JP4180016B2 - Windmill blade manufacturing method, windmill blade and wind power generator - Google Patents

Windmill blade manufacturing method, windmill blade and wind power generator Download PDF

Info

Publication number
JP4180016B2
JP4180016B2 JP2004131081A JP2004131081A JP4180016B2 JP 4180016 B2 JP4180016 B2 JP 4180016B2 JP 2004131081 A JP2004131081 A JP 2004131081A JP 2004131081 A JP2004131081 A JP 2004131081A JP 4180016 B2 JP4180016 B2 JP 4180016B2
Authority
JP
Japan
Prior art keywords
wind turbine
turbine blade
gel
windmill
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004131081A
Other languages
Japanese (ja)
Other versions
JP2005315094A (en
Inventor
勝史 川上
瞭介 伊藤
▲ひかる▼ 松宮
哲也 小垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZEPHYR CORPORATION
Original Assignee
ZEPHYR CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZEPHYR CORPORATION filed Critical ZEPHYR CORPORATION
Priority to JP2004131081A priority Critical patent/JP4180016B2/en
Publication of JP2005315094A publication Critical patent/JP2005315094A/en
Application granted granted Critical
Publication of JP4180016B2 publication Critical patent/JP4180016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、風力発電装置に用いる風車翼の製造方法、該製造方法によって製造された風車翼、および該風車翼を備えた風力発電装置に関し、特に、ローターが回転する事によって生じる気流騒音をほとんど発生させることない風車翼の製造方法、該製造方法によって製造された風車翼、および該風車翼を備えた風力発電装置に関するものである。   The present invention relates to a method of manufacturing a wind turbine blade used in a wind turbine generator, a wind turbine blade manufactured by the manufacturing method, and a wind turbine generator including the wind turbine blade, and in particular, almost eliminates airflow noise caused by rotation of a rotor. The present invention relates to a method of manufacturing a wind turbine blade that is not generated, a wind turbine blade manufactured by the manufacturing method, and a wind turbine generator provided with the wind turbine blade.

風力発電は、地球温暖化、大気汚染などの環境破壊から地球を守るために、最近では世界規模でその普及が促進している。こうした中で、風車翼から発生する、いわゆる風きり音による騒音が新たな騒音公害として問題化している。特に、小型風力発電の分野においては、風力発電装置を市街地の住宅などに設置する場合が多いことなどにより、該騒音の低減が必要とされるに至っている。   Wind power generation has recently been promoted on a global scale in order to protect the earth from environmental destruction such as global warming and air pollution. Under such circumstances, noise caused by wind noise generated from wind turbine blades has become a problem as new noise pollution. In particular, in the field of small wind power generation, it is necessary to reduce the noise due to the fact that a wind power generation apparatus is often installed in a residential area in an urban area.

従来は、このような騒音のレベルを下げる方法として、プロペラの回転数を下げる方法が有効とされてきた。例えば、その方法として、予め風車翼の設計にあたって、周速比(回転しているプロペラの先端が進む速度と、風力発電装置に流入する風速との比)が小さくなるような設計を行っていた。具体的には、小型風力発電装置において、高効率の発電を目標とする場合、風車翼の周速比は「9」(風速12.5m/秒時にプロペラの先端が12.5m/秒×9=112m/秒の速さで回転しているということ)程度にするように、風車翼を設計していた。   Conventionally, as a method for reducing the noise level, a method for reducing the rotation speed of the propeller has been effective. For example, as the method, in designing the wind turbine blade, the peripheral speed ratio (ratio between the speed at which the tip of the rotating propeller advances and the wind speed flowing into the wind turbine generator) is designed to be small. . Specifically, in a small wind power generator, when high-efficiency power generation is targeted, the peripheral speed ratio of the wind turbine blade is “9” (the tip of the propeller is 12.5 m / sec × 9 at a wind speed of 12.5 m / sec). The wind turbine blade was designed so that the rotation speed was about 112 m / sec.

また、高周速比を持つ風車翼の場合には、設置する周囲の環境などに合わせて、風車翼の回転数を低下させる制御装置を用いる方法がとられていた。
しかしながら、効率的に発電をするようにするためには、周速比を高くする必要があり、このことにより、風車翼から発生する騒音のレベルも高くなってしまっていた。
In the case of a wind turbine blade having a high peripheral speed ratio, a method using a control device that reduces the rotational speed of the wind turbine blade in accordance with the surrounding environment to be installed has been employed.
However, in order to generate power efficiently, it is necessary to increase the peripheral speed ratio, and this also increases the level of noise generated from the wind turbine blades.

すなわち、従来の風力発電装置は、上述のような騒音を低下させるためには、風車翼の設計に際して、効率を犠牲にして予め周速比を小さくしなければならず、発電効率を犠牲にして騒音を抑制しなければないという問題点があった。
また、高周速比を持つ風車翼の場合には、設置する周囲の環境などに合わせて、風車翼の回転数を低下させる制御装置を用いなければならず、発電効率を犠牲にして騒音を抑制しなければならないという問題点があった。
That is, in order to reduce the noise as described above, the conventional wind power generator must reduce the peripheral speed ratio in advance at the expense of efficiency when designing the wind turbine blade, and at the expense of power generation efficiency. There was a problem that noise had to be suppressed.
In the case of a wind turbine blade having a high peripheral speed ratio, a control device that reduces the rotational speed of the wind turbine blade according to the surrounding environment to be installed must be used, and noise is generated at the expense of power generation efficiency. There was a problem that it had to be suppressed.

