JP4113936B2 - Method for producing ammonia-oxidizing bacteria-immobilized membrane - Google Patents

Method for producing ammonia-oxidizing bacteria-immobilized membrane Download PDF

Info

Publication number
JP4113936B2
JP4113936B2 JP2003039204A JP2003039204A JP4113936B2 JP 4113936 B2 JP4113936 B2 JP 4113936B2 JP 2003039204 A JP2003039204 A JP 2003039204A JP 2003039204 A JP2003039204 A JP 2003039204A JP 4113936 B2 JP4113936 B2 JP 4113936B2
Authority
JP
Japan
Prior art keywords
ammonia
oxidizing bacteria
culture
nitrite
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003039204A
Other languages
Japanese (ja)
Other versions
JP2004248516A (en
Inventor
貴誌 乾
良春 田中
Original Assignee
富士電機水環境システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機水環境システムズ株式会社 filed Critical 富士電機水環境システムズ株式会社
Priority to JP2003039204A priority Critical patent/JP4113936B2/en
Publication of JP2004248516A publication Critical patent/JP2004248516A/en
Application granted granted Critical
Publication of JP4113936B2 publication Critical patent/JP4113936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、上下水道の各処理プロセスの水や河川水、湖沼水などの環境水を対象として、水中の化学成分をモニタリングすることを目的としたバイオセンサ応用水質計測器に用いられるアンモニア酸化細菌固定化膜の製造方法に関する。
【0002】
【従来の技術】
バイオセンサは、溶液中の測定対象物質を認識する分子識別素子として、酵素や抗体などの生体機能高分子や、微生物や細胞など生体そのものを利用し、これらの生体材料を多孔性高分子膜に包括又は共有結合させることにより固定化した膜と、電気化学的検出器などのトランスデューサとを組み合わせて試料液中の化学成分の測定を行うセンサであり、試料液を上記生体材料を固定化した膜に接触させ、これによって生じる生化学反応により生成又は消費される物質の濃度変化を、検出器の出力(電流、電圧など)変化に変換して測定し、試料液に対するセンサ出力から、既知の濃度の被測定物質の標準液によって得られた検量線を用いて、試料液中の目的物質の濃度を算出するものである。
【0003】
例えば、特許文献1には、生体材料として有害物質に極めて弱い微生物である硝化細菌(アンモニア酸化細菌及び亜硝酸酸化細菌の総称)をアルギン酸ゲルによってセルロース膜上に包括固定化した硝化細菌固定化膜を用い、トランスデューサとして溶存酸素電極を用いた水中の毒物検出用バイオセンサが開示されている。このバイオセンサでは、硝化細菌の呼吸速度を連続モニタリングして、検水中に毒物が混入した時の硝化細菌の呼吸速度低下率を基に毒物検出を行うことができる。
【0004】
上記のような硝化細菌固定化膜の品質や保存性は、▲1▼硝化細菌の活性、▲2▼硝化細菌固定化膜の菌体固定化量、▲3▼硝化細菌固定化膜の保存液組成、という3つのパラメータに左右される。例えば、一般に微生物の培養状態は、図4に示す増殖曲線のように培養時間の推移に伴って、培養令が誘導期・加速期・対数増殖期・定常期・死滅期の順に変化し、微生物の活性は対数増殖期において最も高く、生菌個数濃度は定常期において最も高くなるが、亜硝酸態窒素(NO −N)濃度、濁度、MPN法などの従来の硝化細菌の培養状態の判定指標・方法では、培養状態を正確かつ迅速に把握することができないため、生産日時、すなわちロットの異なる硝化細菌固定化膜間で品質が一定せず、保存性に大きなバラツキが生じてしまっていた。
【0005】
本出願人は、上記のような問題を解決する一つの方法として、硝化細菌固定化膜の保存液及びアンモニア酸化細菌固定化膜の保存方法(特願2002−140484号)において、アンモニア酸化細菌をテトラゾリウム塩により染色し、該アンモニア酸化細菌中に生成するホルマザンの吸光度を測定し、ホルマザン吸光度による増殖曲線を用いてアンモニア酸化細菌の培養令の判定及び生菌個数濃度の測定を行い、その結果に基づいてアンモニア酸化細菌固定化膜の菌体固定化量を特定の範囲に調整すると共に該アンモニア酸化細菌固定化膜の保存液のオキサル酢酸濃度を0.5〜2mMに調整することを提案している。
【0006】
【特許文献1】
特公平7−85072号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記のようなホルマザン吸光度による増殖曲線のみによる培養状態の判定では、バイオセンサのセンサ出力に反映されるアンモニア酸化細菌の酸素消費速度、すなわち亜硝酸生成速度に関する正確な情報を得ることができないため、品質管理基準としては不充分であった。
【0008】
また、上記の方法では、アンモニア酸化細菌の培養状態に応じて菌体固定化量と保存液のオキサル酢酸濃度の両方を調整しなければならないので手間がかかるため、より簡便に品質管理ができる方法が望まれていた。
【0009】
したがって、本発明の目的は、一定品質のアンモニア酸化細菌固定化膜を効率よく製造するために、より正確にアンモニア酸化細菌の培養状態を判定できる指標を提供すると共に、この指標に基づくアンモニア酸化細菌固定化膜の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明のアンモニア酸化細菌固定化膜の製造方法は、水道原水や下・排水処理プロセスの流入水中の化学物質を計測するバイオセンサを利用した水質計測器に使用されるアンモニア酸化細菌固定化膜の製造方法であって、(A)アンモニア酸化細菌を培養する工程と、(B)前記工程(A)で得られたアンモニア酸化細菌の培養液を用いてアンモニア酸化細菌固定化膜を製膜する工程とからなり、
前記工程(A)において、アンモニア酸化細菌を培養する際に、下記(1)〜(3)で定義される「培養液活性度」、「ホルマザン吸光度」及び「平均亜硝酸生成進行度」を測定して、下記(4)で定義される「培養液亜硝酸生成能」を求めることにより、アンモニア酸化細菌の培養状態を判定し、
前記工程(B)において、前記「培養液亜硝酸生成能」の値に基づいて、下記(5)で定義される「亜硝酸生成能」が所定の範囲内になるようにアンモニア酸化細菌固定化膜の菌体固定化量を調整することを特徴とする。
【0011】
(1)「培養液活性度」:下記式(I)で定義される培養終了日のアンモニア酸化細菌培養液1mL当たりの活性度を表す指標
【0012】
【数5】

Figure 0004113936
【0013】
(2)「ホルマザン吸光度」:アンモニア酸化細菌培養液1mL中に含まれるアンモニア酸化細菌をテトラゾリウム塩で染色した際に、該アンモニア酸化細菌中に生成するホルマザンの吸光度値
【0014】
(3)「平均亜硝酸生成進行度」:下記式(II)で定義される培養期間中のアンモニア酸化細菌培養液1mL当たりの平均的亜硝酸生成能力を表す指標
【0015】
【数6】
Figure 0004113936
【0016】
(4)「培養液亜硝酸生成能」:下記式(III)で定義される培養終了日のアンモニア酸化細菌培養液1mL当たりの活性度及び平均亜硝酸生成能力の2つのパラメータを包含する指標
【0017】
【数7】
Figure 0004113936
【0018】
(5)「亜硝酸生成能」:下記式(IV)で定義されるアンモニア酸化細菌固定化膜の活性を表す指標
【0019】
【数8】
Figure 0004113936
【0020】
上記発明においては、前記(2)で定義される「ホルマザン吸光度」を測定する際に、テトラゾリウム塩として2-(4-indophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride(INT)を用いてアンモニア酸化細菌を染色し、該アンモニア酸化細菌中に生成するホルマザンを波長500nmで測定して、前記(1)で定義される「培養液活性度」及び前記(4)で定義される「培養液亜硝酸生成能」を求め、前記(5)で定義される「亜硝酸生成能」が2mg以上になるように前記菌体固定化量を調整することが好ましい。
【0021】
本発明の製造方法によれば、培養液中のアンモニア酸化細菌の活性度(菌体個数濃度及び菌体活性)及び平均亜硝酸生成能力の2つのパラメータを包含する指標である「培養液亜硝酸生成能」を求め、この「培養液亜硝酸生成能」に基づいてアンモニア酸化細菌の培養状態を判定することにより、アンモニア酸化細菌の培養状態をより正確に判定することができる。そして、該「培養液亜硝酸生成能」に基づいて、アンモニア酸化細菌固定化膜の活性の指標である「亜硝酸生成能」が所定の範囲内になるようにアンモニア酸化細菌固定化膜の菌体固定化量を調整することにより、一定品質のアンモニア酸化細菌固定化膜を効率よく製造することができる。また、前記「亜硝酸生成能」は、アンモニア酸化細菌固定化膜の菌体固定化量、すなわち、製膜に用いるアンモニア酸化細菌の培養液量を調整するだけで簡単に調整できるので、製造工程の合理化・簡素化、及び適切な品質管理が可能となる。
【0022】
【発明の実施の形態】
まず、本発明において定義する各指標について説明する。
【0023】
(1)「培養液活性度」
「培養液活性度」は、培養終了日のアンモニア酸化細菌培養液1mL当たりの活性度(菌体個数濃度×菌体活性)を表す指標であり、上記式(I)に示されるように、培養終了日のホルマザン吸光度と、培養期間中の日平均ホルマザン吸光度との商で定義される。
【0024】
(2)「ホルマザン吸光度」
「ホルマザン吸光度」は、アンモニア酸化細菌培養液1mL中に含まれるアンモニア酸化細菌をテトラゾリウム塩で染色した際に、生菌中のミトコンドリアの脱水素酵素によって還元されて該菌体中に生成したホルマザンの吸光度値であり、培養液中のアンモニア酸化細菌の増殖活性と比例関係にある。
【0025】
ホルマザン吸光度は、特願2002−140484号に記載された方法にしたがって測定することができる。すなわち、サンプリングしたアンモニア酸化細菌の培養液1mL当たり、0.25%(w/v)テトラゾリウム塩水溶液を0.125mL、及びアンモニア態窒素含有水溶液(例えば、アンモニア態窒素を5g/L含有するように調製されたNHCl水溶液等)を0.125mL添加して、30℃で24時間静置した後、遠心分離して上澄みを除去し、菌体に10%SDS(ドデシル硫酸ナトリウム)/0.1N−HClを1mL添加してよく混合し、菌体中に生成したホルマザンを抽出・溶解して分光光度計でその吸光度を測定すればよい。
【0026】
テトラゾリウム塩としては、2-(4-indophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride(INT)、2,3-bis(2-Methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide inner salt(XTT)、3-(4,5-dimethylthyazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)等を用いることができる。なお、使用するテトラゾリウム塩の種類によって生成するホルマザンの吸光波長も変わるため、生成したホルマザンに最適な波長の吸光度を測定すればよい。例えば、テトラゾリウム塩としてINTを用いた場合は赤紫色のホルマザンが生成するので、波長500nmにおける吸光度を測定すればよい。
【0027】
(3)「平均亜硝酸生成進行度(μg/mL)」
「平均亜硝酸生成進行度」は、培養期間中のアンモニア酸化細菌培養液1mL当たりの平均的亜硝酸生成能力を表す指標であり、上記式(II)に示されるように、培養期間中の各日における全亜硝酸生成量の総和を培養日数で平均化した値で定義される。
【0028】
なお、培養液中の亜硝酸態窒素濃度(以下、NO −N濃度と表す)は、JIS K 0101(工業用水試験方法 37.1.1 ナフチルエチレンジアミン吸光光度法)にしたがって測定すればよい。すなわち、適宜希釈したアンモニア酸化細菌の培養液に、スルファニルアミド溶液を添加して5分間反応させた後、ナフチルエチレンジアミン溶液を添加して10分以上静置し、540nm吸光度を測定する。そして、亜硝酸イオン標準溶液を用いて同様にして540nm吸光度を測定して作成した検量線により、試料液中のNO −N濃度を求めることができる。
【0029】
(4)「培養液亜硝酸生成能(μg/mL)」
「培養液亜硝酸生成能」は、培養終了日のアンモニア酸化細菌培養液1mL当たりの活性度及び平均亜硝酸生成能力という2つのパラメータを包含する指標であり、上記式(III)に示されるように、上記「培養液活性度」と上記「平均亜硝酸生成進行度」との積で定義される。
【0030】
(5)「亜硝酸生成能(mg)」
「亜硝酸生成能」は、アンモニア酸化細菌固定化膜の活性の指標であり、上記式(IV)に示されるように、上記「培養液亜硝酸生成能」と菌体固定化量との積で定義される。したがって、この指標を所定の範囲内に調整することにより、一定品質のアンモニア酸化細菌固定化膜を効率よく製造することができる。また、菌体固定化量、すなわち、製膜に用いるアンモニア酸化細菌の培養液量を調整するだけで簡単に調整できるので、製造工程の合理化・簡素化、及び適切な品質管理が可能となる。
【0031】
なお、本発明において、上記式(I)〜(IV)中において、全培養日数(n)は、特に制限されないが、通常、4≦n≦6であることが好ましい。
【0032】
以下、本発明の製造方法について更に詳細に説明する。
本発明において、アンモニア酸化細菌固定化膜に用いられるアンモニア酸化細菌としては、ニトロモナス・ユーロパエア(Nitrosomonas europaea:ATCC25978、ATCC19718)等が例示できる。また、アンモニア酸化細菌の培養は、公知の液体培地を用いた継代培養法にしたがって行うことができる。例えば、5〜10℃で適当な期間保存された前培養液を新しいPramer培地(Lewis & Pramer: Isolation of Nitrosomonas in Pure Culture.; J. Bacteriol., 76, 524-528 (1958))に、通常、5〜20%(v/v)接種して、温度30℃で4〜6日間振とう培養(振とう機回転数150〜180rpm)すればよい。なお、培地としては、Pramer培地に類似した組成の培地(例えば、Pramer培地における各種塩の代替塩を用いた培地等)を用いることもできる。
【0033】
アンモニア酸化細菌の培養期間中、菌体を含む培養液をサンプリングして5〜10℃で冷蔵保存し、採取した各サンプルについて、上述した方法によりホルマザン吸光度及びNO −N濃度を測定する。
【0034】
そして、上記式(I)〜(III)により、「培養液活性度」、「平均亜硝酸生成進行度」、「培養液亜硝酸生成能」を順次求め、上記の式(IV)により、「亜硝酸生成能」の値が所定の範囲内になるように、「菌体固定化量」、すなわち製膜に用いるアンモニア酸化細菌の培養液の液量を決定し、常法にしたがってアンモニア酸化細菌固定化膜を作成すればよい。
【0035】
なお、「ホルマザン吸光度」の値は、上述したように使用するテトラゾリウム塩の種類によって変わるため、前記「培養液活性度」の値、及び該「培養液活性度」の値に基づいて決定される「亜硝酸生成能」の値も変わる。したがって、菌体固定化量を決定する際の前記「亜硝酸生成能」の値の範囲は、使用するテトラゾリウム塩の種類によって適宜設定する必要がある。
【0036】
例えば、テトラゾリウム塩としてINTを用いてアンモニア酸化細菌を染色して該アンモニア酸化細菌中に生成するホルマザンを波長500nmで測定し、この「ホルマザン吸光度」の値に基づいて「培養液活性度」を求めた場合は、「亜硝酸生成能」が2mg以上となるように菌体固定化量を調整することが好ましく、2〜2.5mgとすることがより好ましく、2.25〜2.5mgとすることが特に好ましい。前記「亜硝酸生成能」が2mg未満であると、品質のバラツキが大きくなり、2.5mgを超えると、膜の酸素透過能低下が原因と考えられる、センサ装着時の校正エラーが発生する場合がある。そして、前記「亜硝酸生成能」を2.25mg以上とすることにより、品質のバラツキをよりなくすことができる。
【0037】
図1には、アンモニア酸化細菌固定化膜の一例が示されており、以下、図1に基づいてアンモニア酸化細菌固定化膜の製膜方法について説明する。
【0038】
このアンモニア酸化細菌固定化膜20は、円形の多孔質のセルロース膜21、22が、菌体固定化部24と重ならないように中心部が所定の大きさにくりぬかれたドーナツ状をなした両面テープ23によって貼り合わされたものであり、その中心部には、アンモニア酸化細菌が固定化された所定の大きさの円形の菌体固定化部24を有している。なお、上記セルロース膜の大きさや形状は、使用するフローセルの形状に合わせて適宜決定すればよい。また、菌体固定化部の大きさ(L1)も特に制限されないが、通常、5mm程度が好ましい。
【0039】
まず、上記の指標に基づいて決定した所定量のアンモニア酸化細菌の培養液を遠心分離して上澄みを除去した後、1%アルギン酸ナトリウム水溶液を適量加えて菌体を懸濁し、菌体濃縮液を得る。
【0040】
そして、セルロース膜22の中心部に、上記菌体濃縮液を滴下して、余剰のアルギン酸ナトリウム水溶液を吸引除去した後、更に塩化カルシウム水溶液(30g/L)を適量滴下して、余剰の塩化カルシウム水溶液を吸引除去し、菌体を固定化した側を内側にして、ドーナツ状の両面テープ23を介してセルロース膜21と貼り合わせる。次いで、最後に塩化カルシウム水溶液(30g/L)に15分間浸漬し、アルギン酸ナトリウムを完全にゲル化させて菌体を固定化する。
【0041】
このようにして製造されたアンモニア酸化細菌固定化膜は、例えば0.5〜2mMのオキサル酢酸(特に好ましくは1〜2mM)を含有するアンモニア酸化細菌用培地(例えばPramer培地)とともにビニールパックの中に封入して5〜10℃で保存することが好ましい。これにより、膜の保存性を高めることができる。
【0042】
図2には、アンモニア酸化細菌固定化膜を用いたバイオセンサの一例が示されている。このバイオセンサ10は、検水の流路12aが設けられたフローセル12と、アンモニア酸化細菌固定化膜20と、溶存酸素電極11とから構成されている。アンモニア酸化細菌固定化膜20の一方の面は、流路12a中の検水と接するように配置されている。また、もう一方の面は溶存酸素電極11と接するように配置されており、アンモニア酸化細菌固定化膜20に固定化されたアンモニア酸化細菌の酸素消費速度を連続的にモニタリングできるようになっている。
【0043】
そして、流路12aを矢印の方向に流れる検水中に毒物が混入していると、アンモニア酸化細菌の酸素消費速度が低下するので、この酸素消費速度の低下率を基に毒物検出を行うことができるようになっている。
【0044】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。なお、ホルマザン吸光度は、テトラゾリウム塩としてINTを用いて、上述した方法にしたがって500nmにおける吸光度を測定し、NO −N濃度の測定は、JIS K 0101(工業用水試験方法 37.1.1 ナフチルエチレンジアミン吸光光度法)にしたがって行った。
【0045】
実施例
(I)アンモニア酸化細菌(ニトロモナス・ユーロパエア(Nitrosomonas europaea):ATCC25978)の前培養液を、新しいPramer培地に10(v/v)%接種し、温度30℃、振とう機回転数150rpmで6日間培養した。なお、アンモニア酸化細菌の培養は、5つのロット(Lot.1〜5)で行い、各ロットの培養条件は同一とした。
【0046】
そして、各ロットについて、ホルマザン吸光度(0〜6日目)及びNO −N濃度(0、3、6日目)を測定して、「培養液活性度」、「平均亜硝酸生成進行度」及び「培養液亜硝酸生成能」を求めた。その結果を表1に示す。
【0047】
なお、「平均亜硝酸生成進行度」は、通常、上記式(II)に基づいて計算するが、培養0、3、6日目のNO −N濃度の測定結果しかないので、図3に示すように、NO −N濃度の増加曲線の面積(▲1▼+▲2▼+▲3▼)を求めて、下記式により計算した。
【0048】
【数9】
Figure 0004113936
【0049】
そして、菌体固定化量を5mLとし、常法にしたがってアンモニア酸化細菌固定化膜を製造した。なお、Lot.5は、Lot.2と同等の亜硝酸生成能になるように菌体固定化量を8mLとした。
【0050】
得られた各アンモニア酸化細菌固定化膜を、保存液(オキサル酢酸を1mM含むPramer培地)に入れ、5〜10℃で所定期間保存した後、バイオセンサに装着してセンサ出力規格値(0.35mV)到達時間を測定し、従来の品質管理基準である、センサ出力規格値到達時間が24時間以内である場合を「保存可能」、24時間以上である場合を「保存不可」であると判断し、保存寿命を測定した。それらの結果を表1に合わせて示す。
【0051】
【表1】
Figure 0004113936
【0052】
表1から、Lot.1〜4においては、アンモニア酸化細菌培養液の生菌個数濃度はロット間で大きな差はないにもかかわらず、全NO −N生成量は大きく変動しており、概して、全NO −N生成量が低下すると、製膜時良品率及び保存寿命が低下する傾向にあることが分かる。しかし、例えばLot.2とLot.3を比較すると、全NO −N生成量にほとんど差が無いのにもかかわらず、保存寿命はLot.3の方が1ヶ月も短い結果となっており、両者の培養終了日(6日目)のホルマザン吸光度を比較すると、Lot.3はLot.2の約半分であることから、Lot.3ではアンモニア酸化細菌の増殖活性が大幅に低いために保存寿命が短いことが分かる。以上の結果から、各分析項目単独ではアンモニア酸化細菌の培養状態を正確に把握することができず、一定品質のアンモニア酸化細菌固定化膜を製造することが困難であることが分かる。
【0053】
また、培養液亜硝酸生成能がLot.4と同等であったLot.5において、亜硝酸生成能がLot.2と同等となるように菌体固定化量を8mLに調整して製膜したが、保存寿命は短く、Lot.2と同等の品質にはならなかった。これは、菌体固定化量を増量すると、菌体増量による酸素消費量増加の効果と、固定化用ゲルの増量による膜の酸素透過性低下の効果が相克しており、菌体固定化量増量とアンモニア酸化細菌固定化膜の酸素消費速度上昇は直線的な比例関係にはないためであると考えられる。
【0054】
(II)上記(I)の結果を踏まえて、更に以下の試験を行った。すなわち、上記と同様の条件で、5つのロット(Lot.6〜10)でアンモニア酸化細菌(ニトロモナス・ユーロパエア(Nitrosomonas europaea):ATCC25978)を培養した。
【0055】
そして、上記と同様に各ロットについて、ホルマザン吸光度(0〜6日目)及びNO −N濃度(0、3、6日目)を測定して、「培養液活性度」、「平均亜硝酸生成進行度」及び「培養液亜硝酸生成能」を求めた。その結果を表2に示す。
【0056】
【表2】
Figure 0004113936
【0057】
そして、Lot.6〜10の各培養液を用いて、それぞれアンモニア酸化細菌固定化膜を製造した。なお、各ロットにおける亜硝酸生成能は、上記(I)において、培養状態が最も良く、アンモニア酸化細菌固定化膜の保存寿命が長かったLot.1の亜硝酸生成能の値(1.98mg)を超えるように設定した。
【0058】
得られた各ロットのアンモニア酸化細菌固定化膜(Lot.6〜10)を用いて、保存試験を行った。なお、対照として、Lot.6〜10の各培養液を用い、菌体固定化量を5mL(亜硝酸生成能2mg未満)として同様にして製膜した各アンモニア酸化細菌固定化膜を作成して用いた。
【0059】
保存試験は、アンモニア酸化細菌固定化膜を保存液(オキサル酢酸を1mM含むPramer培地)に入れ、5〜10℃で所定期間保存した後、バイオセンサに装着してセンサ出力規格値(0.35mV)到達時間を測定し、出荷時の品質管理基準である、センサ出力規格値到達時間が3時間以内である場合を「保存可能」、3時間以上である場合を「保存不可」であると判断し、保存率を求めた。その結果を表3に示す。
【0060】
【表3】
Figure 0004113936
【0061】
表3から、「亜硝酸生成能」が2mg以上となるように菌体固定化量を調整したLot.6〜10のアンモニア酸化細菌固定化膜は、長期間保存しても、「亜硝酸生成能」が2mg未満の対照に比べて、出荷時の品質管理基準を高確率で満たしており、品質が一定していることが分かる。なお、この保存試験において、「亜硝酸生成能」が2〜2.25mgであるアンモニア酸化細菌固定化膜(Lot.6、10)は、他のロットの膜(Lot.7〜9)に比べて保存期間が多少短い傾向にあることが分かった。一方、亜硝酸生成能が2.5mgを超えるアンモニア酸化細菌固定化膜(Lot.9)は、固定化量が多過ぎることによる膜の酸素透過能低下が原因と考えられる、センサ装着時の校正エラーが発生することがあった。以上のことから、アンモニア酸化細菌固定化膜の「亜硝酸生成能」を好ましくは2mg以上、より好ましくは2〜2.5mg、特に好ましくは2.25〜2.5mgとすることにより、品質管理基準達成率向上及び校正エラー回避できると考えられた。
【0062】
【発明の効果】
以上説明したように、本発明のアンモニア酸化細菌固定化膜の製造方法によれば、培養液中のアンモニア酸化細菌の活性度及び平均亜硝酸生成能力の2つのパラメータを包含する指標である「培養液亜硝酸生成能」を求め、この「培養液亜硝酸生成能」に基づいてアンモニア酸化細菌の培養状態を判定することにより、アンモニア酸化細菌の培養状態をより正確に判定することができる。そして、該「培養液亜硝酸生成能」に基づいて、アンモニア酸化細菌固定化膜の活性の指標である「亜硝酸生成能」が所定の範囲内になるようにアンモニア酸化細菌固定化膜の菌体固定化量を調整することにより、一定品質のアンモニア酸化細菌固定化膜を効率よく製造することができる。また、前記「亜硝酸生成能」は、アンモニア酸化細菌固定化膜の菌体固定化量、すなわち、製膜に用いるアンモニア酸化細菌の培養液量を調整するだけで簡単に調整できるので、製造工程の合理化・簡素化、及び適切な品質管理が可能となる。
【図面の簡単な説明】
【図1】 アンモニア酸化細菌固定化膜の構成の一例を示す模式図である。
【図2】 バイオセンサ(微生物センサ)の構成例を示す模式図である。
【図3】 実施例におけるNO −N濃度の増加曲線を示す図である。
【図4】 一般的な微生物の増殖曲線を示す図である。
【符号の説明】
20 アンモニア酸化細菌固定化膜
21、22 セルロース膜
23 両面テープ
24 菌体固定化部[0001]
BACKGROUND OF THE INVENTION
The present invention is an ammonia-oxidizing bacterium used in a biosensor-applied water quality measuring instrument intended for monitoring chemical components in water for environmental waters such as water in water and sewage treatment processes, river water, and lake water. The present invention relates to a method for producing an immobilized membrane.
[0002]
[Prior art]
Biosensors use biologically functional polymers such as enzymes and antibodies, and living organisms such as microorganisms and cells as molecular identification elements that recognize substances to be measured in solution, and convert these biomaterials into porous polymer membranes. A sensor that measures a chemical component in a sample solution by combining a membrane fixed by inclusion or covalent bonding with a transducer such as an electrochemical detector, and a membrane in which the biological material is fixed Changes in the concentration of substances produced or consumed by the biochemical reaction caused by contact with this are converted into changes in the output of the detector (current, voltage, etc.) and measured. The concentration of the target substance in the sample solution is calculated using a calibration curve obtained from the standard solution of the substance to be measured.
[0003]
For example, Patent Document 1 discloses a nitrifying bacteria-immobilized membrane in which nitrifying bacteria (generic name for ammonia-oxidizing bacteria and nitrite-oxidizing bacteria) that are extremely weak against harmful substances as biomaterials are comprehensively immobilized on a cellulose membrane by an alginate gel. And a biosensor for detecting toxic substances in water using a dissolved oxygen electrode as a transducer. With this biosensor, it is possible to continuously monitor the respiration rate of nitrifying bacteria, and to detect toxic substances based on the rate of decrease in the respiration rate of nitrifying bacteria when toxic substances are mixed into the test water.
[0004]
The quality and storage stability of the nitrifying bacteria-immobilized membrane as described above are as follows: (1) nitrifying bacteria activity, (2) the amount of immobilized nitrifying bacteria cells, and (3) nitrifying bacteria-immobilized membrane preservation solution It depends on three parameters: composition. For example, in general, in the culture state of microorganisms, the culture age changes in the order of induction period, acceleration period, logarithmic growth period, stationary phase, and death period in accordance with the transition of the culture time as shown in the growth curve shown in FIG. highest, although viable cell number concentration is highest in the stationary phase, nitrite nitrogen activity in the logarithmic growth phase (NO 2 - -N) concentration, turbidity, culture state of the art nitrifying bacteria such MPN method In the determination index / method, the culture state cannot be accurately and quickly grasped, so the quality is not constant between nitrifying bacteria-immobilized membranes in different production dates, that is, lots, resulting in large variations in storage stability. It was.
[0005]
As one method for solving the above problems, the applicant of the present invention uses an ammonia-oxidizing bacterium in a nitrifying bacteria-immobilized membrane preservation solution and an ammonia-oxidizing bacteria-immobilized membrane preservation method (Japanese Patent Application No. 2002-140484). Staining with tetrazolium salt, measuring the absorbance of formazan produced in the ammonia-oxidizing bacterium, determining the culture age of the ammonia-oxidizing bacteria and measuring the viable cell count concentration using the growth curve based on the absorbance of formazan. Based on the above, it is proposed to adjust the amount of immobilized cells of the ammonia-oxidizing bacteria immobilization membrane to a specific range and adjust the concentration of oxalacetic acid in the preservation solution of the ammonia-oxidizing bacteria immobilization membrane to 0.5 to 2 mM. Yes.
[0006]
[Patent Document 1]
Japanese Examined Patent Publication No. 7-85072 [0007]
[Problems to be solved by the invention]
However, the determination of the culture state based only on the growth curve based on the formazan absorbance as described above cannot obtain accurate information on the oxygen consumption rate of ammonia-oxidizing bacteria reflected on the sensor output of the biosensor, that is, the nitrite production rate. Therefore, it was insufficient as a quality control standard.
[0008]
In the above method, since both the amount of immobilized cells and the concentration of oxalacetic acid in the preservation solution have to be adjusted according to the culture state of the ammonia-oxidizing bacteria, it is time-consuming, so that quality control can be performed more easily. Was desired.
[0009]
Therefore, an object of the present invention is to provide an index that can more accurately determine the culture state of ammonia oxidizing bacteria in order to efficiently produce a fixed quality ammonia oxidizing bacteria immobilized membrane, and to provide ammonia oxidizing bacteria based on this index. An object of the present invention is to provide a method for producing an immobilized membrane.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing an ammonia-oxidizing bacteria-immobilized membrane of the present invention is used in a water quality measuring instrument using a biosensor that measures chemical substances in the inflow water of tap water or wastewater / wastewater treatment processes. A method for producing an ammonia-oxidizing bacteria-immobilized membrane, comprising: (A) a step of culturing ammonia-oxidizing bacteria; and (B) fixing the ammonia-oxidizing bacteria using the culture solution of ammonia-oxidizing bacteria obtained in the step (A). A process of forming a chemical film,
In the step (A), when cultivating ammonia-oxidizing bacteria, “culture medium activity”, “formazan absorbance” and “average nitrite production progress” defined in the following (1) to (3) are measured. Then, by determining the “culture broth nitrite production ability” defined in (4) below, the culture state of ammonia oxidizing bacteria is determined,
In the step (B), the ammonia-oxidizing bacteria are immobilized so that the “nitrite producing ability” defined in the following (5) is within a predetermined range based on the value of the “cultured solution nitrite producing ability”. It is characterized by adjusting the amount of cells immobilized on the membrane.
[0011]
(1) “Culture solution activity”: an index representing the activity per mL of ammonia-oxidizing bacteria culture solution defined by the following formula (I):
[Equation 5]
Figure 0004113936
[0013]
(2) “Formazan Absorbance”: Absorbance value of formazan produced in ammonia oxidizing bacteria when ammonia oxidizing bacteria contained in 1 mL of ammonia oxidizing bacteria culture solution are stained with tetrazolium salt.
(3) “Average nitrite production progress”: an index representing the average nitrite production capacity per mL of ammonia-oxidizing bacterial culture during the culture period defined by the following formula (II):
[Formula 6]
Figure 0004113936
[0016]
(4) “Liquid nitrite production ability”: an index including two parameters of activity per mL of ammonia-oxidizing bacterial culture on the end date of culture defined by the following formula (III) and average nitrite production ability: 0017
[Expression 7]
Figure 0004113936
[0018]
(5) “Nitrite-producing ability”: an index representing the activity of an immobilized ammonia-oxidizing bacterium membrane defined by the following formula (IV):
[Equation 8]
Figure 0004113936
[0020]
In the above invention, when measuring the “formazan absorbance” defined in (2) above, 2- (4-indophenyl) -3- (4-nitrophenyl) -5-phenyl-2H-tetrazolium chloride is used as the tetrazolium salt. (INT) was used to stain ammonia-oxidizing bacteria, and the formazan produced in the ammonia-oxidizing bacteria was measured at a wavelength of 500 nm, and “culture medium activity” defined in (1) above and (4) It is preferable to obtain the defined “culture solution nitrite producing ability” and adjust the amount of immobilized bacterial cells so that the “nitrite producing ability” defined in (5) above is 2 mg or more.
[0021]
According to the production method of the present invention, “culture broth nitrite, which is an index including two parameters of the activity (cell number concentration and fungus activity) of ammonia-oxidizing bacteria in the culture broth and the average nitrite production ability” By determining the “producing ability” and determining the culture state of the ammonia-oxidizing bacteria based on this “cultured solution nitrite producing ability”, the culture state of the ammonia-oxidizing bacteria can be determined more accurately. Based on the “culture solution nitrite-producing ability”, the bacteria of the ammonia-oxidizing bacteria-immobilized membrane are adjusted so that the “nitrite-producing ability” that is an indicator of the activity of the ammonia-oxidizing bacteria-immobilized membrane is within a predetermined range. By adjusting the amount of immobilized body, a fixed quality ammonia-oxidizing bacteria-immobilized membrane can be efficiently produced. In addition, since the “nitrite-producing ability” can be easily adjusted simply by adjusting the amount of immobilized cells of the ammonia-oxidizing bacteria-immobilized membrane, that is, the amount of the culture solution of ammonia-oxidizing bacteria used for membrane formation, Can be streamlined and simplified, and appropriate quality control is possible.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
First, each index defined in the present invention will be described.
[0023]
(1) “Culture activity”
“Culture medium activity” is an index representing the activity per mL of ammonia-oxidizing bacterial culture on the end of the culture (bacterial cell number concentration × bacterial cell activity). As shown in the above formula (I), the culture It is defined by the quotient of the formazan absorbance at the end date and the daily average formazan absorbance during the culture period.
[0024]
(2) “Formazan absorbance”
“Formazan absorbance” refers to the amount of formazan produced in the bacterial body, which is reduced by the mitochondrial dehydrogenase in live cells when the ammonia-oxidizing bacteria contained in 1 mL of the ammonia-oxidizing bacterial culture are stained with tetrazolium salts. The absorbance value is proportional to the growth activity of ammonia-oxidizing bacteria in the culture solution.
[0025]
The formazan absorbance can be measured according to the method described in Japanese Patent Application No. 2002-140484. That is, 0.125 mL of a 0.25% (w / v) tetrazolium salt aqueous solution and an aqueous solution containing ammonia nitrogen (for example, 5 g / L of ammonia nitrogen) per 1 mL of the sampled culture solution of ammonia-oxidizing bacteria. 0.125 mL of the prepared NH 4 Cl aqueous solution, etc.) was added, and the mixture was allowed to stand at 30 ° C. for 24 hours, and then centrifuged to remove the supernatant, and 10% SDS (sodium dodecyl sulfate) /0.0. 1 mL of 1N-HCl may be added and mixed well, and formazan formed in the cells may be extracted and dissolved, and the absorbance thereof may be measured with a spectrophotometer.
[0026]
Tetrazolium salts include 2- (4-indophenyl) -3- (4-nitrophenyl) -5-phenyl-2H-tetrazolium chloride (INT), 2,3-bis (2-Methoxy-4-nitro-5-sulfophenyl) ) -2H-tetrazolium-5-carboxyanilide inner salt (XTT), 3- (4,5-dimethylthyazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT), and the like can be used. In addition, since the absorption wavelength of the formazan produced | generated also changes with the kind of tetrazolium salt to be used, what is necessary is just to measure the light absorbency of the optimal wavelength for the produced | generated formazan. For example, when INT is used as a tetrazolium salt, reddish purple formazan is produced, and thus absorbance at a wavelength of 500 nm may be measured.
[0027]
(3) “Average nitrite production progress (μg / mL)”
“Average nitrite production progress” is an index representing the average nitrite production capacity per mL of ammonia-oxidizing bacteria culture solution during the culture period, and as shown in the above formula (II), It is defined as a value obtained by averaging the total amount of nitrite production in a day by the number of culture days.
[0028]
The nitrite nitrogen concentration (hereinafter referred to as NO 2 −N concentration) in the culture solution may be measured according to JIS K 0101 (industrial water test method 37.1.1 naphthylethylenediamine absorptiometry). . That is, after adding a sulfanilamide solution to a suitably diluted culture solution of ammonia-oxidizing bacteria and reacting for 5 minutes, a naphthylethylenediamine solution is added and allowed to stand for 10 minutes or more, and the absorbance at 540 nm is measured. Then, by a calibration curve prepared by measuring the 540nm absorbance in the same manner by using a nitrite ion standard solution, NO 2 in the sample solution - can be determined -N concentration.
[0029]
(4) “Cultivation ability of nitrite in culture (μg / mL)”
The “culture broth nitrite production ability” is an index including two parameters of the activity per 1 mL of the ammonia-oxidizing bacteria culture broth on the culture end date and the average nitrite production ability, as shown in the above formula (III). Defined by the product of the above-mentioned “culture medium activity” and the above-mentioned “average nitrite production progress”.
[0030]
(5) “Nitrite production ability (mg)”
“Nitrite-producing ability” is an index of the activity of the ammonia-oxidizing bacteria-immobilized membrane. As shown in the above formula (IV), the product of the above-mentioned “cultured solution nitrite-producing ability” and the amount of immobilized cells. Defined by Therefore, by adjusting this index within a predetermined range, a fixed quality ammonia-oxidizing bacteria-immobilized membrane can be efficiently produced. In addition, since the amount can be easily adjusted only by adjusting the amount of immobilized bacterial cells, that is, the amount of the culture solution of ammonia-oxidizing bacteria used for film formation, rationalization and simplification of the production process and appropriate quality control are possible.
[0031]
In the present invention, in the above formulas (I) to (IV), the total number of culture days (n) is not particularly limited, but it is usually preferable that 4 ≦ n ≦ 6.
[0032]
Hereinafter, the production method of the present invention will be described in more detail.
In the present invention, examples of the ammonia-oxidizing bacteria used for the ammonia-oxidizing bacteria-immobilized membrane include Nitrosomonas europaea (ATCC 25978, ATCC19718). Moreover, the culture | cultivation of ammonia oxidizing bacteria can be performed according to the subculture method using a well-known liquid medium. For example, a preculture solution stored at 5 to 10 ° C. for an appropriate period is usually added to a new Pramer medium (Lewis & Pramer: Isolation of Nitrosomonas in Pure Culture .; J. Bacteriol., 76, 524-528 (1958)). 5 to 20% (v / v) inoculation and shaking culture at a temperature of 30 ° C. for 4 to 6 days (shaking machine speed 150 to 180 rpm). As the medium, a medium having a composition similar to that of the Pramer medium (for example, a medium using alternative salts of various salts in the Pramer medium) can be used.
[0033]
During the culture period of the ammonia-oxidizing bacteria, the culture solution containing the cells is sampled and stored refrigerated at 5 to 10 ° C., and the formazan absorbance and NO 2 −N concentration are measured by the above-described methods for each sample collected.
[0034]
Then, according to the above formulas (I) to (III), “culture medium activity”, “average nitrite production progress”, “culture liquid nitrite production ability” are sequentially obtained, and according to the above formula (IV), “ Determine the amount of immobilized cells, that is, the amount of ammonia-oxidizing bacteria culture solution used for membrane formation, so that the value of “nitrite-producing ability” is within the specified range. An immobilization membrane may be created.
[0035]
In addition, since the value of “formazan absorbance” varies depending on the type of tetrazolium salt used as described above, it is determined based on the value of “culture medium activity” and the value of “culture medium activity”. The value of “nitrite production capacity” also changes. Therefore, the range of the value of the “nitrite producing ability” when determining the amount of immobilized cells needs to be appropriately set depending on the type of tetrazolium salt used.
[0036]
For example, formazan produced in ammonia-oxidizing bacteria by staining ammonia-oxidizing bacteria using INT as a tetrazolium salt is measured at a wavelength of 500 nm, and “culture activity” is obtained based on the value of this “formazan absorbance”. In such a case, it is preferable to adjust the amount of immobilized bacterial cells so that the “nitrite producing ability” is 2 mg or more, more preferably 2 to 2.5 mg, and 2.25 to 2.5 mg. It is particularly preferred. When the “nitrous acid production capacity” is less than 2 mg, the quality variation increases, and when it exceeds 2.5 mg, a calibration error occurs when the sensor is mounted, which may be caused by a decrease in the oxygen permeability of the membrane. There is. And the variation in quality can be eliminated more by making said "nitrous acid production | generation ability" into 2.25 mg or more.
[0037]
FIG. 1 shows an example of an ammonia-oxidizing bacteria immobilization membrane. Hereinafter, a method for forming an ammonia-oxidizing bacteria immobilization membrane will be described with reference to FIG.
[0038]
The ammonia-oxidizing bacteria-immobilized membrane 20 is a double-sided donut shape in which the center of the circular porous cellulose membranes 21 and 22 is hollowed to a predetermined size so as not to overlap the cell-immobilized portion 24. It is affixed by the tape 23, and has a circular microbial cell immobilization part 24 of a predetermined size to which ammonia-oxidizing bacteria are immobilized at the center. In addition, what is necessary is just to determine suitably the magnitude | size and shape of the said cellulose film according to the shape of the flow cell to be used. Further, the size (L1) of the bacterial cell immobilization part is not particularly limited, but is usually preferably about 5 mm.
[0039]
First, after centrifuging the culture solution of a predetermined amount of ammonia-oxidizing bacteria determined based on the above-mentioned index and removing the supernatant, an appropriate amount of 1% sodium alginate aqueous solution is added to suspend the cells, obtain.
[0040]
And after dripping the said microbial cell concentrated liquid to the center part of the cellulose membrane 22 and suction-removing the excess sodium alginate aqueous solution, a suitable quantity of calcium chloride aqueous solution (30g / L) is further dripped, and excess calcium chloride. The aqueous solution is removed by suction, and the cell is fixed to the cellulose membrane 21 via a doughnut-shaped double-sided tape 23 with the side on which the bacterial cells are immobilized facing inward. Then, finally, it is immersed in an aqueous calcium chloride solution (30 g / L) for 15 minutes to completely gel sodium alginate to immobilize the cells.
[0041]
The ammonia-oxidizing bacteria-immobilized membrane thus produced is contained in a vinyl pack together with a medium for ammonia-oxidizing bacteria (for example, Pramer medium) containing, for example, 0.5 to 2 mM oxalacetic acid (particularly preferably 1 to 2 mM). It is preferable to encapsulate and store at 5 to 10 ° C. Thereby, the preservation | save property of a film | membrane can be improved.
[0042]
FIG. 2 shows an example of a biosensor using an ammonia-oxidizing bacteria immobilized membrane. The biosensor 10 is composed of a flow cell 12 provided with a water flow channel 12 a, an ammonia-oxidizing bacteria immobilization membrane 20, and a dissolved oxygen electrode 11. One surface of the ammonia-oxidizing bacteria immobilization membrane 20 is disposed so as to be in contact with the water sample in the flow path 12a. The other surface is arranged so as to be in contact with the dissolved oxygen electrode 11 so that the oxygen consumption rate of the ammonia-oxidizing bacteria immobilized on the ammonia-oxidizing bacteria-immobilized membrane 20 can be continuously monitored. .
[0043]
If poisonous substances are mixed in the sample water flowing in the direction of the arrow through the flow path 12a, the oxygen consumption rate of the ammonia oxidizing bacteria decreases. Therefore, the poisonous substance detection can be performed based on the rate of decrease in the oxygen consumption rate. It can be done.
[0044]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The formazan absorbance was measured by measuring the absorbance at 500 nm according to the method described above using INT as a tetrazolium salt, and the NO 2 —N concentration was measured according to JIS K 0101 (industrial water test method 37.1.1 naphthyl). (Ethylenediamine absorption spectrophotometry).
[0045]
Example (I) A preculture of ammonia-oxidizing bacteria ( Nitrosomonas europaea : ATCC25978) was inoculated into 10% (v / v) of fresh Pramer medium at a temperature of 30 ° C. and a shaker speed of 150 rpm. Cultured for 6 days. In addition, the culture | cultivation of ammonia oxidizing bacteria was performed by five lots (Lot.1-5), and the culture conditions of each lot were made the same.
[0046]
For each lot, the formazan absorbance (0 to 6 days) and the NO 2 -N concentration (0, 3, and 6 days) were measured to determine “culture medium activity” and “average nitrite production progress. And “cultured nitrite production ability” were determined. The results are shown in Table 1.
[0047]
Incidentally, the "average nitrite generates progress" is usually calculated based on the above-mentioned formula (II), the culture 0, 3, 6 day NO 2 - Since there is only the measurement result of -N concentration, Fig 3 As shown, the area of the increasing curve of NO 2 −N concentration ((1) + (2) + (3)) was obtained and calculated according to the following formula.
[0048]
[Equation 9]
Figure 0004113936
[0049]
Then, the amount of immobilized bacterial cells was 5 mL, and an ammonia-oxidizing bacteria-immobilized membrane was produced according to a conventional method. In addition, Lot.5 was 8 mL of the microbial cell immobilization amount so that the nitrous acid producing ability was the same as Lot.2.
[0050]
Each of the obtained ammonia-oxidizing bacteria-immobilized membranes was placed in a storage solution (Pramer medium containing 1 mM oxalacetic acid), stored at 5 to 10 ° C. for a predetermined period, and then attached to a biosensor to provide a sensor output standard value (0. 35 mV) The arrival time is measured, and when the sensor output standard value arrival time is 24 hours or less, which is a conventional quality control standard, it is determined that “storable” and when it is 24 hours or more, “storable” The shelf life was measured. The results are also shown in Table 1.
[0051]
[Table 1]
Figure 0004113936
[0052]
From Table 1, in Lots. 1 to 4, although the viable cell count concentration of the ammonia-oxidizing bacteria culture solution is not significantly different between lots, the total NO 2 −N production amount varies greatly. generally, the total NO 2 - if -N generation amount is decreased, during film yield rate and shelf life it can be seen that there is a tendency to decrease. However, for example when comparing Lot.2 with Lot.3, total NO 2 - in spite of almost no difference -N generation amount, shelf life becomes one months shorter result towards Lot.3 When comparing the formazan absorbance on the end of culture (day 6), Lot.3 is about half that of Lot.2, so the growth activity of ammonia-oxidizing bacteria is much lower in Lot.3. It can be seen that the shelf life is short. From the above results, it can be seen that each analysis item alone cannot accurately grasp the culture state of ammonia-oxidizing bacteria, and it is difficult to produce a fixed-quality ammonia-oxidizing bacteria-immobilized membrane.
[0053]
Further, in Lot.5 where the culture solution nitrite production ability was equivalent to Lot.4, the amount of cells immobilized was adjusted to 8 mL so that the nitrite production ability was equivalent to Lot.2, and a film was formed. However, the shelf life was short and the quality was not as good as Lot.2. This is because when the amount of immobilized cells is increased, the effect of increasing oxygen consumption by increasing the amount of cells and the effect of decreasing oxygen permeability of the membrane by increasing the amount of gel for immobilization are in conflict. This is because the increase in oxygen consumption and the increase in oxygen consumption rate of the ammonia-oxidizing bacteria-immobilized membrane are not in a linear proportional relationship.
[0054]
(II) Based on the results of (I) above, the following tests were further performed. That is, ammonia oxidizing bacteria ( Nitrosomonas europaea : ATCC25978) were cultured in five lots (Lot. 6 to 10) under the same conditions as described above.
[0055]
Then, as described above but in each lot, formazan absorbance (0-6 days) and NO 2 - was measured -N concentration (0, 3, 6 days), "culture activity", "average nitrous “Nitrate production progress” and “culture nitrite production ability” were determined. The results are shown in Table 2.
[0056]
[Table 2]
Figure 0004113936
[0057]
And the ammonia oxidation bacteria fixed membrane was manufactured, respectively using each culture solution of Lot.6-10. In addition, the nitrite producing ability in each lot is the value of the nitrite producing ability of Lot.1 (1.98 mg) in which the culture state is the best in the above (I) and the shelf life of the ammonia-oxidizing bacteria-immobilized membrane is long. It was set to exceed.
[0058]
A storage test was performed using the obtained ammonia-oxidizing bacteria-immobilized membrane (Lot. 6 to 10) of each lot. As a control, each culture solution of Lot. 6 to 10 was used to prepare each ammonia-oxidizing bacteria immobilization membrane formed in the same manner with the cell immobilization amount of 5 mL (less than 2 mg of nitrite production ability). Using.
[0059]
In the preservation test, the ammonia-oxidizing bacteria-immobilized membrane was placed in a preservation solution (Pramer medium containing 1 mM oxalacetic acid), stored at 5 to 10 ° C. for a predetermined period, and then attached to a biosensor, and the sensor output standard value (0.35 mV). ) Measure the arrival time, and determine that the sensor output standard value arrival time, which is the quality control standard at the time of shipment, is within 3 hours is “storable”, and the case where it is 3 hours or more is “storable” Then, the storage rate was obtained. The results are shown in Table 3.
[0060]
[Table 3]
Figure 0004113936
[0061]
From Table 3, it can be seen that Lot.6-10 ammonia-oxidizing bacteria-immobilized membranes that have been adjusted to have a nitrous acid production capacity of 2 mg or more can be used for “nitrite production” even after long-term storage. Compared with the control of “Noh” of less than 2 mg, the quality control standard at the time of shipment is satisfied with high probability, and it can be seen that the quality is constant. In this storage test, the ammonia-oxidizing bacteria-immobilized membranes (Lot.6, 10) with a “nitrite-producing ability” of 2 to 2.25 mg were compared to membranes of other lots (Lot.7-9). The storage period tends to be slightly shorter. On the other hand, the ammonia-oxidizing bacteria-immobilized membrane (Lot.9) with a nitrite-producing ability exceeding 2.5 mg is considered to be caused by a decrease in the oxygen permeability of the membrane due to too much immobilization amount. An error sometimes occurred. From the above, the quality control is achieved by setting the “nitrite-producing ability” of the ammonia-oxidizing bacteria-immobilized membrane to preferably 2 mg or more, more preferably 2 to 2.5 mg, and particularly preferably 2.25 to 2.5 mg. It was thought that the standard achievement rate could be improved and calibration errors could be avoided.
[0062]
【The invention's effect】
As described above, according to the method for producing an ammonia-oxidizing bacteria-immobilized membrane of the present invention, “culture” is an index that includes two parameters of the activity of ammonia-oxidizing bacteria in the culture solution and the average nitrite production ability. By determining the “liquid nitrite producing ability” and determining the culture state of the ammonia oxidizing bacteria based on the “culture liquid nitrite producing ability”, the culture state of the ammonia oxidizing bacteria can be determined more accurately. Based on the “culture solution nitrite-producing ability”, the bacteria of the ammonia-oxidizing bacteria-immobilized membrane are adjusted so that the “nitrite-producing ability” that is an indicator of the activity of the ammonia-oxidizing bacteria-immobilized membrane is within a predetermined range. By adjusting the amount of immobilized body, a fixed quality ammonia-oxidizing bacteria-immobilized membrane can be efficiently produced. In addition, since the “nitrite-producing ability” can be easily adjusted simply by adjusting the amount of immobilized cells of the ammonia-oxidizing bacteria-immobilized membrane, that is, the amount of the culture solution of ammonia-oxidizing bacteria used for membrane formation, Can be streamlined and simplified, and appropriate quality control is possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of the configuration of an ammonia-oxidizing bacteria immobilization membrane.
FIG. 2 is a schematic diagram showing a configuration example of a biosensor (microorganism sensor).
FIG. 3 is a graph showing an increase curve of NO 2 —N concentration in Examples.
FIG. 4 is a diagram showing a general microorganism growth curve.
[Explanation of symbols]
20 Ammonia-oxidizing bacteria immobilization membranes 21, 22 Cellulose membrane 23 Double-sided tape 24 Cell immobilization part

Claims (2)

水道原水や下・排水処理プロセスの流入水中の化学物質を計測するバイオセンサを利用した水質計測器に使用されるアンモニア酸化細菌固定化膜の製造方法であって、(A)アンモニア酸化細菌を培養する工程と、(B)前記工程(A)で得られたアンモニア酸化細菌の培養液を用いてアンモニア酸化細菌固定化膜を製膜する工程とからなり、
前記工程(A)において、アンモニア酸化細菌を培養する際に、下記(1)〜(3)で定義される「培養液活性度」、「ホルマザン吸光度」及び「平均亜硝酸生成進行度」を測定して、下記(4)で定義される「培養液亜硝酸生成能」を求めることにより、アンモニア酸化細菌の培養状態を判定し、
前記工程(B)において、前記「培養液亜硝酸生成能」の値に基づいて、下記(5)で定義される「亜硝酸生成能」が所定の範囲内になるようにアンモニア酸化細菌固定化膜の菌体固定化量を調整することを特徴とするアンモニア酸化細菌固定化膜の製造方法。
(1)「培養液活性度」:下記式(I)で定義される培養終了日のアンモニア酸化細菌培養液1mL当たりの活性度を表す指標
Figure 0004113936
(2)「ホルマザン吸光度」:アンモニア酸化細菌培養液1mL中に含まれるアンモニア酸化細菌をテトラゾリウム塩で染色した際に、該アンモニア酸化細菌中に生成するホルマザンの吸光度値
(3)「平均亜硝酸生成進行度」:下記式(II)で定義される培養期間中のアンモニア酸化細菌培養液1mL当たりの平均的亜硝酸生成能力を表す指標
Figure 0004113936
(4)「培養液亜硝酸生成能」:下記式(III)で定義される培養終了日のアンモニア酸化細菌培養液1mL当たりの活性度及び平均亜硝酸生成能力の2つのパラメータを包含する指標
Figure 0004113936
(5)「亜硝酸生成能」:下記式(IV)で定義されるアンモニア酸化細菌固定化膜の活性を表す指標
Figure 0004113936
A method for producing an ammonia-oxidizing bacteria-immobilized membrane for use in a water quality measuring instrument using a biosensor that measures the chemical substances in the inflow water of raw water or sewer / wastewater treatment processes, and (A) cultivating ammonia-oxidizing bacteria And (B) a step of forming an ammonia-oxidizing bacteria-immobilized membrane using the culture solution of ammonia-oxidizing bacteria obtained in the step (A).
In the step (A), when cultivating ammonia-oxidizing bacteria, “culture medium activity”, “formazan absorbance” and “average nitrite production progress” defined in the following (1) to (3) are measured. Then, by determining the “culture broth nitrite production ability” defined in (4) below, the culture state of ammonia oxidizing bacteria is determined,
In the step (B), the ammonia-oxidizing bacteria are immobilized so that the “nitrite producing ability” defined in the following (5) is within a predetermined range based on the value of the “cultured solution nitrite producing ability”. A method for producing an ammonia-oxidizing bacteria-immobilized membrane, comprising adjusting the amount of cells immobilized on the membrane.
(1) “Culture solution activity”: an index representing the activity per mL of ammonia-oxidizing bacteria culture solution defined by the following formula (I)
Figure 0004113936
(2) “Formazan absorbance”: absorbance value of formazan produced in ammonia oxidizing bacteria when ammonia oxidizing bacteria contained in 1 mL of ammonia oxidizing bacteria culture solution are stained with tetrazolium salt (3) “average nitrite production” "Progression level": an index representing the average nitrite production capacity per mL of ammonia-oxidizing bacterial culture during the culture period defined by the following formula (II)
Figure 0004113936
(4) “Cultivation ability of nitrous acid in culture medium”: an index including two parameters of activity per mL of ammonia-oxidizing bacterial culture liquid at the end of cultivation defined by the following formula (III) and average nitrite production capacity
Figure 0004113936
(5) “Nitrite-producing ability”: an index representing the activity of an ammonia-oxidizing bacteria-immobilized membrane defined by the following formula (IV)
Figure 0004113936
前記(2)で定義される「ホルマザン吸光度」を測定する際に、テトラゾリウム塩として2-(4-indophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride(INT)を用いてアンモニア酸化細菌を染色し、該アンモニア酸化細菌中に生成するホルマザンを波長500nmで測定して、前記(1)で定義される「培養液活性度」及び前記(4)で定義される「培養液亜硝酸生成能」を求め、前記(5)で定義される「亜硝酸生成能」が2mg以上になるように前記菌体固定化量を調整する、請求項1に記載のアンモニア酸化細菌固定化膜の製造方法。When measuring the “formazan absorbance” defined in (2) above, 2- (4-indophenyl) -3- (4-nitrophenyl) -5-phenyl-2H-tetrazolium chloride (INT) was used as the tetrazolium salt. The formazan produced in the ammonia-oxidizing bacterium is measured at a wavelength of 500 nm, and the “culture medium activity” defined in (1) and the “culture” defined in (4) are used. 2. The ammonia-oxidizing bacterial immobilization according to claim 1, wherein “liquid nitrite producing ability” is determined, and the amount of immobilized bacterial cells is adjusted so that the “nitrite producing ability” defined in (5) is 2 mg or more. A method for producing a chemical film.
JP2003039204A 2003-02-18 2003-02-18 Method for producing ammonia-oxidizing bacteria-immobilized membrane Expired - Lifetime JP4113936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039204A JP4113936B2 (en) 2003-02-18 2003-02-18 Method for producing ammonia-oxidizing bacteria-immobilized membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039204A JP4113936B2 (en) 2003-02-18 2003-02-18 Method for producing ammonia-oxidizing bacteria-immobilized membrane

Publications (2)

Publication Number Publication Date
JP2004248516A JP2004248516A (en) 2004-09-09
JP4113936B2 true JP4113936B2 (en) 2008-07-09

Family

ID=33023441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039204A Expired - Lifetime JP4113936B2 (en) 2003-02-18 2003-02-18 Method for producing ammonia-oxidizing bacteria-immobilized membrane

Country Status (1)

Country Link
JP (1) JP4113936B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875367B2 (en) * 2006-01-19 2012-02-15 メタウォーター株式会社 Stock solution of nitrifying bacteria immobilization membrane

Also Published As

Publication number Publication date
JP2004248516A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
CN102796660B (en) For proofing unit and the on-line water quality monitoring method of monitoring water quality on line
Rastogi et al. Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial waste-waters
US4297173A (en) Method for determining ammonia and sensor therefor
ES2391956T3 (en) Bacterial consortium, bioelectrochemical device and a process for the simple and rapid estimation of the biological oxygen demand of wastewater
Tan et al. Dead Bacillus subtilis cells for sensing biochemical oxygen demand of waters and wastewaters
CN102520040A (en) Microbial reactor for detecting water toxicity and method for detecting water toxicity
Suzuki et al. An amperometric sensor for carbon dioxide based on immobilized bacteria utilizing carbon dioxide
Karube et al. Microbial biosensors
US20140326617A1 (en) Method for detecting biochemical oxygen demand
Kobos Microbe-based electrochemical sensing systems
JP4113936B2 (en) Method for producing ammonia-oxidizing bacteria-immobilized membrane
JP3882677B2 (en) Preservation solution for nitrifying bacteria-immobilized membrane and ammonia-oxidizing bacteria-immobilized membrane
JP4875367B2 (en) Stock solution of nitrifying bacteria immobilization membrane
Schär et al. Hyphomicrobium bacterial electrode for determination of monomethyl sulfate
Xin et al. An optical biosensing film for biochemical oxygen demand determination in seawater with an automatic flow sampling system
Zhao et al. Microbial sensor for determination of tannic acid
JPH03198767A (en) Method for measuring aerobic microorganism and measuring device
Chen et al. A novel biosensor for the rapid determination of biochemical oxygen demand
JP2621171B2 (en) Enzyme membrane for enzyme electrode using a novel thermostable pyruvate oxidase
JP2000515767A (en) Method and apparatus for measuring the use of a substrate in a reaction catalyzed by a microorganism
CN110923130B (en) Microbial sensor and preparation method and application thereof
JP2890128B2 (en) Yeast viable cell count method
CN110672686B (en) Method for preparing glutamic acid sensing electrode with wide detection linear range
Filipović-Kovačević et al. Amperometric biosensor for monitoring respiration activity of Saccharomyces cerevisiae in the presence of cobalt and zinc
Hikuma et al. Microbial electrode for nitrate based on Pseudomonas aeruginosa

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4113936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term