JP4117289B2 - Windmill blade, wind turbine generator and blower - Google Patents

Windmill blade, wind turbine generator and blower Download PDF

Info

Publication number
JP4117289B2
JP4117289B2 JP2004379459A JP2004379459A JP4117289B2 JP 4117289 B2 JP4117289 B2 JP 4117289B2 JP 2004379459 A JP2004379459 A JP 2004379459A JP 2004379459 A JP2004379459 A JP 2004379459A JP 4117289 B2 JP4117289 B2 JP 4117289B2
Authority
JP
Japan
Prior art keywords
wind turbine
turbine blade
blade
windmill
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004379459A
Other languages
Japanese (ja)
Other versions
JP2006183598A (en
Inventor
勝史 川上
瞭介 伊藤
▲ひかる▼ 松宮
直樹 窪田
誠 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zephyr Corp
Original Assignee
Zephyr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zephyr Corp filed Critical Zephyr Corp
Priority to JP2004379459A priority Critical patent/JP4117289B2/en
Publication of JP2006183598A publication Critical patent/JP2006183598A/en
Application granted granted Critical
Publication of JP4117289B2 publication Critical patent/JP4117289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、風力発電装置または送風機に用いる風車翼、該風車翼を備えた風力発電装置および送風機に関し、特に、ローターが回転する事によって生じる気流騒音をほとんど発生させることない風車翼、該風車翼を備えた風力発電装置および送風機に関するものである。   The present invention relates to a wind turbine blade used for a wind turbine generator or a blower, a wind turbine generator including the wind turbine blade, and a blower, and more particularly, a wind turbine blade that hardly generates airflow noise caused by rotation of a rotor, and the wind turbine blade. It is related with the wind power generator and fan provided with.

風力発電は、地球温暖化、大気汚染などの環境破壊から地球を守るために、最近では世界規模でその普及が促進している。こうした中で、風車翼から発生する、いわゆる風きり音による騒音が新たな騒音公害として問題化している。特に、小型風力発電の分野においては、風力発電装置を市街地の住宅などに設置する場合が多いことなどにより、該騒音の低減が必要とされるに至っている。   Wind power generation has recently been promoted on a global scale in order to protect the earth from environmental destruction such as global warming and air pollution. Under such circumstances, noise caused by wind noise generated from wind turbine blades has become a problem as new noise pollution. In particular, in the field of small wind power generation, it is necessary to reduce the noise due to the fact that a wind power generation apparatus is often installed in a residential area in an urban area.

従来は、このような騒音のレベルを下げる方法として、プロペラの回転数を下げる方法が有効とされてきた。例えば、その方法として、予め風車翼の設計にあたって、周速比(回転しているプロペラの先端が進む速度と、風力発電装置に流入する風速との比)が小さくなるような設計を行っていた。具体的には、小型風力発電装置において、高効率の発電を目標とする場合、風車翼の周速比は「9」(風速12.5m/秒時にプロペラの先端が12.5m/秒×9=112m/秒の速さで回転しているということ)程度にするように、風車翼を設計していた。   Conventionally, as a method for reducing the noise level, a method for reducing the rotation speed of the propeller has been effective. For example, as the method, in designing the wind turbine blade, the peripheral speed ratio (ratio between the speed at which the tip of the rotating propeller advances and the wind speed flowing into the wind turbine generator) is designed to be small. . Specifically, in a small wind power generator, when high-efficiency power generation is targeted, the peripheral speed ratio of the wind turbine blade is “9” (the tip of the propeller is 12.5 m / sec × 9 at a wind speed of 12.5 m / sec). The wind turbine blade was designed so that the rotation speed was about 112 m / sec.

また、高周速比を持つ風車翼の場合には、設置する周囲の環境などに合わせて、風車翼の回転数を低下させる制御装置を用いる方法がとられていた。
しかしながら、効率的に発電をするようにするためには、周速比を高くする必要があり、このことにより、風車翼から発生する騒音のレベルも高くなってしまっていた。
In the case of a wind turbine blade having a high peripheral speed ratio, a method using a control device that reduces the rotational speed of the wind turbine blade in accordance with the surrounding environment to be installed has been employed.
However, in order to generate power efficiently, it is necessary to increase the peripheral speed ratio, and this also increases the level of noise generated from the wind turbine blades.

すなわち、従来の風力発電装置は、上述のような騒音を低下させるためには、風車翼の設計に際して、効率を犠牲にして予め周速比を小さくしなければならず、発電効率を犠牲にして騒音を抑制しなければないという問題点があった。   That is, in order to reduce the noise as described above, the conventional wind power generator must reduce the peripheral speed ratio in advance at the expense of efficiency when designing the wind turbine blade, and at the expense of power generation efficiency. There was a problem that noise had to be suppressed.

また、高周速比を持つ風車翼の場合には、設置する周囲の環境などに合わせて、風車翼の回転数を低下させる制御装置を用いなければならず、発電効率を犠牲にして騒音を抑制しなければならないという問題点があった。   In the case of a wind turbine blade having a high peripheral speed ratio, a control device that reduces the rotational speed of the wind turbine blade according to the surrounding environment to be installed must be used, and noise is generated at the expense of power generation efficiency. There was a problem that it had to be suppressed.

これらの問題点を解決するために、風車翼の一部あるいは全部に、縦渦を発生させる凹凸部を設けることにより騒音を低減させる技術が開発されてきた。
例えば、風車翼の表面に等間隔で配置される棒状のフィラメントと、該フィラメントを風車翼の表面に接着する接着剤とによって、風車翼の前縁から後縁に向けて延在する連続した複数の細い溝を、風車の半径方向に隣接するようにして構成することにより、風車翼の表面にスジ状のリブレットを設けた風車翼がある(例えば、特許文献1参照。)。
特開平11−201021号公報
In order to solve these problems, a technique has been developed for reducing noise by providing an uneven portion for generating a vertical vortex in part or all of a wind turbine blade.
For example, a plurality of continuous filaments extending from the front edge to the rear edge of the wind turbine blade by rod-like filaments arranged at equal intervals on the surface of the wind turbine blade and an adhesive that adheres the filament to the surface of the wind turbine blade. There is a wind turbine blade in which streak-like riblets are provided on the surface of the wind turbine blade (see, for example, Patent Document 1).
JP-A-11-201021

しかしながら、従来のリブレットを設けた風車翼は、ローターが回転する事によって生じる気流騒音を低減させる効果があるが、完全に気流騒音を消滅させることはできないという問題点があった。   However, the conventional wind turbine blade provided with riblets has an effect of reducing the airflow noise generated by the rotation of the rotor, but has a problem that the airflow noise cannot be completely eliminated.

本発明は、上記従来技術の欠点に鑑みてなされたもので、低コストで容易に製造することが可能で、かつローターが回転する事によって生じる気流騒音をほとんど発生させることない風車翼、該風車翼を備えた風力発電装置および送風機を提供することを目的とする。   The present invention has been made in view of the above-mentioned drawbacks of the prior art, and can be easily manufactured at a low cost, and the wind turbine blade that hardly generates airflow noise caused by the rotation of the rotor, the wind turbine It aims at providing the wind power generator and air blower provided with the wing | blade.

本発明は、上記課題を解決するため、下記のような構成を採用した。
すなわち、本発明の一態様によれば、本発明の風車翼は、風車翼本体の全体または一部を被う被膜部を備え、前記被膜部が、前記被膜部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸を中心にして同心円状に形成されていることを特徴とする。
The present invention employs the following configuration in order to solve the above problems.
That is, according to one aspect of the present invention, the wind turbine blade of the present invention includes a coating portion covering the whole or part of the wind turbine blade body, and the coating portion is formed on the surface of the coating portion of the wind turbine blade. A riblet is formed so that the concave portion and the convex portion alternate in the longitudinal direction and the concave portion and the convex portion form a streak in the short direction, and the riblet is concentric around the rotation axis of the wind turbine blade. It is characterized by being formed.

また、本発明の一態様によれば、本発明の風車翼は、風車翼本体の全体または一部を被う被膜部を備え、前記被膜部が、前記被膜部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸側のピッチが大きく、翼外側のピッチが小さいことを特徴とする。   According to another aspect of the present invention, the wind turbine blade of the present invention includes a coating portion that covers the whole or a part of the wind turbine blade body, and the coating portion is formed on the surface of the coating portion of the wind turbine blade. A riblet is formed such that the concave portion and the convex portion alternate in the longitudinal direction and the concave portion and the convex portion form a streak in the short direction, and the riblet has a large pitch on the rotating shaft side of the wind turbine blade, The pitch outside the wing is small.

また、本発明の一態様によれば、本発明の風車翼は、風車翼本体の全体または一部を被う被膜部を備え、前記被膜部が、前記被膜部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸を中心にして同心円状に形成され、かつ、前記風車翼の回転軸側のピッチが大きく、翼外側のピッチが小さいことを特徴とする。   According to another aspect of the present invention, the wind turbine blade of the present invention includes a coating portion that covers the whole or a part of the wind turbine blade body, and the coating portion is formed on the surface of the coating portion of the wind turbine blade. A riblet is formed so that the concave portion and the convex portion alternate in the longitudinal direction and the concave portion and the convex portion form a streak in the short direction, and the riblet is concentric around the rotation axis of the wind turbine blade. And the pitch on the rotating shaft side of the wind turbine blade is large and the pitch on the outside of the blade is small.

また、本発明の一態様によれば、本発明の風車翼は、風車翼本体の全体または一部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸を中心にして同心円状に形成されていることを特徴とする。   Further, according to one aspect of the present invention, the wind turbine blade of the present invention has a concave portion and a convex portion alternately in the longitudinal direction of the wind turbine blade in a short direction on the whole or a part of the surface of the wind turbine blade body. A riblet is formed so that the concave portion and the convex portion have a streak shape, and the riblet is formed concentrically around the rotation axis of the wind turbine blade.

また、本発明の一態様によれば、本発明の風車翼は、風車翼本体の全体または一部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸側のピッチが大きく、翼外側のピッチが小さいことを特徴とする。   Further, according to one aspect of the present invention, the wind turbine blade of the present invention has a concave portion and a convex portion alternately in the longitudinal direction of the wind turbine blade in a short direction on the whole or a part of the surface of the wind turbine blade body. A riblet is formed so that the concave portion and the convex portion have a streak shape, and the riblet has a large pitch on the rotating shaft side of the wind turbine blade and a small pitch on the outer side of the blade.

また、本発明の一態様によれば、本発明の風車翼は、風車翼本体の全体または一部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸を中心にして同心円状に形成され、かつ、前記風車翼の回転軸側のピッチが大きく、翼外側のピッチが小さいことを特徴とする。   Further, according to one aspect of the present invention, the wind turbine blade of the present invention has a concave portion and a convex portion alternately in the longitudinal direction of the wind turbine blade in a short direction on the whole or a part of the surface of the wind turbine blade body. A riblet is formed so that the concave portion and the convex portion have a streak shape, the riblet is formed concentrically around the rotation axis of the wind turbine blade, and the pitch on the rotation shaft side of the wind turbine blade is It is large and has a small pitch outside the blade.

また、本発明の一態様によれば、本発明の風車翼は、風車翼本体の全体または一部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼が回転することによって受ける空気を前記風車翼の回転軸方向へ導くように、前記風車翼の回転方向に対して所定の角度を成すことを特徴とする。   Further, according to one aspect of the present invention, the wind turbine blade of the present invention has a concave portion and a convex portion alternately in the longitudinal direction of the wind turbine blade in a short direction on the whole or a part of the surface of the wind turbine blade body. A riblet is formed so that the concave portion and the convex portion have a streak shape, and the riblet rotates the wind turbine blade so that air received by the wind turbine blade rotating is guided in a rotation axis direction of the wind turbine blade. A predetermined angle is formed with respect to the direction.

また、本発明の風車翼は、前記ピッチが、前記翼外側から前記回転軸側に行くに従って、徐々に大きくなることが望ましい。
また、本発明の一態様によれば、本発明の風力発電装置は、上述の何れかの風車翼を備えることを特徴とする。
In the wind turbine blade according to the present invention, it is desirable that the pitch gradually increases as the pitch goes from the outer side of the blade toward the rotating shaft side.
Moreover, according to one aspect of the present invention, the wind turbine generator of the present invention includes any one of the above-described wind turbine blades.

また、本発明の一態様によれば、本発明の送風機は、上述の何れかの風車翼を備えることを特徴とする。   According to an aspect of the present invention, the blower of the present invention includes any one of the above-described wind turbine blades.

本発明によれば、風車翼本体の全体または一部を被う被膜部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸を中心にして同心円状に形成されているので、風車のローターが回転する事によって生じる気流騒音をほとんど発生させることがない。   According to the present invention, the concave portion and the convex portion are alternately arranged in the longitudinal direction of the wind turbine blade, and the concave portion and the convex portion are arranged in the short direction on the surface of the coating portion covering the whole or part of the wind turbine blade body. Riblets are formed in a streak shape, and the riblets are formed concentrically around the rotation axis of the windmill blade, so that almost no airflow noise is generated due to the rotation of the rotor of the windmill. There is no.

また、本発明によれば、風車翼本体の全体または一部を被う被膜部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸側のピッチが大きく、翼外側のピッチが小さくなるように形成されているので、風車のローターが回転する事によって生じる気流騒音をほとんど発生させることがない。   Further, according to the present invention, the concave portion and the convex portion are alternately arranged in the longitudinal direction of the wind turbine blade on the surface of the coating portion covering the whole or a part of the wind turbine blade body. The riblet is formed so that the portion is streaked, and the riblet is formed so that the pitch on the rotating shaft side of the wind turbine blade is large and the pitch on the outside of the blade is small, so the rotor of the wind turbine rotates. There is almost no airflow noise caused by things.

また、本発明によれば、風車翼本体の全体または一部を被う被膜部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸を中心にして同心円状に形成され、かつ、前記風車翼の回転軸側のピッチが大きく、翼外側のピッチが小さくなるように形成されているので、風車のローターが回転する事によって生じる気流騒音をほとんど発生させることがない。   Further, according to the present invention, the concave portion and the convex portion are alternately arranged in the longitudinal direction of the wind turbine blade on the surface of the coating portion covering the whole or a part of the wind turbine blade body. A riblet is formed so that the portion is streaked, the riblet is formed concentrically around the rotation axis of the wind turbine blade, and the pitch on the rotation shaft side of the wind turbine blade is large, Since the pitch is formed to be small, almost no airflow noise is generated due to the rotation of the rotor of the windmill.

また、本発明の一態様によれば、風車翼本体の全体または一部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸を中心にして同心円状に形成されているので、風車のローターが回転する事によって生じる気流騒音をほとんど発生させることがない。   Further, according to one aspect of the present invention, the concave portion and the convex portion are alternately arranged in the longitudinal direction of the wind turbine blade, and the concave portion and the convex portion are arranged in the short direction on the whole surface or a part of the surface of the wind turbine blade main body. Riblets are formed in a streak shape, and the riblets are formed concentrically around the rotation axis of the windmill blade, so that almost no airflow noise is generated due to the rotation of the rotor of the windmill. There is no.

また、本発明の風車翼は、風車翼本体の全体または一部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸側のピッチが大きく、翼外側のピッチが小さくなるように形成されているので、風車のローターが回転する事によって生じる気流騒音をほとんど発生させることがない。   In the wind turbine blade of the present invention, the concave portion and the convex portion are alternately formed in the longitudinal direction of the wind turbine blade, and the concave portion and the convex portion are striped in the short direction on the entire surface or a part of the surface of the wind turbine blade main body. The riblet is formed so that the pitch on the rotating shaft side of the windmill blade is large and the pitch on the outside of the blade is small, so that the airflow generated by the rotation of the rotor of the windmill Little noise is generated.

また、本発明の風車翼は、風車翼本体の全体または一部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成し、前記リブレットが、前記風車翼の回転軸を中心にして同心円状に形成され、かつ、前記風車翼の回転軸側のピッチが大きく、翼外側のピッチが小さくなるように形成されているので、風車のローターが回転する事によって生じる気流騒音をほとんど発生させることがない。   In the wind turbine blade of the present invention, the concave portion and the convex portion are alternately formed in the longitudinal direction of the wind turbine blade, and the concave portion and the convex portion are striped in the short direction on the entire surface or a part of the surface of the wind turbine blade main body. The riblets are formed concentrically around the rotation axis of the wind turbine blade, and the pitch on the rotation axis side of the wind turbine blade is large and the pitch on the outside of the blade is small. Therefore, the airflow noise generated by the rotation of the rotor of the windmill is hardly generated.

以下、図面を参照しながら本発明の実施の形態について述べる。
(第1の実施の形態)
まず、図1乃至図5を用いて、本発明の第1の実施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
First, a first embodiment of the present invention will be described with reference to FIGS.

図1は、風車の正面図であり、図2は、風車の側面図である。
図1および図2において、風車1は、3枚の風車翼2と、各風車翼2が取付けられた回転軸とを備えている。このような風車1は、例えば、小型の風力発電装置に用いられ、風力を回転力に変換することにより電気エネルギーを発生させている。
FIG. 1 is a front view of the windmill, and FIG. 2 is a side view of the windmill.
1 and 2, the wind turbine 1 includes three wind turbine blades 2 and a rotation shaft to which each wind turbine blade 2 is attached. Such a windmill 1 is used, for example, in a small wind power generator, and generates electric energy by converting wind power into rotational force.

図3は、風車翼の正面図であり、図4は、風車翼の側面図である。
図3および図4に示した風車翼2は、その断面が翼形の形状を有しており、例えば、長さが600mm前後、幅がおよそ15mm〜150mm、厚さがおよそ10mm前後である。また、風車翼2の基端側(回転軸に取付けられる側)は、風の流れに対する立ち上がり角度が大きく、先端に向かうにつれて徐々に減少し最先端部で風の流れに対する立ち上がり角度が最小となっている。
FIG. 3 is a front view of the wind turbine blade, and FIG. 4 is a side view of the wind turbine blade.
The wind turbine blade 2 shown in FIG. 3 and FIG. 4 has an airfoil shape in cross section. For example, the length is about 600 mm, the width is about 15 mm to 150 mm, and the thickness is about 10 mm. In addition, the base end side (the side attached to the rotating shaft) of the wind turbine blade 2 has a large rising angle with respect to the wind flow, and gradually decreases toward the tip, and the rising angle with respect to the wind flow is minimized at the leading edge. ing.

図5は、第1の実施の形態にかかる風車翼の構造を説明するための図である。
図5は、図4に示した風車翼2の一部を拡大した図になっている。
図5において、風車翼2は、風車翼本体21の全体または一部を、例えば、熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等の被膜部材22で被うことにより製造されている。
FIG. 5 is a diagram for explaining the structure of the wind turbine blade according to the first embodiment.
FIG. 5 is an enlarged view of a part of the wind turbine blade 2 shown in FIG.
In FIG. 5, the wind turbine blade 2 is configured such that the whole or a part of the wind turbine blade main body 21 is made of, for example, a thermosetting resin, a thermoplastic resin, a pressure sensitive adhesive, an energy beam curable resin, or an energy beam curable adhesive. It is manufactured by covering with a coating member 22.

被膜部材22としてより具体的には、例えば、天然ゴム、合成ゴム、シリコンゴム等のゴム系の粘弾性物質、ポリウレタン系樹脂等の熱硬化性樹脂、エチレン−酢酸ビニル共重合体、アクリル酸エステルやその誘導体からなる共重合樹脂等の熱可塑性樹脂、これらのゴムや樹脂をベースポリマーとした粘着剤等を用いることができる。また、感圧接着剤(例えば、天然ゴムや各種の合成ゴム等からなるゴム系感圧接着剤;(メタ)アクリル酸アルキルエステルの単独又は共重合体や、該エステルと、このエステルに対して共重合可能な他の不飽和単量体との共重合体等からなるアクリル系感圧接着剤;シリコーン系感圧接着剤など)、熱硬化性樹脂(例えば、エポキシ系樹脂、不飽和エステル系樹脂、熱硬化性アクリル系樹脂、フェノール系樹脂など)、熱可塑性樹脂(例えば、飽和ポリエステル系樹脂、熱可塑性ポリウレタン系樹脂、アミド系樹脂、イミド系樹脂など)なども挙げられる。   More specifically, the coating member 22 includes, for example, rubber-based viscoelastic materials such as natural rubber, synthetic rubber, and silicon rubber, thermosetting resins such as polyurethane-based resins, ethylene-vinyl acetate copolymers, and acrylate esters. Or a thermoplastic resin such as a copolymer resin made of a derivative thereof, a pressure-sensitive adhesive using these rubbers or resins as a base polymer, or the like can be used. Also, pressure sensitive adhesives (for example, rubber-based pressure sensitive adhesives made of natural rubber, various synthetic rubbers, etc .; (meth) acrylic acid alkyl ester homopolymers or copolymers, the esters and the esters Acrylic pressure-sensitive adhesives composed of copolymers with other copolymerizable unsaturated monomers, silicone pressure-sensitive adhesives, etc., thermosetting resins (eg, epoxy resins, unsaturated esters) Resin, thermosetting acrylic resin, phenol resin, and the like) and thermoplastic resins (for example, saturated polyester resin, thermoplastic polyurethane resin, amide resin, imide resin, and the like).

なお、被膜部材22は、感圧接着剤、熱硬化性樹脂、および熱可塑性樹脂から選択された少なくとも2種からなるブレンドであってもよく、必要に応じて、粘着付与剤、架橋剤など、適宜な添加剤を添加することもできる。   The coating member 22 may be a blend of at least two selected from a pressure-sensitive adhesive, a thermosetting resin, and a thermoplastic resin. If necessary, a tackifier, a crosslinking agent, etc. Appropriate additives can also be added.

次に、第2の実施の形態乃至第6の実施の形態として、風車翼本体21の全体または一部を被膜部材22で被う具体的な方法を説明する。
(第2の実施の形態)
本発明を適用した第2の実施の形態としては、風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部に、上述の熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等の被膜部材22を、例えば溶媒中に分散させることにより粘性を低下させ(流動的にし)、望ましくは刷毛等を用いて略均一に塗り付ける。その後溶媒を乾燥させることにより、風車翼2は、上記風車翼本体21が上記被膜部材22で被われる構造となり、言い換えれば風車翼本体21の外側が被膜部材22で被われた二重構造となる。
Next, as the second to sixth embodiments, a specific method for covering the whole or part of the wind turbine blade main body 21 with the coating member 22 will be described.
(Second Embodiment)
As a second embodiment to which the present invention is applied, the above-described thermosetting resin, thermoplastic resin, pressure-sensitive adhesive is applied to the entire wind turbine blade main body 21 or a part centered on the surface of the wind turbine blade main body 21. The coating member 22 such as an agent, an energy beam curable resin or an energy beam curable adhesive is dispersed (for example, fluidized) by dispersing it in a solvent, for example, and is preferably applied almost uniformly using a brush or the like. . Then, by drying the solvent, the wind turbine blade 2 has a structure in which the wind turbine blade main body 21 is covered with the coating member 22, in other words, a double structure in which the outside of the wind turbine blade main body 21 is covered with the coating member 22. .

(第3の実施の形態)
本発明を適用した第3の実施の形態としては、風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部に、上述の熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等の被膜部材22を、例えば溶媒中に分散させることにより粘性を低下させ(流動的にし)、望ましくはスプレーガン等を用いて略均一に噴き付ける。その後溶媒を乾燥させることにより、風車翼2は、上述の第2の実施の形態と同様、上記風車翼本体21が上記被膜部材22で被われる構造となる。
(Third embodiment)
As a third embodiment to which the present invention is applied, the above-described thermosetting resin, thermoplastic resin, pressure-sensitive adhesive is applied to the entire wind turbine blade main body 21 or a part centered on the surface of the wind turbine blade main body 21. The coating member 22 such as an agent, energy beam curable resin or energy beam curable adhesive is dispersed (for example, fluidized) in, for example, a solvent, and is preferably made substantially uniform using a spray gun or the like. Spray. Then, by drying the solvent, the wind turbine blade 2 has a structure in which the wind turbine blade main body 21 is covered with the coating member 22 as in the second embodiment.

(第4の実施の形態)
本発明を適用した第4の実施の形態としては、風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部に、上述の熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等の被膜部材22を、例えば溶媒中に分散させることにより粘性を低下させ(流動的にし)、インクとして印刷することにより転写する。その後溶媒を乾燥させることにより、風車翼2は、上述の第2または第3の実施の形態と同様、上記風車翼本体21が上記被膜部材22で被われる構造となるが、上述の第2の実施の形態における塗り付け、または第3の実施の形態における噴き付けに比べ、粘性の高い状態で被膜部材22の印刷転写が行えるので、その後の乾燥工程を短時間で行うことができる。
(Fourth embodiment)
As a fourth embodiment to which the present invention is applied, the above-described thermosetting resin, thermoplastic resin, pressure-sensitive adhesive is applied to the entire wind turbine blade main body 21 or a part centered on the surface of the wind turbine blade main body 21. The coating member 22 such as an agent, an energy beam curable resin, or an energy beam curable adhesive is dispersed (for example, fluidized) by dispersing it in a solvent, for example, and transferred by printing as ink. Then, by drying the solvent, the wind turbine blade 2 has a structure in which the wind turbine blade main body 21 is covered with the coating member 22 as in the second or third embodiment. Compared with the application in the embodiment or the spraying in the third embodiment, the printing transfer of the coating member 22 can be performed in a highly viscous state, so that the subsequent drying process can be performed in a short time.

(第5の実施の形態)
本発明を適用した第5の実施の形態としては、まず、上述の熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等の被膜部材22を、シート状あるいはフィルム状に形成する。シート状あるいはフィルム状に形成する方法としては、板状に形成した被膜部材22を延伸してもよいし、最初からシート状あるいはフィルム状に形成に形成してもよい。そして、シート状あるいはフィルム状に形成した被膜部材22を、風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部に接着剤等を用いて接着させ、あるいは密着させてラッピングする。このようにすることにより、風車翼2は、上述の第2乃至第4の実施の形態と同様、上記風車翼本体21が上記被膜部材22で被われる構造となる。
(Fifth embodiment)
As a fifth embodiment to which the present invention is applied, first, the coating member 22 such as the above-mentioned thermosetting resin, thermoplastic resin, pressure sensitive adhesive, energy beam curable resin or energy beam curable pressure sensitive adhesive is used. , Formed into a sheet or film. As a method for forming a sheet or film, the coating member 22 formed in a plate shape may be stretched or formed into a sheet or film from the beginning. Then, the coating member 22 formed in the form of a sheet or film is attached to the whole wind turbine blade main body 21 or a part centered on the surface of the wind turbine blade main body 21 with an adhesive or the like, or is wrapped so as to be wrapped. To do. By doing in this way, the windmill blade 2 becomes a structure where the said windmill blade main body 21 is covered with the said coating | coated member 22 similarly to the above-mentioned 2nd thru | or 4th embodiment.

(第6の実施の形態)
本発明を適用した第6の実施の形態としては、上述の熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等の被膜部材22を、例えば溶媒中に分散させることにより粘性を低下させ(流動的にし)、その中に風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部を所定時間浸漬する。その後風車翼本体21を取り出して溶媒を乾燥させることにより、風車翼2は、上記風車翼本体21が上記被膜部材22で被われる構造となり、言い換えれば風車翼本体21の外側が被膜部材22で被われた二重構造となる。
(Sixth embodiment)
As a sixth embodiment to which the present invention is applied, a coating member 22 such as the above-mentioned thermosetting resin, thermoplastic resin, pressure sensitive adhesive, energy beam curable resin or energy beam curable pressure sensitive adhesive is used, for example. Viscosity is lowered (made fluid) by dispersing in a solvent, and the whole wind turbine blade main body 21 or a part centered on the surface of the wind turbine blade main body 21 is immersed therein for a predetermined time. Thereafter, by removing the wind turbine blade body 21 and drying the solvent, the wind turbine blade 2 has a structure in which the wind turbine blade body 21 is covered with the coating member 22, in other words, the outside of the wind turbine blade body 21 is covered with the coating member 22. It becomes a broken double structure.

以上、第1の実施の形態乃至第6の実施の形態として、風車翼本体21の全体または一部を被膜部材22で被うことにより、風車2のローターが回転する事によって生じる気流騒音をほとんど発生させることない風車翼を低コストで容易に製造する方法を説明した。   As mentioned above, as 1st Embodiment thru | or 6th Embodiment, almost all the airflow noise produced when the rotor of the windmill 2 rotates by covering the whole or one part of the windmill blade main body 21 with the film member 22 is covered. A method for easily producing wind turbine blades that do not occur at low cost has been described.

(第7の実施の形態)
次に、第7の実施の形態として、気流騒音の発生をさらに抑えた風車の製造方法について説明する。
(Seventh embodiment)
Next, as a seventh embodiment, a method for manufacturing a windmill in which generation of airflow noise is further suppressed will be described.

図6は、第7の実施の形態にかかる風車翼の構造を説明するための図である。
図6は、図4に示した風車翼2の一部を拡大した図5と同様、風車翼の一部を拡大した図になっている。
FIG. 6 is a view for explaining the structure of the wind turbine blade according to the seventh embodiment.
6 is an enlarged view of a part of the wind turbine blade, similar to FIG. 5 in which a part of the wind turbine blade 2 shown in FIG. 4 is enlarged.

図6において、風車翼3は、まず、上述の第1の実施の形態乃至第6の実施の形態の何れかの方法を用いて、風車翼本体21の全体または一部を被膜部材23で被う。
そして、例えば、所定間隔を空けて一列に並んだ釘状の突起物を有する加工具を用い、当該突起物を被膜部材23の表面にあてがい、加工具と風車2とを相対移動させて被膜部材23の表面を引っ掻くことにより、上記風車翼3の長手方向に凹部232と凸部231とが交互になり短手方向に上記凹部232と上記凸部231がスジ状のリブレット230(図7参照)を形成するようにする。
In FIG. 6, the wind turbine blade 3 first covers the whole or a part of the wind turbine blade main body 21 with the coating member 23 using any one of the methods of the first to sixth embodiments described above. Yeah.
Then, for example, using a processing tool having nail-like projections arranged in a line at a predetermined interval, the projection is applied to the surface of the coating member 23, and the processing tool and the windmill 2 are moved relative to each other to form the coating member. By scratching the surface of the wind turbine blade 3, the concave portions 232 and the convex portions 231 are alternately arranged in the longitudinal direction of the wind turbine blade 3, and the concave portions 232 and the convex portions 231 are strip-shaped riblets 230 in the short direction (see FIG. 7). To form.

なお、図6において凹部232と凸部231は、曲線(曲面)を描くように示されているが、加工具が備える突起物の形状、または被膜部材23の粘性度等により、その形状は様々であるが、全体として風車翼3の長手方向に凹部232と凸部231とが交互になっていればよい。   In FIG. 6, the concave portion 232 and the convex portion 231 are shown to draw a curve (curved surface), but the shape varies depending on the shape of the protrusion provided in the processing tool or the viscosity of the coating member 23. However, it is only necessary that the concave portions 232 and the convex portions 231 alternate in the longitudinal direction of the wind turbine blade 3 as a whole.

図7は、リブレットを形成した風車翼を説明するための図である。
図7において、リブレット230は、上述したように加工具と風車2とを相対移動させて被膜部材23の表面を引っ掻くことにより、上記風車翼3の長手方向に凹部232と凸部231とが交互になり短手方向に上記凹部232と上記凸部231がスジ状のリブレット230が形成される。
FIG. 7 is a view for explaining a wind turbine blade in which a riblet is formed.
In FIG. 7, as described above, the riblet 230 moves the processing tool and the windmill 2 relative to each other and scratches the surface of the coating member 23, whereby the concave portions 232 and the convex portions 231 are alternately arranged in the longitudinal direction of the windmill blade 3. Thus, a riblet 230 in which the concave portion 232 and the convex portion 231 are formed in a short direction is formed.

(第8の実施の形態)
次に、本発明を適用した第8の実施の形態について説明する。
本発明を適用した第8の実施の形態としては、風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部に、上述の熱硬化性樹脂等の被膜部材23を、例えば溶媒中に分散させることにより粘性を低下させ(流動的にし)、インクとして印刷することにより転写する。その際、印刷により転写される被膜部材23が、上記風車翼3の長手方向に凹部232と凸部231とが交互になり短手方向に上記凹部232と上記凸部231がスジ状になりリブレット230を形成するようにする。その後溶媒を乾燥させることにより、風車翼2は、上記風車翼本体21がリブレット230を形成した上記被膜部材22で被われる構造となる。
(Eighth embodiment)
Next, an eighth embodiment to which the present invention is applied will be described.
As an eighth embodiment to which the present invention is applied, the coating member 23 such as the thermosetting resin described above is applied to the entire wind turbine blade main body 21 or a part centered on the surface of the wind turbine blade main body 21. The viscosity is lowered (made fluid) by being dispersed in a solvent, and transferred by printing as ink. At that time, the coating member 23 transferred by printing has the concave portions 232 and the convex portions 231 alternately in the longitudinal direction of the wind turbine blade 3, and the concave portions 232 and the convex portions 231 are striped in the short direction. 230 is formed. Then, by drying the solvent, the wind turbine blade 2 has a structure in which the wind turbine blade main body 21 is covered with the coating member 22 in which the riblets 230 are formed.

(第9の実施の形態)
次に、本発明を適用した第9の実施の形態について説明する。
図8は、第9の実施の形態にかかる風車翼の構造を説明するための図である。
(Ninth embodiment)
Next, a ninth embodiment to which the present invention is applied will be described.
FIG. 8 is a diagram for explaining the structure of the wind turbine blade according to the ninth embodiment.

図8において、風車翼本体24は、上記風車翼本体24の長手方向に凹部242と凸部241とが交互になり短手方向に上記凹部242と上記凸部241がスジ状部を形成するように、例えば、金型を用いて製造される。そして、上述の第1乃至第6の実施の形態と同様にして、すなわち、風車翼本体24の表面に上記被膜部材25を塗り付け、噴き付け、印刷転写し、あるいは接着し、若しくは、風車翼本体24を上記被膜部材25に浸すことにより、上記風車翼本体24の全体または一部を被膜部材25で被う。このようにすることにより、風車翼4の長手方向に凹部252と凸部251とが交互になり短手方向に上記凹部252と上記凸部251がスジ状になりリブレットを形成する。   In FIG. 8, the wind turbine blade main body 24 is configured such that the concave portions 242 and the convex portions 241 are alternately arranged in the longitudinal direction of the wind turbine blade main body 24 so that the concave portions 242 and the convex portions 241 form streak-like portions in the short direction. For example, it manufactures using a metal mold | die. Then, in the same manner as in the first to sixth embodiments described above, that is, the coating member 25 is applied to the surface of the wind turbine blade body 24, sprayed, printed and transferred, or bonded, or the wind turbine blade. By immersing the main body 24 in the coating member 25, the wind turbine blade main body 24 is entirely or partially covered with the coating member 25. By doing in this way, the recessed part 252 and the convex part 251 are alternated in the longitudinal direction of the windmill blade 4, and the said recessed part 252 and the said convex part 251 become stripe shape in a transversal direction, and a riblet is formed.

なお、上述の第7乃至9の実施の形態においては、風車翼本体21の全体または一部を被膜部材22で被う構造とし、被膜部材22上にリブレット230が形成されるとしたが、風車翼本体21上に直接リブレット230が形成された風車翼であってもよい。   In the seventh to ninth embodiments described above, the wind turbine blade main body 21 is entirely or partially covered with the coating member 22, and the riblet 230 is formed on the coating member 22. The windmill blade in which the riblet 230 is directly formed on the blade body 21 may be used.

(第10の実施の形態)
次に、本発明を適用した第10の実施の形態について説明する。
図9は、第10の実施の形態にかかる風車翼の構造を説明するための図である。
(Tenth embodiment)
Next, a tenth embodiment to which the present invention is applied will be described.
FIG. 9 is a diagram for explaining the structure of the wind turbine blade according to the tenth embodiment.

図9において、風車翼5は、上述の第1乃至9の実施の形態で説明した風車翼2、3、5と基本的には同じであるが、リブレット235が風車翼5の回転軸26を中心にして同心円状に形成されている。   In FIG. 9, the wind turbine blade 5 is basically the same as the wind turbine blades 2, 3, and 5 described in the first to ninth embodiments described above, but the riblet 235 moves the rotating shaft 26 of the wind turbine blade 5. It is formed concentrically around the center.

(第11の実施の形態)
次に、本発明を適用した第11の実施の形態について説明する。
図10は、第11の実施の形態にかかる風車翼の構造を説明するための図である。
(Eleventh embodiment)
Next, an eleventh embodiment to which the present invention is applied will be described.
FIG. 10 is a diagram for explaining the structure of the wind turbine blade according to the eleventh embodiment.

図10において、風車翼6は、上述の第1乃至9の実施の形態で説明した風車翼2、3、5と基本的には同じであるが、リブレット236が風車翼6の回転軸26側のピッチが大きく、翼外側のピッチが小さくなるように形成されている。   In FIG. 10, the wind turbine blade 6 is basically the same as the wind turbine blades 2, 3, and 5 described in the first to ninth embodiments, but the riblet 236 is on the side of the rotary shaft 26 of the wind turbine blade 6. The pitch of the blade is large, and the pitch outside the blade is small.

(第12の実施の形態)
次に、本発明を適用した第12の実施の形態について説明する。
図11は、第12の実施の形態にかかる風車翼の構造を説明するための図である。
(Twelfth embodiment)
Next, a twelfth embodiment to which the present invention is applied will be described.
FIG. 11 is a diagram for explaining the structure of the wind turbine blade according to the twelfth embodiment.

図11において、風車翼7は、上述の第1乃至9の実施の形態で説明した風車翼2、3、5と基本的には同じであるが、リブレット237が風車翼7の回転軸26を中心にして同心円状に形成され、かつ、風車翼7の回転軸26側のピッチが大きく、翼外側のピッチが小さくなるように形成されている。   In FIG. 11, the wind turbine blade 7 is basically the same as the wind turbine blades 2, 3, and 5 described in the first to ninth embodiments described above, but the riblet 237 serves as the rotating shaft 26 of the wind turbine blade 7. It is formed concentrically around the center, and is formed so that the pitch on the rotating shaft 26 side of the wind turbine blade 7 is large and the pitch on the outside of the blade is small.

(第13の実施の形態)
次に、本発明を適用した第12の実施の形態について説明する。
図12は、第13の実施の形態にかかる風車翼の構造を説明するための図である。
(Thirteenth embodiment)
Next, a twelfth embodiment to which the present invention is applied will be described.
FIG. 12 is a diagram for explaining the structure of the wind turbine blade according to the thirteenth embodiment.

図12において、風車翼8は、上述の第1乃至9の実施の形態で説明した風車翼2、3、5と基本的には同じであるが、風車翼8が回転することによって受ける空気を風車翼8の回転軸方向へ導くように、リブレット238が風車翼8の回転方向に対して所定の角度αを成している。   In FIG. 12, a wind turbine blade 8 is basically the same as the wind turbine blades 2, 3, and 5 described in the first to ninth embodiments, but receives the air received when the wind turbine blade 8 rotates. The riblet 238 forms a predetermined angle α with respect to the rotation direction of the windmill blade 8 so as to guide it in the direction of the rotation axis of the windmill blade 8.

風車翼8の周りにおける空気の流れのうち、遠心力によって発生する風車翼8の翼幅方向の流れが存在するが、これは、風車翼8の周りの境界層に関して、剥離領域を大きくしたり、境界層吸取り作用による境界層厚さの薄層化を促したりして、空気の流れによる抵抗を抑制する場合、助長する場合の両方の効果を有する。   Of the air flow around the wind turbine blade 8, there is a flow in the blade width direction of the wind turbine blade 8 generated by centrifugal force. This may increase the separation region with respect to the boundary layer around the wind turbine blade 8. In the case of suppressing the resistance due to the flow of air by promoting the thinning of the boundary layer thickness by the boundary layer absorbing action, it has both effects of promoting.

本実施の形態においては、風車の運転状態に応じた遠心力の影響と空気の流れ方向を加味することで、風車翼8の周りにおける空気の流れを理想的に制御することが可能になり、 空気抵抗の軽減、乱流促進による剥離範囲の制御、さらに風車翼8を備えた風車を利用する風力発電装置の発電量の増加および静穏効果の向上を図ることができる。   In the present embodiment, it is possible to ideally control the air flow around the wind turbine blades 8 by taking into account the influence of the centrifugal force according to the operating state of the wind turbine and the air flow direction. It is possible to reduce the air resistance, control the separation range by promoting turbulence, and increase the power generation amount of the wind turbine generator using the wind turbine provided with the wind turbine blades 8 and improve the quiet effect.

次に、図13乃至図15を用いて、リブレットを有しない従来の風車翼を用いた風力発電装置と本発明を適用したリブレットを有する風車翼を用いた風力発電装置とにおける、騒音測定の結果を説明する。   Next, referring to FIG. 13 to FIG. 15, the results of noise measurement in the wind turbine generator using the conventional wind turbine blades without riblets and the wind turbine generator using the wind turbine blades having riblets to which the present invention is applied. Will be explained.

図13は、リブレットを有しない従来の風車翼を用いた風力発電装置における騒音測定結果を示す図であり、図14は、本発明を適用したリブレットを有する風車翼を用いた風力発電装置における騒音測定結果を示す図である。   FIG. 13 is a diagram showing noise measurement results in a wind turbine generator using conventional wind turbine blades without riblets, and FIG. 14 is a noise in a wind turbine generator using wind turbine blades having riblets to which the present invention is applied. It is a figure which shows a measurement result.

測定条件としては、風車翼(風力発電装置)の後方4mの地点において、風速5.5m/秒で2分間測定した。なお、横軸は周波数(Hz)、縦軸は騒音(dB)である。
図13および図14から明らかなように、本発明を適用したリブレットを有する風車翼を用いた風力発電装置における騒音値は、リブレットを有しない従来の風車翼を用いた風力発電装置における騒音値に比較して明らかに小さくなっている。
As measurement conditions, measurement was performed at a wind speed of 5.5 m / sec for 2 minutes at a point 4 m behind the wind turbine blade (wind power generator). The horizontal axis represents frequency (Hz) and the vertical axis represents noise (dB).
As apparent from FIGS. 13 and 14, the noise value in the wind turbine generator using the wind turbine blades having the riblets to which the present invention is applied is the noise value in the wind turbine generator using the conventional wind turbine blades having no riblets. Obviously it is smaller.

また、図15は、風車翼が回転していない場合の騒音測定結果を示す図である。
図14および図15から明らかなように、本発明を適用したリブレットを有する風車翼を用いた風力発電装置における騒音値は、風車翼が回転していない場合の騒音値と比較して殆ど変わりがない。
FIG. 15 is a diagram showing a noise measurement result when the wind turbine blade is not rotating.
As apparent from FIGS. 14 and 15, the noise value in the wind turbine generator using the wind turbine blades having the riblets to which the present invention is applied is almost different from the noise value when the wind turbine blades are not rotating. Absent.

以上、本発明の第1乃至13の実施の形態を説明してきたが、これらの実施の形態の風車翼2、3、4、5、6、7、8は、本発明を構成する。
また、本発明の実施の形態の風車翼2、3、4、5、6、7、8は、風力を回転力に変換することにより電気エネルギーを発生させる風力発電装置、好ましくは小型の風力発電装置に用いることができる。すなわち、これらの実施の形態の風車翼2、3、4、5、6、7、8を備えた風力発電装置は、本発明を構成する。
Although the first to thirteenth embodiments of the present invention have been described above, the wind turbine blades 2, 3, 4, 5, 6, 7, and 8 of these embodiments constitute the present invention.
Further, the wind turbine blades 2, 3, 4, 5, 6, 7, and 8 according to the embodiment of the present invention are wind power generators, preferably small wind power generators, that generate electrical energy by converting wind power into rotational force. Can be used in the device. That is, the wind power generator provided with the wind turbine blades 2, 3, 4, 5, 6, 7, and 8 according to these embodiments constitutes the present invention.

また、本発明の実施の形態の風車翼2、3、4、5、6、7、8は、扇風機、空冷ファン、スクリュー等の送風機の翼(羽根)に用いることも可能である。
以上、本発明の実施の形態について図面を参照しながら説明してきたが、本発明が適用される風車翼、該風車翼を備えた風力発電装置および送風機は、その機能が実行されるのであれば、上述の実施の形態に限定されることはなく、本発明の要旨を逸脱しない範囲内で種々の構成を取ることができる。
The wind turbine blades 2, 3, 4, 5, 6, 7, and 8 according to the embodiment of the present invention can also be used for blades (blades) of a blower such as a fan, an air cooling fan, and a screw.
As described above, the embodiments of the present invention have been described with reference to the drawings. However, the wind turbine blades to which the present invention is applied, the wind turbine generator including the wind turbine blades, and the blower can be used as long as their functions are executed. The present invention is not limited to the above-described embodiment, and various configurations can be taken without departing from the gist of the present invention.

風車の正面図である。It is a front view of a windmill. 風車の側面図である。It is a side view of a windmill. 風車翼の正面図である。It is a front view of a windmill blade. 風車翼の側面図である。It is a side view of a windmill blade. 第1の実施の形態にかかる風車翼の構造を説明するための図である。It is a figure for demonstrating the structure of the windmill blade concerning 1st Embodiment. 第7の実施の形態にかかる風車翼の構造を説明するための図である。It is a figure for demonstrating the structure of the windmill blade concerning 7th Embodiment. リブレットを形成した風車翼を説明するための図である。It is a figure for demonstrating the windmill blade which formed the riblet. 第9の実施の形態にかかる風車翼の構造を説明するための図である。It is a figure for demonstrating the structure of the windmill blade concerning 9th Embodiment. 第10の実施の形態にかかる風車翼の構造を説明するための図である。It is a figure for demonstrating the structure of the windmill blade concerning 10th Embodiment. 第11の実施の形態にかかる風車翼の構造を説明するための図である。It is a figure for demonstrating the structure of the windmill blade concerning 11th Embodiment. 第12の実施の形態にかかる風車翼の構造を説明するための図である。It is a figure for demonstrating the structure of the windmill blade concerning 12th Embodiment. 第13の実施の形態にかかる風車翼の構造を説明するための図である。It is a figure for demonstrating the structure of the windmill blade concerning 13th Embodiment. リブレットを有しない従来の風車翼を用いた風力発電装置における騒音測定結果を示す図である。It is a figure which shows the noise measurement result in the wind power generator using the conventional windmill blade which does not have a riblet. 本発明を適用したリブレットを有する風車翼を用いた風力発電装置における騒音測定結果を示す図である。It is a figure which shows the noise measurement result in the wind power generator using the windmill blade which has a riblet to which this invention is applied. 風車翼が回転していない場合の騒音測定結果を示す図である。It is a figure which shows the noise measurement result in case a windmill blade is not rotating.

符号の説明Explanation of symbols

1 風車
2 風車翼
3 風車翼
4 風車翼
5 風車翼
6 風車翼
7 風車翼
8 風車翼
21 風車翼本体
22 被膜部材
23 被膜部材
24 風車翼本体
25 被膜部材
26 回転軸
230 リブレット
231 凸部
232 凹部
235 リブレット
236 リブレット
237 リブレット
238 リブレット
241 凸部
242 凹部
251 凸部
252 凹部
α 角度


DESCRIPTION OF SYMBOLS 1 Windmill 2 Windmill blade 3 Windmill blade 4 Windmill blade 5 Windmill blade 6 Windmill blade 7 Windmill blade 8 Windmill blade 21 Windmill blade main body 22 Coating member 23 Coating member 24 Windmill blade main body 25 Coating member 26 Rotating shaft 230 Riblet 231 Convex part 232 Concavity 235 riblet 236 riblet 237 riblet 238 riblet 241 convex part 242 concave part 251 convex part 252 concave part α angle


Claims (5)

風車翼であって、
風車翼本体の全体または一部を被う被膜部を備え、
前記被膜部は、前記被膜部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを印刷転写することにより形成し、
前記リブレットは、前記風車翼の回転軸側のピッチが大きく、翼外側のピッチが小さく、前記風車翼が回転することによって受ける空気を前記風車翼の回転軸方向へ導くように、前記風車翼の回転方向に対して所定の角度を成していることを特徴とする風車翼。
A windmill wing,
It has a coating that covers all or part of the wind turbine blade body,
The coating portion prints and transfers the riblets on the surface of the coating portion so that the concave portions and the convex portions are alternately arranged in the longitudinal direction of the wind turbine blade and the concave portions and the convex portions are formed in a stripe shape in the short direction. It formed by,
The riblet has a large pitch on the rotating shaft side of the wind turbine blade, a small pitch on the outer side of the blade, and guides the air received by the rotation of the wind turbine blade in the direction of the rotating shaft of the wind turbine blade. A wind turbine blade having a predetermined angle with respect to a rotational direction.
風車翼であって、
風車翼本体の全体または一部を被う被膜部を備え、
前記被膜部は、前記被膜部の表面に、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを印刷転写することにより形成し、
前記リブレットは、前記風車翼の回転軸を中心にして同心円状に形成され、前記風車翼の回転軸側のピッチが大きく、翼外側のピッチが小さく、かつ、前記風車翼が回転することによって受ける空気を前記風車翼の回転軸方向へ導くように、前記風車翼の回転方向に対して所定の角度を成していることを特徴とする風車翼。
A windmill wing,
It has a coating that covers all or part of the wind turbine blade body,
The coating portion prints and transfers the riblets on the surface of the coating portion so that the concave portions and the convex portions are alternately arranged in the longitudinal direction of the wind turbine blade and the concave portions and the convex portions are formed in a stripe shape in the short direction. It formed by,
The riblets are formed concentrically around the rotation axis of the wind turbine blade, and are received by the pitch on the rotation axis side of the wind turbine blade being large, the pitch on the outside of the blade being small, and the rotation of the wind turbine blade. A wind turbine blade having a predetermined angle with respect to a rotation direction of the wind turbine blade so as to guide air in a rotation axis direction of the wind turbine blade.
前記ピッチは、前記翼外側から前記回転軸側に行くに従って、徐々に大きくなることを特徴とする請求項またはに記載の風車翼。 The pitch wind turbine blade according to claim 1 or 2, wherein according to the blade outside go to the rotary shaft side, characterized in that gradually increases. 請求項1乃至の何れか1項に記載の風車翼を備えることを特徴とする風力発電装置。 A wind turbine generator comprising the wind turbine blade according to any one of claims 1 to 3 . 請求項1乃至の何れか1項に記載の風車翼を備えることを特徴とする送風機。 A blower comprising the wind turbine blade according to any one of claims 1 to 3 .
JP2004379459A 2004-12-28 2004-12-28 Windmill blade, wind turbine generator and blower Active JP4117289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379459A JP4117289B2 (en) 2004-12-28 2004-12-28 Windmill blade, wind turbine generator and blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379459A JP4117289B2 (en) 2004-12-28 2004-12-28 Windmill blade, wind turbine generator and blower

Publications (2)

Publication Number Publication Date
JP2006183598A JP2006183598A (en) 2006-07-13
JP4117289B2 true JP4117289B2 (en) 2008-07-16

Family

ID=36736874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379459A Active JP4117289B2 (en) 2004-12-28 2004-12-28 Windmill blade, wind turbine generator and blower

Country Status (1)

Country Link
JP (1) JP4117289B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931774B2 (en) * 2007-11-20 2012-05-16 株式会社ヘレナ・インターナショナル Wing member
GB0805713D0 (en) * 2008-03-28 2008-04-30 Blade Dynamics Ltd A wind turbine blade
KR100988237B1 (en) 2008-11-06 2010-10-18 표수호 Rotating blade having structure for increasing fluid velocity
US8413928B2 (en) * 2009-09-25 2013-04-09 The Boeing Company Structurally designed aerodynamic riblets
DE102010040596A1 (en) 2010-09-10 2012-03-15 Aloys Wobben Removable rotor blade tip
US20230134254A1 (en) * 2020-04-22 2023-05-04 Nikon Corporation Blade, processing system and processing method

Also Published As

Publication number Publication date
JP2006183598A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4147003B2 (en) Rotor blade for wind power equipment
TWI353411B (en)
CA2654772C (en) A wind turbine blade and a pitch controlled wind turbine
JP2006125395A5 (en)
MXPA06010807A (en) Wind turbine rotor assembly and blade having acoustic flap.
JP6632553B2 (en) Vortex generator and its installation method, windmill blade and wind power generator
US10465652B2 (en) Vortex generators for wind turbine rotor blades having noise-reducing features
AU2005243553A1 (en) Wind turbine rotor projection
JP2003254225A (en) Device for reducing airflow noise of windmill
JP6783212B2 (en) How to position the vortex generator on the wind turbine wing, how to manufacture the wind turbine wing assembly and the wind turbine wing assembly
JP4117289B2 (en) Windmill blade, wind turbine generator and blower
EP3026261A1 (en) Wind farm, wind power generation system
EP3514370B1 (en) A rotor blade assembly and a wind turbine having the rotor blade assembly
CN110685870A (en) Noise reduction device, blade and blade forming method
US11536245B2 (en) Rotor blade assembly and a wind turbine having the rotor blade assembly
JP6732697B2 (en) Method for determining arrangement position of vortex generator on wind turbine blade, method for manufacturing wind turbine blade assembly, and wind turbine blade assembly
EP3807524B1 (en) Method of providing an edge seal for a rotor blade add-on
JP4180016B2 (en) Windmill blade manufacturing method, windmill blade and wind power generator
JP2003269320A (en) Blade of wind force power generating device and assisting member
JP2010133416A (en) Power-generating turbine in rotor-stator arrangement
EP2940292B1 (en) Device for a rotor blade of a wind turbine
TWI693342B (en) Blade protection member and fan blade and fan using same
CN112020608B (en) Vortex generator for wind turbine rotor blades with noise reduction features
JP2016003623A (en) Air stream generator, and wind generator system
KR101816775B1 (en) Turbine Blade of Horizontal Axis Generating Set Considering Wake Effect

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4117289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250