これらの問題点を解決するために、風車翼の一部あるいは全部に、縦渦を発生させる凹凸部を設けることにより騒音を低減させる技術が開発されてきた。
例えば、風車翼の表面に等間隔で配置される棒状のフィラメントと、該フィラメントを風車翼の表面に接着する接着剤とによって、風車翼の前縁から後縁に向けて延在する連続した複数の細い溝を、風車の半径方向に隣接するようにして構成することにより、風車翼の表面にスジ状のリブレットを設けた風車翼がある(例えば、特許文献1参照。)。
特開平11−201021号公報
In order to solve these problems, a technique has been developed for reducing noise by providing an uneven portion for generating a vertical vortex in part or all of a wind turbine blade.
For example, a plurality of continuous filaments extending from the front edge to the rear edge of the wind turbine blade by rod-like filaments arranged at equal intervals on the surface of the wind turbine blade and an adhesive that adheres the filament to the surface of the wind turbine blade. There is a wind turbine blade in which streak-like riblets are provided on the surface of the wind turbine blade (see, for example, Patent Document 1).
JP-A-11-201021

しかしながら、従来のリブレットを設けた風車翼は、ローターが回転する事によって生じる気流騒音を低減させる効果があるが、その製造方法が複雑であるという問題点があった。
本発明は、上記従来技術の欠点に鑑みてなされたもので、ローターが回転する事によって生じる気流騒音をほとんど発生させることない風車翼を低コストで容易に製造することが可能な風車翼の製造方法、該製造方法によって製造された風車翼、および該風車翼を備えた風力発電装置を提供することを目的とする。
However, the conventional wind turbine blade provided with riblets has an effect of reducing airflow noise generated by the rotation of the rotor, but has a problem that its manufacturing method is complicated.
The present invention has been made in view of the drawbacks of the prior art described above, and it is possible to manufacture a wind turbine blade that can easily manufacture a wind turbine blade that generates almost no airflow noise caused by the rotation of the rotor at low cost. It is an object to provide a method, a wind turbine blade manufactured by the manufacturing method, and a wind turbine generator provided with the wind turbine blade.

本発明は、上記課題を解決するため、下記のような構成を採用した。
すなわち、本発明の一態様によれば、本発明の風車翼の製造方法は、風車翼本体の全体または一部をゲル状粘弾性物質で被うことを特徴とする。
また、本発明の風車翼の製造方法は、上記風車翼本体の表面に上記ゲル状粘弾性物質を塗り付け、噴き付け、印刷転写し、あるいは接着し、若しくは上記ゲル状粘弾性物質に浸すことにより、上記風車翼本体が上記ゲル状粘弾性物質で被われるようにすることが望ましい。
The present invention employs the following configuration in order to solve the above problems.
That is, according to one aspect of the present invention, the wind turbine blade manufacturing method of the present invention is characterized in that the wind turbine blade main body is entirely or partially covered with a gel-like viscoelastic material.
Further, in the method for manufacturing a wind turbine blade according to the present invention, the gel viscoelastic material is applied to the surface of the wind turbine blade body, sprayed, printed and transferred, or bonded, or immersed in the gel viscoelastic material. Therefore, it is desirable that the wind turbine blade body is covered with the gel-like viscoelastic substance.

また、本発明の風車翼の製造方法は、さらに、上記風車翼本体を被っているゲル状粘弾性物質の表面に対して、上記風車翼の長手方向に凹部と凸部とが交互になり短手方向に上記凹部と上記凸部がスジ状になるようにリブレットを形成するようにしたことが望ましい。   Further, in the method for manufacturing a wind turbine blade according to the present invention, the concave and convex portions are alternately short in the longitudinal direction of the wind turbine blade with respect to the surface of the gel viscoelastic material covering the wind turbine blade body. It is desirable that the riblet be formed so that the concave portion and the convex portion have a streak shape in the hand direction.

また、本発明の風車翼の製造方法は、上記風車翼の長手方向に凹部と凸部とが交互になり短手方向に上記凹部と上記凸部がスジ状になるようにリブレットを形成するように、上記風車翼本体の表面に上記ゲル状粘弾性物質を印刷転写することにより、上記風車翼が上記リブレットを形成した上記ゲル状粘弾性物質で被われるようにすることが望ましい。   Further, in the method for manufacturing a wind turbine blade according to the present invention, the riblet is formed so that the concave portion and the convex portion are alternately arranged in the longitudinal direction of the wind turbine blade, and the concave portion and the convex portion are striped in the short direction. Furthermore, it is desirable that the gel-like viscoelastic material is printed and transferred onto the surface of the windmill blade body so that the windmill blade is covered with the gel-like viscoelastic material in which the riblets are formed.

