JP4115727B2 - Power supply voltage detection circuit - Google Patents

Power supply voltage detection circuit Download PDF

Info

Publication number
JP4115727B2
JP4115727B2 JP2002083004A JP2002083004A JP4115727B2 JP 4115727 B2 JP4115727 B2 JP 4115727B2 JP 2002083004 A JP2002083004 A JP 2002083004A JP 2002083004 A JP2002083004 A JP 2002083004A JP 4115727 B2 JP4115727 B2 JP 4115727B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
output
power supply
latch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002083004A
Other languages
Japanese (ja)
Other versions
JP2003279603A5 (en
JP2003279603A (en
Inventor
雅士 下鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2002083004A priority Critical patent/JP4115727B2/en
Publication of JP2003279603A publication Critical patent/JP2003279603A/en
Publication of JP2003279603A5 publication Critical patent/JP2003279603A5/ja
Application granted granted Critical
Publication of JP4115727B2 publication Critical patent/JP4115727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電源電圧検出回路、更に詳しくは一次電池あるいは二次電池を電源電圧として動作する電子時計等の小型携帯機器に用いるのに適した電源電圧検出回路に関するものである。
【0002】
【従来の技術】
従来より、一次電池あるいは二次電池を電源電圧として動作する電子時計等の小型携帯機器では電源電圧の低下による誤動作を防ぐために電源電圧検出回路を搭載している。
図8は従来の電源電圧検出回路の一例の構成を示す図である。
従来の電源電圧検出回路は図8に示すように、電源電圧が判定電圧よりも高いとハイレベルを出力する電圧判定回路801とクロック信号の立ち上がりに同期してデータをラッチするラッチ回路802と、インバータ803とを有している。
【0003】
図8において、電圧判定回路801の入力端子とインバータ803の入力端子とイネーブル信号810とを接続し、インバータ803の出力端子とラッチ回路802のクロック入力端子Cとを接続し、電圧判定出力823と電圧判定回路801の出力端子とラッチ回路802のデータ入力端子Dとを接続し、ラッチ回路802のリセット入力端子Rとリセット信号811とを接続してラッチ回路802のラッチ出力812を電源電圧検出回路の出力信号として構成している。
【0004】
図9は従来の電源電圧検出回路の動作を示すタイミングチャートであり、電源電圧が電源電検出圧回路の判定電圧よりも高い場合の例である。
【0005】
図9においてイネーブル信号810はハイレベルの期間電源電圧検出回路の動作を許可する制御信号である。
イネーブル信号810がハイレベルになると電圧判定回路が動作を開始して電圧判定回路の出力遅延時間だけ遅れて電圧判定出力823はハイレベルになり、その後でイネーブル信号810をローレベルにするとイネーブル信号810の立下りに同期して電圧判定出力823をラッチしてラッチ出力812はハイレベルになり、電圧判定回路の出力遅延時間だけ遅れて電圧判定出力823はローレベルになるがラッチ出力812はハイレベルを維持する。
なお、以上の動作の際に、イネーブル信号810は、動作温度範囲、動作電圧範囲で確実に電圧判定出力823が出力されるだけの充分な時間ハイレベルにしておく必要がある。
以上の動作により、電源電圧が判定電圧以上であるかどうかをラッチ出力である電圧検出信号812のレベルで判定することができる。
【0006】
【発明が解決しようとする課題】
しかしながら従来の電源電圧検出回路ではイネーブル信号810は、動作温度範囲、動作電圧範囲で確実に電圧判定出力812が出力されるだけの充分な時間ハイレベルにしておく必要があるために、電圧判定出力812がすみやかに出力される条件においても図8における電圧判定回路801を長い期間動作させることにより多大な消費電力を費やしていた。
そこで本発明は、上記課題を解決して電源電圧検出回路の消費電力を低減することを目的としたものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る電源電圧検出回路は、判定電圧と電源電圧とを比較して、その比較結果に基づいて電圧信号を出力する電圧判定回路と、電圧判定回路が出力した電圧信号を保持して出力するラッチ回路部と、ラッチ回路部から比較結果をフィードバックされる動作制御部と、を具備する電源電圧検出回路であって、
ラッチ回路部第一のラッチ回路と第二のラッチ回路とを有してなり、第一のラッチ回路は、電圧判定回路と第二のラッチ回路との間に接続され、入力された電圧判定回路の出力を保持して第二のラッチ回路に出力および動作制御部にフィードバックし、動作制御部は、電圧判定回路を動作させる信号が入力されると電圧判定回路を非動作状態から動作状態に切り換える制御を行い、フィードバックされた信号が変化すると、電圧判定回路を非動作状態にし、電圧判定回路を非動作にする信号が入力されると、第一のラッチ回路をリセットし、第二のラッチ回路に第一のラッチ回路の出力を保持させ、電圧判定回路を動作状態から非動作状態にすることを特徴としている。
【0008】
上記発明において、第一のラッチ回路は、回路動作を開始するための信号を入力するクロック入力端子を有し、前記電圧判定回路の出力を前記クロック入力端子に入力し、該出力の変化に基づいて回路動作を開始し、該出力を保持することを特徴としている。
【0010】
【発明の実施の形態】
本発明の実施の形態は、イネーブル信号を入力し、電圧判定回路で電源電圧を判定した後に入出力制御回路で電圧検出信号を出力してなる電源電圧検出回路であって、前記入出力制御回路は動作制御部とラッチ回路部よりなり、前記電源電圧判定回路は電源電圧と判定電圧とを比較した結果を前記ラッチ回路に出力してなることを特徴としている。前記イネーブル信号に従って電圧判定回路が動作を開始し、電圧判定回路の出力が変化することを入出力制御回路が判断して電圧判定回路の動作を終了させる。
【0011】
(第一実施例)
以下、図面を参照して本発明の実施例について説明する。
図1は本発明の第一実施例に係る電源電圧検出回路の構成を示す図である。
図1において、動作制御部130と、第一のラッチ回路102と第二のラッチ回路103からなるラッチ回路部とで入出力制御回路を構成する。また、前記動作制御部130は、電圧判定回路101の動作非動作を制御するようにインバータ104とノアゲート105とで構成する。
【0012】
イネーブル信号110とインバータ104の入力端子とを接続し、イネーブル信号110の反転信号121はノアゲート105の第一の入力端子と第一のラッチ回路102のリセット端子Rと第二のラッチ回路103のクロック端子Cとに接続し、電圧判定回路101の入力信号122はノアゲート105の出力端子と電圧判定回路101の入力端子とに接続する。
