JP4116371B2 - Electric expansion valve - Google Patents

Electric expansion valve Download PDF

Info

Publication number
JP4116371B2
JP4116371B2 JP2002255692A JP2002255692A JP4116371B2 JP 4116371 B2 JP4116371 B2 JP 4116371B2 JP 2002255692 A JP2002255692 A JP 2002255692A JP 2002255692 A JP2002255692 A JP 2002255692A JP 4116371 B2 JP4116371 B2 JP 4116371B2
Authority
JP
Japan
Prior art keywords
valve
valve seat
fluid pressure
valve body
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002255692A
Other languages
Japanese (ja)
Other versions
JP2004093022A (en
Inventor
仁志 梅澤
健一 望月
伸 西田
義貴 戸松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Denso Corp
Original Assignee
Fujikoki Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp, Denso Corp filed Critical Fujikoki Corp
Priority to JP2002255692A priority Critical patent/JP4116371B2/en
Publication of JP2004093022A publication Critical patent/JP2004093022A/en
Application granted granted Critical
Publication of JP4116371B2 publication Critical patent/JP4116371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空調機の冷凍サイクル等において用いる電気式膨張弁に関する。
【0002】
【従来の技術】
空調機等の冷凍サイクルにおいて、介装されている膨張弁に、圧縮機の出力変動等によって所定以上の高い冷媒圧が発生した場合に、膨張弁が損傷する惧れがある。従来、この高い冷媒圧が発生した場合に対する対応手段は必ずしも充分ではなかった。
【0003】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の問題点を解消することにあり、空調機の冷凍サイクル等において用いる電気式膨張弁において、所定以上の冷媒圧が発生したとき、速やかに所定圧以下の冷媒圧に戻すことができる電気式膨張弁を提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決すべく、本発明は、以下の手段を採用した。即ち、
請求項1記載の電気式膨張弁は、ブロック本体に流体が正・逆の双方向に流動可能な2つの出入口を設け、これら両方の出入口間の流体通路に形成された弁室の底部に弁シート装着孔を形成し、該弁シート装着孔に弁シートを設けると共に、電気式の弁体駆動部により前記弁シートに離接して流体通路を開閉する弁体を設け、上記弁体は、弁体に設けられた上バネにより弁シート側に所定圧で弾圧されており、上記弁シートは、その中心部を貫通する弁シート孔と、当該弁シートの上端部に形成された上記弁シート装着孔内に挿入可能な外径の第1流体圧受部と、第1流体圧受部の下部に傾斜部と対向的に位置する平坦面とを介して形成された第1流体圧受部の径よりも大きい第2流体圧受部とからなり、弁シートは弁シートの下部に設けられた下バネにより弁シート装着孔に所定圧で弾圧されており、流体通路に所定圧以上の流体圧が作用した場合、第1の方向の上記流体圧に対しては、弁シートが下バネに抗して移動して流量を急速に増大させると共に、第2の方向の上記流体圧に対しては、弁体が上バネに抗して移動して流量を増大させることを特徴とする
【0005】
請求項2記載の電気式膨張弁は、ブロック本体に流体が正・逆の双方向に流動可能な2つの出入口を設け、これら両方の出入口間の流体通路に形成された弁室の底部に弁シート装着孔を形成し、該弁シート装着孔に弁シートを設けると共に、電気式の弁体駆動部により前記弁シートに離接して流体通路を開閉する弁体と、前記出入口間をバイパスするバイパス孔と、バイパス孔に対向する位置に副弁体とを設け、 上記弁体は、弁体に設けられた上バネにより弁シート側に所定圧で弾圧されており、上記副弁体は、円錐形状でバイパス孔に挿入する第1流体圧受部と、該第1流体圧受部の下部に設けられた肩部と、該肩部の下部に対向的に位置する平坦面を介して設けられる径大部から成る第2流体圧受部とからなり、副弁体は副弁体の下部に設けられた下バネによりバイパス孔に所定圧で弾圧されており、流体通路に所定圧以上の流体圧が作用した場合、第1の方向の上記流体圧に対しては、副弁体が下バネに抗して移動して流量を急速に増大させると共に、第2の方向の上記流体圧に対しては、弁体が上バネに抗して移動して流量を増大させることを特徴とする。
【0008】
【発明の実施の形態】
【実施例1】
以下、実施例1について説明する。図1は実施例1の縦断面図、図2(A)は実施例1の要部平面図、図2(B)は図2(A)のD−D線断面図、及び、図2(C)はその要部側面図である。
【0009】
実施例1にかかる電気式膨張弁は、ブロック本体1と、ブロック本体1に付設された弁体駆動部20とからなる。まず、ブロック本体1について説明する。
ブロック本体1は、図1に示すように、正面視略L字形で所定の前後幅のアルミニウム合金等からなるブロック体から構成されており、その上面1aには、弁本体取付孔2が形成されると共に、その左側面1dには第1の出入口3が設けられ、該第1の出入口3に連通して第1の通路4が水平に穿設され、その端部は弁室8を形成している。また、該第1の通路4内には、冷媒を濾過するためのストレナー5が配置されている。
さらに、ブロック本体1の下面1bには第2の出入口6が形成されると共に、第2の出入口6に連通して第2の通路7が上面1aに向けて形成され、その上部には径小部7aが形成されていると共に、弁シート装着孔9を介して弁室8に連通している。
【0010】
弁本体取付孔2には、シール材、例えばガスケット(図示せず)を介して弁本体10が取り付けられている。また、その上部の中心部にはネジ筒11が設けられている。該ネジ筒11の外周には雄ネジが形成されると共に、その下部には均圧孔33が穿設され、ネジ筒11内の隙間と弁本体10上部の空間とを連通している。また、弁本体10には、ネジ筒11に隣接してストッパ12が植設されている。
【0011】
次に、弁本体10の上部に取り付けられる弁体駆動部20について説明する。弁体駆動部20は、ステータコイル22、モータハウジング21、ロータ23、スリーブ24等からなり、弁本体10の上面に一体に溶着されるキャン29の外面にステータコイル22がボビンに捲き回されて配置され、モータハウジング21に覆われており、上記キャン29の内部にはロータ23及びロータ23と一体のスリーブ24が配置される。そして、スリーブ24の内周面には雌ネジが形成され、該雌ネジは上記のネジ筒11外周の雄ネジと噛み合っている。
なお、スリーブ24に対してロータ23はその上部から平バネ25によって押圧されていると共に、平バネ25は止め輪26によってスリーブ24に一体化されている。また、スリーブ24の下部にはストッパ28が下方に向けて設けられ、弁本体10側に植設されたストッパ12と係合するようになっている。
【0012】
また、スリーブ24の中心部の孔部には、弁体34と一体の弁棒30が挿通され、該弁棒30の上部はスリーブ24の上部に回転可能に嵌合されている。また、弁棒30の上端部にはカラー27が設けられ、スリーブ24に対して下方向にバネ荷重を受けている弁棒30を一体に構成している。更に、スリーブ24の中心部の孔部内において、スリーブ24の上端内壁に配置されたリング状のバネ押え32'と弁棒30の段部に配置されているリング状のバネ押え32との間に上バネ31が介装されており、所定圧で弁棒30を下方に押圧している。この結果、上バネ31は弁体34を前記所定圧でシート材40に押し付けていることになる。
【0013】
次に、弁シート40について説明する。
弁シート40は、特に図2に示されるように、全体として筒状に形成され、その中心部には弁シート孔40aが形成されている。そして、弁シート40の上端部は、上記弁シート装着孔9内に配置可能な外径の第1流体圧受部41が形成されると共に、その下部は第1流体圧受部41の径よりも大きい第2流体圧受部42として形成され、この第2流体圧受部42が径小部7aの内面に摺接するように形成されている。
前記弁シート40は、下バネ43によって弁シート装着孔9の方向に弾持されている。なお、下バネ43は、第2の通路7内に配置される下バネ押え44に支持されている。また、下バネ押え44の中心部には通孔45が穿設されている。
【0014】
上記構成により、この電気式膨張弁を冷凍サイクル中に配置すると、下記のような作用がある。
先ず、第1の出入口3から第2の出入口6の方向に冷媒が流動している場合は、該冷媒は第1の出入口3、第1の通路4、弁室8、第2の通路7及び第2の出入口6を順次流動することになる。この間、弁体駆動部20への通電によって弁棒30が一定の位置まで上動している。この弁棒30の上動により、弁室8に配置されている弁体34は弁シート40から一定距離離れているから、冷媒はこの隙間を通過して膨張し、その後、第2の通路7及び第2の出入口6を通って室内熱交換器に流れることになる。
【0015】
この間、膨張の程度(冷凍サイクルでは、冷房の強弱)を変更する時には、弁体駆動部20に所定パルスの電流を印加することで、ロータ23及びこれと一体のスリーブ24が回転し、該スリーブ24内周の雌ねじとネジ筒11外周の雄ネジとが噛み合っているから、スリーブ24は回転しながらネジ筒11に対して上下動することになる。スリーブ24の上下動は、その分弁棒30を上下動させて冷媒の通過量を調整させる。
このような動作中において、第1の通路4内の冷媒圧が所定圧よりも高くなったときは、冷媒圧は、弁室8の底部を構成する第1流体圧受部41に作用し、該冷媒圧が下バネ43の弾力値よりも大きな値となったとき、弁シート40は下バネ43に抗して下動することになる。
【0016】
この時、弁シート装着孔9を通過した冷媒は、第2流体圧受部42に作用するが、受圧面積が広くなることにより、弁シート40は急激に大きな冷媒の圧力を受け、急速に下方に移動する。その結果、異常な冷媒圧に伴うトラブルは回避されることになる。この間、第1の出入口3から流れ込む冷媒の冷媒圧が所定値以下に戻ると、冷媒圧の降下に伴って弁シート40は所定圧以下の位置に復することになり、所定の膨張作用を行なうことになる。
【0017】
一方、第2の出入口6から第1の出入口3へ冷媒が流れる場合においては、弁体34は弁棒30を介して弁体駆動部20によりその位置、すなわち開度が設定され、その開度において冷媒は流動することになる。
この間、冷媒に所定値以上の冷媒圧が発生したときは、その冷媒圧が弁シート孔40aから弁体34の下端部に作用し、その圧力によって弁体34は上バネ31に抗して上動し、その結果、その隙間から冷媒は第1の出入口3側に流動することになる。この間、第2の出入口6からの冷媒の圧力が低下すれば弁体34は上バネ31の弾発力により元の位置に復し所定の開度となる。
以上のように本実施例1によれば、可逆式の電気式膨張弁において、冷媒の流れがいずれの方向であっても所定値以上の冷媒圧に対しては、素早く作動するリリーフ作用を付与したことで安全性の高い電気式膨張弁とすることができる。
【0018】
【実施例2】
次に実施例2について説明する。
図3は実施例2の縦断面図、図4(A)は実施例2の要部平面図、図4(B)は図4(A)のD−D線断面図、及び、図4(C)はその要部側面図である。実施例2において、弁体駆動部20の構成、弁棒30及び弁体34の構成については、実施例1と同じであるので、図面に同一符号をつけることで説明を省略する。
実施例2にかかる電気式膨張弁は、ブロック本体1'と、ブロック本体1'に付設された弁体駆動部20とからなる。
まず、ブロック本体1'について説明する。
ブロック本体1'は、図3に示すように、実施例1と同様に正面視略L字形で所定の前後幅のアルミニウム合金等からなるブロック体から構成されており、その上面1a'には、弁本体取付孔2が形成されると共に、その左側面1d'には第1の出入口3が設けられ、該第1の出入口3に連通して第1の通路4'が水平に穿設され、その端部は弁室8を形成している。また、該第1の通路4'内には、冷媒を濾過するためのストレナー5が配置されている。
さらに、ブロック本体1'の下面1b'には第2の出入口6が形成されると共に、第2の出入口6に連通して第2の通路7'が上面1a'に向けて形成され、その上部には径小部7a'が形成されていると共に、弁シート装着孔9'を介して弁室8に連通している。
【0019】
実施例2においては、弁シート40'は筒状に形成されると共に、その上部に弁体34の受け部が形成されている。そして、この弁シート40'は、弁シート装着孔9'に装着されており、ブロック本体1'に対して移動することはない。
また、ブロック本体1'の第1の通路4'の中途部にバイパス孔51が形成され、該バイパス孔51に連通させて横断面形状円形の制御弁孔52が下面1b'に達するまで形成され、該制御弁孔52の中途部からは横方向に制御弁副孔57が穿設され、第2の通路7'と合流し、更に、制御弁副孔57の右端はブロック本体1'の右側面1c'に開口すると共に、該開口部は蓋体56により閉止されている。また、制御弁孔52の上部は小径部52aとなっている。
【0020】
前記制御弁孔52には、流体圧制御弁50が配置される。該流体圧制御弁50としては、バイパス孔51に対向する位置に副弁体53が配置され、該副弁体53は、下バネ54によって上方すなわちバイパス孔51を「閉」とする方向に弾圧されている。なお、下バネ54の下方は下バネ押え55によって支持され、さらに、制御弁孔52の下部開口部は蓋体58によって閉止されている。
前記副弁体53には、バイパス孔51に当接する第1流体圧受部53a及び径大部から成る第2流体圧受部53cとが形成され、その中間部に肩部53bが形成されている。
【0021】
上記実施例2の作用について説明する。実施例2において、第1の出入口3から第2の出入口6の方向に冷媒が流れる場合には、冷媒は第1の出入口3、第1の通路4'、弁室8、弁シート孔40a'、第2の通路7'及び第2の出入口6を通過して流動するが、この間弁体駆動部20によって弁シート40'に対する弁体34の位置(開度)が設定され、所定の膨張作用が行なわれる。
【0022】
この間、第1の通路4'内の冷媒圧が所定値以上になると、バイパス孔51内の第1流体圧受部53aが冷媒の圧力により下方へ押圧され、さらに冷媒圧が肩部53b及び第2流体圧受部53cに作用して一挙にバイパス回路が形成されて高圧冷媒はバイパス孔51、制御弁孔52、制御弁副孔57及び第2の通路7'を通って第2の出入口6から流出する。
そして、第1の通路4'内の冷媒圧が低下したところでバイパス孔51は副弁体53によって閉止され、通常の状態、すなわち弁室8から弁シート40'を通過して膨張作用が行なわれる。
【0023】
また逆に、高圧冷媒が第2の出入口6から第1の出入口3の方向に流れる場合は、実施例1と同様に、冷媒は弁シート40'と弁体34によって絞られて第1の通路4'を介して第1の出入口3から流出する。この間、第2の通路7'内の冷媒圧が所定以上になったときは、弁体34にその冷媒圧は作用するから、冷媒の圧力は弁棒30を上方に持ち上げることになり、弁体34と弁シート40'間の隙間が大きくなって冷媒は急速に流出する。なお、この間副弁体53はバイパス孔51に強く圧接されるからバイパス孔51が「開」となるようなことはない。
【0024】
以上のように、実施例2においても、ブロック本体1'に冷媒が正・逆の双方向に流動可能な2つの出入口3,6を設け、これら両方の出入口3,6間の冷媒通路に形成された弁室8の底部に弁シート装着孔9'を形成し、該弁シート装着孔9'に弁シート40'を設けると共に、電気式の弁体駆動部20による駆動により、前記弁シート40'に離接して流体通路を開閉する弁体34を設け、流体通路に所定圧以上の冷媒圧が作用したとき、冷媒が正・逆のいずれの方向の流れにおいても、上記該冷媒圧の荷重により流量を増大させること、即ち、第1の通路4'に連通してバイパス孔51を設け、第1の方向の所定圧以上の冷媒圧に対しては、上記バイパス孔51に付設されている流体圧制御弁50により、冷媒を速やかに流出させて所定値以下の冷媒圧とさせることができる。
【0025】
【発明の効果】
本発明は、上記構成により可逆式の電気式膨張弁において、冷媒の流れがいずれの方向でも所定以上の冷媒圧力に対してはそのリリーフ機能で冷媒を多く流すことによってサイクル内の異常高圧を回避することができる。しかも、その流体圧の冷媒を急速に排出させるようにしたから、冷凍サイクルの機能をさらに円滑にすることができる。
【図面の簡単な説明】
【図1】本発明に係る実施例1の縦断面図。
【図2】実施例1の要部平面図(A)、図2(A)のD−D線断面図(B)及び要部側面図(C)。
【図3】本発明に係る実施例2の縦断面図。
【図4】実施例2の要部平面図(A)、図4(A)のD−D線断面図(B)及び要部側面図(C)。
【符号の説明】
1,1’・・・ブロック本体 1a,1a’・・上面
1b,1b’・・下面 1c’・・右側面 1d,1d’・・左側面
2・・・弁本体取付孔 3・・・第1の出入口
4,4’・・・第1の通路 5・・・ストレナー 6・・・第2の出入口
7,7’・・・第2の通路 7a,7a’・・・径小部
8・・・弁室 9,9’・・・弁シート装着孔
10・・弁本体 11・・ネジ筒 12・・ストッパ
20・・弁体駆動部 21・・モータハウジング
22・・ステータコイル 23・・ロータ
24・・スリーブ 25・・平バネ 26・・止め輪
27・・カラー 28・・ストッパ 29・・キャン
30・・弁棒 31・・上バネ 32,32’・・バネ押え
33・・均圧孔 34・・弁体
40、40’・・弁シート 40a,40a’・・弁シート孔
41・・第1流体圧受部 42・・第2流体圧受部
43・・下バネ 44・・下バネ押え 45・・通孔
46a、46b・・平坦面
50・・流体圧制御弁 51・・バイパス孔 52・・制御弁孔
52a・・小径部 53・・副弁体 53a・・第1流体圧受部
53b・・肩部 53c・・第2流体圧受部 54・・下バネ
55・・下バネ押え 56・・蓋体 57・・制御弁副孔
58・・蓋体
59a、59b・・平坦面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric expansion valve used in a refrigeration cycle of an air conditioner.
[0002]
[Prior art]
In a refrigeration cycle such as an air conditioner, when a refrigerant pressure higher than a predetermined level is generated on an intervening expansion valve due to output fluctuation of the compressor, the expansion valve may be damaged. Conventionally, the means for dealing with this high refrigerant pressure has not always been sufficient.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to eliminate the above-mentioned problems of the prior art, and in an electric expansion valve used in a refrigerating cycle or the like of an air conditioner, when a refrigerant pressure higher than a predetermined level is generated, the refrigerant immediately below the predetermined pressure is generated. An object of the present invention is to provide an electric expansion valve that can be returned to pressure.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following means. That is,
The electric expansion valve according to claim 1 is provided with two inlets and outlets in which fluid can flow in both forward and reverse directions in the block main body, and the valve is formed at the bottom of the valve chamber formed in the fluid passage between both the inlets and outlets. A seat mounting hole is formed, a valve seat is provided in the valve seat mounting hole, and a valve body that opens and closes the fluid passage by being separated from and contacting the valve seat by an electric valve body driving unit is provided. The valve seat is elastically pressed to the valve seat side by an upper spring provided on the body, and the valve seat is mounted on the valve seat that is formed at the upper end of the valve seat hole that penetrates the central portion of the valve seat. More than the diameter of the first fluid pressure receiving portion formed through a first fluid pressure receiving portion having an outer diameter that can be inserted into the hole and a flat surface located opposite to the inclined portion at the lower portion of the first fluid pressure receiving portion. A large second fluid pressure receiving portion, and the valve seat is provided below the valve seat. Are repression at a predetermined pressure to the valve seat mounting bore by the lower springs, when the fluid pressure above a predetermined pressure to the fluid passageway acts, for the fluid pressure in the first direction, the valve seat under the spring The valve body moves against the fluid pressure in the second direction, and the valve body moves against the upper spring to increase the flow rate. ]
According to a second aspect of the present invention, there is provided an electric expansion valve having two inlets and outlets in which fluid can flow in both forward and reverse directions in the block body, and a valve at the bottom of a valve chamber formed in a fluid passage between both the inlets and outlets. A valve seat that forms a seat mounting hole, provides a valve seat in the valve seat mounting hole, and opens and closes the fluid passage by being electrically connected to the valve seat by an electric valve body driving unit, and a bypass that bypasses between the inlet and outlet provided the sub-valve body and the hole, at a position facing the bypass hole, the valve body is repression at a predetermined pressure to the valve seat side by the spring on which is provided in the valve body, the sub-valve element is conical A first fluid pressure receiving portion that is inserted into the bypass hole in a shape, a shoulder portion provided at a lower portion of the first fluid pressure receiving portion, and a large diameter provided via a flat surface opposed to the lower portion of the shoulder portion second fluid pressure receiving portion Toka Rannahli consisting parts, sub-valve body is in the lower part of the sub-valve body When the lower spring provided is elastically pressed to the bypass hole with a predetermined pressure, and the fluid pressure higher than the predetermined pressure acts on the fluid passage , the sub-valve element is moved to the lower spring against the fluid pressure in the first direction. The valve body moves against the upper spring to rapidly increase the flow rate, and the valve body moves against the upper spring to increase the flow rate against the fluid pressure in the second direction.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
Example 1 will be described below. 1 is a longitudinal cross-sectional view of the first embodiment, FIG. 2A is a plan view of the main part of the first embodiment, FIG. 2B is a cross-sectional view taken along the line DD of FIG. C) is a side view of the main part.
[0009]
The electric expansion valve according to the first embodiment includes a block main body 1 and a valve body driving unit 20 attached to the block main body 1. First, the block main body 1 will be described.
As shown in FIG. 1, the block main body 1 is composed of a block body made of an aluminum alloy or the like having a substantially L-shape in front view and a predetermined front and rear width, and a valve main body mounting hole 2 is formed on the upper surface 1a. In addition, a first inlet / outlet 3 is provided on the left side surface 1d, a first passage 4 is horizontally drilled in communication with the first inlet / outlet 3, and an end thereof forms a valve chamber 8. ing. Further, a strainer 5 for filtering the refrigerant is disposed in the first passage 4.
Further, a second entrance / exit 6 is formed in the lower surface 1b of the block body 1, and a second passage 7 is formed in communication with the second entrance / exit 6 toward the upper surface 1a. A portion 7 a is formed and communicates with the valve chamber 8 through the valve seat mounting hole 9.
[0010]
The valve main body 10 is attached to the valve main body attachment hole 2 via a sealing material, for example, a gasket (not shown). A screw cylinder 11 is provided at the center of the upper part. A male screw is formed on the outer periphery of the screw cylinder 11, and a pressure equalizing hole 33 is formed in the lower part thereof to communicate the gap in the screw cylinder 11 with the space above the valve body 10. Further, a stopper 12 is implanted in the valve body 10 adjacent to the screw cylinder 11.
[0011]
Next, the valve body drive part 20 attached to the upper part of the valve main body 10 is demonstrated. The valve body drive unit 20 includes a stator coil 22, a motor housing 21, a rotor 23, a sleeve 24, and the like. The stator coil 22 is wound around a bobbin on the outer surface of a can 29 that is integrally welded to the upper surface of the valve body 10. The rotor 23 and the sleeve 24 integral with the rotor 23 are disposed inside the can 29. A female screw is formed on the inner peripheral surface of the sleeve 24, and the female screw meshes with the male screw on the outer periphery of the screw cylinder 11.
The rotor 23 is pressed against the sleeve 24 from above by a flat spring 25, and the flat spring 25 is integrated with the sleeve 24 by a retaining ring 26. Further, a stopper 28 is provided at the lower portion of the sleeve 24 so as to face downward, and engages with the stopper 12 planted on the valve body 10 side.
[0012]
Further, a valve rod 30 integral with the valve body 34 is inserted into the hole at the center of the sleeve 24, and the upper portion of the valve rod 30 is rotatably fitted to the upper portion of the sleeve 24. Further, a collar 27 is provided at the upper end of the valve stem 30, and the valve stem 30 receiving a spring load downward with respect to the sleeve 24 is integrally formed. Further, in the hole at the center of the sleeve 24, it is between the ring-shaped spring retainer 32 ′ disposed on the inner wall at the upper end of the sleeve 24 and the ring-shaped spring retainer 32 disposed on the step portion of the valve stem 30. An upper spring 31 is interposed to press the valve rod 30 downward with a predetermined pressure. As a result, the upper spring 31 presses the valve body 34 against the sheet material 40 with the predetermined pressure.
[0013]
Next, the valve seat 40 will be described.
As shown in FIG. 2 in particular, the valve seat 40 is formed in a cylindrical shape as a whole, and a valve seat hole 40a is formed at the center thereof. The upper end portion of the valve seat 40 is formed with a first fluid pressure receiving portion 41 having an outer diameter that can be disposed in the valve seat mounting hole 9, and a lower portion thereof is larger than the diameter of the first fluid pressure receiving portion 41. The second fluid pressure receiving portion 42 is formed so that the second fluid pressure receiving portion 42 is in sliding contact with the inner surface of the small diameter portion 7a.
The valve seat 40 is elastically held in the direction of the valve seat mounting hole 9 by a lower spring 43. The lower spring 43 is supported by a lower spring presser 44 disposed in the second passage 7. A through hole 45 is formed in the center of the lower spring retainer 44.
[0014]
When the electric expansion valve is arranged in the refrigeration cycle with the above configuration, the following effects are obtained.
First, when the refrigerant flows in the direction from the first inlet / outlet 3 to the second inlet / outlet 6, the refrigerant passes through the first inlet / outlet 3, the first passage 4, the valve chamber 8, the second passage 7, and the like. The second inlet / outlet 6 will flow sequentially. During this time, the valve rod 30 is moved up to a certain position by energization of the valve body drive unit 20. Due to the upward movement of the valve rod 30, the valve element 34 arranged in the valve chamber 8 is separated from the valve seat 40 by a certain distance, so that the refrigerant expands through this gap, and then the second passage 7. And it flows through the 2nd entrance / exit 6 to an indoor heat exchanger.
[0015]
During this time, when the degree of expansion (in the refrigeration cycle, the strength of cooling) is changed, the rotor 23 and the sleeve 24 integrated therewith are rotated by applying a predetermined pulse current to the valve body drive unit 20, and the sleeve Since the internal thread 24 and the external thread on the outer periphery of the screw cylinder 11 mesh with each other, the sleeve 24 moves up and down with respect to the screw cylinder 11 while rotating. When the sleeve 24 moves up and down, the valve rod 30 is moved up and down to adjust the passage amount of the refrigerant.
During such operation, when the refrigerant pressure in the first passage 4 becomes higher than a predetermined pressure, the refrigerant pressure acts on the first fluid pressure receiving portion 41 constituting the bottom portion of the valve chamber 8, When the refrigerant pressure becomes larger than the elasticity value of the lower spring 43, the valve seat 40 moves downward against the lower spring 43.
[0016]
At this time, the refrigerant that has passed through the valve seat mounting hole 9 acts on the second fluid pressure receiving portion 42. However, the pressure receiving area is widened, so that the valve seat 40 is suddenly subjected to a large refrigerant pressure and rapidly decreases downward. Moving. As a result, troubles associated with abnormal refrigerant pressure are avoided. During this time, when the refrigerant pressure of the refrigerant flowing from the first inlet / outlet 3 returns to a predetermined value or less, the valve seat 40 returns to a position below the predetermined pressure as the refrigerant pressure decreases, and performs a predetermined expansion action. It will be.
[0017]
On the other hand, when the refrigerant flows from the second inlet / outlet 6 to the first inlet / outlet 3, the valve body 34 is set in its position, that is, the opening degree by the valve body driving unit 20 via the valve rod 30, and the opening degree In this case, the refrigerant flows.
During this time, when a refrigerant pressure higher than a predetermined value is generated in the refrigerant, the refrigerant pressure acts on the lower end portion of the valve body 34 from the valve seat hole 40a, and the valve body 34 rises against the upper spring 31 by the pressure. As a result, the refrigerant flows from the gap to the first inlet / outlet 3 side. During this time, if the pressure of the refrigerant from the second inlet / outlet 6 decreases, the valve element 34 is restored to the original position by the elastic force of the upper spring 31 and has a predetermined opening.
As described above, according to the first embodiment, in the reversible electric expansion valve, a relief action that operates quickly is applied to a refrigerant pressure higher than a predetermined value regardless of the direction of the refrigerant flow. As a result, a highly safe electric expansion valve can be obtained.
[0018]
[Example 2]
Next, Example 2 will be described.
3 is a longitudinal sectional view of the second embodiment, FIG. 4 (A) is a plan view of the main part of the second embodiment, FIG. 4 (B) is a sectional view taken along the line DD in FIG. 4 (A), and FIG. C) is a side view of the main part. In the second embodiment, the configuration of the valve body driving unit 20 and the configurations of the valve stem 30 and the valve body 34 are the same as those in the first embodiment, and therefore, the description thereof is omitted by attaching the same reference numerals to the drawings.
The electric expansion valve according to the second embodiment includes a block main body 1 ′ and a valve body drive unit 20 attached to the block main body 1 ′.
First, the block body 1 ′ will be described.
As shown in FIG. 3, the block body 1 ′ is composed of a block body made of an aluminum alloy or the like having a substantially L-shape in a front view and a predetermined front and rear width as in the first embodiment. A valve body mounting hole 2 is formed, and a first inlet / outlet 3 is provided on the left side surface 1d ′, and a first passage 4 ′ is horizontally drilled in communication with the first inlet / outlet 3, Its end forms a valve chamber 8. Further, a strainer 5 for filtering the refrigerant is disposed in the first passage 4 '.
Further, a second entrance / exit 6 is formed on the lower surface 1b ′ of the block main body 1 ′, and a second passage 7 ′ is formed in communication with the second entrance / exit 6 toward the upper surface 1a ′. Is formed with a small-diameter portion 7a 'and communicates with the valve chamber 8 through a valve seat mounting hole 9'.
[0019]
In the second embodiment, the valve seat 40 'is formed in a cylindrical shape, and a receiving portion for the valve body 34 is formed on the upper portion thereof. The valve seat 40 'is mounted in the valve seat mounting hole 9' and does not move relative to the block body 1 '.
Further, a bypass hole 51 is formed in the middle of the first passage 4 ′ of the block body 1 ′, and is formed until the control valve hole 52 having a circular cross-sectional shape communicates with the bypass hole 51 and reaches the lower surface 1b ′. A control valve auxiliary hole 57 is formed in the lateral direction from the middle of the control valve hole 52 to join the second passage 7 ', and the right end of the control valve auxiliary hole 57 is the right side of the block main body 1'. While opening in the surface 1 c ′, the opening is closed by a lid 56. The upper portion of the control valve hole 52 is a small diameter portion 52a.
[0020]
A fluid pressure control valve 50 is disposed in the control valve hole 52. As the fluid pressure control valve 50, a sub-valve element 53 is disposed at a position facing the bypass hole 51, and the sub-valve element 53 is elastically pressed upward by the lower spring 54, that is, in a direction to close the bypass hole 51. Has been. The lower part of the lower spring 54 is supported by a lower spring retainer 55, and the lower opening of the control valve hole 52 is closed by a lid 58.
The sub-valve body 53 is formed with a first fluid pressure receiving portion 53a that contacts the bypass hole 51 and a second fluid pressure receiving portion 53c having a large diameter portion, and a shoulder portion 53b is formed at an intermediate portion thereof.
[0021]
The operation of the second embodiment will be described. In the second embodiment, when the refrigerant flows from the first inlet / outlet 3 to the second inlet / outlet 6, the refrigerant is the first inlet / outlet 3, the first passage 4 ′, the valve chamber 8, and the valve seat hole 40 a ′. While passing through the second passage 7 'and the second inlet / outlet 6, the valve body drive unit 20 sets the position (opening) of the valve body 34 with respect to the valve seat 40' during this time, and a predetermined expansion action is performed. Is done.
[0022]
During this time, when the refrigerant pressure in the first passage 4 ′ becomes equal to or higher than a predetermined value, the first fluid pressure receiving portion 53 a in the bypass hole 51 is pressed downward by the pressure of the refrigerant, and the refrigerant pressure is further reduced to the shoulder portion 53 b and the second pressure. By acting on the fluid pressure receiving portion 53c, a bypass circuit is formed at once, and the high-pressure refrigerant flows out from the second inlet / outlet 6 through the bypass hole 51, the control valve hole 52, the control valve auxiliary hole 57, and the second passage 7 ′. To do.
Then, when the refrigerant pressure in the first passage 4 ′ is reduced, the bypass hole 51 is closed by the subvalve body 53, and the normal state, that is, the valve seat 8 ′ is passed through the valve seat 40 ′ to perform the expansion action. .
[0023]
Conversely, when the high-pressure refrigerant flows in the direction from the second inlet / outlet 6 to the first inlet / outlet 3, the refrigerant is throttled by the valve seat 40 ′ and the valve body 34, as in the first embodiment, and the first passage. It flows out from the 1st entrance / exit 3 via 4 '. During this time, when the refrigerant pressure in the second passage 7 ′ becomes equal to or higher than a predetermined value, the refrigerant pressure acts on the valve body 34, so the refrigerant pressure lifts the valve rod 30 upward, and the valve body The clearance between the valve 34 and the valve seat 40 'becomes large, and the refrigerant flows out rapidly. During this time, the sub valve body 53 is strongly pressed against the bypass hole 51, so that the bypass hole 51 is not "open".
[0024]
As described above, also in the second embodiment, the block main body 1 ′ is provided with the two inlets 3 and 6 that allow the refrigerant to flow in both forward and reverse directions, and is formed in the refrigerant passage between both the inlets and outlets 3 and 6. A valve seat mounting hole 9 ′ is formed at the bottom of the valve chamber 8, the valve seat 40 ′ is provided in the valve seat mounting hole 9 ′, and the valve seat 40 is driven by the electric valve body driving unit 20. A valve element 34 that opens and closes the fluid passage is opened and closed, and when a refrigerant pressure higher than a predetermined pressure is applied to the fluid passage, the load of the refrigerant pressure is applied regardless of whether the refrigerant flows in the forward or reverse direction. To increase the flow rate, that is, the bypass hole 51 is provided in communication with the first passage 4 ′, and the bypass hole 51 is attached to the refrigerant pressure higher than a predetermined pressure in the first direction. The fluid pressure control valve 50 allows the refrigerant to flow out quickly and below a predetermined value. It can be the refrigerant pressure.
[0025]
【The invention's effect】
According to the present invention, in the reversible electric expansion valve having the above-described configuration, an abnormal high pressure in the cycle is avoided by flowing a large amount of refrigerant with a relief function for a refrigerant pressure exceeding a predetermined value in any direction in the refrigerant flow. can do. And since the refrigerant | coolant of the fluid pressure was discharged rapidly, the function of a refrigerating cycle can be made still smoother.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a first embodiment according to the present invention.
FIG. 2 is a plan view (A) of a main part of the first embodiment, a cross-sectional view taken along a line DD in FIG. 2 (A), and a side view (C) of the main part.
FIG. 3 is a longitudinal sectional view of a second embodiment according to the present invention.
4 is a plan view (A) of a main part of a second embodiment, a cross-sectional view taken along the line DD of FIG. 4 (B), and a side view (C) of the main part.
[Explanation of symbols]
1, 1 '... Block body 1a, 1a' ... Upper surface 1b, 1b '... Lower surface 1c' ... Right side 1d, 1d '... Left side 2 ... Valve body mounting hole 3 ... No. 1 entrance 4, 4 '... first passage 5 ... strainer 6 ... second entrance 7, 7' ... second passage 7a, 7a '... small diameter portion 8 ..Valve chamber 9, 9 '... Valve seat mounting hole 10 ... Valve body 11 ... Screw cylinder 12 ... Stopper 20 ... Valve drive unit 21 ... Motor housing 22 ... Stator coil 23 ... Rotor 24 · · Sleeve 25 · · Flat spring 26 · · Retaining ring 27 · · Collar 28 · · Stopper 29 · · Can 30 · · Valve stem 31 · · Upper spring 32 · 32 '· · Spring retainer 33 · · Pressure equalizing hole 34 .. Valve body 40, 40 '... Valve seat 40a, 40a' ... Valve seat hole 41 ... First fluid pressure receiving part 42 ... Second Body pressure receiving portion 43 ... lower spring 44 .. under spring retainer 45 ... hole
46a, 46b ... Flat surface 50 ... Fluid pressure control valve 51 ... Bypass hole 52 ... Control valve hole 52a ... Small diameter part 53 ... Sub valve body 53a ... First fluid pressure receiving part 53b ... Shoulder part 53c ..Second fluid pressure receiving part 54..Lower spring 55..Lower spring retainer 56..Cover body 57..Control valve auxiliary hole 58..Cover body
59a, 59b ... Flat surface

Claims (2)

ブロック本体に流体が正・逆の双方向に流動可能な2つの出入口を設け、これら両方の出入口間の流体通路に形成された弁室の底部に弁シート装着孔を形成し、該弁シート装着孔に弁シートを設けると共に、電気式の弁体駆動部により前記弁シートに離接して流体通路を開閉する弁体を設け、
上記弁体は、弁体に設けられた上バネにより弁シート側に所定圧で弾圧されており、
上記弁シートは、その中心部を貫通する弁シート孔と、当該弁シートの上端部に形成された上記弁シート装着孔内に挿入可能な外径の第1流体圧受部と、第1流体圧受部の下部に傾斜部と対向的に位置する平坦面とを介して形成された第1流体圧受部の径よりも大きい第2流体圧受部とからなり、弁シートは弁シートの下部に設けられた下バネにより弁シート装着孔に所定圧で弾圧されており、
流体通路に所定圧以上の流体圧が作用した場合、第1の方向の上記流体圧に対しては、弁シートが下バネに抗して移動して流量を急速に増大させると共に、第2の方向の上記流体圧に対しては、弁体が上バネに抗して移動して流量を増大させることを特徴とする電気式膨張弁。
The block body is provided with two inlets / outlets through which fluid can flow in both forward and reverse directions, and a valve seat mounting hole is formed at the bottom of the valve chamber formed in the fluid passage between both the inlets and outlets. Provided with a valve seat in the hole, and provided with a valve body that opens and closes the fluid passage by being separated from the valve seat by an electric valve body drive unit,
The valve body is elastically pressed at a predetermined pressure on the valve seat side by an upper spring provided on the valve body,
The valve seat includes a valve seat hole penetrating through a central portion thereof, a first fluid pressure receiving portion having an outer diameter that can be inserted into the valve seat mounting hole formed at an upper end portion of the valve seat, and a first fluid pressure receiving portion. A second fluid pressure receiving portion larger than the diameter of the first fluid pressure receiving portion formed through a flat surface opposite to the inclined portion at the lower portion of the portion, and the valve seat is provided at the lower portion of the valve seat Is pressed down to the valve seat mounting hole with a predetermined pressure by the lower spring,
If the fluid pressure above a predetermined pressure to the fluid passage is applied, for the fluid pressure in the first direction, the valve seat causes increasing rapidly the flow rate moves against the lower spring, the second An electrical expansion valve, wherein the valve body moves against the upper spring to increase the flow rate against the fluid pressure in the direction.
ブロック本体に流体が正・逆の双方向に流動可能な2つの出入口を設け、これら両方の出入口間の流体通路に形成された弁室の底部に弁シート装着孔を形成し、該弁シート装着孔に弁シートを設けると共に、電気式の弁体駆動部により前記弁シートに離接して流体通路を開閉する弁体と、前記出入口間をバイパスするバイパス孔と、バイパス孔に対向する位置に副弁体とを設け、
上記弁体は、弁体に設けられた上バネにより弁シート側に所定圧で弾圧されており、
上記副弁体は、円錐形状でバイパス孔に挿入する第1流体圧受部と、該第1流体圧受部の下部に設けられた肩部と、該肩部の下部に対向的に位置する平坦面を介して設けられる径大部から成る第2流体圧受部とからなり、副弁体は副弁体の下部に設けられた下バネによりバイパス孔に所定圧で弾圧されており、
流体通路に所定圧以上の流体圧が作用した場合、第1の方向の上記流体圧に対しては、副弁体が下バネに抗して移動して流量を急速に増大させると共に、第2の方向の上記流体圧に対しては、弁体が上バネに抗して移動して流量を増大させることを特徴とする電気式膨張弁。
The block body is provided with two inlets / outlets through which fluid can flow in both forward and reverse directions, and a valve seat mounting hole is formed at the bottom of the valve chamber formed in the fluid passage between both the inlets and outlets. A valve seat is provided in the hole, and a valve body that opens and closes the fluid passage by being brought into contact with the valve seat by an electric valve body driving unit, a bypass hole that bypasses between the inlet and the outlet, and a position that faces the bypass hole. A valve body,
The valve body is elastically pressed at a predetermined pressure on the valve seat side by an upper spring provided on the valve body,
The sub-valve has a first fluid pressure receiving portion inserted into the bypass hole in a conical shape, a shoulder portion provided at a lower portion of the first fluid pressure receiving portion, and a flat surface positioned opposite to the lower portion of the shoulder portion second fluid pressure receiving portion Toka Rannahli consisting large diameter portion which is provided via a sub-valve body is repression at a predetermined pressure to the bypass hole by the lower spring provided in the lower portion of the sub-valve body,
When a fluid pressure higher than a predetermined pressure is applied to the fluid passage , the sub-valve element moves against the lower spring to rapidly increase the flow rate against the fluid pressure in the first direction, and the second An electrical expansion valve characterized in that the valve body moves against the upper spring to increase the flow rate against the fluid pressure in the direction of.
JP2002255692A 2002-08-30 2002-08-30 Electric expansion valve Expired - Fee Related JP4116371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255692A JP4116371B2 (en) 2002-08-30 2002-08-30 Electric expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255692A JP4116371B2 (en) 2002-08-30 2002-08-30 Electric expansion valve

Publications (2)

Publication Number Publication Date
JP2004093022A JP2004093022A (en) 2004-03-25
JP4116371B2 true JP4116371B2 (en) 2008-07-09

Family

ID=32061153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255692A Expired - Fee Related JP4116371B2 (en) 2002-08-30 2002-08-30 Electric expansion valve

Country Status (1)

Country Link
JP (1) JP4116371B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325888A (en) * 2004-05-13 2005-11-24 Fuji Koki Corp Motor operated valve
JP2006199183A (en) * 2005-01-21 2006-08-03 Tgk Co Ltd Expansion device
JP4881137B2 (en) * 2006-11-24 2012-02-22 株式会社不二工機 Flow control valve and refrigeration cycle
JP2013221640A (en) * 2012-04-13 2013-10-28 Daikin Industries Ltd Air conditioner
CN103032204B (en) * 2012-12-12 2016-05-18 中国航天科技集团公司第六研究院第十一研究所 A kind of non-electric detonating formula Redundant Control electric detonation isolating valve
JP6174314B2 (en) * 2012-12-14 2017-08-02 シャープ株式会社 Refrigeration system equipment
CN113719646A (en) * 2020-05-12 2021-11-30 盾安环境技术有限公司 Flow control device and air conditioning system with same

Also Published As

Publication number Publication date
JP2004093022A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
KR20180004044A (en) Control valve for variable displacement compressor
KR102139095B1 (en) Electronic expansion valve
CN106168304B (en) Electric valve
JP4116371B2 (en) Electric expansion valve
JP2004340560A (en) Composite valve
DE69815015T2 (en) Thermostatic expansion valve with integrated, electrically operated inlet valve
CN206917826U (en) The cylinder head assembly for including the cylinder head with integral valve plate of reciprocating compressor
JP2004093028A (en) Electric expansion valve
US20090032750A1 (en) Control valve for variable capacity compressors
DE69910295T2 (en) Swash plate compressor with either constant and variable displacement
EP1382922A3 (en) Constant flow rate expansion valve
JP2007085489A (en) Pressure control valve
EP1659320A1 (en) Valve device
EP1411243B1 (en) Capacity control valve for variable displacement compressor
JP4077205B2 (en) Bidirectional solenoid valve and air conditioner
JPS6338697A (en) Rotary compressor
JP4043076B2 (en) Flow control valve
WO2003085261A1 (en) Variable displacement compressor
JP4503471B2 (en) Expansion valve with integrated solenoid valve
JP2001066020A (en) Electromagnetic flow rate control valve
JPS62147181A (en) Solenoid proportional type pressure control valve
JP4109042B2 (en) 3-way selector valve
CN214743672U (en) Electric valve and refrigeration cycle system
JP3406525B2 (en) Motorized valve
JP3981274B2 (en) Four-way valve

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4116371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees