JP2002008734A - Detecting method for battery voltage and detecting device for battery voltage - Google Patents

Detecting method for battery voltage and detecting device for battery voltage

Info

Publication number
JP2002008734A
JP2002008734A JP2000190152A JP2000190152A JP2002008734A JP 2002008734 A JP2002008734 A JP 2002008734A JP 2000190152 A JP2000190152 A JP 2000190152A JP 2000190152 A JP2000190152 A JP 2000190152A JP 2002008734 A JP2002008734 A JP 2002008734A
Authority
JP
Japan
Prior art keywords
voltage
cell
cells
variation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000190152A
Other languages
Japanese (ja)
Inventor
Naoki Maruno
直樹 丸野
Kazuhiro Araki
一浩 荒木
Yasuo Yamada
保雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000190152A priority Critical patent/JP2002008734A/en
Publication of JP2002008734A publication Critical patent/JP2002008734A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detecting method and device of a battery voltage capable of judging whether voltage dispersion between cells is in an allowable range or not. SOLUTION: Voltage detecting parts 12a, 2b, 2c, 2d, etc., detect cell voltages of cells 1a, 1b, 1c, 1d, etc., and when the specified voltage is detected, a detected signal 'H' is transmitted, OR judgment and AND judgment of the detected signal 'H' are conducted with an OR judgment circuit 3a and an AND judgment circuit 3b of a logic circuit part 3. When the maximum voltage of the cells is detected when charging of a battery assembly, an OR signal FLG1 is transmitted to a high order ECU 4 from the OR judgment circuit 3a. When the minimum voltage of the cells is detected, an AND signal FLG2 is transmitted to the high order ECU 4 from the AND judgment circuit 3b. The high order ECU 4 measures the time elapsed from the FLG1 to the FLG2, and thereby, the dispersion of the cell voltages is judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池により組
電池を構成する各セルにおけるセル電圧のバラツキを検
知する電池電圧検出方法に関し、特に、EV(Electric
al Vehicle:電気自動車)及びHEV(Hybrid Electri
cal Vehicle:ハイブリッド車)に使用されるリチウム
イオン(Li-ion)電池のセル電圧のばらつきを検出する
電池電圧検出方法及び電池電圧検出装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery voltage detecting method for detecting a variation in cell voltage in each cell constituting an assembled battery by a secondary battery, and more particularly, to an EV (Electric) method.
al Vehicle: Electric Vehicle and HEV (Hybrid Electri)
TECHNICAL FIELD The present invention relates to a battery voltage detection method and a battery voltage detection device for detecting a variation in cell voltage of a lithium ion (Li-ion) battery used in a cal vehicle (hybrid vehicle).

【0002】[0002]

【従来の技術】近年、EVあるいはHEVにおいては、
リチウムイオン電池が好んで用いられている。これは、
リチウムイオン電池は、セル当たりの起電力が比較的高
い、エネルギー密度が高いので電池を小型軽量化でき
る、使用温度範囲がー55℃〜85℃ぐらいとかなり広
いなどといったことから、電気自動車用電池としての使
い勝手がよいためである。
2. Description of the Related Art In recent years, in EVs or HEVs,
Lithium ion batteries are preferred. this is,
Lithium-ion batteries have a relatively high electromotive force per cell, a high energy density, which makes them compact and lightweight, and a very wide operating temperature range of -55 ° C to 85 ° C. This is because the usability is good.

【0003】ところで、これらの二次電池により組電池
を構成した場合、これら各セルにおけるセル電圧のバラ
ツキを検知する手法として、全セルの電圧値をモニタし
ながら、マイコンのA/D(アナログ/デジィタル)変
換処理によって各セル電圧を計測し、ソフト処理でセル
間の電圧差を比較してセル電圧のバラツキを検知する方
法が知られている。
[0003] When a battery pack is composed of these secondary batteries, a method of detecting variations in cell voltage in each of these cells is to monitor the voltage values of all the cells while monitoring the A / D (analog / analog) of the microcomputer. There is known a method in which each cell voltage is measured by digital (digital) conversion processing, and a voltage difference between cells is compared by software processing to detect a variation in cell voltage.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来技
術におけるマイコンのA/D変換処理で各セル電圧を計
測する方法では、測定した電圧値を通信するためのマイ
コンが必要となり、結果的に、測定装置がコスト高とな
ってしまうという欠点があった。更に、マイコンによる
セル電圧測定の場合、電池に負荷が接続されている状態
ではセル電圧のバラツキを検知することができないの
で、EVまたはHEVの運転中にセル電圧を測定した
り、セル電圧の異常を検知することができないといった
問題があった。
However, the method of measuring each cell voltage by the A / D conversion process of the microcomputer in the prior art requires a microcomputer for communicating the measured voltage value. There is a disadvantage that the cost of the apparatus is high. Further, in the case of cell voltage measurement by a microcomputer, when a load is connected to the battery, it is not possible to detect a variation in the cell voltage. Therefore, the cell voltage may be measured during the operation of the EV or the HEV, or the cell voltage may be abnormal. There was a problem that it was not possible to detect

【0005】本発明はこのような事情に鑑みてなされた
ものであり、その目的は、セルの測定電圧を通信するた
めのマイコンを不要にしてコストダウンを図ると共に、
セル間のセル電圧のバラツキが許容範囲内であるか否か
を判断し、セル電圧のバラツキが許容範囲を超えた場合
のみ均等化処理が行えるような電池電圧検出方法及び電
池電圧検出装置を提供することにある。
The present invention has been made in view of the above circumstances, and has as its object to reduce the cost by eliminating the need for a microcomputer for communicating the measured voltage of the cell.
Provided are a battery voltage detection method and a battery voltage detection device which determine whether or not the cell voltage variation between cells is within an allowable range and perform equalization processing only when the cell voltage variation exceeds the allowable range. Is to do.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の電池電圧検出方法は、複数のセルで構成
される蓄電装置において、該セルの残容量のバラツキを
検出する電池電圧検出方法であって、充電時または放電
時において、何れか1個のセルのセル電圧が所定電圧を
越えた時点から、全てのセルのセル電圧が前記所定電圧
を越えるまでの経過時間(実施形態では、セル1a、1
b、1c、1d・・・の内のいずれかのセル電圧が所定
電圧の達した時点から、全てのセルのセル電圧が所定電
圧に達した時点までの時間)を計測し、該経過時間が所
定時間(実施形態では、電池の種類、周囲温度、充電電
流値などに応じて予め設定されており、例えば充電電流
値及び周囲温度をパラメータとして、図4に示すバラツ
キ判定MAPにより特定されるバラツキ時間)を超えた
か否かによって、前記セル間の電圧バラツキを判定する
ことを特徴とする。
In order to solve the above-mentioned problems, a battery voltage detecting method according to the present invention is a battery voltage detecting method for detecting a variation in remaining capacity of a cell in a power storage device including a plurality of cells. In the detection method, during charging or discharging, an elapsed time from the time when the cell voltage of any one cell exceeds a predetermined voltage to the time when the cell voltages of all the cells exceed the predetermined voltage (the embodiment) Then, cells 1a, 1
b, 1c, 1d,..., from the time when any of the cell voltages reaches a predetermined voltage to the time when the cell voltages of all the cells reach the predetermined voltage), and the elapsed time is measured. A predetermined time (in the embodiment, the variation is specified in advance according to the type of the battery, the ambient temperature, the charging current value, and the like. For example, the variation specified by the variation determination MAP shown in FIG. 4 using the charging current value and the ambient temperature as parameters. (Time) has been exceeded, and the voltage variation between the cells is determined.

【0007】すなわち、本発明の電池電圧検出方法によ
るセル電圧測定の手法によれば、充電時または放電時に
おいて、何れかのセルのセル電圧が最初に所定電圧を超
えてから、全てのセルのセル電圧が所定電圧を超えるま
での経過時間を計測してセル電圧のバラツキを判定して
いるので、セル電圧のバラツキの絶対量を検知すること
ができる。なお、充電時とは逆に放電時には、残容量の
低下によってバッテリ電圧が低下するので、所定電圧を
超えた(下回った)ことを検知することで、同様のバラ
ツキ検知が可能である。
That is, according to the cell voltage measuring method by the battery voltage detecting method of the present invention, at the time of charging or discharging, after the cell voltage of any of the cells first exceeds a predetermined voltage, all the cells are charged. Since the variation of the cell voltage is determined by measuring the elapsed time until the cell voltage exceeds the predetermined voltage, the absolute amount of the variation of the cell voltage can be detected. Note that, at the time of discharging, which is opposite to the time of charging, the battery voltage decreases due to the decrease in the remaining capacity. Therefore, the same variation can be detected by detecting that the voltage has exceeded (below) the predetermined voltage.

【0008】また、本発明の電池電圧検出方法におい
て、前記所定時間は、前記蓄電装置の温度と前記蓄電装
置の電流とから決定されることを特徴とする。
Further, in the battery voltage detection method according to the present invention, the predetermined time is determined from a temperature of the power storage device and a current of the power storage device.

【0009】すなわち、本電池電圧検出方法によれば、
充電電流値、周囲温度、バラツキ判断時間をパラメータ
とした3次元マップ(図4参照)を参照して、周囲状況
に応じた正確なバラツキ時間を決定する。そして、この
正確なバラツキ時間に基づいて、セル間の電圧バラツキ
を判定するため、正確にセル間の残容量のバラツキを判
断することができる。
That is, according to the battery voltage detecting method,
With reference to a three-dimensional map (see FIG. 4) using the charging current value, the ambient temperature, and the variation determination time as parameters, an accurate variation time according to the surrounding situation is determined. Since the voltage variation between cells is determined based on the accurate variation time, the variation in remaining capacity between cells can be accurately determined.

【0010】また、本発明の電池電圧検出装置は、複数
のセルで構成される蓄電装置において、該セルの残容量
のバラツキを検出する電池電圧検出装置であって、前記
個々のセル電圧を測定し、それぞれのセル電圧が前記所
定電圧を超えた時点で、所定レベルの信号(実施形態で
は、各セルの電圧が所定の値の設定電圧を超えた場合
に、電圧検出部が出力する、例えば”H”の検出信号)
を送出する複数の電圧検出手段(実施形態では、このセ
ル電圧は各電圧検出部2a、2b、2c、2d・・・)
と、前記複数の電圧検出手段から送出される前記信号を
受信し、論理和演算を行いその結果に応じた論理和信号
(実施形態では、論理和信号FLG1)を出力する論理
和手段(実施形態では、論理和判断回路3a)と、前記
複数の電圧検出手段から送出される前記信号を受信し、
論理積演算を行いその結果に応じた論理積信号(実施形
態では、論理積信号FLG2)を出力する論理積手段
(実施形態では、論理積判断回路3b)と、前記論理和
信号と前記論理積信号とが入力され、該論理和信号を受
信した時点から該論理積信号を受信した時点までの経過
時間が、前記所定時間(実施形態では、周囲温度及び充
電電流値をパラメータとして図4に示したバラツキ判定
MAPから特定されるバラツキ時間)を超えたか否かに
よって、前記セル間の電圧バラツキを判定する判定手段
(実施形態では、上位ECU4)とを備えたことを特徴
とする。
Further, the battery voltage detecting device of the present invention is a battery voltage detecting device for detecting a variation in the remaining capacity of a cell in a power storage device composed of a plurality of cells, wherein the individual cell voltages are measured. Then, at the time when each cell voltage exceeds the predetermined voltage, a signal of a predetermined level (in the embodiment, when the voltage of each cell exceeds a set voltage of a predetermined value, the voltage detection unit outputs, "H" detection signal)
(In the embodiment, this cell voltage is determined by each of the voltage detectors 2a, 2b, 2c, 2d,...)
AND means for receiving the signals sent from the plurality of voltage detecting means, performing a logical OR operation, and outputting a logical OR signal (in the embodiment, a logical sum signal FLG1) according to the result (embodiment) Receiving the signals sent from the OR circuit 3a) and the plurality of voltage detecting means,
AND means (in the embodiment, a logical product determination circuit 3b) for performing a logical product operation and outputting a logical product signal (the logical product signal FLG2 in the embodiment) according to the result, and the logical sum signal and the logical product 4 is input, and the elapsed time from the time when the logical sum signal is received to the time when the logical product signal is received is the predetermined time (in the embodiment, the ambient temperature and the charging current value are shown in FIG. 4 as parameters. (A variation time specified by the variation determination MAP), and a determination unit (in the embodiment, the upper ECU 4) that determines the voltage variation between the cells.

【0011】すなわち、上記本発明の電池電圧検出装置
は、各セルのセル電圧を検出する複数の電圧検出手段
と、各電圧検出手段が所望の電圧を検出した時に生成さ
れる信号によって論理演算を行う論理演算手段と、論理
演算手段から入力した信号に基づいてセルの充電時間を
計測してセル間の電圧バラツキを判定する判定手段とに
よって構成されたシステムである。このようなシステム
によって、いずれかのセル電圧が所定電圧に達した時点
から全てのセル電圧が所定電圧に達した時点までの経過
時間を導き出して、その時間差からバラツキ時間を判断
して、セル間の電圧バラツキの大きさを判定することが
できる。
That is, the battery voltage detecting device of the present invention performs a logical operation by using a plurality of voltage detecting means for detecting a cell voltage of each cell and a signal generated when each voltage detecting means detects a desired voltage. The system includes a logical operation unit for performing the operation, and a determination unit that measures a charging time of a cell based on a signal input from the logical operation unit and determines a voltage variation between cells. With such a system, the elapsed time from the time when any one of the cell voltages reaches the predetermined voltage to the time when all the cell voltages reach the predetermined voltage is derived, and the variation time is determined from the time difference, and the inter-cell time is determined. Can be determined.

【0012】このように、各セルにおける充放電時のバ
ラツキ時間を、二次電池の温度と充放電電流とバラツキ
判断時間との相間関係によって判断し、環境状態や充放
電電流の違いによって、きめ細かにセル電圧のバラツキ
範囲を判断することにより、セル電圧のバラツキを均等
にするための均等化処理を必要な時のみ行うことができ
る。
As described above, the variation time at the time of charging / discharging in each cell is determined based on the interrelationship between the temperature of the secondary battery, the charging / discharging current, and the variation determination time. By judging the range of cell voltage variation, equalization processing for equalizing the cell voltage variation can be performed only when necessary.

【0013】また、本発明の電池電圧検出方法は、前記
各セルが、電気自動車またはハイブリッド車に使用され
る電池であり、且つその各セルがリチウムイオン電池で
あるのが好ましい。すなわち、セル当たりの起電力が高
く、しかも、エネルギー密度が高いリチウムイオン電池
を電気自動車やハイブリッド車に搭載して電池の小型軽
量化を図り、本発明の電池電圧検出方法によってセル電
圧のバラツキ状態を検知すれば、運転中において安全に
支障のないときに電池電圧のバラツキを検知することが
できる。しかも、必要に応じてセルの均等化処理を行う
ことができるので、極めて利便性の高い電気自動車を実
現することができる。
In the battery voltage detecting method according to the present invention, it is preferable that each of the cells is a battery used for an electric vehicle or a hybrid vehicle, and each of the cells is a lithium ion battery. In other words, a lithium ion battery having a high electromotive force per cell and a high energy density is mounted on an electric vehicle or a hybrid vehicle to reduce the size and weight of the battery. Is detected, it is possible to detect a variation in the battery voltage when there is no trouble during driving. In addition, since cell equalization processing can be performed as needed, an extremely convenient electric vehicle can be realized.

【0014】[0014]

【発明の実施の形態】以下、図面を用いて、本発明にお
ける電池電圧検出方法の実施の形態について説明する。
図1は、本発明における電池電圧検出方法の一実施の形
態を説明するための構成図である。すなわち、同図は、
EVやHEVに搭載されるリチウムイオン電池におい
て、組電池を構成するセル電池のバラツキを検知するた
めの電池電圧検出方法の構成を示している。尚、以下の
説明では、リチウムイオン電池を、単に電池と言うこと
にする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a battery voltage detecting method according to the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram for explaining an embodiment of a battery voltage detection method according to the present invention. That is, FIG.
In a lithium ion battery mounted on an EV or HEV, a configuration of a battery voltage detection method for detecting a variation of a cell battery constituting an assembled battery is shown. In the following description, a lithium ion battery is simply referred to as a battery.

【0015】図1において、EVやHEVに必要な所望
の電圧を得るために、組電池はN個のセル1a,1b,1c,1d
…の直列接続によって構成されている。そして、本発明
の電池電圧検出方法は、組電池のセル1a,1b,1c,1d…毎
の電圧を検出するために、N個の電圧検出部2a,2b,2c,2
d…が各セル間に接続されている。さらに、各電圧検出
部2a,2b,2c,2d…の出力信号がロジック回路部3に入力
され、ロジック回路部3内の論理和判断回路3aと論理積
判断回路3bとによって、それぞれ、論理和信号FLG1と論
理積信号FLG2とに弁別され、これらの信号が上位ECU
(Electrical Control Unit:電気制御装置)4へ入力
される。そして、上位ECU4が電池のセル電圧のバラ
ツキを判定するように構成されている。
In FIG. 1, in order to obtain a desired voltage required for an EV or an HEV, an assembled battery includes N cells 1a, 1b, 1c, 1d.
.. Are connected in series. The battery voltage detection method of the present invention uses N voltage detection units 2a, 2b, 2c, 2 to detect the voltage of each of the cells 1a, 1b, 1c, 1d,.
d ... are connected between the cells. Further, the output signals of the voltage detectors 2a, 2b, 2c, 2d,... Are input to the logic circuit unit 3, and the logical sum judgment circuit 3a and the logical product judgment circuit 3b in the logic circuit unit 3 respectively perform the logical sum operation. The signal FLG1 is distinguished from the AND signal FLG2, and these signals are
(Electrical Control Unit). Then, the host ECU 4 is configured to determine the variation of the cell voltage of the battery.

【0016】さらに詳しく述べれば、各電圧検出部2a,2
b,2c,2d…は、それぞれ、各セル1a,1b,1c,1d…のセル電
圧を検出しており、所定の値の設定電圧を検出すると、
例えば、“H”(High)の検出信号を発信する。さら
に、各電圧検出部2a,2b,2c,2d…から発信された検出信
号“H”はロジック回路部3に入力され、論理和判断回
路3a及び論理積判断回路3bによって、検出信号“H”の
論理和判断及び論理積判断が行われる。
More specifically, each of the voltage detectors 2a, 2
, b, 2c, 2d... respectively detect the cell voltage of each cell 1a, 1b, 1c, 1d.
For example, an "H" (High) detection signal is transmitted. Further, the detection signal "H" transmitted from each of the voltage detection units 2a, 2b, 2c, 2d,... Is input to the logic circuit unit 3, and the detection signal "H" is output by the OR judgment circuit 3a and the AND judgment circuit 3b. OR and AND judgments are performed.

【0017】すなわち、充電過程において、最も高いセ
ル電圧を検出した電圧検出部から最初の検出信号“H”
がロジック回路部3に送信されると、論理和判断回路3a
によって論理和判断が行われ、ロジック回路部3の論理
和判断回路3aから上位ECU4に対して論理和信号FLG1
が発信される。これによって、上位ECU4は、各セル
1a,1b,1c,1d…の内の何れかから最大電圧が入力された
ことを判断し、時間のカウントを開始する。
That is, in the charging process, the first detection signal “H” is output from the voltage detection unit that has detected the highest cell voltage.
Is sent to the logic circuit unit 3, the logical sum judgment circuit 3 a
The logical sum is determined by the logical sum signal FLG1 from the logical sum determination circuit 3a of the logic circuit unit 3 to the host ECU 4.
Is transmitted. As a result, the host ECU 4
It is determined that the maximum voltage has been input from any one of 1a, 1b, 1c, 1d..., And time counting is started.

【0018】さらに、充電過程において、最も低いセル
電圧を検出した電圧検出部から最後の検出信号“H”が
ロジック回路部3に送信されると、全ての検出信号
“H”の論理積判断が行われ、ロジック回路部3の論理
積判断回路3bから上位ECU4に対して論理積信号FLG2
が発信される。これによって、上位ECU4は、各セル
1a,1b,1c,1d…の内の何れかから最小電圧が入力された
ことを判断して、時間のカウントを終了し、最大電圧が
入力されてから最小電圧が入力されるまでの時間を計測
する。そして、上位ECU4は、最大電圧が入力されて
から最小電圧が入力されるまでの時間の長さによって、
各セル1a,1b,1c,1d…のセル電圧のバラツキの大小を判
定する。
Further, in the charging process, when the last detection signal "H" is transmitted from the voltage detection unit which has detected the lowest cell voltage to the logic circuit unit 3, the logical product of all the detection signals "H" is determined. The logical product signal FLG2 is sent from the logical product determination circuit 3b of the logic circuit unit 3 to the host ECU 4.
Is transmitted. As a result, the host ECU 4
1a, 1b, 1c, 1d, etc., it is determined that the minimum voltage has been input, and the counting of time is terminated. The time from when the maximum voltage is input until the minimum voltage is input is determined. measure. Then, the host ECU 4 determines, based on the length of time from when the maximum voltage is input to when the minimum voltage is input,
It is determined whether the cell voltages of the cells 1a, 1b, 1c, 1d,...

【0019】図2は、図1のロジック回路部3における
論理回路の具体的な構成図であり、(a)は論理和判断
回路3a、(b)は論理積判断回路3bを示す。すなわち、
同図(a)の論理和判断回路3aにおいては、各電圧検出
部2a,2b,2c,2d…からの電圧の検出信号“H”がOR論
理で入力される。したがって、何れか1つでも検出信号
“H”が入力されると、論理和判断回路3aの出力は
“H”となり、論理和信号FLG1が発信される。すなわ
ち、この論理現象は、組電池を低い電圧から充電して、
セル1a,1b,1c,1d…の内、最大電圧を有するセルが設定
電圧に達したときに、論理和判断回路3aの出力が“H”
となって、論理和信号FLG1を発信することを意味してい
る。
FIG. 2 is a specific configuration diagram of a logic circuit in the logic circuit section 3 of FIG. 1, wherein (a) shows a logical sum judging circuit 3a and (b) shows a logical product judging circuit 3b. That is,
In the logical sum judging circuit 3a shown in FIG. 9A, the voltage detection signal "H" from each of the voltage detectors 2a, 2b, 2c, 2d. Therefore, when any one of the detection signals “H” is input, the output of the OR circuit 3a becomes “H” and the OR signal FLG1 is transmitted. In other words, this logic phenomenon charges the battery pack from a low voltage,
When the cell having the maximum voltage among the cells 1a, 1b, 1c, 1d,... Reaches the set voltage, the output of the OR judgment circuit 3a becomes "H".
Means that the logical sum signal FLG1 is transmitted.

【0020】また、図2(b)の論理積判断回路3bにお
いては、各電圧検出部2a,2b,2c,2d…からの電圧の検出
信号“H”がAND論理で入力されている。したがっ
て、全ての入力が検出信号“H”となったときに、論理
積判断回路3bの出力が“H”となり、論理積信号FLG2が
発信される。すなわち、この論理現象は、組電池を低い
電圧から充電して、セル1a,1b,1c,1d…の全てのセルが
設定電圧に達したとき、したがって、最小電圧を有する
セルが設定電圧に達したときに、論理積判断回路3bの出
力が“H”となって、論理和信号FLG2を発信することを
意味している。
In the AND circuit 3b shown in FIG. 2B, the voltage detection signal "H" from each of the voltage detectors 2a, 2b, 2c, 2d,... Is input by AND logic. Therefore, when all the inputs become the detection signals "H", the output of the AND circuit 3b becomes "H" and the AND signal FLG2 is transmitted. That is, this logic phenomenon occurs when the battery pack is charged from a low voltage, and when all the cells 1a, 1b, 1c, 1d ... reach the set voltage, the cell having the minimum voltage reaches the set voltage. Then, the output of the logical product judgment circuit 3b becomes "H", which means that the logical sum signal FLG2 is transmitted.

【0021】次に、上位ECU4が、セルの最大電圧に
基く論理和信号FLG1を受信してから、セルの最小電圧に
基く論理積信号FLG2を受信するまでの所要時間を計測し
て、セルのバラツキ判定を行う処理について説明する。
図3は、充電時におけるセル電圧の推移と、論理和信号
及び論理積信号の時間関係を示すタイミング図であり、
(a)は論理和信号のタイミング波形、(b)は論理積
信号のタイミング波形、(c)は最大電圧を有するセル
と最小電圧を有するセルの電圧推移の波形である。すな
わち、図3の(c)は、横軸に充電時間Tをとり、縦軸
にセル電圧Vをとったときの最小電圧Vsのセルと最大
電圧Vmのセルの時間的電圧推移を示している。
Next, the host ECU 4 measures the time required from receiving the logical sum signal FLG1 based on the maximum voltage of the cell to receiving the logical product signal FLG2 based on the minimum voltage of the cell. The process of performing the variation determination will be described.
FIG. 3 is a timing chart showing the transition of the cell voltage during charging and the time relationship between the logical sum signal and the logical product signal.
(A) is a timing waveform of an OR signal, (b) is a timing waveform of an AND signal, and (c) is a waveform of a voltage transition of a cell having a maximum voltage and a cell having a minimum voltage. That is, (c) of FIG. 3 shows a temporal voltage transition of the cell having the minimum voltage Vs and the cell having the maximum voltage Vm when the charging time T is plotted on the horizontal axis and the cell voltage V is plotted on the vertical axis. .

【0022】今、図3の(c)において、組電池を充電
して行くと、先ず、時刻t1で最大電圧Vmのセル電圧が
設定電圧V0に達すると、論理和判断回路3aに最初の
“H”信号が入力されるので、図3の(a)のように、
時刻t1においてロジック回路部3の論理和判断回路3aか
ら論理和信号FLG1が発生し、上位ECU4へ入力され
る。さらに、図3の(c)において、組電池の充電を継
続して行き、時刻t2において最小電圧Vsを有するセル
電圧が設定電圧V0に達すると、全てのセル電圧が設定
電圧V0に達したことになる。したがって、同図(b)
のように、時刻t2においては、ロジック回路部3の論理
積判断回路3bは、全ての入力端子に“H”信号が入力さ
れることになるので、論理積判断回路の出力は“H”信
号となって論理積信号FLG2が発生し、この論理積信号FL
G2が上位ECU4へ入力される。
In FIG. 3 (c), when the battery pack is charged, first, at time t1, when the cell voltage of the maximum voltage Vm reaches the set voltage V0, the first "OR" is sent to the OR judgment circuit 3a. Since the H ″ signal is input, as shown in FIG.
At time t1, a logical sum signal FLG1 is generated from the logical sum determination circuit 3a of the logic circuit unit 3, and is input to the host ECU 4. Further, in FIG. 3 (c), the charging of the assembled battery is continued, and when the cell voltage having the minimum voltage Vs reaches the set voltage V0 at time t2, all the cell voltages have reached the set voltage V0. become. Therefore, FIG.
At time t2, the logical product determination circuit 3b of the logic circuit unit 3 receives the "H" signal at all the input terminals, so that the output of the logical product determination circuit becomes the "H" signal. And an AND signal FLG2 is generated.
G2 is input to the host ECU 4.

【0023】そして、上位ECU4は、論理和信号FLG1
が発信された時刻t1と論理積信号FLG2が発信された時刻
t2との差、すなわち、(t2−t1)をセルのバラツキ判断
時間tと認識する。さらに、上位ECU4は、このバラ
ツキ判断時間tから、最大電圧と最小電圧の電圧差(す
なわち、セル電圧のバラツキ)を推測する。したがっ
て、上位ECU4は、バラツキ判断時間tが大きけれ
ば、セルの最大電圧と最小電圧の電圧差は大きいので、
セル電圧のバラツキは大きいと判定し、バラツキ判断時
間tが小さければ、セル電圧のバラツキは小さいと判定
する。
Then, the host ECU 4 outputs the logical sum signal FLG1
Is transmitted and the time at which the AND signal FLG2 is transmitted
The difference from t2, that is, (t2−t1) is recognized as the cell variation determination time t. Further, the host ECU 4 estimates a voltage difference between the maximum voltage and the minimum voltage (that is, a variation in the cell voltage) from the variation determination time t. Therefore, when the variation determination time t is large, the host ECU 4 determines that the voltage difference between the maximum voltage and the minimum voltage of the cell is large.
It is determined that the variation of the cell voltage is large, and if the variation determination time t is short, it is determined that the variation of the cell voltage is small.

【0024】また、セル電圧のバラツキの大小を判定す
るバラツキ判断時間tの判定基準値は、電池の種類や、
周囲温度や、充電電流などに応じて予め設定しておく。
図4は、周囲温度及び充電電流に対するバラツキ判断時
間を3次元的に表現した、セルの電圧バラツキ判定MA
Pである。すなわち、図4においては、例えば、X軸に
温度(℃)、Y軸に充電電流値(A)、Z軸にバラツキ
時間(sec)をとり、周囲温度及び充電電流値とバラツ
キ時間との関係から、セル電圧のバラツキが許容範囲内
であるか否かの判断を行う。つまり、周囲温度及び充電
電流値をパラメータとして、バラツキ時間が図4に示す
MAP値(A点)以上であれば、セル電圧のバラツキは
許容範囲外であると判断する。
The criterion value of the variation determination time t for determining the magnitude of the variation of the cell voltage depends on the type of battery,
It is set in advance according to the ambient temperature, the charging current, and the like.
FIG. 4 is a three-dimensional representation of the variation determination time with respect to the ambient temperature and the charging current.
P. That is, in FIG. 4, for example, the temperature (° C.) is plotted on the X axis, the charging current value (A) is plotted on the Y axis, and the variation time (sec) is plotted on the Z axis, and the relationship between the ambient temperature and the charging current value and the variation time is shown. Therefore, it is determined whether or not the variation of the cell voltage is within the allowable range. That is, if the variation time is equal to or more than the MAP value (point A) shown in FIG. 4 using the ambient temperature and the charging current value as parameters, it is determined that the variation in the cell voltage is outside the allowable range.

【0025】ここで、各セル電圧のバラツキが許容範囲
外であると判断された場合は、車両の走行上において、
安全上問題ないと考えられるタイミングにおいて、セル
電圧のバラツキを均等化するために、通常の充電電圧よ
り高い電圧で組電池全体に対して均等化充電を行った
り、バイパス回路やブリーダ抵抗などを通して、各セル
に対して均等化処理を行ったりする。
Here, when it is determined that the variation of each cell voltage is out of the allowable range, when the vehicle travels,
At the timing when there is no problem in safety, in order to equalize the variation of the cell voltage, equalize the entire assembled battery with a voltage higher than the normal charging voltage, or through a bypass circuit or bleeder resistor, etc. For example, equalization processing is performed on each cell.

【0026】以上述べた実施の形態は本発明を説明する
ための一例であり、本発明は、上記の実施の形態に限定
されるものではなく、発明の要旨の範囲で種々の変形が
可能である。例えば、上記の実施の形態では、二次電池
としてリチウムイオン電池を用いた場合について述べた
が、これに限ることはなく、例えば、ニッケルカドミウ
ム電池やアルカリ電池、あるいはその他の電池であって
も構わない。また、上記の実施の形態で述べた電池電圧
検出方法は、EVやHEVに搭載される二次電池に限ら
ず、電力設備用に利用されるあらゆる二次電池の電池電
圧検出方法として適用できることは言うまでもない。さ
らに、前述の実施の形態では、組電池の充電過程におけ
るセル電圧の推移からセル電圧のバラツキを判定する場
合について述べたが、これに限らず、組電池の放電過程
においてセル電圧の推移を測定しても、セル電圧のバラ
ツキを判定することもできる。
The embodiment described above is an example for describing the present invention, and the present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention. is there. For example, in the above embodiment, the case where a lithium ion battery is used as the secondary battery has been described.However, the present invention is not limited to this. For example, a nickel cadmium battery, an alkaline battery, or another battery may be used. Absent. In addition, the battery voltage detection method described in the above embodiment is not limited to a secondary battery mounted on an EV or HEV, and can be applied as a battery voltage detection method for any secondary battery used for power equipment. Needless to say. Further, in the above-described embodiment, the case where the variation of the cell voltage is determined from the transition of the cell voltage in the charging process of the assembled battery has been described. However, the present invention is not limited to this, and the transition of the cell voltage is measured in the discharging process of the assembled battery. However, it is also possible to determine the variation in the cell voltage.

【0027】[0027]

【発明の効果】以上説明したように、本発明の電池電圧
検出方法によるセル電圧測定の手法によれば、充電時ま
たは放電時において、何れかのセルのセル電圧が最初に
所定電圧を超えてから、全てのセルのセル電圧が所定電
圧を超えるまでの経過時間を計測してセル電圧のバラツ
キを判定しているので、セル電圧のバラツキの絶対量を
検知することができる。これによって、セル電圧のバラ
ツキが小さい状態で均等化処理を行うこともなくなり、
無駄にエネルギーを消費することを回避することがで
き、エネルギー効率を向上させることができる。また、
組電池の充放電を行っている動作中にセル電圧を検知し
て、そのバラツキの大きさの判定を行うことができるの
で、車両を停止してセル電圧を測定する必要がなくな
り、結果として、車両の利便性が向上するという効果が
得られる。さらに、ハード面においては、測定したセル
の電圧値を通信するためのマイコンがいらなくなるた
め、測定装置のコストダウンを図ることができる。
As described above, according to the cell voltage measuring method according to the battery voltage detecting method of the present invention, during charging or discharging, the cell voltage of any cell first exceeds the predetermined voltage. Since the elapsed time until the cell voltages of all the cells exceed the predetermined voltage is measured to determine the variation in the cell voltage, the absolute amount of the variation in the cell voltage can be detected. As a result, the equalization process is not performed in a state where the variation in the cell voltage is small.
Waste of energy can be avoided, and energy efficiency can be improved. Also,
Since the cell voltage can be detected during the operation of charging and discharging the assembled battery and the magnitude of the variation can be determined, there is no need to stop the vehicle and measure the cell voltage, and as a result, The effect that the convenience of a vehicle improves is acquired. Further, in terms of hardware, a microcomputer for communicating the measured voltage value of the cell is not required, so that the cost of the measuring device can be reduced.

【0028】また、請求項2に記載の発明によれば、充
電電流値、周囲温度、バラツキ判断時間をパラメータと
した3次元マップを参照して、周囲状況に応じた正確な
バラツキ時間を決定する。そして、この正確なバラツキ
時間に基づいて、セル間の電圧バラツキを判定するた
め、正確にセル間の残容量のバラツキを判断することが
できるので、必要な時のみ均等化処理を行うことができ
る。これにより、均等か処理の頻度が低下し、エネルギ
ーのロスを極力少なくすることができるという効果が得
られる。
According to the second aspect of the present invention, an accurate variation time according to the surrounding situation is determined with reference to a three-dimensional map in which a charging current value, an ambient temperature, and a variation determination time are used as parameters. . Since the voltage variation between the cells is determined based on the accurate variation time, the variation in the remaining capacity between the cells can be accurately determined, so that the equalization process can be performed only when necessary. . As a result, an effect is obtained that the frequency of processing is reduced evenly and energy loss can be minimized.

【0029】また、請求項3に記載の発明によれば、本
発明の電池電圧検出装置は、各セルのセル電圧を検出す
る複数の電圧検出手段と、各電圧検出手段が所望の電圧
を検出した時に生成される信号によって論理演算を行う
論理演算手段と、論理演算手段から入力した信号に基づ
いてセルの充電時間を計測してセル間の電圧バラツキを
判定する判定手段とによって構成される。このような構
成により、最大電圧のセルが所定電圧を通過した時間と
最小電圧のセルが所定電圧を通過した時間を導き出し
て、その時間差からバラツキ時間を計算して、セル間の
電圧バラツキの大きさを判定することができる。これに
より、測定したセルの電圧値を通信するためのマイコン
がいらなくなるため、測定装置のコストダウンを図るこ
とができるという効果が得られる。
According to a third aspect of the present invention, in the battery voltage detecting device of the present invention, a plurality of voltage detecting means for detecting a cell voltage of each cell, and each of the voltage detecting means detects a desired voltage. Logic operation means for performing a logical operation on the basis of the signal generated when the operation is performed, and determination means for measuring the charging time of the cell based on the signal input from the logic operation means and determining the voltage variation between the cells. With such a configuration, the time when the cell with the maximum voltage passes the predetermined voltage and the time when the cell with the minimum voltage passes the predetermined voltage are derived, and the time difference is calculated from the time difference, and the magnitude of the voltage variation between the cells is calculated. Can be determined. This eliminates the need for a microcomputer for communicating the measured voltage value of the cell, and thus has the effect of reducing the cost of the measuring device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明における電池電圧検出方法の一実施の
形態を説明するための構成図である。
FIG. 1 is a configuration diagram illustrating an embodiment of a battery voltage detection method according to the present invention.

【図2】 図1のロジック回路部における論理回路の具
体的な構成図であり、(a)は論理和判断回路、(b)
は論理積判断回路を示す。
FIGS. 2A and 2B are specific configuration diagrams of a logic circuit in the logic circuit unit in FIG. 1; FIG.
Indicates a logical product judgment circuit.

【図3】 充電時におけるセル電圧の推移と、論理和信
号及び論理積信号の時間関係を示すタイミング図であ
る。
FIG. 3 is a timing chart showing a transition of a cell voltage at the time of charging and a time relationship between an OR signal and an AND signal.

【図4】 周囲温度及び充電電流に対するバラツキ判断
時間を3次元的に表現したセルの電圧バラツキ判定MA
Pである。
FIG. 4 is a diagram showing a three-dimensional cell voltage variation determination MA representing variation determination time with respect to ambient temperature and charging current.
P.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1d… セル 2a,2b,2c,2d… 電圧検出部(電圧検出手段) 3 ロジック回路部 3a 論理和判断回路(論理和手段) 3b 論理積判断回路(論理積手段) 4 上位ECU(判定手段) 1a, 1b, 1c, 1d ... cells 2a, 2b, 2c, 2d ... voltage detection unit (voltage detection means) 3 logic circuit unit 3a logical sum judgment circuit (logical sum means) 3b logical product judgment circuit (logical product means) 4 Upper ECU (judgment means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 302 H02J 7/00 302C (72)発明者 山田 保雄 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 2G016 CA03 CB31 CB33 CC01 CC04 CC27 CD01 2G035 AA15 AB03 AC01 AC16 AC19 AD27 AD28 5G003 BA03 DA07 EA09 GC05 5H030 AA10 AS08 FF44 FF52 5H115 PA11 PC06 PG04 PI14 PI16 PO02 PO06 PU21 QN03 SE06 TI02 TI05 TI06 TO05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/00 302 H02J 7/00 302C (72) Inventor Yasuo Yamada 1-4-1, Chuo, Wako-shi, Saitama No. F-term in Honda R & D Co., Ltd. (reference) 2G016 CA03 CB31 CB33 CC01 CC04 CC27 CD01 2G035 AA15 AB03 AC01 AC16 AC19 AD27 AD28 5G003 BA03 DA07 EA09 GC05 5H030 AA10 AS08 FF44 FF52 5H115 PA11 PC06 PG04 PI14 PI06 PO02 PO03 TI02 TI05 TI06 TO05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数のセルで構成される蓄電装置におい
て、該セルの残容量のバラツキを検出する電池電圧検出
方法であって、 充電時または放電時において、何れか1個のセルのセル
電圧が所定電圧を越えた時点から、全てのセルのセル電
圧が前記所定電圧を越えるまでの経過時間を計測し、該
経過時間が所定時間を超えたか否かによって、前記セル
間の電圧バラツキを判定することを特徴とする電池電圧
検出方法。
1. A battery voltage detection method for detecting a variation in remaining capacity of a cell in a power storage device including a plurality of cells, the cell voltage of one of the cells being charged or discharged. The elapsed time from when the voltage exceeds the predetermined voltage until the cell voltages of all cells exceed the predetermined voltage is measured, and the voltage variation between the cells is determined based on whether or not the elapsed time exceeds the predetermined time. A battery voltage detection method.
【請求項2】 前記所定時間は、前記蓄電装置の温度と
前記蓄電装置の電流とから決定されることを特徴とする
電池電圧検出方法。
2. The battery voltage detecting method according to claim 1, wherein the predetermined time is determined from a temperature of the power storage device and a current of the power storage device.
【請求項3】 複数のセルで構成される蓄電装置におい
て、該セルの残容量のバラツキを検出する電池電圧検出
装置であって、 前記個々のセル電圧を測定し、それぞれのセル電圧が前
記所定電圧を超えた時点で、所定レベルの信号を送出す
る複数の電圧検出手段と、 前記複数の電圧検出手段から送出される前記信号を受信
し、論理和演算を行いその結果に応じた論理和信号を出
力する論理和手段と、 前記複数の電圧検出手段から送出される前記信号を受信
し、論理積演算を行いその結果に応じた論理積信号を出
力する論理積手段と、 前記論理和信号と前記論理積信号とが入力され、該論理
和信号を受信した時点から該論理積信号を受信した時点
までの経過時間が、前記所定時間を超えたか否かによっ
て、前記セル間の電圧バラツキを判定する判定手段と、 を備えたことを特徴とする電池電圧検出装置。
3. A battery voltage detecting device for detecting a variation in remaining capacity of a cell in a power storage device including a plurality of cells, wherein each of the cell voltages is measured, and each cell voltage is set to a predetermined value. At the time when the voltage is exceeded, a plurality of voltage detecting means for transmitting a signal of a predetermined level, and the signals transmitted from the plurality of voltage detecting means are received, a logical sum operation is performed, and a logical sum signal according to the result is obtained. AND means for receiving the signals sent from the plurality of voltage detection means, performing a logical product operation, and outputting a logical product signal according to the result, and the logical sum signal The AND signal is input, and the voltage variation between the cells is determined based on whether or not the elapsed time from the time when the OR signal is received to the time when the AND signal is received exceeds the predetermined time. You Battery voltage detection device characterized by comprising: a judging means.
JP2000190152A 2000-06-23 2000-06-23 Detecting method for battery voltage and detecting device for battery voltage Withdrawn JP2002008734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190152A JP2002008734A (en) 2000-06-23 2000-06-23 Detecting method for battery voltage and detecting device for battery voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190152A JP2002008734A (en) 2000-06-23 2000-06-23 Detecting method for battery voltage and detecting device for battery voltage

Publications (1)

Publication Number Publication Date
JP2002008734A true JP2002008734A (en) 2002-01-11

Family

ID=18689666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190152A Withdrawn JP2002008734A (en) 2000-06-23 2000-06-23 Detecting method for battery voltage and detecting device for battery voltage

Country Status (1)

Country Link
JP (1) JP2002008734A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282890B2 (en) 2003-08-29 2007-10-16 Yazaki Corporation Voltage detector of battery assembly
JP2009276169A (en) * 2008-05-14 2009-11-26 Panasonic Ev Energy Co Ltd Condition detector for electric storage device
KR20130028665A (en) * 2011-09-09 2013-03-19 가부시키가이샤 지에스 유아사 State controlling apparatus, equalization of electrical storage device
JP2013070600A (en) * 2011-09-09 2013-04-18 Gs Yuasa Corp State management device, equalization method for storage elements
JP2013073897A (en) * 2011-09-29 2013-04-22 Toshiba Corp Storage battery device and storage battery device inspection and maintenance method
CN103336247A (en) * 2013-07-12 2013-10-02 安徽安凯汽车股份有限公司 Discharge detection system and detection method of power battery pack of electromobile
CN105480106A (en) * 2015-11-20 2016-04-13 浙江超威创元实业有限公司 Management device and control method of electric automobile lithium battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282890B2 (en) 2003-08-29 2007-10-16 Yazaki Corporation Voltage detector of battery assembly
JP2009276169A (en) * 2008-05-14 2009-11-26 Panasonic Ev Energy Co Ltd Condition detector for electric storage device
KR20130028665A (en) * 2011-09-09 2013-03-19 가부시키가이샤 지에스 유아사 State controlling apparatus, equalization of electrical storage device
JP2013070600A (en) * 2011-09-09 2013-04-18 Gs Yuasa Corp State management device, equalization method for storage elements
US9985444B2 (en) 2011-09-09 2018-05-29 Gs Yuasa International Ltd. Electric storage device management apparatus and method of equalizing capacities of electric storage devices
KR101954285B1 (en) * 2011-09-09 2019-03-05 가부시키가이샤 지에스 유아사 State controlling apparatus, equalization of electrical storage device
JP2013073897A (en) * 2011-09-29 2013-04-22 Toshiba Corp Storage battery device and storage battery device inspection and maintenance method
CN103336247A (en) * 2013-07-12 2013-10-02 安徽安凯汽车股份有限公司 Discharge detection system and detection method of power battery pack of electromobile
CN105480106A (en) * 2015-11-20 2016-04-13 浙江超威创元实业有限公司 Management device and control method of electric automobile lithium battery

Similar Documents

Publication Publication Date Title
EP2618454B1 (en) Device for averaging cell voltage of plurality of battery packs
US11124072B2 (en) Battery control device and electric motor vehicle system
US7564217B2 (en) Battery pack manager and method of detecting a line cut
JP5715694B2 (en) Battery control device, battery system
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
US20060214636A1 (en) Method and apparatus for equalizing secondary cells
KR101500547B1 (en) Apparatus and method for balancing of battery cell's charging capacity
US20120313562A1 (en) Battery control device, battery system, electric vehicle, charge control device, battery charger, movable body, power supply system, power storage device, and power supply device
EP2330431A1 (en) Battery pack and method of sensing voltage of battery pack
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
JP2010098866A (en) Imbalance determination circuit, imbalance reduction circuit, battery power supply, and imbalance evaluation method
JP5838224B2 (en) Battery control device
US12040458B2 (en) Slave BMS inspection system and method
WO2016132895A1 (en) Battery system monitoring apparatus
JP3855497B2 (en) Charged / discharged state determination method and apparatus for assembled battery
WO2010010662A1 (en) Imbalance determination circuit, power supply device, and imbalance determination method
KR102045047B1 (en) Maximum capacity charging apparatus considering SOH unbalance of battery module and control method thereof
US7612540B2 (en) Lithium-ion battery diagnostic and prognostic techniques
JP2017070024A (en) Battery monitoring device
JP5131533B2 (en) Battery charge / discharge control method and charge / discharge control apparatus
JP3545367B2 (en) Battery pack voltage detector
JP2002008734A (en) Detecting method for battery voltage and detecting device for battery voltage
JP5561049B2 (en) Battery voltage measuring device
JP2003254998A (en) Cell voltage measuring method of battery pack and its device
EP4212897A2 (en) Battery management apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904