【0013】
電圧判定出力123は電圧判定回路101の出力端子と第一のラッチ回路102のクロック入力端子Cに接続し、第一のラッチ回路102のデータ入力端子Dと電源電圧VCCとを接続し、第一のラッチ回路102の出力信号120と第一のラッチ回路102の出力端子Qと第二のラッチ回路103のデータ入力端子Dとノアゲート105の第二の入力端子とを接続し、リセット信号111と第二のラッチ回路103のリセット端子Rとを接続することにより第二のラッチ回路103のラッチ出力112を本発明の第一実施例に係る電源電圧検出回路の出力信号とする。リセット信号111はリセット信号111がハイレベルの期間に第二のラッチ回路103のラッチ出力112をローレベルにリセットする信号で、出力の初期化時以外はリセット信号111はローレベルに固定する。
【0014】
図2は図1に示した電源電圧検出回路を構成する電圧判定回路101の一例を示す回路図である。
図2において、イネーブル信号210とインバータ208の入力端子とを接続しイネーブル信号210の反転信号221とインバータ208の出力端子とソースを電源電圧VCCと接続したPチャネル電界効果トランジスタ(以下PMOSと記す)205のゲート端子とソースを接地電圧VSSと接続したNチャネル電界効果トランジスタ(以下NMOSと記す)206のゲート端子とを接続する。
【0015】
第一の抵抗201の第一の端子と第一の端子を接地電圧VSSに接続する第二の抵抗202の第二の端子とコンパレータ203の正入力端子と電源電圧分割電圧VR220とを接続する。前記第一の抵抗201と第二の抵抗202とで抵抗分割回路を構成する。
【0016】
コンパレータ203のマイナス電源端子には接地電圧VSSを供給し、コンパレータ203の負入力端子と定電圧回路230の出力である基準電圧REF211とを接続する。コンパレータ203の出力端子とNMOS206のドレインとを接続し電圧判定回路の出力端子212とする。NMOS206とコンパレータ203とで電圧比較回路を構成する。
【0017】
PMOS205のドレインは、定電圧回路230のプラス電源端子と接続して定電圧回路230に電源を供給し、且つ第一の抵抗201の第二の端子と接続し抵抗分割回路に電源を供給し、且つコンパレータ203のプラス電源端子と接続し電圧比較回路に電源を供給する。前記PMOS205は、定電圧回路230および抵抗分割回路および電圧比較回路への電源供給あるいは電源遮断を制御するスイッチ回路とする。
【0018】
次に図2の電圧判定回路の動作について説明する。
イネーブル信号210がローレベルの期間は、PMOS205がオフとなることで定電圧回路230および抵抗分割回路および電圧比較回路には電源が供給されず低消費電力となり、且つNMOS206がオンとなることで電圧判定回路の出力端子212はローレベルに固定される。
【0019】
イネーブル信号210がハイレベルの期間は、PMOS205がオンとなることで定電圧回路230および抵抗分割回路および電圧比較回路に電源が供給され、定電圧回路230の出力である基準電圧REF211は設定した定電圧を出力し、電源電圧分割電圧VR220は電源電圧を第一の抵抗201と第二の抵抗202とで抵抗分割した電圧を出力し、且つNMOS206がオフとなることで電圧判定回路の出力端子212は電源電圧が判定電圧よりも高ければハイレベル、電源電圧が判定電圧よりも低ければローレベルを出力する。
【0020】
ここで、基準電圧REF211と電源電圧分割電圧VR220と判定電圧との関係は、第一の抵抗201の抵抗値をR1とし第二の抵抗202の抵抗値をR2とし判定電圧をVxとすると以下の関係式で示される。
Vx=REF×(R1/R2+1) ・・・ 式1
例えば、REF=1V、R1=5KΩ、R2=10KΩとした場合には判定電圧Vxは式1より1.5Vとなり、電源電圧が1.5Vよりも高ければ電圧判定回路の出力はハイレベル、電源電圧が1.5Vよりも低ければ電圧判定回路の出力はローレベルとなる。
【0021】
図3は本発明の第一実施例に係る電源電圧検出回路の動作を示すタイミングチャートであり、電源電圧が判定電圧よりも高い場合の例を示している。
図3において、最初にイネーブル信号110がローレベルの時は電圧判定回路は非動作となり電圧判定出力123、ラッチ1出力120、電圧判定入力122、及びラッチ2出力112はすべてローレベルである。次に、イネーブル信号110をハイレベルにして電源電圧検出回路を動作させると、電圧判定入力122はハイレベルとなり電圧判定回路が動作を開始し、電圧判定回路の出力遅延時間分遅れて電圧判定出力123がハイレベルになることでラッチ1出力120はハイレベルになり、ラッチ1出力120がハイレベルになることで電圧判定入力122がローレベルになり、電圧判定入力122がローレベルになることで電圧判定回路が非動作となり電圧判定出力123はローレベルに変化するが、ラッチ1出力120はハイレベルを維持する。
【0022】
電源電圧検出回路の動作温度範囲、動作電圧範囲で確実に電圧判定出力123が出力されるだけの充分な時間イネーブル信号110をハイレベルにした後で、イネーブル信号110をローレベルにするとラッチ2出力112がハイレベルになり、以後再びイネーブル信号110がハイレベルになり電源電圧検出回路を動作させるか第二のラッチ回路をリセット信号をハイレベルにして初期化するまでラッチ2出力112はハイレベルを維持する。前述の動作により電圧判定回路101は電圧判定入力122がハイレベルの期間しか動作しないのでイネーブル信号110のハイレベルの期間が長くても消費電力を低減することができる。
【0023】
上記説明のように本発明の電源電圧検出回路は電源電圧が判定電圧よりも高いことを検出すると速やかに電圧判定回路を非動作にするので電源電圧検出回路の消費電力を低減することが可能である。
【0024】
(第二実施例)
図4は本発明の第二実施例に係る電源電圧検出回路の構成を示す図である。
図4において、動作制御部430と、第一のラッチ回路402と第二のラッチ回路403と第三のラッチ回路404からなるラッチ回路部とで入出力制御回路を構成する。また、動作制御部430は、電圧判定回路401の動作非動作を制御するように、インバータ404とノアゲート405とで構成する。
【0025】
イネーブル信号410とインバータ404の入力端子とを接続し、イネーブル信号410の反転信号421はノアゲート405の第一の入力端子と第一のラッチ回路402のリセット端子Rと第三のラッチ回路404のリセット端子Rと第二のラッチ回路403のクロック端子Cとに接続し、電圧判定回路401の入力信号422はノアゲート405の出力端子と電圧判定回路401の入力端子とに接続する。
【0026】
電源電圧が判定電圧よりも高いと出力がハイレベルに変化する電圧判定正出力423は電圧判定回路401の正出力端子と第一のラッチ回路402のクロック入力端子Cに接続し、第一のラッチ回路402のデータ入力端子Dと電源電圧VCCとを接続し、第一のラッチ回路402の出力信号420と第一のラッチ回路402の出力端子Qと第二のラッチ回路403のデータ入力端子Dとノアゲート405の第二の入力端子とを接続する。電源電圧が判定電圧よりも高いと出力がローレベルに変化する電圧判定負出力424は電圧判定回路401の負出力端子と第三のラッチ回路404のクロック入力端子Cに接続し、第三のラッチ回路404のデータ入力端子Dと電源電圧VCCとを接続し、第三のラッチ回路404の出力信号425と第三のラッチ回路404の出力端子Qとノアゲート405の第三の入力端子とを接続する。
【0027】
リセット信号411と第二のラッチ回路403のリセット端子とを接続することにより第二のラッチ回路403のラッチ出力412を本発明の第二実施例に係る電源電圧検出回路の出力信号とする。リセット信号411はリセット信号411がハイレベルの期間に第二のラッチ回路403のラッチ出力412をローレベルにリセットする信号で、出力の初期化時以外はリセット信号411はローレベルに固定する。
【0028】
図5は図4に示した電源電圧検出回路を構成する電圧判定回路401の一例を示す回路図である。
図5において、イネーブル信号510とインバータ508の入力端子を接続しイネーブル信号510の反転信号521とインバータ508の出力端子とソースを電源電圧VCCと接続したPMOS505のゲート端子とソースを接地電圧VSSと接続した第一のNMOS506のゲート端子とソースを接地電圧VSSと接続した第二のNMOS507のゲート端子とを接続する。
【0029】
第一の抵抗501の第一の端子と第一の端子を接地電圧VSSに接続する第二の抵抗502の第二の端子と第一のコンパレータ503の正入力端子と第二のコンパレータ504の負入力端子と電源電圧分割電圧VR520とを接続する。第一の抵抗501と第二の抵抗502とで抵抗分割回路を構成する。
【0030】
第一のコンパレータ503のマイナス電源端子と第二のコンパレータ504のマイナス電源端子には接地電圧VSSを供給し、第一のコンパレータ503の負入力端子と第二のコンパレータ504の正入力端子と定電圧回路530の出力である基準電圧REF511とを接続する。第一のコンパレータ503の出力端子と第一のNMOS506のドレインとを接続し電圧判定回路の正出力端子512とし、第二のコンパレータ504の出力端子と第二のNMOS507のドレインとを接続し電圧判定回路の負出力端子513とする。第一のコンパレータ503と第一のNMOS506とで第一の電圧比較回路を構成し、第二のコンパレータ504と第二のNMOS507とで第二の電圧比較回路を構成する。
【0031】
PMOS505のドレインは、定電圧回路530のプラス電源端子と接続して定電圧回路530に電源を供給し、且つ第一の抵抗501の第二の端子と接続し抵抗分割回路に電源を供給し、且つコンパレータ503のプラス電源端子と接続し第一の電圧比較回路に電源を供給し、且つコンパレータ504のプラス電源端子と接続し第二の電圧比較回路に電源を供給する。
前記PMOS505は、定電圧回路530および抵抗分割回路および第一の電圧比較回路および第ニの電圧比較回路への電源供給あるいは電源遮断を制御するスイッチ回路とする。
【0032】
次に図5の電圧判定回路の動作について説明する。
イネーブル信号510がローレベルの期間は、PMOS505がオフとなることで定電圧回路530および抵抗分割回路および第一の電圧比較回路および第二の電圧比較回路には電源が供給されず低消費電力となり、且つNMOS506がオンとなることで電圧判定回路の正出力端子512はローレベルに固定され、且つNMOS507がオンとなることで電圧判定回路の負出力端子513はローレベルに固定される。
【0033】
イネーブル信号510がハイレベルの期間は、PMOS505がオンとなることで定電圧回路530および抵抗分割回路および第一の電圧比較回路および第二の電圧比較回路に電源が供給され、定電圧回路530の出力である基準電圧REF511は設定した定電圧を出力し、電源電圧分割電圧VR520は電源電圧を第一の抵抗501と第二の抵抗502とで抵抗分割した電圧を出力し、且つNMOS506がオフとなることで電圧判定回路の正出力端子512は電源電圧が判定電圧よりも高ければハイレベル、電源電圧が判定電圧よりも低ければローレベルを出力し、且つNMOS507がオフとなることで電圧判定回路の負出力端子513は電源電圧が判定電圧よりも高ければローレベル、電源電圧が判定電圧よりも低ければハイレベルを出力する。
【0034】
図6は本発明の第二実施例に係る電源電圧検出回路の第一の動作を示すタイミングチャートであり、電源電圧が判定電圧よりも高い場合の例を示している。
図6において、最初にイネーブル信号410がローレベルの時は電圧判定回路は非動作となり電圧判定正出力423、ラッチ1出力420、電圧判定負出力424、ラッチ3出力425、電圧判定入力422、及びラッチ2出力412はすべてローレベルである。次に、イネーブル信号410をハイレベルにして電源電圧検出回路を動作させると、電圧判定入力422はハイレベルとなり電圧判定回路が動作を開始し、電圧判定回路の出力遅延時間分遅れて電圧判定正出力423がハイレベルになることでラッチ1出力420はハイレベルになり、ラッチ1出力420がハイレベルになることで電圧判定入力422がローレベルになり、電圧判定入力422がローレベルになることで電圧判定回路が非動作となり電圧判定正出力423はローレベルに変化するが、ラッチ1出力420はハイレベルを維持する。
【0035】
電源電圧検出回路の動作温度範囲、動作電圧範囲で確実に電圧判定正出力423が出力されるだけの充分な時間イネーブル信号410をハイレベルにした後で、イネーブル信号410をローレベルにするとラッチ2出力412がハイレベルになり、以後再びイネーブル信号410がハイレベルになり電源電圧検出回路を動作させるか第二のラッチ回路をリセット信号をハイレベルにして初期化するまでラッチ2出力412はハイレベルを維持する。前記動作の期間中、電圧判定負出力424及びラッチ3出力425はローレベルを維持して変化しない。
前述の動作により電圧判定回路401は電圧判定入力422がハイレベルの期間しか動作しないのでイネーブル信号410のハイレベルの期間が長くても消費電力を低減することができる。
【0036】
図7は本発明の第二実施例に係る電源電圧検出回路の第二の動作を示すタイミングチャートであり、電源電圧が判定電圧よりも低い場合の例を示している。
図7において、最初にイネーブル信号410がローレベルの時は電圧判定回路は非動作となり電圧判定正出力423、ラッチ1出力420、電圧判定負出力424、ラッチ3出力425、電圧判定入力422、及びラッチ2出力412はすべてローレベルである。
【0037】
次に、イネーブル信号410をハイレベルにして電源電圧検出回路を動作させると、電圧判定入力422はハイレベルとなり電圧判定回路が動作を開始し、電圧判定回路の出力遅延時間分遅れて電圧判定負出力424がハイレベルになることでラッチ3出力425はハイレベルになり、ラッチ3出力425がハイレベルになることで電圧判定入力422がローレベルになり、電圧判定入力422がローレベルになることで電圧判定回路が非動作となり電圧判定負出力424はローレベルに変化するが、ラッチ3出力425はハイレベルを維持する。
【0038】
電源電圧検出回路の動作温度範囲、動作電圧範囲で確実に電圧判定負出力424が出力されるだけの充分な時間イネーブル信号410をハイレベルにした後で、イネーブル信号410をローレベルにするとラッチ2出力412はローレベルのまま変化しない。前記動作の期間中、電圧判定正出力423及びラッチ1出力420はローレベルを維持して変化しない。
前述の動作により電圧判定回路401は電圧判定入力422がハイレベルの期間しか動作しないのでイネーブル信号410のハイレベルの期間が長くても消費電力を低減することができる。
【0039】
上記説明のように本発明の電源電圧検出回路は電源電圧が判定電圧よりも高いことを検出すると速やかに電圧判定回路を非動作にし、また電源電圧が判定電圧よりも低いことを検出すると速やかに電圧判定回路を非動作にするので電源電圧検出回路の消費電力を低減することが可能である。
【0040】
【発明の効果】
以上説明したように、本発明の電源電圧検出回路では電圧判定出力が変化すると速やかに電圧判定回路を非動作とすることにより電源電圧検出回路の消費電力を低減することができる。
【図面の簡単な説明】
【図1】本発明の第一実施例に係る電源電圧検出回路の構成を示す図である。
【図2】図1に示した電源電圧検出回路を構成する電圧判定回路の回路図である。
【図3】本発明の第一実施例に係る電源電圧検出回路の動作を示すタイミングチャートである。
【図4】本発明の第二実施例に係る電源電圧検出回路の構成を示す図である。
【図5】図4に示した電源電圧検出回路を構成する電圧判定回路の回路図である。
【図6】本発明の第二実施例に係る電源電圧検出回路の第一の動作を示すタイミングチャートである。
