JP4114237B2 - Control device for lithium-ion battery - Google Patents

Control device for lithium-ion battery Download PDF

Info

Publication number
JP4114237B2
JP4114237B2 JP20032298A JP20032298A JP4114237B2 JP 4114237 B2 JP4114237 B2 JP 4114237B2 JP 20032298 A JP20032298 A JP 20032298A JP 20032298 A JP20032298 A JP 20032298A JP 4114237 B2 JP4114237 B2 JP 4114237B2
Authority
JP
Japan
Prior art keywords
cell
deactivation
voltage
ion battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20032298A
Other languages
Japanese (ja)
Other versions
JP2000030754A (en
Inventor
英明 堀江
雄児 丹上
孝昭 安部
健 岩井
幹夫 川合
豊昭 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20032298A priority Critical patent/JP4114237B2/en
Publication of JP2000030754A publication Critical patent/JP2000030754A/en
Application granted granted Critical
Publication of JP4114237B2 publication Critical patent/JP4114237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウムイオン電池の制御装置に関する。
【0002】
【従来の技術とその問題点】
負極集電体に銅を用いたリチウムイオン電池では、セルが失活すると、失活セルの負極から銅が析出し、正極まで延びて正負極が短絡する、いわゆるデンドライトが発生する。このとき、銅の析出状態によってはデンドライトの抵抗が大きいことがあり、そのまま電池に電流を流すとそのセルが発熱する。
【0003】
失活セルの両端電圧は0Vまたはその近傍まで低下するので、セルの失活状態を検出することは容易であるが、多数のセルが直列に接続された組電池の中から、1個の失活セルを交換したり、失活セルの両端をジャンパーで短絡する保守作業は容易ではない。
【0004】
本発明の目的は、煩雑は保守作業をせずに組電池の中の失活セルを完全に短絡することにある。
【0005】
【課題を解決するための手段】
(1) 請求項1の発明は、負極集電体に銅を用いたリチウムイオン電池のセルが複数個直列に接続された組電池の制御装置であって、セルの失活状態を検出する失活検出手段と、失活検出手段により失活状態が検出されたセルに対し、負極集電体の銅が溶出と析出を繰り返す振幅と、負極集電体の銅の溶出と析出反応が追従する周波数の交流電圧を印加する電圧印加手段とを備える。
(2) 請求項2のリチウムイオン電池の制御装置は、失活検出手段によって、セルの端子電圧が所定値以下になったら失活状態と判定するようにしたものである。
(3) 請求項3のリチウムイオン電池の制御装置は、セルの内部抵抗を検出する抵抗検出手段を備え、失活検出手段によって、セルの端子電圧が所定値以下になり、且つセルの内部抵抗が所定値を超えたら失活状態と判定するようにしたものである。
【0006】
【発明の効果】
(1) 請求項1の発明によれば、負極集電体に銅を用いたリチウムイオン電池のセルが複数個直列に接続された組電池に対して、セルの失活状態を検出し、失活状態が検出されたセルに対し、負極集電体の銅が溶出と析出を繰り返す振幅と、負極集電体の銅の溶出と析出反応が追従する周波数の交流電圧を印加するようにしたので、失活セルの正負極間のデンドライト生成が促進され、外部ジャンパーによる短絡作業をしなくても、失活セルを短絡することができる。
(2) 請求項2の発明によれば、セルの端子電圧が所定値以下になったら失活状態と判定し、失活が検出されたセルに交流電圧を印加するようにしたので、請求項1の上記効果と同様な効果が得られる。
(3) 請求項3の発明によれば、セルの端子電圧が所定値以下になり、且つセルの内部抵抗が所定値を超えたら失活状態と判定し、失活が検出されたセルに交流電圧を印加するようにしたので、請求項1の上記効果に加え、すでに処理が行われたセルに対しても、処理結果が不十分でデンドライトの生成が充分でなく、内部抵抗が大きい場合は再度処理が行われることになり、失活セルの正負電極間を完全に短絡することができる、という効果が得られる。
【0007】
【発明の実施の形態】
図1は、一実施の形態のリチウムイオン電池の基本的な断面構造を示す。
リチウムイオン電池1は、正極2と負極3、およびそれらを分離するセパレータ4から構成される。正極2は、アルミニウムなどの集電体2aにコバルト酸リチウムやマンガン酸リチウムなどの活物質2bが塗布されている。また、負極3は、銅箔の集電体3aにコークス系やグラファイト系の炭素材料が塗布されている。
【0008】
図2は、リチウムイオン電池における放電電気量に対する正極と負極の電位の変化を示す図であり、溶液中のリチウムの電位を基準にして表したものである。リチウムイオン電池では、放電電気量が増加するにしたがって正極電位が低下し、負極電位が上昇する。正極電位と負極電位との差が電池セルの端子電圧であるから、放電するにつれて主に負極電位が上昇し、その結果、端子電圧が低下して最後には0vになる。
【0009】
電池セルに逆電圧を印加するなどして強制的に放電させると、端子電圧が低下する。端子電圧がおよそ0.8v以下になって負極電位が銅溶出電位(図中のハッチング領域)になると、負極集電体3aからの銅の溶出が始まる。この状態において電池セルに順電圧を印加して端子電圧を上げると、負極電位は低下するが、いったん溶液中に溶出した銅は元に戻らず、溶液中に析出してデンドライトが成長する。これを繰り返すと、図3に示すようにデンドライト5により正極2と負極3が短絡され、デンドライト5の数量も次第に増加してついには正負極が完全に短絡する。
【0010】
負極集電体に銅を用いたリチウムイオン電池のこのような性質を利用すれば、失活したセルにデンドライトを強制的に生成させることができ、失活セルの正極と負極をジャンパーにより短絡する保守作業をしなくても、失活セルを完全に短絡させることができる。
【0011】
そこで、この実施の形態では、負極集電体に銅を用いたリチウムイオン電池に対して、セルの失活を検出し、失活セルが検出されたら電池に交流電圧を印加することによって、負極集電体からの銅の溶出、析出を促進する。
【0012】
図4は一実施の形態の構成を示す図である。
組電池10は、図1に示すような負極集電体に銅を用いたリチウムイオン電池のセルがn個直列に接続されている。各セルC1〜Cnには、端子電圧(以下、セル電圧と呼ぶ)vcn(n=1,2,・・)を検出するための電圧センサーV1〜Vnが接続される。また、組電池10と直列に充放電電流iを検出するための電流センサーIが接続される。さらに、各セルC1〜Cnの両端はコントローラー11へ接続される。
【0013】
コントローラー11は、マイクロコンピューターとその周辺部品や交流発振器と増幅器などを内蔵しており、各セルC1〜Cnの失活検出を行うとともに、失活したセルに対して交流電圧を印加して短絡させる。
【0014】
ここで、失活セルに印加する交流電圧の周波数は銅の溶出と析出反応が追従する周波数であればよく、例えば10kHzとする。また、交流電圧の振幅は図2に示すように銅の溶出と析出が発生する程度の電圧とすればよい。さらに、失活セルに対する交流電圧の印加は、組電池10の休止中に行ってもよいし、通常の充放電中に重畳して行ってもよい。
【0015】
失活セルの検出は、セル電圧vcnが判定基準値vo以下に低下したら失活状態と判断する。リチウムイオン電池は通常、セル電圧VCnが4.2〜2.5vの範囲で使用されるので、上記判定基準値を例えば1vとする。
【0016】
また、電圧センサーV1〜Vnにより検出したセル電圧vcnと、電流センサーIにより検出した充放電電流iとによりセルの内部抵抗rcnを演算し(vcn/i)、内部抵抗rcnが判定基準値roを超えたら失活状態と判断するようにしてもよい。
【0017】
図5は失活セルの処理を示すフローチャートである。このフローチャートにより、一実施の形態の動作を説明する。
ステップ1において、セル電圧vcnが上記基準値vo以下かどうかを確認し、基準値vo以下であれば失活セルと判断してステップ2へ進み、そうでなければステップ5へ進む。セルCnの失活が検出されたときは、ステップ2でセル番号nがメモリに記憶されているかどうか、すなわちすでに処理済みのセルかどうかを確認する。処理済みのセルであればステップ5へ進み、未処理のセルであればステップ3へ進む。
【0018】
ステップ3において、新たに失活が検出されたセルの両端に交流電圧を所定時間印加する。例えば図4に示すセルC3の失活が新たに検出された場合には、コントローラー11の端子T3−T4から交流電圧を出力し、セルC3の両端に印加する。これにより、セルC3の正負極間のデンドライトの生成が促進され、正負極間が短絡する。次に、ステップ4で今回処理したセルの番号をメモりに記憶し、続くステップ5でセル番号nを次のセルにしてステップ1へ戻り、上記処理を繰り返す。
【0019】
このように、セル電圧を判定基準値と比較して失活状態を検出し、失活セルが検出されたらそのセルの両端に交流電圧を印加するようにしたので、失活セルの正負極間のデンドライト生成が促進され、外部ジャンパーによる短絡作業をしなくても、失活セルを短絡することができる。
【0020】
図6は失活セルの処理の変形例を示すフローチャートである。この変形例では、セル電圧vcnと内部抵抗rcnによりセルの失活を検出する。
ステップ11において、セル電圧vcnが上記基準値vo以下かどうかを確認し、基準値vo以下であれば失活セルと判断してステップ12へ進み、そうでなければステップ14へ進む。
【0021】
ステップ12では、失活セルCnのセル電圧vcnと組電池10の充放電電流iとにより失活セルCnの内部抵抗rcnを算出し、その内部抵抗rcnが上記基準値roを超えるか否かを判定する。内部抵抗rcnが基準値roを超える場合はステップ13へ進み、そうでなければステップ14へ進む。
【0022】
ステップ13において、失活が検出されたセルの両端に交流電圧を所定時間印加する。続くステップ14で、セル番号nを次のセルにしてステップ11へ戻り、上記処理を繰り返す。
【0023】
この変形例によれば、セル電圧が失活判定基準値以下で、且つ内部抵抗が基準値を超えるセルに対して交流電圧を印加するようにしたので、すでに処理が行われたセルに対しても、処理結果が不十分でデンドライトの生成が充分でなく、内部抵抗が大きい場合は再度処理が行われることになり、失活セルの正負電極間を完全に短絡することができる。
【0024】
以上の一実施の形態の構成において、電圧センサーV1〜Vn、電流センサーIおよびコントローラー11が失活検出手段および抵抗検出手段を、コントローラー11が電圧印加手段をそれぞれ構成する。
【0025】
なお、本発明は負極集電体に銅を用いるリチウムイオン電池に適用され、負極集電体以外の正極集電体、正極活物質、負極活物質およびセパレーターの材料は特に限定されない。
【図面の簡単な説明】
【図1】 一実施の形態のリチウムイオン電池の基本的な断面構造を示す図である。
【図2】 リチウムイオン電池における放電電気量に対する正極と負極の電位の変化を示す図である。
【図3】 リチウムイオン電池のデンドライトの生成状態を示す図である。
【図4】 一実施の形態の構成を示す図である。
【図5】 一実施の形態の失活セル処理を示すフローチャートである。
【図6】 失活セル処理の変形例を示すフローチャートである。
【符号の説明】
1 リチウムイオン電池
2 正極
2a 正極集電体
2b 正極活物質
3 負極
3a 負極集電体
3b 負極活物質
4 セパレーター
5 デンドライト
10 組電池
11 コントローラー
V1〜Vn 電圧センサー
I 電流センサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a lithium ion battery.