また、本発明の一態様によれば、本発明の風車翼の製造方法は、上記風車翼本体の長手方向に凹部と凸部とが交互になり短手方向に上記凹部と上記凸部がスジ状部を形成するように、風車翼本体を製造し、そして、上記風車翼本体の全体または一部をゲル状粘弾性物質で被うことにより、上記風車翼の長手方向に凹部と凸部とが交互になり短手方向に上記凹部と上記凸部がスジ状になるようにリブレットを形成するようにしたことを特徴とする。   According to another aspect of the present invention, there is provided a method for manufacturing a wind turbine blade according to the present invention, wherein the concave portion and the convex portion are alternately arranged in the longitudinal direction of the wind turbine blade body, and the concave portion and the convex portion are streaked in the short direction. A wind turbine blade main body is manufactured so as to form a ring-shaped portion, and the whole or a part of the wind turbine blade main body is covered with a gel-like viscoelastic material, whereby a concave portion and a convex portion are formed in the longitudinal direction of the wind turbine blade. The riblets are formed so that the concave portions and the convex portions are streaked alternately in the short direction.

また、本発明の風車翼の製造方法は、上記風車翼本体の表面に上記ゲル状粘弾性物質を塗り付け、噴き付け、印刷転写し、あるいは接着し、若しくは上記ゲル状粘弾性物質に浸すことにより、上記風車翼本体が上記ゲル状粘弾性物質で被われるようにすることが望ましい。   Further, in the method for manufacturing a wind turbine blade according to the present invention, the gel viscoelastic material is applied to the surface of the wind turbine blade body, sprayed, printed and transferred, or bonded, or immersed in the gel viscoelastic material. Therefore, it is desirable that the wind turbine blade body is covered with the gel-like viscoelastic substance.

また、本発明の一態様によれば、本発明の風車翼は、これらの風車翼の製造方法により製造された風車翼であることを特徴とする。
また、本発明の一態様によれば、本発明の風力発電装置は、上記の風車翼を備えることを特徴とする。
Moreover, according to one aspect of the present invention, the wind turbine blade of the present invention is a wind turbine blade manufactured by the manufacturing method of these wind turbine blades.
According to another aspect of the present invention, a wind turbine generator according to the present invention includes the wind turbine blade described above.

本発明によれば、風車翼本体の全体または一部をゲル状粘弾性物質で被うことにより、風車のローターが回転する事によって生じる気流騒音をほとんど発生させることない風車翼を低コストで容易に製造することが可能となる。   According to the present invention, by covering the whole or a part of the wind turbine blade main body with the gel-like viscoelastic material, it is possible to easily produce a wind turbine blade at a low cost that hardly generates airflow noise caused by the rotation of the rotor of the wind turbine. Can be manufactured.

以下、図面を参照しながら本発明の実施の形態について述べる。
まず、図1乃至図5を用いて、本発明の第1の実施の形態について説明する。
(ゲル状粘弾性物質で被う)
図1は、風車の正面図であり、図2は、風車の側面図である。
Embodiments of the present invention will be described below with reference to the drawings.
First, a first embodiment of the present invention will be described with reference to FIGS.
(Cover with gel viscoelastic material)
FIG. 1 is a front view of the windmill, and FIG. 2 is a side view of the windmill.

図1および図2において、風車1は、3枚の風車翼2と、各風車翼2が取付けられた回転軸とを備えている。このような風車1は、例えば、小型の風力発電装置に用いられ、風力を回転力に変換することにより電気エネルギーを発生させている。
図3は、風車翼の正面図であり、図4は、風車翼の側面図である。
1 and 2, the wind turbine 1 includes three wind turbine blades 2 and a rotation shaft to which each wind turbine blade 2 is attached. Such a windmill 1 is used, for example, in a small wind power generator, and generates electric energy by converting wind power into rotational force.
FIG. 3 is a front view of the wind turbine blade, and FIG. 4 is a side view of the wind turbine blade.

図3および図4に示した風車翼2は、その断面が翼形の形状を有しており、例えば、長さが600mm前後、幅がおよそ15mm〜150mm、厚さがおよそ10mm前後である。また、風車翼2の基端側(回転軸に取付けられる側)は、風の流れに対する立ち上がり角度が大きく、先端に向かうにつれて徐々に減少し最先端部で風の流れに対する立ち上がり角度が最小となっている。   The wind turbine blade 2 shown in FIG. 3 and FIG. 4 has an airfoil shape in cross section. For example, the length is about 600 mm, the width is about 15 mm to 150 mm, and the thickness is about 10 mm. In addition, the base end side (the side attached to the rotating shaft) of the wind turbine blade 2 has a large rising angle with respect to the wind flow, and gradually decreases toward the tip, and the rising angle with respect to the wind flow is minimized at the leading edge. ing.

図5は、第1の実施の形態にかかる風車翼の構造を説明するための図である。
図5は、図4に示した風車翼2の一部を拡大した図になっている。
図5において、風車翼2は、風車翼本体21の全体または一部を、熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等のゲル状粘弾性物質22で被うことにより製造されている。
FIG. 5 is a diagram for explaining the structure of the wind turbine blade according to the first embodiment.
FIG. 5 is an enlarged view of a part of the wind turbine blade 2 shown in FIG.
In FIG. 5, the wind turbine blade 2 is a part of the wind turbine blade main body 21 in the form of a gel such as a thermosetting resin, a thermoplastic resin, a pressure sensitive adhesive, an energy beam curable resin, or an energy beam curable adhesive. It is manufactured by covering with a viscoelastic material 22.

ゲル状粘弾性物質22としてより具体的には、例えば、天然ゴム、合成ゴム、シリコンゴム等のゴム系の粘弾性物質、ポリウレタン系樹脂等の熱硬化性樹脂、エチレン−酢酸ビニル共重合体、アクリル酸エステルやその誘導体からなる共重合樹脂等の熱可塑性樹脂、これらのゴムや樹脂をベースポリマーとした粘着剤等を用いることができる。また、感圧接着剤(例えば、天然ゴムや各種の合成ゴム等からなるゴム系感圧接着剤;(メタ)アクリル酸アルキルエステルの単独又は共重合体や、該エステルと、このエステルに対して共重合可能な他の不飽和単量体との共重合体等からなるアクリル系感圧接着剤;シリコーン系感圧接着剤など)、熱硬化性樹脂(例えば、エポキシ系樹脂、不飽和エステル系樹脂、熱硬化性アクリル系樹脂、フェノール系樹脂など)、熱可塑性樹脂(例えば、飽和ポリエステル系樹脂、熱可塑性ポリウレタン系樹脂、アミド系樹脂、イミド系樹脂など)なども挙げられる。   More specifically, the gel-like viscoelastic substance 22 includes, for example, rubber-based viscoelastic substances such as natural rubber, synthetic rubber, and silicone rubber, thermosetting resins such as polyurethane-based resins, ethylene-vinyl acetate copolymers, A thermoplastic resin such as a copolymer resin made of an acrylate ester or a derivative thereof, a pressure-sensitive adhesive based on these rubbers or resins, and the like can be used. Also, pressure sensitive adhesives (for example, rubber-based pressure sensitive adhesives made of natural rubber, various synthetic rubbers, etc .; (meth) acrylic acid alkyl ester homopolymers or copolymers, the esters and the esters Acrylic pressure-sensitive adhesives composed of copolymers with other copolymerizable unsaturated monomers, silicone pressure-sensitive adhesives, etc., thermosetting resins (eg, epoxy resins, unsaturated esters) Resin, thermosetting acrylic resin, phenol resin, and the like) and thermoplastic resins (for example, saturated polyester resin, thermoplastic polyurethane resin, amide resin, imide resin, and the like).

なお、ゲル状粘弾性物質22は、感圧接着剤、熱硬化性樹脂、および熱可塑性樹脂から選択された少なくとも2種からなるブレンドであってもよく、必要に応じて、粘着付与剤、架橋剤など、適宜な添加剤を添加することもできる。
次に、第2の実施の形態乃至第6の実施の形態として、風車翼本体21の全体または一部をゲル状粘弾性物質22で被う具体的な方法を説明する。
第2の実施の形態
本発明を適用した第2の実施の形態としては、風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部に、上述の熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等のゲル状粘弾性物質22を、例えば溶媒中に分散させることにより粘性を低下させ(流動的にし)、望ましくは刷毛等を用いて略均一に塗り付ける。その後溶媒を乾燥させることにより、風車翼2は、上記風車翼本体21が上記ゲル状粘弾性物質22で被われる構造となり、言い換えれば風車翼本体21の外側がゲル状粘弾性物質22で被われた二重構造となる。
第3の実施の形態
本発明を適用した第3の実施の形態としては、風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部に、上述の熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等のゲル状粘弾性物質22を、例えば溶媒中に分散させることにより粘性を低下させ(流動的にし)、望ましくはスプレーガン等を用いて略均一に噴き付ける。その後溶媒を乾燥させることにより、風車翼2は、上述の第2の実施の形態と同様、上記風車翼本体21が上記ゲル状粘弾性物質22で被われる構造となる。
第4の実施の形態
本発明を適用した第4の実施の形態としては、風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部に、上述の熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等のゲル状粘弾性物質22を、例えば溶媒中に分散させることにより粘性を低下させ(流動的にし)、インクとして印刷することにより転写する。その後溶媒を乾燥させることにより、風車翼2は、上述の第2または第3の実施の形態と同様、上記風車翼本体21が上記ゲル状粘弾性物質22で被われる構造となるが、上述の第2の実施の形態における塗り付け、または第3の実施の形態における噴き付けに比べ、粘性の高い状態でゲル状粘弾性物質22の印刷転写が行えるので、その後の乾燥工程を短時間で行うことができる。
第5の実施の形態
本発明を適用した第5の実施の形態としては、まず、上述の熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等のゲル状粘弾性物質22を、シート状あるいはフィルム状に形成する。シート状あるいはフィルム状に形成する方法としては、板状に形成したゲル状粘弾性物質22を延伸してもよいし、最初からシート状あるいはフィルム状に形成に形成してもよい。そして、シート状あるいはフィルム状に形成したゲル状粘弾性物質22を、風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部に接着剤等を用いて接着させ、あるいは密着させてラッピングする。このようにすることにより、風車翼2は、上述の第2乃至第4の実施の形態と同様、上記風車翼本体21が上記ゲル状粘弾性物質22で被われる構造となる。
第6の実施の形態
本発明を適用した第6の実施の形態としては、上述の熱硬化性樹脂、熱可塑性樹脂、感圧接着剤、エネルギー線硬化型樹脂またはエネルギー線硬化型粘着剤等のゲル状粘弾性物質22を、例えば溶媒中に分散させることにより粘性を低下させ(流動的にし)、その中に風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部を所定時間浸漬する。その後風車翼本体21を取り出して溶媒を乾燥させることにより、風車翼2は、上記風車翼本体21が上記ゲル状粘弾性物質22で被われる構造となり、言い換えれば風車翼本体21の外側がゲル状粘弾性物質22で被われた二重構造となる。
The gel-like viscoelastic substance 22 may be a blend of at least two selected from a pressure sensitive adhesive, a thermosetting resin, and a thermoplastic resin. An appropriate additive such as an agent can also be added.
Next, as a second embodiment to a sixth embodiment, a specific method for covering the whole or a part of the wind turbine blade main body 21 with the gel-like viscoelastic substance 22 will be described.
Second Embodiment As a second embodiment to which the present invention is applied, the whole of the wind turbine blade main body 21 or a part centering on the surface of the wind turbine blade main body 21 is used. A viscosity of the gel-like viscoelastic material 22 such as a plastic resin, a pressure sensitive adhesive, an energy ray curable resin, or an energy ray curable pressure sensitive adhesive 22 is dispersed (for example, fluidized) in, for example, a solvent. Apply almost evenly with a brush. Then, by drying the solvent, the wind turbine blade 2 has a structure in which the wind turbine blade body 21 is covered with the gel-like viscoelastic material 22, in other words, the outside of the wind turbine blade body 21 is covered with the gel-like viscoelastic material 22. A double structure.
Third Embodiment As a third embodiment to which the present invention is applied, the whole of the wind turbine blade main body 21 or a part around the surface of the wind turbine blade main body 21 is provided with the above-described thermosetting resin, A viscosity of the gel-like viscoelastic material 22 such as a plastic resin, a pressure sensitive adhesive, an energy ray curable resin, or an energy ray curable pressure sensitive adhesive 22 is dispersed (for example, fluidized) in, for example, a solvent. Spray almost uniformly with a spray gun. Then, by drying the solvent, the wind turbine blade 2 has a structure in which the wind turbine blade main body 21 is covered with the gel-like viscoelastic material 22 as in the second embodiment.
Fourth Embodiment As a fourth embodiment to which the present invention is applied, the above-described thermosetting resin, heat, and the like are formed on the whole wind turbine blade body 21 or a part of the surface of the wind turbine blade body 21. The viscosity is lowered (made fluid) by dispersing a gel-like viscoelastic material 22 such as a plastic resin, a pressure sensitive adhesive, an energy ray curable resin, or an energy ray curable pressure sensitive adhesive in a solvent, for example, as an ink. Transfer by printing. Then, by drying the solvent, the wind turbine blade 2 has a structure in which the wind turbine blade main body 21 is covered with the gel viscoelastic material 22 as in the second or third embodiment. Since the gel-like viscoelastic material 22 can be printed and transferred in a highly viscous state compared to the application in the second embodiment or the spraying in the third embodiment, the subsequent drying process is performed in a short time. be able to.
Fifth Embodiment As a fifth embodiment to which the present invention is applied, first, the above-mentioned thermosetting resin, thermoplastic resin, pressure sensitive adhesive, energy beam curable resin or energy beam curable pressure sensitive adhesive. A gel-like viscoelastic material 22 such as a sheet or film is formed. As a method for forming a sheet or film, the gel viscoelastic material 22 formed in a plate shape may be stretched, or may be formed in the form of a sheet or film from the beginning. Then, the gel-like viscoelastic material 22 formed in the form of a sheet or film is adhered to the whole wind turbine blade main body 21 or a part centered on the surface of the wind turbine blade main body 21 using an adhesive or the like. Let it wrap. By doing in this way, the windmill blade 2 becomes a structure where the said windmill blade main body 21 is covered with the said gel-like viscoelastic substance 22 similarly to the above-mentioned 2nd thru | or 4th embodiment.
Sixth Embodiment As a sixth embodiment to which the present invention is applied, the above-described thermosetting resin, thermoplastic resin, pressure sensitive adhesive, energy beam curable resin, energy beam curable pressure sensitive adhesive, and the like are used. The gel viscoelastic material 22 is dispersed (for example, fluidized) by dispersing it in a solvent, for example, and the entire windmill blade body 21 or a part of the windmill blade body 21 centered on the surface is contained therein. Immerse for a predetermined time. Thereafter, by removing the wind turbine blade main body 21 and drying the solvent, the wind turbine blade 2 has a structure in which the wind turbine blade main body 21 is covered with the gel-like viscoelastic material 22, in other words, the outside of the wind turbine blade main body 21 is gel-like. A double structure covered with the viscoelastic material 22 is obtained.

以上、第1の実施の形態乃至第6の実施の形態として、風車翼本体21の全体または一部をゲル状粘弾性物質22で被うことにより、風車2のローターが回転する事によって生じる気流騒音をほとんど発生させることない風車翼を低コストで容易に製造する方法を説明した。   As described above, as the first to sixth embodiments, the airflow generated by the rotation of the rotor of the windmill 2 by covering the whole or part of the windmill blade body 21 with the gel-like viscoelastic material 22. A method of easily manufacturing a wind turbine blade that hardly generates noise at low cost is described.

次に、気流騒音の発生をさらに抑えた風車の製造方法について説明する。
図6は、第7の実施の形態にかかる風車翼の構造を説明するための図である。
図6は、図4に示した風車翼2の一部を拡大した図5と同様、風車翼の一部を拡大した図になっている。
Next, a method for manufacturing a wind turbine that further suppresses the generation of airflow noise will be described.
FIG. 6 is a view for explaining the structure of the wind turbine blade according to the seventh embodiment.
6 is an enlarged view of a part of the wind turbine blade, similar to FIG. 5 in which a part of the wind turbine blade 2 shown in FIG. 4 is enlarged.

図6において、風車翼3は、まず、上述の第1の実施の形態乃至第6の実施の形態の何れかの方法を用いて、風車翼本体21の全体または一部をゲル状粘弾性物質23で被う。
そして、例えば、所定間隔を空けて一列に並んだ釘状の突起物を有する加工具を用い、当該突起物をゲル状粘弾性物質23の表面にあてがい、加工具と風車2とを相対移動させてゲル状粘弾性物質23の表面を引っ掻くことにより、上記風車翼3の長手方向に凹部232と凸部231とが交互になり短手方向に上記凹部232と上記凸部231がスジ状のリブレット230(図7参照)を形成するようにする。
In FIG. 6, the wind turbine blade 3 is a gel viscoelastic material by using the method of any one of the first to sixth embodiments described above to make the whole or part of the wind turbine blade main body 21 a gel-like viscoelastic substance. Cover with 23.
Then, for example, using a processing tool having nail-like protrusions arranged in a row at a predetermined interval, the protrusion is applied to the surface of the gel-like viscoelastic material 23, and the processing tool and the windmill 2 are moved relative to each other. By scratching the surface of the gel-like viscoelastic material 23, the concave portions 232 and the convex portions 231 are alternately arranged in the longitudinal direction of the wind turbine blade 3, and the concave portions 232 and the convex portions 231 are striped riblets in the short direction. 230 (see FIG. 7) is formed.

なお、図6において凹部232と凸部231は、曲線(曲面)を描くように示されているが、加工具が備える突起物の形状、またはゲル状粘弾性物質23の粘性度等により、その形状は様々であるが、全体として風車翼3の長手方向に凹部232と凸部231とが交互になっていればよい。   In addition, although the recessed part 232 and the convex part 231 are shown so that a curve (curved surface) may be drawn in FIG. 6, depending on the shape of the protrusion with which a processing tool is equipped, or the viscosity of the gel-like viscoelastic substance 23, etc. Although the shapes are various, it is only necessary that the concave portions 232 and the convex portions 231 alternate in the longitudinal direction of the wind turbine blade 3 as a whole.

図7は、リブレットを形成した風車翼を説明するための図である。
図7において、リブレット230は、上述したように加工具と風車2とを相対移動させてゲル状粘弾性物質23の表面を引っ掻くことにより、上記風車翼3の長手方向に凹部232と凸部231とが交互になり短手方向に上記凹部232と上記凸部231がスジ状のリブレット230が形成される。
FIG. 7 is a view for explaining a wind turbine blade in which a riblet is formed.
In FIG. 7, as described above, the riblet 230 moves the processing tool and the windmill 2 relative to each other and scratches the surface of the gel-like viscoelastic material 23, thereby causing the concave portion 232 and the convex portion 231 in the longitudinal direction of the windmill blade 3. Are alternately formed, and a riblet 230 in which the concave portion 232 and the convex portion 231 are formed in a short direction is formed.

次に、本発明を適用した第8の実施の形態について説明する。
本発明を適用した第8の実施の形態としては、風車翼本体21の全体、あるいは風車翼本体21の表面を中心にした一部に、上述の熱硬化性樹脂等のゲル状粘弾性物質23を、例えば溶媒中に分散させることにより粘性を低下させ(流動的にし)、インクとして印刷することにより転写する。その際、印刷により転写されるゲル状粘弾性物質23が、上記風車翼3の長手方向に凹部232と凸部231とが交互になり短手方向に上記凹部232と上記凸部231がスジ状になりリブレット230を形成するようにする。その後溶媒を乾燥させることにより、風車翼2は、上記風車翼本体21がリブレット230を形成した上記ゲル状粘弾性物質22で被われる構造となる。
Next, an eighth embodiment to which the present invention is applied will be described.
As an eighth embodiment to which the present invention is applied, a gel-like viscoelastic material 23 such as the thermosetting resin described above is formed on the entire wind turbine blade body 21 or a part centered on the surface of the wind turbine blade body 21. Is dispersed in a solvent, for example, to reduce the viscosity (become fluidized) and to transfer by printing as ink. At this time, the gel-like viscoelastic material 23 transferred by printing is such that the concave portions 232 and the convex portions 231 alternate in the longitudinal direction of the wind turbine blade 3 and the concave portions 232 and the convex portions 231 are striped in the short direction. The riblet 230 is formed. Then, by drying the solvent, the wind turbine blade 2 has a structure in which the wind turbine blade main body 21 is covered with the gel-like viscoelastic material 22 in which the riblets 230 are formed.

次に、本発明を適用した第9の実施の形態について説明する。
図8は、第9の実施の形態にかかる風車翼の構造を説明するための図である。
図8において、風車翼本体24は、上記風車翼本体24の長手方向に凹部242と凸部241とが交互になり短手方向に上記凹部242と上記凸部241がスジ状部を形成するように、例えば、金型を用いて製造される。そして、上述の第1乃至第6の実施の形態と同様にして、すなわち、風車翼本体24の表面に上記ゲル状粘弾性物質25を塗り付け、噴き付け、印刷転写し、あるいは接着し、若しくは、風車翼本体24を上記ゲル状粘弾性物質25に浸すことにより、上記風車翼本体24の全体または一部をゲル状粘弾性物質25で被う。このようにすることにより、上記風車翼4の長手方向に凹部252と凸部251とが交互になり短手方向に上記凹部252と上記凸部251がスジ状になりリブレットを形成する。
Next, a ninth embodiment to which the present invention is applied will be described.
FIG. 8 is a diagram for explaining the structure of the wind turbine blade according to the ninth embodiment.
In FIG. 8, the wind turbine blade main body 24 is configured such that the concave portions 242 and the convex portions 241 are alternately arranged in the longitudinal direction of the wind turbine blade main body 24 so that the concave portions 242 and the convex portions 241 form streak-like portions in the short direction. For example, it manufactures using a metal mold | die. Then, in the same manner as in the first to sixth embodiments described above, that is, the gel-like viscoelastic material 25 is applied to the surface of the wind turbine blade body 24, sprayed, printed and transferred, or adhered. By immersing the windmill blade body 24 in the gel viscoelastic material 25, the windmill blade body 24 is entirely or partially covered with the gel viscoelastic material 25. By doing in this way, the concave part 252 and the convex part 251 are alternated in the longitudinal direction of the wind turbine blade 4, and the concave part 252 and the convex part 251 are striped in the short direction to form a riblet.

以上、本発明の実勢の形態1乃至9を説明してきたが、これらの実施の形態により製造された風車翼2、3、4は、本発明を構成する。
また、本発明の実施の形態により製造された風車翼2、3、4は、風力を回転力に変換することにより電気エネルギーを発生させる風力発電装置、好ましくは小型の風力発電装置に用いることができる。すなわち、これらの実施の形態により製造された風車翼2、3、4を備えた風力発電装置は、本発明を構成する。
As described above, the first to ninth embodiments of the present invention have been described. The wind turbine blades 2, 3, and 4 manufactured according to these embodiments constitute the present invention.
Further, the wind turbine blades 2, 3, and 4 manufactured according to the embodiment of the present invention are used for a wind power generator that generates electric energy by converting wind power into a rotational force, preferably a small wind power generator. it can. That is, the wind power generator provided with the wind turbine blades 2, 3, and 4 manufactured according to these embodiments constitutes the present invention.

以上、本発明の実施の形態について図面を参照しながら説明してきたが、本発明が適用される風車翼の製造方法は、その機能が実行されるのであれば、上述の実施の形態に限定されることはなく、本発明の要旨を逸脱しない範囲内で種々の構成を取ることができる。
例えば、本発明の実施の形態により製造された風車翼2、3、4は、扇風機、空冷ファン、スクリュー等の翼(羽根)に用いることも可能である。
The embodiment of the present invention has been described above with reference to the drawings. However, the method for manufacturing a wind turbine blade to which the present invention is applied is limited to the above-described embodiment as long as the function is executed. In other words, various configurations can be adopted without departing from the scope of the present invention.
For example, the wind turbine blades 2, 3, and 4 manufactured according to the embodiment of the present invention can be used for blades (blades) such as a fan, an air cooling fan, and a screw.

風車の正面図である。It is a front view of a windmill. 風車の側面図である。It is a side view of a windmill. 風車翼の正面図である。It is a front view of a windmill blade. 風車翼の側面図である。It is a side view of a windmill blade. 第1の実施の形態にかかる風車翼の構造を説明するための図である。It is a figure for demonstrating the structure of the windmill blade concerning 1st Embodiment. 第7の実施の形態にかかる風車翼の構造を説明するための図である。It is a figure for demonstrating the structure of the windmill blade concerning 7th Embodiment. リブレットを形成した風車翼を説明するための図である。It is a figure for demonstrating the windmill blade which formed the riblet. 第9の実施の形態にかかる風車翼の構造を説明するための図である。It is a figure for demonstrating the structure of the windmill blade concerning 9th Embodiment.

符号の説明Explanation of symbols

1 風車
2 風車翼
3 風車翼
21 風車翼本体
22 ゲル状粘弾性物質
23 ゲル状粘弾性物質
24 風車翼本体
25 ゲル状粘弾性物質
230 リブレット
231 凸部
232 凹部
241 凸部
242 凹部
251 凸部
252 凹部



DESCRIPTION OF SYMBOLS 1 Windmill 2 Windmill blade 3 Windmill blade 21 Windmill blade main body 22 Gel-like viscoelastic substance 23 Gel-like viscoelastic substance 24 Windmill blade main body 25 Gel-like viscoelastic substance 230 Riblet 231 Convex part 232 Concave part 241 Convex part 242 Concave part 251 Convex part 252 Recess



Claims (4)

風車翼の製造方法において、
前記風車翼本体の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状部を形成するように、風車翼本体を製造し、
前記風車翼本体の全体または一部をゲル状粘弾性物質で被うことにより、前記風車翼の長手方向に凹部と凸部とが交互になり短手方向に前記凹部と前記凸部がスジ状になるようにリブレットを形成するようにしたことを特徴とする風車翼の製造方法。
In the method of manufacturing a wind turbine blade,
The wind turbine blade body is manufactured such that the concave portion and the convex portion are alternately arranged in the longitudinal direction of the wind turbine blade main body, and the concave portion and the convex portion form a streak-like portion in the short direction,
By covering the whole or part of the wind turbine blade body with a gel-like viscoelastic material, the concave portion and the convex portion are alternately arranged in the longitudinal direction of the wind turbine blade, and the concave portion and the convex portion are striped in the short direction. A method of manufacturing a wind turbine blade, wherein riblets are formed so that
前記風車翼本体の表面に前記ゲル状粘弾性物質を塗り付け、噴き付け、印刷転写し、あるいは接着し、若しくは前記ゲル状粘弾性物質に浸すことにより、前記風車翼本体が前記ゲル状粘弾性物質で被われるようにすることを特徴とする請求項に記載の風車翼の製造方法。 By applying the gel-like viscoelastic substance to the surface of the windmill blade body, spraying, printing and transferring, or adhering or immersing the gel-like viscoelastic substance in the gel-like viscoelastic substance, The method for manufacturing a wind turbine blade according to claim 1 , wherein the wind turbine blade is covered with a substance. 請求項1または2に記載の風車翼の製造方法により製造されることを特徴とする風車翼。 Wind turbine blade, characterized in that it is manufactured by the manufacturing method of a wind turbine blade according to claim 1 or 2. 請求項に記載の風車翼を備えることを特徴とする風力発電装置。 A wind turbine generator comprising the wind turbine blade according to claim 3 .
JP2004131081A 2004-04-27 2004-04-27 Windmill blade manufacturing method, windmill blade and wind power generator Expired - Lifetime JP4180016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131081A JP4180016B2 (en) 2004-04-27 2004-04-27 Windmill blade manufacturing method, windmill blade and wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131081A JP4180016B2 (en) 2004-04-27 2004-04-27 Windmill blade manufacturing method, windmill blade and wind power generator

Publications (2)

Publication Number Publication Date
JP2005315094A JP2005315094A (en) 2005-11-10
JP4180016B2 true JP4180016B2 (en) 2008-11-12

Family

ID=35442798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131081A Expired - Lifetime JP4180016B2 (en) 2004-04-27 2004-04-27 Windmill blade manufacturing method, windmill blade and wind power generator

Country Status (1)

Country Link
JP (1) JP4180016B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2492496T3 (en) * 2011-02-25 2016-09-19 Nordex Energy Gmbh Wind energy installation rotor blade having varying-depth leaf
KR101225996B1 (en) * 2011-03-31 2013-01-24 삼성중공업 주식회사 Corrugated plate for blades of wind turbine

Also Published As

Publication number Publication date
JP2005315094A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
CA2654772C (en) A wind turbine blade and a pitch controlled wind turbine
US10697426B2 (en) Wind turbine blade with aerodynamic device attached thereto
AU2005243553A1 (en) Wind turbine rotor projection
MXPA06010807A (en) Wind turbine rotor assembly and blade having acoustic flap.
CN107489596B (en) Anti-freeze blade production method and wind generator set blade
US11274650B2 (en) Attachment methods for surface features of wind turbine rotor blades
JP2009275536A (en) Blade of windmill and windmill
EP3026261A1 (en) Wind farm, wind power generation system
US20200166015A1 (en) A method of coating a rotor blade for a wind turbine
EP3807524B1 (en) Method of providing an edge seal for a rotor blade add-on
JP2009008041A (en) Magnus type wind power generator
JP4117289B2 (en) Windmill blade, wind turbine generator and blower
EP3504428A1 (en) Protective cover system for protecting a leading edge of a wind turbine rotor blade
AU2020235792B2 (en) Method of shaping an edge seal for a rotor blade add-on
WO2018060298A1 (en) Adhesive protective cover system
JP4180016B2 (en) Windmill blade manufacturing method, windmill blade and wind power generator
JP2019078192A (en) Method for determining arrangement position of vortex generator in windmill blade, manufacturing method of windmill blade assembly, and windmill blade assembly
CN105484946A (en) Blade, blade sawtooth tail edge and manufacturing method thereof
TW200728607A (en) Fan and impeller thereof
CN206503766U (en) Centrifugal blower fan blade wheel
CN202484301U (en) Dynamic sealing device used for wind driven generator and wind driven generator
WO2017088881A1 (en) Wind turbine blade with aerodynamic device attached thereto
CN105179316A (en) Cooling system and axial flow fan of cooling system
TW202043615A (en) Blade protection member and fan blade and fan using same
CN205101294U (en) Cooling system and this cooling system's axial fan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Ref document number: 4180016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term