【図7】本発明の第二実施例に係る電源電圧検出回路の第二の動作を示すタイミングチャートである。
【図8】従来の電源電圧検出回路の構成を示す図である。
【図9】従来の電源電圧検出回路の動作を示すタイミングチャートである。
【符号の説明】
101・・・電圧判定回路
130・・・動作制御部
102、103・・・ラッチ回路
201、202・・・抵抗
203・・・コンパレータ
230・・・定電圧回路
205・・・PMOS
206・・・NMOS
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply voltage detection circuit, and more particularly to a power supply voltage detection circuit suitable for use in a small portable device such as an electronic timepiece that operates using a primary battery or a secondary battery as a power supply voltage.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a small portable device such as an electronic timepiece that operates using a primary battery or a secondary battery as a power supply voltage has been equipped with a power supply voltage detection circuit to prevent malfunction due to a decrease in power supply voltage.
FIG. 8 is a diagram showing a configuration of an example of a conventional power supply voltage detection circuit.
As shown in FIG. 8, the conventional power supply voltage detection circuit includes a voltage determination circuit 801 that outputs a high level when the power supply voltage is higher than the determination voltage, and a latch circuit 802 that latches data in synchronization with the rising edge of the clock signal. And an inverter 803.
[0003]
In FIG. 8, the input terminal of the voltage determination circuit 801, the input terminal of the inverter 803, and the enable signal 810 are connected, the output terminal of the inverter 803 and the clock input terminal C of the latch circuit 802 are connected, and the voltage determination output 823 The output terminal of the voltage determination circuit 801 and the data input terminal D of the latch circuit 802 are connected, the reset input terminal R of the latch circuit 802 and the reset signal 811 are connected, and the latch output 812 of the latch circuit 802 is used as the power supply voltage detection circuit. Is configured as an output signal.
[0004]
FIG. 9 is a timing chart showing the operation of the conventional power supply voltage detection circuit, which is an example in which the power supply voltage is higher than the determination voltage of the power supply detection voltage circuit.
[0005]
In FIG. 9, an enable signal 810 is a control signal that permits the operation of the power supply voltage detection circuit during a high level period.
When the enable signal 810 becomes high level, the voltage determination circuit starts to operate, and the voltage determination output 823 becomes high level with a delay by the output delay time of the voltage determination circuit. Thereafter, when the enable signal 810 is changed to low level, the enable signal 810 The voltage determination output 823 is latched in synchronization with the falling edge of the signal, and the latch output 812 becomes high level. The voltage determination output 823 becomes low level after a delay of the output delay time of the voltage determination circuit, but the latch output 812 is high level. To maintain.
In the above operation, the enable signal 810 needs to be kept at a high level for a time sufficient to reliably output the voltage determination output 823 in the operating temperature range and the operating voltage range.
With the above operation, whether the power supply voltage is equal to or higher than the determination voltage can be determined based on the level of the voltage detection signal 812 that is a latch output.
[0006]
[Problems to be solved by the invention]
However, in the conventional power supply voltage detection circuit, the enable signal 810 needs to be kept at a high level for a time sufficient to reliably output the voltage determination output 812 in the operating temperature range and the operating voltage range. Even under the condition that 812 is output promptly, a large amount of power is consumed by operating the voltage determination circuit 801 in FIG. 8 for a long period of time.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above problems and reduce the power consumption of a power supply voltage detection circuit.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a power supply voltage detection circuit according to the present invention compares a determination voltage with a power supply voltage, and outputs a voltage signal based on the comparison result, and the voltage determination circuit outputs A power supply voltage detection circuit comprising: a latch circuit unit that holds and outputs the voltage signal, and an operation control unit that feeds back a comparison result from the latch circuit unit ;
The latch circuit unit includes a first latch circuit and a second latch circuit, and the first latch circuit is connected between the voltage determination circuit and the second latch circuit, and receives the input voltage. The output of the determination circuit is held and output to the second latch circuit and fed back to the operation control unit. When the signal for operating the voltage determination circuit is input , the operation control unit changes the voltage determination circuit from the non-operating state to the operating state. When the feedback signal changes, the voltage determination circuit is deactivated, and when the signal for deactivating the voltage determination circuit is input, the first latch circuit is reset, The output of the first latch circuit is held in the latch circuit, and the voltage determination circuit is changed from the operating state to the non-operating state .
[0008]
In the above invention, the first latch circuit has a clock input terminal for inputting a signal for starting a circuit operation, inputs the output of the voltage determination circuit to the clock input terminal, and based on the change in the output The circuit operation is started and the output is held .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention is a power supply voltage detection circuit in which an enable signal is input, a power supply voltage is determined by a voltage determination circuit, and then a voltage detection signal is output by an input / output control circuit. Comprises an operation control unit and a latch circuit unit, and the power supply voltage determination circuit outputs a result of comparing the power supply voltage and the determination voltage to the latch circuit. The voltage determination circuit starts to operate according to the enable signal, the input / output control circuit determines that the output of the voltage determination circuit changes, and the operation of the voltage determination circuit is terminated.
[0011]
(First Example)
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a power supply voltage detection circuit according to the first embodiment of the present invention.
In FIG. 1, an operation control unit 130 and a latch circuit unit including a first latch circuit 102 and a second latch circuit 103 constitute an input / output control circuit. The operation control unit 130 includes an inverter 104 and a NOR gate 105 so as to control the operation / non-operation of the voltage determination circuit 101.
[0012]
The enable signal 110 is connected to the input terminal of the inverter 104, and the inverted signal 121 of the enable signal 110 is the first input terminal of the NOR gate 105, the reset terminal R of the first latch circuit 102, and the clock of the second latch circuit 103. The input signal 122 of the voltage determination circuit 101 is connected to the terminal C, and is connected to the output terminal of the NOR gate 105 and the input terminal of the voltage determination circuit 101.
[0013]
The voltage determination output 123 is connected to the output terminal of the voltage determination circuit 101 and the clock input terminal C of the first latch circuit 102, and the data input terminal D of the first latch circuit 102 and the power supply voltage VCC are connected to each other. The output signal 120 of the latch circuit 102, the output terminal Q of the first latch circuit 102, the data input terminal D of the second latch circuit 103, and the second input terminal of the NOR gate 105 are connected, and the reset signal 111 By connecting the reset terminal R of the second latch circuit 103, the latch output 112 of the second latch circuit 103 is used as the output signal of the power supply voltage detection circuit according to the first embodiment of the present invention. The reset signal 111 is a signal that resets the latch output 112 of the second latch circuit 103 to a low level during a period in which the reset signal 111 is at a high level. The reset signal 111 is fixed to a low level except when the output is initialized.
[0014]
FIG. 2 is a circuit diagram showing an example of the voltage determination circuit 101 constituting the power supply voltage detection circuit shown in FIG.
In FIG. 2, a P-channel field effect transistor (hereinafter referred to as PMOS) in which the enable signal 210 and the input terminal of the inverter 208 are connected and the inverted signal 221 of the enable signal 210 and the output terminal and source of the inverter 208 are connected to the power supply voltage VCC. The gate terminal of 205 is connected to the gate terminal of an N-channel field effect transistor (hereinafter referred to as NMOS) 206 whose source is connected to the ground voltage VSS.
[0015]
The first terminal of the first resistor 201 is connected to the second terminal of the second resistor 202 that connects the first terminal to the ground voltage VSS, the positive input terminal of the comparator 203, and the power supply voltage divided voltage VR220. The first resistor 201 and the second resistor 202 constitute a resistance dividing circuit.
[0016]
The ground voltage VSS is supplied to the negative power supply terminal of the comparator 203, and the negative input terminal of the comparator 203 is connected to the reference voltage REF 211 that is the output of the constant voltage circuit 230. The output terminal of the comparator 203 and the drain of the NMOS 206 are connected to serve as the output terminal 212 of the voltage determination circuit. The NMOS 206 and the comparator 203 constitute a voltage comparison circuit.
[0017]
The drain of the PMOS 205 is connected to the positive power supply terminal of the constant voltage circuit 230 to supply power to the constant voltage circuit 230, and is connected to the second terminal of the first resistor 201 to supply power to the resistance dividing circuit. In addition, it is connected to the positive power supply terminal of the comparator 203 to supply power to the voltage comparison circuit. The PMOS 205 is a switch circuit that controls power supply or power supply cutoff to the constant voltage circuit 230, the resistor divider circuit, and the voltage comparison circuit.
[0018]
Next, the operation of the voltage determination circuit in FIG. 2 will be described.
During the period when the enable signal 210 is at a low level, the PMOS 205 is turned off, so that no power is supplied to the constant voltage circuit 230, the resistance dividing circuit, and the voltage comparison circuit, and the power consumption is reduced. The output terminal 212 of the determination circuit is fixed at a low level.
[0019]
During the period when the enable signal 210 is at a high level, the PMOS 205 is turned on to supply power to the constant voltage circuit 230, the resistor divider circuit, and the voltage comparison circuit, and the reference voltage REF211 that is the output of the constant voltage circuit 230 is set. The power supply voltage divided voltage VR220 outputs a voltage obtained by dividing the power supply voltage by the first resistor 201 and the second resistor 202, and when the NMOS 206 is turned off, the output terminal 212 of the voltage determination circuit. Outputs a high level if the power supply voltage is higher than the determination voltage, and outputs a low level if the power supply voltage is lower than the determination voltage.
[0020]
Here, the relationship among the reference voltage REF211, the power supply voltage divided voltage VR220, and the determination voltage is as follows when the resistance value of the first resistor 201 is R1, the resistance value of the second resistor 202 is R2, and the determination voltage is Vx. It is shown by the relational expression.
Vx = REF × (R1 / R2 + 1) Equation 1
For example, when REF = 1V, R1 = 5KΩ, and R2 = 10KΩ, the determination voltage Vx is 1.5V from Equation 1, and if the power supply voltage is higher than 1.5V, the output of the voltage determination circuit is high level. If the voltage is lower than 1.5V, the output of the voltage determination circuit is at a low level.
[0021]
FIG. 3 is a timing chart showing the operation of the power supply voltage detection circuit according to the first embodiment of the present invention, and shows an example where the power supply voltage is higher than the determination voltage.
In FIG. 3, when the enable signal 110 is initially at a low level, the voltage determination circuit is inoperative, and the voltage determination output 123, the latch 1 output 120, the voltage determination input 122, and the latch 2 output 112 are all at a low level. Next, when the enable signal 110 is set to the high level and the power supply voltage detection circuit is operated, the voltage determination input 122 becomes the high level and the voltage determination circuit starts to operate, and the voltage determination output is delayed by the output delay time of the voltage determination circuit. When 123 becomes high level, the latch 1 output 120 becomes high level. When the latch 1 output 120 becomes high level, the voltage determination input 122 becomes low level, and when the voltage determination input 122 becomes low level. The voltage determination circuit is deactivated and the voltage determination output 123 changes to a low level, but the latch 1 output 120 maintains a high level.
[0022]
When the enable signal 110 is set to the low level after the enable signal 110 is set to the high level for a time sufficient for the voltage determination output 123 to be reliably output within the operating temperature range and the operating voltage range of the power supply voltage detection circuit, the latch 2 output is output. The latch 2 output 112 is kept at a high level until the enable signal 110 becomes a high level again and the power supply voltage detection circuit is operated again or the second latch circuit is initialized by setting the reset signal to a high level. maintain. The voltage determination circuit 101 operates only during a period when the voltage determination input 122 is at a high level by the above-described operation, so that power consumption can be reduced even if the high level period of the enable signal 110 is long.
[0023]
As described above, when the power supply voltage detection circuit of the present invention detects that the power supply voltage is higher than the determination voltage, it quickly deactivates the voltage determination circuit, so the power consumption of the power supply voltage detection circuit can be reduced. is there.
[0024]
(Second embodiment)
FIG. 4 is a diagram showing the configuration of the power supply voltage detection circuit according to the second embodiment of the present invention.
In FIG. 4, the operation control unit 430 and the latch circuit unit including the first latch circuit 402, the second latch circuit 403, and the third latch circuit 404 constitute an input / output control circuit. The operation control unit 430 includes an inverter 404 and a NOR gate 405 so as to control the operation / non-operation of the voltage determination circuit 401.
[0025]
The enable signal 410 and the input terminal of the inverter 404 are connected, and the inverted signal 421 of the enable signal 410 is the reset of the first input terminal of the NOR gate 405, the reset terminal R of the first latch circuit 402, and the third latch circuit 404. The terminal R is connected to the clock terminal C of the second latch circuit 403, and the input signal 422 of the voltage determination circuit 401 is connected to the output terminal of the NOR gate 405 and the input terminal of the voltage determination circuit 401.
[0026]
The voltage determination positive output 423 whose output changes to a high level when the power supply voltage is higher than the determination voltage is connected to the positive output terminal of the voltage determination circuit 401 and the clock input terminal C of the first latch circuit 402, and the first latch The data input terminal D of the circuit 402 and the power supply voltage VCC are connected, the output signal 420 of the first latch circuit 402, the output terminal Q of the first latch circuit 402, and the data input terminal D of the second latch circuit 403 The second input terminal of the NOR gate 405 is connected. When the power supply voltage is higher than the determination voltage, the voltage determination negative output 424 whose output changes to a low level is connected to the negative output terminal of the voltage determination circuit 401 and the clock input terminal C of the third latch circuit 404, and the third latch The data input terminal D of the circuit 404 and the power supply voltage VCC are connected, and the output signal 425 of the third latch circuit 404, the output terminal Q of the third latch circuit 404, and the third input terminal of the NOR gate 405 are connected. .
[0027]
By connecting the reset signal 411 and the reset terminal of the second latch circuit 403, the latch output 412 of the second latch circuit 403 is used as the output signal of the power supply voltage detection circuit according to the second embodiment of the present invention. A reset signal 411 is a signal for resetting the latch output 412 of the second latch circuit 403 to a low level during a period in which the reset signal 411 is at a high level. The reset signal 411 is fixed at a low level except when the output is initialized.
[0028]
FIG. 5 is a circuit diagram showing an example of a voltage determination circuit 401 constituting the power supply voltage detection circuit shown in FIG.
In FIG. 5, the enable signal 510 and the input terminal of the inverter 508 are connected, the inverted signal 521 of the enable signal 510, the output terminal and the source of the inverter 508 are connected to the power supply voltage VCC, and the gate terminal and the source of the PMOS 505 are connected to the ground voltage VSS. The gate terminal of the first NMOS 506 is connected to the gate terminal of the second NMOS 507 whose source is connected to the ground voltage VSS.
[0029]
The first terminal of the first resistor 501 and the second terminal of the second resistor 502 that connects the first terminal to the ground voltage VSS, the positive input terminal of the first comparator 503, and the negative terminal of the second comparator 504 The input terminal is connected to the power supply voltage divided voltage VR520. The first resistor 501 and the second resistor 502 constitute a resistance dividing circuit.
[0030]
The ground voltage VSS is supplied to the negative power supply terminal of the first comparator 503 and the negative power supply terminal of the second comparator 504, and the negative input terminal of the first comparator 503, the positive input terminal of the second comparator 504, and the constant voltage. A reference voltage REF 511 that is an output of the circuit 530 is connected. The output terminal of the first comparator 503 and the drain of the first NMOS 506 are connected to form a positive output terminal 512 of the voltage determination circuit, and the output terminal of the second comparator 504 and the drain of the second NMOS 507 are connected to determine the voltage. The negative output terminal 513 of the circuit is used. The first comparator 503 and the first NMOS 506 constitute a first voltage comparison circuit, and the second comparator 504 and the second NMOS 507 constitute a second voltage comparison circuit.