[0002]
[Prior art and its problems]
In a lithium ion battery using copper as a negative electrode current collector, when the cell is deactivated, copper is deposited from the negative electrode of the deactivated cell, and so-called dendrites are generated that extend to the positive electrode and short-circuit the positive and negative electrodes. At this time, depending on the state of copper deposition, the resistance of the dendrite may be large.
[0003]
Since the voltage across the deactivation cell drops to 0 V or near it, it is easy to detect the deactivation state of the cell, but one depletion battery from a battery pack in which many cells are connected in series. Maintenance work of exchanging active cells or short-circuiting both ends of the deactivated cells with jumpers is not easy.
[0004]
An object of the present invention is to completely short-circuit the deactivated cells in the assembled battery without complicated maintenance work.
[0005]
[Means for Solving the Problems]
(1) The invention of claim 1 is an assembled battery control device in which a plurality of lithium ion battery cells using copper as a negative electrode current collector are connected in series, and detects a deactivation state of the cell. Amplitude of repeated elution and precipitation of copper in the negative electrode current collector, and elution and precipitation reaction of copper in the negative electrode current collector follow the active detection means and the cell whose deactivation state is detected by the deactivation detection means. Voltage applying means for applying an AC voltage having a frequency .
(2) According to the lithium ion battery control device of the second aspect, the deactivation detection means determines that the deactivation state occurs when the terminal voltage of the cell becomes a predetermined value or less.
(3) The control device for a lithium ion battery according to claim 3 includes resistance detection means for detecting the internal resistance of the cell, the terminal voltage of the cell becomes a predetermined value or less by the deactivation detection means, and the internal resistance of the cell When the value exceeds a predetermined value, it is determined to be in an inactivated state.
[0006]
【The invention's effect】
(1) According to the present invention, for the set battery cell of the lithium ion battery using the copper anode current collector is connected to a plurality of series, it detects a deactivated state of the cell, loss Since an active voltage was detected, an AC voltage with a frequency at which the copper of the negative electrode current collector was repeatedly eluted and precipitated and a frequency at which the copper elution and precipitation reaction of the negative electrode current collector followed was applied. The generation of dendrites between the positive and negative electrodes of the deactivated cell is promoted, and the deactivated cell can be short-circuited without performing a short-circuiting operation using an external jumper.
(2) According to the invention of claim 2, when the terminal voltage of the cell becomes equal to or lower than a predetermined value, the cell is determined to be in an inactivated state, and an AC voltage is applied to the cell in which inactivation is detected. The same effect as the above effect 1 is obtained.
(3) According to the invention of claim 3, when the terminal voltage of the cell becomes equal to or lower than a predetermined value and the internal resistance of the cell exceeds the predetermined value, the cell is determined to be in an inactive state, and the cell in which the inactivation is detected is AC Since a voltage is applied, in addition to the above effect of claim 1, even when a cell has already been processed, if the processing result is insufficient and the generation of dendrite is not sufficient and the internal resistance is large, Processing is performed again, and the effect that the positive and negative electrodes of the deactivated cell can be completely short-circuited is obtained.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a basic cross-sectional structure of a lithium ion battery according to an embodiment.
The lithium ion battery 1 includes a positive electrode 2 and a negative electrode 3 and a separator 4 that separates them. In the positive electrode 2, an active material 2 b such as lithium cobaltate or lithium manganate is applied to a current collector 2 a such as aluminum. In the negative electrode 3, a coke-based or graphite-based carbon material is applied to a copper foil current collector 3a.
[0008]
FIG. 2 is a diagram showing a change in potential of the positive electrode and the negative electrode with respect to the amount of discharge electricity in the lithium ion battery, and is expressed with reference to the potential of lithium in the solution. In a lithium ion battery, the positive electrode potential decreases and the negative electrode potential increases as the amount of discharge electricity increases. Since the difference between the positive electrode potential and the negative electrode potential is the terminal voltage of the battery cell, the negative electrode potential mainly rises as the battery is discharged. As a result, the terminal voltage decreases and finally becomes 0v.
[0009]
When the battery cell is forcibly discharged by applying a reverse voltage or the like, the terminal voltage decreases. When the terminal voltage becomes about 0.8 V or less and the negative electrode potential becomes the copper elution potential (hatched area in the figure), the elution of copper from the negative electrode current collector 3a starts. In this state, when a forward voltage is applied to the battery cell to increase the terminal voltage, the negative electrode potential decreases, but the copper that has eluted in the solution does not return to its original state, but precipitates in the solution and dendrite grows. When this is repeated, the positive electrode 2 and the negative electrode 3 are short-circuited by the dendrite 5 as shown in FIG. 3, the number of dendrite 5 gradually increases, and finally the positive and negative electrodes are completely short-circuited.
[0010]
By utilizing this property of a lithium ion battery using copper as a negative electrode current collector, dendrites can be forcibly generated in a deactivated cell, and the positive electrode and negative electrode of the deactivated cell are short-circuited by a jumper. Even if maintenance work is not performed, the deactivated cell can be completely short-circuited.
[0011]
Therefore, in this embodiment, for a lithium ion battery using copper as a negative electrode current collector, cell deactivation is detected, and when a deactivation cell is detected, an AC voltage is applied to the battery, thereby negative electrode Promotes the elution and precipitation of copper from the current collector.
[0012]
FIG. 4 is a diagram showing the configuration of one embodiment.
The assembled battery 10 has n lithium ion battery cells using copper as a negative electrode current collector as shown in FIG. 1 connected in series. Voltage sensors V1 to Vn for detecting terminal voltages (hereinafter referred to as cell voltages) vcn (n = 1, 2,...) Are connected to the cells C1 to Cn. In addition, a current sensor I for detecting the charge / discharge current i is connected in series with the assembled battery 10. Further, both ends of each of the cells C1 to Cn are connected to the controller 11.
[0013]
The controller 11 incorporates a microcomputer and its peripheral components, an AC oscillator, an amplifier, and the like, detects the deactivation of each cell C1 to Cn, and applies an AC voltage to the deactivated cell to short-circuit it. .
[0014]
Here, the frequency of the alternating voltage applied to the deactivation cell should just be a frequency which copper elution and precipitation reaction follow, for example, shall be 10 kHz. Further, the amplitude of the AC voltage may be a voltage at which copper elution and precipitation occur as shown in FIG. Furthermore, the application of the AC voltage to the deactivated cell may be performed while the assembled battery 10 is paused, or may be performed in a superimposed manner during normal charging / discharging.
[0015]
The detection of the inactivated cell is determined to be inactivated when the cell voltage vcn falls below the determination reference value vo. Since a lithium ion battery is normally used in the range where the cell voltage VCn is 4.2 to 2.5 v, the determination reference value is set to 1 v, for example.
[0016]
Further, the cell internal resistance rcn is calculated from the cell voltage vcn detected by the voltage sensors V1 to Vn and the charge / discharge current i detected by the current sensor I (vcn / i), and the internal resistance rcn determines the determination reference value ro. If it exceeds, you may make it judge that it is a deactivated state.
[0017]
FIG. 5 is a flowchart showing the processing of the deactivated cell. The operation of the embodiment will be described with reference to this flowchart.
In step 1, it is confirmed whether or not the cell voltage vcn is equal to or lower than the reference value vo. If it is equal to or lower than the reference value vo, it is determined as an inactivated cell and the process proceeds to step 2. Otherwise, the process proceeds to step 5. When the deactivation of the cell Cn is detected, it is checked in step 2 whether or not the cell number n is stored in the memory, that is, whether or not the cell has already been processed. If the cell has been processed, the process proceeds to step 5, and if the cell has not been processed, the process proceeds to step 3.
[0018]
In step 3, an AC voltage is applied to both ends of the cell where deactivation is newly detected for a predetermined time. For example, when the deactivation of the cell C3 shown in FIG. 4 is newly detected, an AC voltage is output from the terminals T3 to T4 of the controller 11 and applied to both ends of the cell C3. Thereby, generation of dendrites between the positive and negative electrodes of the cell C3 is promoted, and the positive and negative electrodes are short-circuited. Next, in step 4, the number of the cell processed this time is stored in a memory, and in step 5, the cell number n is set as the next cell, the process returns to step 1, and the above process is repeated.
[0019]
In this way, the cell voltage is compared with the determination reference value to detect the inactivated state, and when the deactivated cell is detected, an AC voltage is applied to both ends of the cell. The generation of dendrites is promoted, and the deactivated cell can be short-circuited without performing a short-circuiting operation with an external jumper.
[0020]
FIG. 6 is a flowchart showing a modified example of the processing of the deactivated cell. In this modification, the cell deactivation is detected by the cell voltage vcn and the internal resistance rcn.
In step 11, it is confirmed whether or not the cell voltage vcn is equal to or lower than the reference value vo. If it is equal to or lower than the reference value vo, it is determined as an inactivated cell, and the process proceeds to step 12;
[0021]
In step 12, the internal resistance rcn of the deactivated cell Cn is calculated from the cell voltage vcn of the deactivated cell Cn and the charge / discharge current i of the assembled battery 10, and whether or not the internal resistance rcn exceeds the reference value ro. judge. If the internal resistance rcn exceeds the reference value ro, the process proceeds to step 13;
[0022]
In step 13, an alternating voltage is applied to both ends of the cell where deactivation is detected for a predetermined time. In the following step 14, the cell number n is set to the next cell, the process returns to step 11 and the above processing is repeated.
[0023]
According to this modification, since the AC voltage is applied to the cell whose cell voltage is equal to or lower than the deactivation determination reference value and the internal resistance exceeds the reference value, the cell already processed is processed. However, if the treatment result is insufficient and the generation of dendrite is not sufficient and the internal resistance is high, the treatment is performed again, and the positive and negative electrodes of the deactivated cell can be completely short-circuited.
[0024]
In the configuration of the above embodiment, the voltage sensors V1 to Vn, the current sensor I, and the controller 11 constitute deactivation detection means and resistance detection means, and the controller 11 constitutes voltage application means.
[0025]
In addition, this invention is applied to the lithium ion battery which uses copper for a negative electrode collector, and positive electrode collectors other than a negative electrode collector, a positive electrode active material, a negative electrode active material, and the material of a separator are not specifically limited.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic cross-sectional structure of a lithium ion battery according to an embodiment.
FIG. 2 is a diagram showing a change in potential of a positive electrode and a negative electrode with respect to the amount of discharge electricity in a lithium ion battery.
FIG. 3 is a diagram showing a dendrite generation state of a lithium ion battery.
FIG. 4 is a diagram showing a configuration of an embodiment.
FIG. 5 is a flowchart showing inactive cell processing according to an embodiment;
FIG. 6 is a flowchart showing a modified example of the deactivated cell process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lithium ion battery 2 Positive electrode 2a Positive electrode collector 2b Positive electrode active material 3 Negative electrode 3a Negative electrode collector 3b Negative electrode active material 4 Separator 5 Dendrite 10 Battery assembly 11 Controller V1-Vn Voltage sensor I Current sensor

Claims (3)

負極集電体に銅を用いたリチウムイオン電池のセルが複数個直列に接続された組電池の制御装置であって、
セルの失活状態を検出する失活検出手段と、
前記失活検出手段により失活状態が検出されたセルに対し、前記負極集電体の銅が溶出と析出を繰り返す振幅と、前記負極集電体の銅の溶出と析出反応が追従する周波数の交流電圧を印加する電圧印加手段とを備えることを特徴とするリチウムイオン電池の制御装置。
A control device for an assembled battery in which a plurality of lithium ion battery cells using copper as a negative electrode current collector are connected in series,
Deactivation detection means for detecting the deactivation state of the cell,
For the cell in which the deactivation state is detected by the deactivation detection means, the amplitude at which copper of the negative electrode current collector repeats elution and precipitation, and the frequency at which the elution and precipitation reaction of copper of the negative electrode current collector follow. A control device for a lithium ion battery, comprising: voltage applying means for applying an alternating voltage.
請求項1に記載のリチウムイオン電池の制御装置において、
前記失活検出手段は、セルの端子電圧が所定値以下になったら失活状態と判定することを特徴とするリチウムイオン電池の制御装置。
In the control apparatus of the lithium ion battery according to claim 1,
The deactivation detecting means determines that the deactivation state is reached when the terminal voltage of the cell becomes a predetermined value or less.
請求項1に記載のリチウムイオン電池の制御装置において、
セルの内部抵抗を検出する抵抗検出手段を備え、
前記失活検出手段は、セルの端子電圧が所定値以下になり、且つセルの内部抵抗が所定値を超えたら失活状態と判定することを特徴とするリチウムイオン電池の制御装置。
In the control apparatus of the lithium ion battery according to claim 1,
Comprising resistance detection means for detecting the internal resistance of the cell;
The deactivation detecting unit determines that the deactivation state is present when the terminal voltage of the cell becomes equal to or lower than a predetermined value and the internal resistance of the cell exceeds a predetermined value.
JP20032298A 1998-07-15 1998-07-15 Control device for lithium-ion battery Expired - Fee Related JP4114237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20032298A JP4114237B2 (en) 1998-07-15 1998-07-15 Control device for lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20032298A JP4114237B2 (en) 1998-07-15 1998-07-15 Control device for lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2000030754A JP2000030754A (en) 2000-01-28
JP4114237B2 true JP4114237B2 (en) 2008-07-09

Family

ID=16422381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20032298A Expired - Fee Related JP4114237B2 (en) 1998-07-15 1998-07-15 Control device for lithium-ion battery

Country Status (1)

Country Link
JP (1) JP4114237B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877499B1 (en) * 2004-10-28 2007-01-26 Eads Astrium Sas Soc Par Actio METHOD FOR MANAGING A RECHARGEABLE BATTERY AND RECHARGEABLE BATTERY SUITABLE FOR CARRYING OUT SAID METHOD
EP2804249B1 (en) 2012-01-13 2017-08-30 Toyota Jidosha Kabushiki Kaisha Method for controlling and device for controlling secondary battery

Also Published As

Publication number Publication date
JP2000030754A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
US8674702B2 (en) Apparatus for detecting a state of secondary battery
JP3870577B2 (en) Variation determination method for battery pack and battery device
JP5504126B2 (en) Control device for lithium-ion battery
JP6724693B2 (en) Battery short circuit determination system
US10656215B2 (en) Short circuit detection device
US12000900B2 (en) Apparatus and method for controlling turn-on operation of switch units included in parallel multi-battery pack
WO2021100247A1 (en) Capacity recovering method and manufacturing method for secondary battery
JP2000134805A (en) Battery assembly charge/discharge state deciding method and battery assembly charge/discharge state deciding device
MX2013001730A (en) Battery control device.
JP2006246645A (en) Equalization method and its device
CN113671393B (en) Current acquisition and detection method, battery pack and power utilization device
JP2001086604A (en) Set-battery and remaining capacity detector
US20080274400A1 (en) Battery cell having energy control device
JP4114237B2 (en) Control device for lithium-ion battery
JP2003254998A (en) Cell voltage measuring method of battery pack and its device
CN114006062A (en) Charging method, device, medium and vehicle of lithium ion battery
JP4089157B2 (en) Power system
CN111834675B (en) Battery charging/discharging management method, electronic device, and storage medium
JP2002008734A (en) Detecting method for battery voltage and detecting device for battery voltage
CN215185832U (en) Protection board circuit of lithium battery
JP4478856B2 (en) Secondary battery protection control system and secondary battery protection control method
JP2012003870A (en) Power storage system
CN116014859B (en) Charging method and system for inhibiting lithium precipitation of battery under active detection protection condition
JP3133220B2 (en) Charge control device for sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees