hydraulic machine Expired - Lifetime JP4117999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095659A JP4117999B2 (en) 2000-03-30 2000-03-30 Hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095659A JP4117999B2 (en) 2000-03-30 2000-03-30 Hydraulic machine

Publications (2)

Publication Number Publication Date
JP2001280231A JP2001280231A (en) 2001-10-10
JP4117999B2 true JP4117999B2 (en) 2008-07-16

Family

ID=18610535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095659A Expired - Lifetime JP4117999B2 (en) 2000-03-30 2000-03-30 Hydraulic machine

Country Status (1)

Country Link
JP (1) JP4117999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587075B (en) * 2012-02-23 2014-04-09 无锡小天鹅股份有限公司 Washing water flow procedure for fully-automatic washing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202576A (en) * 2010-03-25 2011-10-13 Teikoku Piston Ring Co Ltd Cylinder liner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587075B (en) * 2012-02-23 2014-04-09 无锡小天鹅股份有限公司 Washing water flow procedure for fully-automatic washing machine

Also Published As

Publication number Publication date
JP2001280231A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
EP3141704B1 (en) Gas turbine shroud with ceramic abradable layer
EP1331362B1 (en) Geothermal steam turbine
JP5693149B2 (en) Wear and oxidation resistant turbine blades
US20090053069A1 (en) Layer System for a Component Comprising a Thermal Barrier Coating and Metallic Erosion-Resistant Layer, Production Process and Method for Operating a Steam Turbine
US7758968B2 (en) Component with thermal barrier coating and erosion-resistant layer
US20040012151A1 (en) Sealing arrangement
EP3456928B1 (en) Blade outer air seal for gas turbine engines in high erosion environment
EP3421732B1 (en) Turbine engine seal for high erosion environment
EP3129596B1 (en) Method of protecting a component of a turbomachine from liquid droplets erosion, component and turbomachine
JP4117999B2 (en) Hydraulic machine
JP2001107833A (en) Hydraulic machine and its manufacturing device
Mohammad et al. Criteria for abradable coatings to enhance the performance of gas turbine engines
JPS5925086B2 (en) gas turbine blade
JP4096301B2 (en) Rotor blade and coating method thereof
CN107725116B (en) TRT turbine with wear-resistant corrosion-resistant nano coating
JPH11240624A (en) Rotary valve and its reconditioning/repairing method
EP3405680A1 (en) Turbopump with a single piece housing and a smooth enamel glass surface
JP5687482B2 (en) Hydraulic machine runner
JP2004232499A (en) Turbine rotor blade and coating forming method
JPH10122117A (en) Hydraulic machinery
US20110150641A1 (en) Steam turbine and steam turbine blade
US11486263B1 (en) System for addressing turbine blade tip rail wear in rubbing and cooling
JP2018105341A (en) Shaft sleeve, rotary machine and method for manufacturing shaft sleeve
JPH07151097A (en) Boiler feed water pump and manufacture thereof
JP3744109B2 (en) Runner for hydraulic machine and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

R151 Written notification of patent or utility model registration

Ref document number: 4117999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

EXPY Cancellation because of completion of term