[0031]
The drain of the PMOS 505 is connected to the positive power supply terminal of the constant voltage circuit 530 to supply power to the constant voltage circuit 530, and is connected to the second terminal of the first resistor 501 to supply power to the resistance dividing circuit. In addition, it is connected to the positive power supply terminal of the comparator 503 to supply power to the first voltage comparison circuit, and is connected to the positive power supply terminal of the comparator 504 to supply power to the second voltage comparison circuit.
The PMOS 505 is a switch circuit that controls power supply or power supply cutoff to the constant voltage circuit 530, the resistor divider circuit, the first voltage comparison circuit, and the second voltage comparison circuit.
[0032]
Next, the operation of the voltage determination circuit in FIG. 5 will be described.
During the period when the enable signal 510 is at a low level, the PMOS 505 is turned off, so that power is not supplied to the constant voltage circuit 530, the resistor divider circuit, the first voltage comparison circuit, and the second voltage comparison circuit, resulting in low power consumption. When the NMOS 506 is turned on, the positive output terminal 512 of the voltage determination circuit is fixed at a low level, and when the NMOS 507 is turned on, the negative output terminal 513 of the voltage determination circuit is fixed at a low level.
[0033]
When the enable signal 510 is at a high level, the PMOS 505 is turned on to supply power to the constant voltage circuit 530, the resistor divider circuit, the first voltage comparison circuit, and the second voltage comparison circuit. The output reference voltage REF511 outputs a set constant voltage, the power supply voltage divided voltage VR520 outputs a voltage obtained by dividing the power supply voltage by the first resistor 501 and the second resistor 502, and the NMOS 506 is turned off. Thus, the positive output terminal 512 of the voltage determination circuit outputs a high level if the power supply voltage is higher than the determination voltage, outputs a low level if the power supply voltage is lower than the determination voltage, and the NMOS 507 is turned off to turn off the voltage determination circuit. The negative output terminal 513 has a low level when the power supply voltage is higher than the determination voltage, and a high level when the power supply voltage is lower than the determination voltage. To output.
[0034]
FIG. 6 is a timing chart showing a first operation of the power supply voltage detection circuit according to the second embodiment of the present invention, and shows an example when the power supply voltage is higher than the determination voltage.
In FIG. 6, when the enable signal 410 is initially at a low level, the voltage determination circuit is inoperative and the voltage determination positive output 423, the latch 1 output 420, the voltage determination negative output 424, the latch 3 output 425, the voltage determination input 422, and All latch 2 outputs 412 are at a low level. Next, when the enable signal 410 is set to the high level and the power supply voltage detection circuit is operated, the voltage determination input 422 becomes the high level, the voltage determination circuit starts operating, and the voltage determination correct is delayed by the output delay time of the voltage determination circuit. When the output 423 becomes high level, the latch 1 output 420 becomes high level, and when the latch 1 output 420 becomes high level, the voltage determination input 422 becomes low level and the voltage determination input 422 becomes low level. As a result, the voltage determination circuit becomes inoperative, and the voltage determination positive output 423 changes to low level, but the latch 1 output 420 maintains high level.
[0035]
When the enable signal 410 is set to low level after the enable signal 410 is set to high level for a time sufficient for the voltage determination positive output 423 to be reliably output within the operating temperature range and operating voltage range of the power supply voltage detection circuit, the latch 2 The output 412 becomes high level, and then the latch 2 output 412 remains at high level until the enable signal 410 becomes high level again to operate the power supply voltage detection circuit or the second latch circuit is initialized by setting the reset signal to high level. To maintain. During the period of the operation, the voltage determination negative output 424 and the latch 3 output 425 remain low and do not change.
The voltage determination circuit 401 operates only during a period when the voltage determination input 422 is at a high level by the above-described operation, so that power consumption can be reduced even if the high level period of the enable signal 410 is long.
[0036]
FIG. 7 is a timing chart showing a second operation of the power supply voltage detection circuit according to the second embodiment of the present invention, and shows an example when the power supply voltage is lower than the determination voltage.
In FIG. 7, when the enable signal 410 is initially at a low level, the voltage determination circuit is inoperative and the voltage determination positive output 423, the latch 1 output 420, the voltage determination negative output 424, the latch 3 output 425, the voltage determination input 422, and All latch 2 outputs 412 are at a low level.
[0037]
Next, when the enable signal 410 is set to the high level and the power supply voltage detection circuit is operated, the voltage determination input 422 becomes the high level, the voltage determination circuit starts operating, and the voltage determination negative is delayed by the output delay time of the voltage determination circuit. When the output 424 becomes high level, the latch 3 output 425 becomes high level, and when the latch 3 output 425 becomes high level, the voltage determination input 422 becomes low level, and the voltage determination input 422 becomes low level. Thus, the voltage determination circuit becomes non-operational and the voltage determination negative output 424 changes to low level, but the latch 3 output 425 maintains high level.
[0038]
When the enable signal 410 is set to the low level after the enable signal 410 is set to the high level for a time sufficient for the voltage determination negative output 424 to be reliably output within the operating temperature range and the operating voltage range of the power supply voltage detection circuit, the latch 2 The output 412 remains low and does not change. During the period of the operation, the voltage determination positive output 423 and the latch 1 output 420 remain low and do not change.
The voltage determination circuit 401 operates only during a period when the voltage determination input 422 is at a high level by the above-described operation, so that power consumption can be reduced even if the high level period of the enable signal 410 is long.
[0039]
As described above, the power supply voltage detection circuit of the present invention quickly deactivates the voltage determination circuit when it detects that the power supply voltage is higher than the determination voltage, and immediately detects that the power supply voltage is lower than the determination voltage. Since the voltage determination circuit is deactivated, the power consumption of the power supply voltage detection circuit can be reduced.
[0040]
【The invention's effect】
As described above, in the power supply voltage detection circuit of the present invention, the power consumption of the power supply voltage detection circuit can be reduced by quickly deactivating the voltage determination circuit when the voltage determination output changes.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a power supply voltage detection circuit according to a first embodiment of the present invention.
FIG. 2 is a circuit diagram of a voltage determination circuit constituting the power supply voltage detection circuit shown in FIG.
FIG. 3 is a timing chart showing the operation of the power supply voltage detection circuit according to the first embodiment of the present invention.
FIG. 4 is a diagram showing a configuration of a power supply voltage detection circuit according to a second embodiment of the present invention.
5 is a circuit diagram of a voltage determination circuit constituting the power supply voltage detection circuit shown in FIG. 4. FIG.
FIG. 6 is a timing chart showing a first operation of the power supply voltage detection circuit according to the second example of the present invention.
FIG. 7 is a timing chart showing a second operation of the power supply voltage detection circuit according to the second example of the present invention.
FIG. 8 is a diagram showing a configuration of a conventional power supply voltage detection circuit.
FIG. 9 is a timing chart showing the operation of a conventional power supply voltage detection circuit.
[Explanation of symbols]
101 ... Voltage determination circuit 130 ... Operation control unit 102, 103 ... Latch circuit 201, 202 ... Resistance 203 ... Comparator 230 ... Constant voltage circuit 205 ... PMOS
206 ... NMOS

Claims (2)

判定電圧と電源電圧とを比較して、その比較結果に基づいて電圧信号を出力する電圧判定回路と、
前記電圧判定回路が出力した電圧信号を保持して出力するラッチ回路部と、
前記ラッチ回路部から前記比較結果をフィードバックされる動作制御部と、
を具備する電源電圧検出回路であって、
前記ラッチ回路部第一のラッチ回路と第二のラッチ回路とを有してなり、
前記第一のラッチ回路は、前記電圧判定回路と前記第二のラッチ回路との間に接続され、入力された前記電圧判定回路の出力を保持して前記第二のラッチ回路に出力および前記動作制御部にフィードバックし、
前記動作制御部は、前記電圧判定回路を動作させる信号が入力されると前記電圧判定回路を非動作状態から動作状態に切り換える制御を行い、前記フィードバックされた信号が変化すると、前記電圧判定回路を非動作状態にし、前記電圧判定回路を非動作にする信号が入力されると、前記第一のラッチ回路をリセットし、前記第二のラッチ回路に前記第一のラッチ回路の出力を保持させ、前記電圧判定回路を非動作状態にする
ことを特徴とする電源電圧検出回路。
A voltage determination circuit that compares the determination voltage and the power supply voltage and outputs a voltage signal based on the comparison result ; and
A latch circuit unit that holds and outputs a voltage signal output from the voltage determination circuit ;
An operation control unit fed back the comparison result from the latch circuit unit ;
A power supply voltage detection circuit comprising :
The latch circuit unit includes a first latch circuit and a second latch circuit,
The first latch circuit is connected between the voltage determination circuit and the second latch circuit, holds the output of the input voltage determination circuit, and outputs the output to the second latch circuit and the operation Feedback to the control unit,
The operation control unit performs control to switch the voltage determination circuit from a non-operation state to an operation state when a signal for operating the voltage determination circuit is input, and changes the voltage determination circuit when the fed back signal changes. When a signal for inactivating the voltage determination circuit is input, the first latch circuit is reset, and the second latch circuit holds the output of the first latch circuit. A power supply voltage detection circuit, wherein the voltage determination circuit is put into a non-operating state .
前記第一のラッチ回路は、回路動作を開始するための信号を入力するクロック入力端子を有し、
前記電圧判定回路の出力を前記クロック入力端子に入力し、該出力の変化に基づいて回路動作を開始し、該出力を保持することを特徴とする請求項1に記載の電源電圧検出回路。
The first latch circuit has a clock input terminal for inputting a signal for starting a circuit operation;
The power supply voltage detection circuit according to claim 1, wherein an output of the voltage determination circuit is input to the clock input terminal, a circuit operation is started based on a change in the output, and the output is held .
JP2002083004A 2002-03-25 2002-03-25 Power supply voltage detection circuit Expired - Fee Related JP4115727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083004A JP4115727B2 (en) 2002-03-25 2002-03-25 Power supply voltage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083004A JP4115727B2 (en) 2002-03-25 2002-03-25 Power supply voltage detection circuit

Publications (3)

Publication Number Publication Date
JP2003279603A JP2003279603A (en) 2003-10-02
JP2003279603A5 JP2003279603A5 (en) 2005-09-08
JP4115727B2 true JP4115727B2 (en) 2008-07-09

Family

ID=29230968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083004A Expired - Fee Related JP4115727B2 (en) 2002-03-25 2002-03-25 Power supply voltage detection circuit

Country Status (1)

Country Link
JP (1) JP4115727B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4441326B2 (en) * 2004-05-21 2010-03-31 ソニー株式会社 Voltage detection circuit
JP4671927B2 (en) * 2006-07-20 2011-04-20 パナソニック株式会社 Semiconductor device
JP4756701B2 (en) * 2006-12-13 2011-08-24 三洋電機株式会社 Power supply voltage detection circuit
JP5434896B2 (en) * 2010-12-20 2014-03-05 三菱電機株式会社 Low voltage protection circuit
JP5890964B2 (en) * 2011-03-30 2016-03-22 株式会社ケーヒン Battery voltage detector
JP2013084099A (en) * 2011-10-07 2013-05-09 Ricoh Co Ltd Low-voltage malfunction prevention circuit and method, and electronic equipment with low-voltage malfunction prevention circuit

Also Published As

Publication number Publication date
JP2003279603A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP4820571B2 (en) Semiconductor device
US7765415B2 (en) Semiconductor integrated circuit
KR101926000B1 (en) Circuit and method for performing power on reset
US7183825B2 (en) State retention within a data processing system
US7365596B2 (en) State retention within a data processing system
KR100487536B1 (en) Power-on reset circuit
KR100965198B1 (en) wake-up reset circuit
US9471140B2 (en) Valid context status retention in processor power mode management
JP2001245437A (en) Discharge-control circuit
JPH1168538A (en) Start-up circuit and semiconductor integrated circuit device
CN109302766B (en) Low-power-consumption pin multiplexing control system and control method thereof
JP2000021171A (en) Semiconductor memory
JP4115727B2 (en) Power supply voltage detection circuit
US6879193B2 (en) Semiconductor integrated circuit and its reset method
US6624673B2 (en) Circuit for resetting a microcontroller
US7479767B2 (en) Power supply step-down circuit and semiconductor device
US9075588B2 (en) Voltage regulator and control circuit for supplying voltage to a plurality of subcircuits via a chain of switches
KR100225213B1 (en) Semiconductor device and clock signal control method of semiconductor device
TWI783163B (en) Power control device, computer system and related power control method
JP4194247B2 (en) Microcomputer
US6982500B2 (en) Power-down scheme for an on-die voltage differentiator design
JP5145436B2 (en) Semiconductor device
CN117666682A (en) Low-power-consumption starting circuit
JP2014239377A (en) Semiconductor device
JP2007171133A (en) Power source monitoring circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4115727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150425

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees