JP4113680B2 - Tetrathiafulvalene derivatives and methods for producing them - Google Patents

Tetrathiafulvalene derivatives and methods for producing them Download PDF

Info

Publication number
JP4113680B2
JP4113680B2 JP2001070020A JP2001070020A JP4113680B2 JP 4113680 B2 JP4113680 B2 JP 4113680B2 JP 2001070020 A JP2001070020 A JP 2001070020A JP 2001070020 A JP2001070020 A JP 2001070020A JP 4113680 B2 JP4113680 B2 JP 4113680B2
Authority
JP
Japan
Prior art keywords
group
embedded image
mmol
added
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001070020A
Other languages
Japanese (ja)
Other versions
JP2002265466A (en
Inventor
智 小川
薫 小川
則之 吉本
佳臣 広井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Iwate University
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Iwate University
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Iwate University, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001070020A priority Critical patent/JP4113680B2/en
Publication of JP2002265466A publication Critical patent/JP2002265466A/en
Application granted granted Critical
Publication of JP4113680B2 publication Critical patent/JP4113680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜材料、例えばダイオード、トランジスター、電極材料、配線材料、回路形成材料、EL材料等として好適である、磁気異方性ユニットとなる芳香環及びチオール基又はジスルフィド基を有する新規なテトラチアフルバレン誘導体及びその製造方法に関する。
【0002】
【従来の技術】
テトラチアフルバレン(TTF)は強力な電子供与体であることが知られており、電子受容体であるテトラシアノキノジメタン(TCNQ)と電荷移動錯体を形成して55K以上で金属的な導電性を持つことが知られている。また、超導電性を示すビスエチレンジチオテトラチアフルバレン(BEDT−TTF)のような機能性有機分子を電子デバイスとして組み込むことやその分子認識能を利用した応答性素子として利用する等の実用性デバイスとしての応用に関する研究も近年盛んに行われている。
また、金属や半導体表面における分子認識や分子集合体の構造に関する研究も盛んであり、有機分子の機能を最大限に発現させる実用デバイスを作るために必須となる、配向が制御された有機超薄膜を作製することが数多く研究されている。
一方、TTF骨格にアルカンチオール基を導入したTTF誘導体について平滑な金基板上、あるいは金コロイド上に自己組織化膜(SAM:Self−Assembled Monolayer)を形成するという研究も行われている(Chem.Commun.1999,737.;Langmuir,1999,15,8574)。しかしながら、高密度,高配向の有機薄膜を形成するまでには至っておらず、自己組織化膜材料として更なる展開が必要である。
一方、有機分子として、ベンゼンや、ナフタレン、アントラセン、フェナントレン、トリフェニレン、ピレン、ペリレンなどの多環芳香族化合物は、通常のものと比較して大きな磁気異方性を有することが知られている。また、これらの化合物については光導電性等の機能を持つことも知られおり、半導体などとして電子デバイスに応用しようとする試みも行われている。
【0003】
【発明が解決しようとする課題】
このような事実からすれば、ベンゼン環などの芳香族化合物とTTF骨格の両方を兼ね備えた化合物は、光学的、電気的機能などの複合機能を同時に発現できることが期待され、また芳香環の磁気異方性を利用し、磁場中で薄膜を作製することにより、高密度、高配向の超薄膜が形成されることが期待される。
そこで、本発明の目的は、磁気異方性ユニットとなる芳香環、及びチオール基又はジスルフィド基を組み込んだ新規なテトラチアフルバレン誘導体を提供することにあり、更にそれを薄膜材料として用いることにより磁場中で高密度、高配向な薄膜を作製する方法を提供することにある。
【0004】
【課題を解決するための手段】
上述の目的を達成するため、本発明(請求項1)は、
一般式(2)
【化6】

Figure 0004113680
で表わされるチオン類又はケトン類(以下「化合物(2)」という)と、
一般式(3)
【化7】
Figure 0004113680
(以下「化合物(3)」という)
又は
【化8】
Figure 0004113680
で表わされるケトン類(以下「化合物(4)」という)をを反応させ、
一般式(1)
【化5】
Figure 0004113680
(式(1)中、芳香族環はベンゼン環、或いは縮合芳香族環を示し、R1はプロトン、アルキル基、アルコキシ基のいずれかであり、R2、R3はプロトン、アルキル、メルカプトアルキル基、メルカプトオリゴエチレンジオキシエチル基のいずれかを示し、かつR2、R3は互いに同一であるか或いは異なっていてもよい)
で表わされるテトラチアフルバレン誘導体の製造方法である。
また、本発明(請求項2)は、
一般式(1)
【化5】
Figure 0004113680
(式(1)中、芳香族環は縮合芳香族環を示し、縮合芳香族環がナフタレン、アントラセン、フェナントレン、ピレン、ペリレン、トリフェニレンのいずれかであり、R1はプロトン、アルキル基、アルコキシ基のいずれかであり、R2、R3はプロトン、アルキル、メルカプトアルキル基、メルカプトオリゴエチレンジオキシエチル基のいずれかを示し、かつR2、R3は互いに同一であるか或いは異なっていてもよい)
で表わされるテトラチアフルバレン誘導体である。
【0005】
また、本発明(請求項3)は、基板上に請求項2に記載のテトラチアフルバレン誘導体を被覆した磁気異方性を有することを特徴とするテトラチアフルバレン誘導体の薄膜体である。
また、本発明(請求項4)は、
一般式(1)
【化5】
Figure 0004113680
(式(1)中、芳香族環はベンゼン環を示し、R1はプロトン、アルキル基、アルコキシ基のいずれかであり、R2、R3はプロトン、アルキル、メルカプトアルキル基、メルカプトオリゴエチレンジオキシエチル基のいずれかを示すもので、R2、R3のいずれかはメルカプトアルキル基、メルカプトオリゴエチレンジオキシエチル基であり、基板上に前記テトラチアフルバレン誘導体を被覆した磁気異方性を有することを特徴とするテトラチアフルバレン誘導体の薄膜体である。
また、本発明(請求項5)は、請求項3または4に記載のテトラチアフルバレン誘導体の薄膜を作製するに際し、薄膜の作成を一定方向の磁場をかけて行うことを特徴とするテトラチアフルバレン誘導体の薄膜の製造方法である。
【0006】
【発明の実施の態様】
本発明のテトラチアフルバレン誘導体(以下本発明化合物という)は、上記化合物(1)で表わされるが、当該一般式(1)中の芳香族環とは式
【化9】
Figure 0004113680
で表わされ、置換基としてR1を有するベンゼン環或いは、縮合芳香族環であることを意味し、このような縮合芳香族環としては例えば、ナフタレン、アントラセン、フェナントレン、ピレン、ペリレン、トリフェニレン等が挙げられる。
また、芳香族環に置換しているR1としては、プロトン、メチル基・エチル基等のアルキル基、メトキシ基・エトキシ基等のアルコキシが挙げられ、これらが、当該一般式(1)中の芳香族環に複数個置換していてもよい。
【0007】
本発明の請求項1、請求項2の化合物の具体例としては、例えば以下のようなもの等が挙げられる。
【化10】
Figure 0004113680
【化11】
Figure 0004113680
(以下「化合物(5)」という)
【化12】
Figure 0004113680
【化13】
Figure 0004113680
(以下「化合物(6)」という)
【化14】
Figure 0004113680
【化15】
Figure 0004113680
【化16】
Figure 0004113680
【化17】
Figure 0004113680
【化18】
Figure 0004113680
【化19】
Figure 0004113680
【化20】
Figure 0004113680
【化21】
Figure 0004113680
【化22】
Figure 0004113680
【化23】
Figure 0004113680
【化24】
Figure 0004113680
【化25】
Figure 0004113680
【化26】
Figure 0004113680
【化27】
Figure 0004113680
【化28】
Figure 0004113680
【化29】
Figure 0004113680
【化30】
Figure 0004113680
【化31】
Figure 0004113680
【化32】
Figure 0004113680
【化33】
Figure 0004113680
【化34】
Figure 0004113680
【化35】
Figure 0004113680
【化36】
Figure 0004113680
【化37】
Figure 0004113680
【化38】
Figure 0004113680
【化39】
Figure 0004113680
(以下「化合物(7)」という)
【化40】
Figure 0004113680
【化41】
Figure 0004113680
【化42】
Figure 0004113680
【化43】
Figure 0004113680
【化44】
Figure 0004113680
【化45】
Figure 0004113680
【化46】
Figure 0004113680
【化47】
Figure 0004113680
【化48】
Figure 0004113680
【化49】
Figure 0004113680
【化50】
Figure 0004113680
【化51】
Figure 0004113680
【化52】
Figure 0004113680
【化53】
Figure 0004113680
【化54】
Figure 0004113680
【化55】
Figure 0004113680
【化56】
Figure 0004113680
【化57】
Figure 0004113680
【化58】
Figure 0004113680
【化59】
Figure 0004113680
【化60】
Figure 0004113680
【化61】
Figure 0004113680
【化62】
Figure 0004113680
【化63】
Figure 0004113680
【化64】
Figure 0004113680
【化65】
Figure 0004113680
【0008】
本発明化合物は、一般式(2)で表わされるチオン類又はケトン類と、一般式(3)又は一般式(4)で表わされるケトン類を反応させることにより得られる。
反応は芳香族炭化水素溶媒、THF、アセトニトリル、DMF、二流化炭素、水、トリエチルホスファイト、酢酸、クロロホルム等のハロゲン化水素溶媒、アルコール系溶媒など適切な溶媒を用い、開放系もしくは不活性ガス気流下で行ったものである。好適反応温度は−30℃ないし250℃、より好ましくは0℃ないし150℃である。
原料化合物の一般式(2)で表されるチオン類は、一般式
【化66】
Figure 0004113680
で表わされる芳香族チオール化合物を二硫化炭素と反応させることにより得られ、縮合芳香環を持つものは新規化合物であり、また原料化合物の一般式(3)で表されるケトン類は、一般式
【化67】
Figure 0004113680
で表わされるチオン類を酢酸水銀等の酸化剤と反応させることにより得られる。
【0009】
また、本発明は、前記一般式(1)のテトラチアフルバレン誘導体を基板上に被覆した薄膜体を提供するものである。
このような薄膜体は、ダイオード、トランジスター、電極材料、配線材料、回路形成材料、EL材料等として好適である。
薄膜の製造方法としては、前記一般式(1)の化合物を真空蒸着する気相法や、溶液にする湿式法での自己組織化による方法などが挙げられる。
また、前記一般式(1)のテトラチアフルバレン誘導体を用いて薄膜を製造するにあたり、一定方向の磁場中で行うのが高密度、高配向のものが得られるので好ましい。
【0010】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、なお本発明はこれらの例によって何ら限定されるものではない。
【0011】
原料化合物の一般式(2)で表されるチオン類の合成について示す。
[合成例1]
枝付き500mlのナスフラスコに窒素気流下N,N,N´,N´−テトラメチレンジアミン111ml(744mmol)、n−ヘキサン300mlを加え攪拌し、n−ブチルリチウム300ml(744mmol)を加えて更に攪拌した。0℃に冷却したこのリアクターに、窒素気流下、枝付きジョイント付き200mlフラスコ中のチオフェノール34.11ml(338mmol)のn−ヘキサン溶液150mlをキャヌラーで滴下した。滴下後室温にて24時間攪拌した。次いで0℃に冷却した後、単体硫黄23.86g(744mmol)を添加して室温にて12時間攪拌した。ロータリーエバポレーターにて溶媒を除去した後、予備乾燥したTHF200mlに溶解し、0℃に冷却してリチウムアルミニウムハイドライド10gで還元し、そのまま油浴にて還流した。2時間後、溶液を氷水の入ったビーカーにゆっくり注ぎ込み、エーテルおよび濃塩酸にて洗浄し、酸性条件下で抽出を行い、水相を除去した。分液ロートに残った有機相に水酸化ナトリウム水溶液(1N)を加え塩基性条件下で抽出を行った。この際、分離した水相を500mlのナスフラスコに加え水酸化ナトリウム6gと二硫化炭素80mlを加えて浴温60℃で還流した。6時間後浴温を100℃まで上げて、分別還流リアクターのコックを開いて二硫化炭素を完全に除去した。室温まで冷却した後、吸引ろ過にて結晶をろ別し、水で赤みが消えるまで洗浄した。吸引ポンプにて100℃で4時間乾燥し水を除去して1,3−ベンゾジチオール−2−チオン55.84g(90%)を黄色粉末として得た。この化合物の物性を以下に示す。
融点:165.3−166.2℃;
HNMR(400MHz,CDCl):δ7.38−7.50(m,4H,Ar−H);
13CNMR(101MHz,CDCl):δ121.8,127.4,141.3,211.8;
UV(CHCl)(λmax(logε)):291.0nm(4.11),365.5nm(4.76).
【0012】
[合成例2]
乾燥した金属マグネシウム1.094g(45mmol)を窒素置換した100mlの三口フラスコに入れ、無水THF8mlを加えて超音波にかけた。開始剤となるエチレンジブロミドを数滴加え反応確認後、窒素置換した50mlの枝付きフラスコに準備した9−ブロモフェナントレン7.784g(30mmol)のTHF溶液30mlをキャヌラーにて滴下した。反応終了後、0℃に冷却し単体硫黄1.455g(45mmol)を添加し12時間室温にて攪拌した。氷水の入ったビーカーに注ぎ込み、濃塩酸にて残ったマグネシウムを溶解した。吸引ろ過により沈殿を分離し、ろ液は塩化メチレンで抽出し硫酸マグネシウムで乾燥し、ろ過してロータリーエバポレーターにより濃縮し、ろ塊と一緒に予備乾燥したTHF150mlに溶解した。0℃に冷却し、リチウムアルミニウムハイドライド2gを加え2時間還流して、氷水の入ったビーカーに注ぎ込み濃塩酸にてpH1にしてエーテルとTHFの混合溶媒で抽出し、水相を除去した。得られた有機相に1Nの水酸化ナトリウム水溶液を適当量加えて抽出し、有機相を除去した。分離した水相に再び濃塩酸を加え、塩化メチレンにて抽出し、硫酸マグネシウムで乾燥し、ろ過し、ロータリーエバポレーターにより濃縮して、クロロホルムを展開溶媒としたシリカゲルカラムクロマトグラフィー(φ=5.0cm,h=3cm)により分離精製して9−メルカプトフェナントレン5.04g(80%)を無色粉末として得た。この化合物の物性を以下に示す。
融点:97.0−98.0℃;
HNMR(60MHz,CDCl):δ3.61(s,1H,SH),7.48−7.85(m,6H,Ar−H),8.14−8.36(m,1H,Ar−H),8.45−8.83(m,2H,Ar−H);
IR(KBr):2566(SH)cm−1
【0013】
枝付きジョイントを組み込んだ500mlのナスフラスコに窒素気流下9−メルカプトフェナントレン14.72g(70mmol)、c−ヘキサン250mlおよびN,N,N’,N’−テトラメチレンジアミン23.1ml(154mmol)を加え攪拌し、0℃に冷却した後、n−ブチルリチウム/n−ヘキサン溶液62.6ml(154mmol)を加えて室温にて24時間攪拌した。更に0℃に冷却した後、単体硫黄4.94g(154mmol)を添加して室温にて12時間攪拌した。ロータリーエバポレーターにて溶媒を除去した後、予備乾燥したTHF300mlに溶解し0℃に冷却してリチウムアルミニウムハイドライド10.0gで還元し、そのまま油浴にて還流した。2時間後、氷水の入ったビーカーにその溶液をゆっくり注ぎ込み、エーテルおよび濃塩酸にて洗浄し、酸性条件下で抽出を行い、水相を除去した。分液ロートに残った有機相に水酸化ナトリウム水溶液(5N)を加え塩基性条件下で抽出した。この際、分離した水相を500mlのナスフラスコに加え水酸化ナトリウム6gと二硫化炭素80mlを加えて浴温60℃で還流した。2時間後浴温を100℃まで上げて、分別還流リアクターのコックを開いて二硫化炭素を完全に除去した。このことにより水相に黄色の結晶が析出するので吸引ろ過にて結晶をろ別し、水で充分に洗浄した。吸引ポンプにて100℃で2時間乾燥し、水を除去した。クロロホルムを加えて懸濁溶液にし、吸引ろ過にて結晶をろ別し、クロロホルムで充分に洗浄した。この操作で回収したろ液は濃縮して数回同様の方法にて結晶を取り出した。分離した結晶は大量のジクロロメタンを加え懸濁中でろ過カラム処理を行った。濃縮・乾燥してフェナントロ[9,10−d]1,3−ジチオーレン−2−チオン1.05g(12%)を黄色粉末として得た。この化合物の物性を以下に示す。
融点:245.9−246.5℃;
HNMR(400MHz,CDCl):δ7.65−7.75(m,6H,Ar−H),8.68−8.70(m,2H,Ar−H);
HNMR(400MHz,CDCl:CS=1:10(vol)):δ7.59−7.69(m,6H,Ar−H),8.59−8.62(m,2H,Ar−H);
13CNMR(101MHz,CDCl:CS=1:10(vol)):δ67.4,123.3(2C),125.4(2C),125.7,127.4(2C),127.7(2C),129.1(2C),136.7(2C);
IR(KBr):1605,1562,1490,1432,1262,1058,803,732,717,559,519,439,436cm−1
MSm/z284(M);Anal.Calcd.forC15:C,63.34;H,2.84%.Found:C,63.63;H,2.81%。
【0014】
原料化合物の一般式(3)で表されるケトン類の合成について示す。
[合成例3]
窒素置換したフラスコに、ナトリウム4.6g(200mmol)と二硫化炭素36ml(772mmol)を加え30分還流してナトリウムを活性化した後、DMF40mlを加えて再び2時間還流した後、60℃以下の油浴で減圧蒸留して溶媒を除去した。次いで生成物をメタノール120mlと水60mlに溶解し、塩化亜鉛4g(29.4mmol)とアンモニア水75mlを加え、臭化テトラエチルアンモニウム10.6g(50.4mmol)の水溶液を加えて、室温で12時間攪拌し、吸引ろ過して得た生成物を80℃で12時間減圧乾燥してビス(テトラエチルアンモニウム)ビス(2−チオキソ−1,3−ジチオール−4,5−ジチオレート)ジンケート15.95g(88%)を暗赤色結晶として得た。この亜鉛錯体化合物の物性を以下に示す。
融点:198.7−200.1℃;
IR(KBr):2979,1458,1417,1182,1059,1038,996,888,785cm−1
【0015】
アセトニトリル25mlに、上記亜鉛錯体化合物1.44g(2mmol)と3−ブロモプロピオニトリル1.34g(10mmol)を加え1時間還流した。次いで室温まで冷やし、吸引ろ過により黒色の沈殿を除去し、ロータリーエバポレーターにて溶媒を除去した後、再び塩化メチレンに溶かして抽出した。乾燥剤にて残留水分を除去し、乾燥剤をろ別してロータリーエバポレーターにて濃縮した。塩化メチレン/n−ヘキサンにて再結晶して、吸引ろ過したものを吸引ポンプで30分乾燥して4,5−ビス(2−シアノエチルチオ)−1,3−ジチオール−2−チオン1.01g(83%)を赤色針状晶として得た。この化合物の物性を以下に示す。
融点82.4−83.3℃;
HNMR(400MHz,CDCl):δ2.81(t,J=6.9Hz,4H,CH),3.17(t,J=6.9Hz,4H,CH);
13CNMR(101MHz,CDCl):δ19.0,31.8,117.1,135.8,209.1;
IR(KBr):2977,2248,1458,1411,1290,1071,894cm−1
【0016】
上記4,5−ビス(2−シアノエチルチオ)−1,3−ジチオール−2−チオンをアセトニトリルに溶解した溶液に、水酸化セシウム1.26g(8.4mmol)をメタノール12mlに溶解した溶液を攪拌しながらゆっくりと滴下しさらに攪拌した。滴下終了後30分経過した後、ヨウ化メチル11.36g(40mmol)を加え再び30分攪拌した。過剰のヨウ化メチルを除去するため、窒素を30分間吹き込みロータリーエバポレーターにて濃縮した。この濃縮物を塩化メチルに溶かして抽出し、乾燥剤を加えて残りの水を除去したのち、ろ別した。次いでロータリーエバポレーターにて濃縮し、クロロホルムを展開溶媒としてシリカゲルカラムクロマトグラフィー(φ=5.5cm,h=16cm)により分離精製して4−(2−シアノエチルチオ)−5−メチルチオ−1,3−ジチオール−2−チオン1.78g(84%)を黄色針状晶として得た。この化合物の物性を以下に示す。
融点90.0−91.1℃;
HNMR(400MHz,CDCl):δ2.56(s,3H,CH),2.75(t,J=7.1Hz,2H,CH),3.09(t,J=7.1Hz,2H,CH);
13CNMR(101MHz,CDCl):δ18.8,18.9,31.8,117.1,126.0,144.9,209.9;
IR(KBr):2247,1464,1438,1416,1318,1276,1054,953,900cm−1
【0017】
[合成例4]
4−(2−シアノエチルチオ)−5−メチルチオ−1,3−ジチオール−2−チオン1.59g(6mmol)を窒素置換し、クロロホルム/酢酸(3:1)の混合溶媒25mlに溶かし、これに固体添加装置を用いて窒素置換した酢酸水銀5g(16mmol)を加え、16時間攪拌後、吸引ろ過によりろ液を分離した。これをビーカーに注ぎ、飽和炭酸水素ナトリウム水溶液で中和後、分液ロートで抽出した。乾燥剤にて残りの水を除去し、ろ別した。ロータリーエバポレーターにて濃縮し、吸引ポンプで乾燥して4−(2−シアノエチルチオ)−5−メチルチオ−1,3−ジチオール−2−オン1.57gを定量的に黄色針状晶として得た。この化合物の物性を以下に示す。
融点61.8−62.5℃;
HNMR(400MHz,CDCl):δ2.52(s,3H,CH),2.74(t,J=7.1 Hz,2H,CH),3.07(t,J=7.1Hz,2H,CH2);
13CNMR(101MHz,CDCl):δ18.8,19.1,31.6,117.2,118.0,135.6,188.7;
IR(KBr):2922,2246,1777,1661,1618,1413,1274,957,899,747cm−1
【0018】
[合成例5]
4,5−ビス(2−シアノエチルチオ)−1,3−ジチオール−2−チオン0.913g(3mmol)を窒素置換し、クロロホルム/酢酸(3:1)混合溶媒25mlに溶かした。酢酸水銀2.500g(8mmol)を固体添加装置を用いて加え、16時間攪拌後、吸引ろ過によりろ液を分離した。これをビーカーに注ぎ、飽和炭酸水素ナトリウム水溶液で中和後、分液ロートで抽出した。乾燥剤にて残りの水を除去し、これをろ別した。ロータリーエバポレーターにて濃縮し、吸引ポンプで乾燥して4,5−ビス(2−シアノエチルチオ)−1,3−ジチオール−2−オン0.921gを定量的に深黄色針状晶として得た。この化合物の物性を以下に示す。
融点:62.8−64.2℃;
NMR(400MHz,CDCl):δ2.80(t,J=6.9Hz,4H,CH),3.14(t,J=6.9Hz,4H,CH);
13CNMR(101MHz,CDCl):δ19.0,31.6,117.2,127.4,187.6;
IR(KBr):2951,2249,1775,1666,1615,1420,1283,1156,886,741cm−1
【0019】
[実施例1]
合成例1で得た1,3−ベンゾジチオール−2−チオン0.92g(5mmol)と合成例4で得た4−(2−シアノエチルチオ)−5−メチルチオ−1,3−ジチオール−2−オン1.42g(5mmol)を窒素置換し、トリエチルホスファイト6.4mlを加えて120℃で1.5時間攪拌した。反応溶液を室温まで冷やし、結晶を吸引ろ過により分離してメタノールで洗浄した。クロロホルムを展開溶媒としてシリカゲルカラムクロマトグラフィー(φ=3.0cm,h=3cm)により分離精製して4−(2−シアノエチルチオ)−5−メチルチオ−ベンゾテトラチアフルバレン1.06g(68%)を橙色針状晶として得た。この化合物の物性を以下に示す。
尚、一般式(2)で表される1,3−ベンゾジチオール−2−オンと合成例4で得た4−(2−シアノエチルチオ)−5−メチルチオ−1,3−ジチオール−2−オンとの反応でも、同様に4−(2−シアノエチルチオ)−5−メチルチオベンゾテトラチアフルバレンを18%の収率で得ることができる。
融点128.5−129.4℃;
HNMR(400MHz,CDCl):δ2.48(s,3H,CH),2.70(t,J=7.2Hz,4H,CH),3.03(t,J=7.2Hz,4H,CH),7.11−7.27(m,4H,Ar−H);
13CNMR(101MHz,CDCl):δ18.7,19.1,31.2,108.5,113.4,117.5,120.0,121.91,121.93,126.02,126.03,135.1,136.2,136.3;
IR(KBr):2920,2246,1493,1444,1415,1272,1120,896,774,741,731,674cm−1
MSm/z385(M);
Anal.Calcd.forC1411NS:C,43.60;H,2.88;N,3.63%.Found:C,43.24;H,2.87;N,3.67%.
【0020】
上記4−(2−シアノエチルチオ)−5−メチルチオ−ベンゾテトラチアフルバレン771mg(2mmol)のTHF溶液20mlに1,8−ジブロモオクタン1.84ml(10mmol)を加え、水酸化セシウム450mg(3mmol)をメタノール10mlに溶かした溶液を攪拌しながら滴下し3時間室温にて攪拌した。塩化メチレンに溶かして抽出し、乾燥剤を加えて残りの水を除去しろ別した。引き続きロータリーエバポレーターにて濃縮して、クロロホルム:n−ヘキサン(=1:2)を展開溶媒としたシリカゲルカラムクロマトグラフィー(φ=3.5cm,h=10cm)およびゲルろ過クロマトグラフィーにより分離精製して4−(8−ブロモオクチルチオ)−5−メチルチオ−ベンゾテトラチアフルバレン890mg(85%)を橙色油状物として得た。この化合物の物性を以下に示す。
HNMR(400MHz,CDCl):δ1.30−1.86(m,12H,CH),2.43(s,3H,CH),2.81(t,J=7.2Hz,2H,CH),3.39(t,J=6.8Hz,2H,CH),7.10−7.25(m,4H,Ar−H);
13CNMR(101MHz,CDCl):δ19.2,28.0,28.2,28.6,28.8,30.0,32.7,34.0,36.2,110.1,111.3,121.9,125.8,125.9,136.48,136.53;
IR(neat):2927,2853,1447,774,559cm−1
MSm/z523(M);
Anal.Calcd.forC1923BrS:C,43.58;H,4.43%.Found:C,43.53;H,4.69%.
【0021】
上記4−(8−ブロモオクチルチオ)−5−メチルチオ−ベンゾテトラチアフルバレン262mg(0.5mmol)のTHF溶液20mlを玉突き冷却環を備えた50ml枝付きフラスコに加え、さらにチオ尿素191mg(2.5mmol)の水溶液5mlを加えて24時間還流した後、さらに水酸化ナトリウム300mg(15mmol)の水溶液5mlを加え2時間還流した。生成物を塩化メチレンに溶かして酸性条件下で有機相を抽出し、乾燥剤を加えて残りの水を除去してろ別した。引き続きロータリーエバポレーターにて濃縮し、クロロホルム:n−ヘキサン(1:2)を展開溶媒としたシリカゲルカラムクロマトグラフィー(φ=3.0cm,h=5cm)およびゲルろ過カラムクロマトグラフィーにより分離精製して4−(8−メルカプトオクチルチオ)−5−メチルチオ−ベンゾテトラチアフルバレン151mg(63.3%)を橙色油状物として得た。この化合物の物性を以下に示す。
HNMR(400MHz,CDCl):δ1.29−1.66(m,13H,CH,SH),2.43(s,3H,CH),2.51(q,J=7.2Hz,2H,CH),2.82(t,J=7.2Hz,2H,CH),7.10−7.26(m,4H,Ar−H);
13CNMR(101MHz,CDCl):δ19.2,24.6,28.2,28.3,28.88,28.91,29.6,34.0,36.2,96.1,110.2,111.3,121.9,125.9,129.3,136.51,136.55;
IR(neat):2925,2852,2563,1446,774,559cm−1
MSm/z476(M+);
Anal.Calcd.forC1924NS:C,47.86;H,5.07%.Found:C,47.57;H,5.11%.
【0022】
[実施例2]
合成例1で得た1,3−ベンゾジチオール−2−チオン0.922g(5mmol)と合成例5で得た4,5−ビス(2−シアノエチルチオ)−1,3−ジチオール−2−オン1.422g(5mmol)とを窒素置換し、トリエチルホスファイト6.4mlを加えて120℃で1.5時間攪拌した。反応溶液を室温まで冷やし、結晶を吸引ろ過により分離してメタノールで洗浄した。クロロホルムを展開溶媒としてシリカゲルカラムクロマトグラフィー(φ=3.0cm,h=3cm)により分離精製して4,5−ビス(2−シアノエチルチオ)−ベンゾテトラチアフルバレン0.829g(39%)を橙色針状晶として得た。この化合物の物性を以下に示す。
融点:147.2−148.0℃;
1HNMR(400MHz,CDCl):δ2.74(t,J=7.1Hz,4H,CH),3.09(t,J=7.1Hz,4H,CH),7.13−7.28(m,4H,Ar−H);
13CNMR(101MHz,CDCl):δ18.8,31.2,106.9,115.4,117.4,122.0,126.1,127.9,136.1;
IR(KBr)2925,2251,1426,1119,892,735cm−1
MSm/z424(M+);
Anal.Calcd.forC1612:C,45.25;H,2.85;N,6.60%.Found:C,45.04;H,2.81;N,6.52%.
【0023】
上記4,5−ビス(2−シアノエチルチオ)−ベンゾテトラチアフルバレン425mg(1mmol)のTHF溶液30mlに1,8−ジブロモオクタン3.68ml(20mmol)を加え、メタノール5mlに溶かした水酸化セシウム330mg(5mmol)を攪拌しながら滴下し2時間室温にて攪拌した。塩化メチレンに溶かして抽出し,乾燥剤を加えて残りの水を除去してろ別した。引き続きロータリーエバポレーターにて濃縮して、クロロホルム:n−ヘキサン(=1:2)を展開溶媒としたシリカゲルカラムクロマトグラフィー(φ=3.5cm,h=10cm)およびゲルろ過クロマトグラフィーにより分離精製して4,5−ビス(8−ブロモオクチルチオ)−ベンゾテトラチアフルバレン541mg(77%)を橙色油状物として得た。この化合物の物性を以下に示す。
HNMR(400MHz,CDCl):δ1.32−1.87(m,24H,CH),2.88(t,J=7.3Hz,4H,CH),3.38(t,J=6.8Hz,4H,CH),7.09−7.26(m,4H,Ar−H);
13CNMR(101MHz,CDCl):δ28.1,28.4,28.7,28.9,29.8,32.8,34.0,36.5,121.87,121.91,125.9,126.0,131.7,136.5,136.6;
MSm/z700(M+);
Anal.Calcd.forC2636Br:C,44.56;H,5.18%.Found:C,44.37;H,5.44%.
【0024】
上記4,5−ビス(8−ブロモオクチルチオ)−ベンゾテトラチアフルバレン701mg(1mmol)のTHF20ml溶液に、チオ尿素761mg(5mmol)の水溶液5mlを加え、80℃の油浴で24時間攪拌した後、水酸化ナトリウム1.2mg(30mmol)の水溶液10mlを加え2時間還流を行った。ロータリーエバポレーターにてある程度濃縮した後、酸性条件下で塩化メチレンに溶かして抽出し、乾燥剤を加えて残りの水を除去してろ別した。この塩化メチレン反応溶液50mlをヨウ素、及びトリエチルアミンの塩化メチレン溶液を滴下して酸化し、亜硫酸水素ナトリウム水溶液にて抽出した。ロータリーエバポレーターにて濃縮して、クロロホルム:n−ヘキサン(1:3)を展開溶媒としたシリカゲルカラムクロマトグラフィー(φ=3.5cm,h=10cm)および、クロロホルム:メタノールにより再結晶して分離精製し、化合物(6)(n=8)で示されるベンゾテトラチアフルバレン誘導体74mg(12%)を橙色針状晶として得た。この化合物の物性を以下に示す。
融点:83.9−84.2℃;
HNMR(400MHz,CDCl):δ1.32−1.71(m,24H,CH),2.66(t,J=7.3Hz,4H,SS−CH),3.39(t,J=7.3Hz,4H,CS−CH),7.10−7.26(m,4H,Ar−H);
13CNMR(101MHz,CDCl):δ28.16,28.24,28.8,28.9,29.0,29.6,36.2,40.0,110.3,111.3,121.9,125.9,128.0,136.5;
IR(KBr):2922,2847,1463,1444,1259,1120,889,773,734,675,416,cm−1
MSm/z604(M);
Anal.Calcd.forC1612:C,51.61;H,6.00%.Found:C,51.29;H,5.85%.
【0025】
[実施例3]
冷却環を備えた枝付きフラスコ50mlに窒素気流下トリエチルホスファイト25mlを加えて油浴で120℃まで加熱した。このリアクターに合成例3で得たフェナントロ[9,10−d]1,3−ジチオレン−2−チオン1.422g(5mmol)と合成例4で得た4−(2−シアノエチルチオ)−5−メチルチオ−1,3−ジチオール−2−オン1.327g(5mmol)を一気に添加し、油浴で1.5時間攪拌した。反応溶液を室温まで冷やして吸引ろ過し、メタノールで洗浄した。100℃で吸引ポンプにより乾燥し、クロロホルムを展開溶媒としてシリカゲルカラムクロマトグラフィー(φ=5.0cm,h=10cm)により分離精製して4−(2−シアノエチルチオ)−5−メチルチオ−フェナントロテトラチアフルバレン1.105g(46%)を橙色結晶として得た。この化合物の物性を以下に示す。
融点:183.5−184.2℃;
HNMR(400MHz,CDCl):δ2.53(s,3H,CH),2.74(t,J=7.2Hz,4H,CH),3.72(t,J=7.2Hz,4H,CH),7.63−7.66(m,6H,Ar−H),8.64−8.66(m,4H,Ar−H);
13CNMR(101MHz,CDCl):δ18.7,19.1,31.3,108.8,112.9,117.6,120.1,123.3(2C),125.77,125.82,126.71,126.74,126.9(2C),127.69,127.73,129.4(2C),130.96,131.05,135.3;
IR(KBr):3652,3055,2920,2248(CN),1606,1575,1488,1447,1427,1348,1319,1280,1223,1148,1043,963,913,899,777,750,716,647,620,525cm−1
MSm/z485(M);
Anal.Calcd.forC2215NS:C,54.40;H,3.11;N,2.88%.Found:C,54.41;H,3.13;N,2.88%.
【0026】
4−(2−シアノエチルチオ)−5−メチルチオ−フェナントロテトラチアフルバレン145mg(0.3mmol)のTHF溶液10mlに1,8−ジブロモオクタン0.92ml(5mmol)を加え、水酸化セシウム75mg(0.5mmol)をメタノール5mlに溶解した溶液を攪拌しながら滴下しさらに2時間室温にて攪拌した。塩化メチレンにより抽出し、乾燥剤を加えて残りの水を除去してろ別した。ロータリーエバポレーターにて濃縮して、クロロホルム:n−ヘキサン(=1:3)を展開溶媒としたシリカゲルカラムクロマトグラフィー(φ=3.5cm,h=15cm)およびゲルろ過クロマトグラフィーにより分離精製して4−(8−ブロモオクチルチオ)−5−メチルチオ−フェナントロテトラチアフルバレン165mg(88%)を橙色結晶として得た。この化合物の物性を以下に示す。
融点:100.1−100.7℃
HNMR(400MHz,CDCl):δ1.29−1.86(m,12H,CH),2.47(s,1H,S−CH),2.86(t,J=7.3Hz,2H,S−CH),3.37(t,J=6.9Hz,2H,Br−CH),7.59−7.62(m,6H,Ar−H),8.58−8.61(m,2H,Ar−H);
13CNMR(101MHz,CDCl):δ19.3,28.1,28.3,28.6,28.9,30.0,32.7,34.0,36.2,108.9,123.3(2C),125.8(2C),126.0,126.6(2C),126.8(2C),127.6(2C),129.3,129.5,131.08,131.13;
IR(KBr):2929,2853,1607,1576,1487,1467,1427,1294,1246,1043,968,912,897,776,747,715,644,525,427cm−1
Anal.Calcd.forC1923BrS:C,51.99;H,4.36%.Found:C,52.22;H,4.61%.
【0027】
玉突き冷却環を備えた50ml枝付きフラスコに4−(8−ブロモオクチルチオ)−5−メチルチオ−フェナントロテトラチアフルバレン0.499g(0.8mmol)のTHF溶液20mlを加え、さらにチオ尿素0.304g(2.5mmol)の水溶液5mlを加えて24時間還流した後、さらに水酸化ナトリウム0.480g(12mmol)の水溶液5mlを加え2時間還流した。次いで塩化メチレンに溶解して有機相を抽出し(pH1)、乾燥剤を加えて残りの水を除去してろ別した。引き続きロータリーエバポレーターにて濃縮して、クロロホルム:n−ヘキサン(1:2)を展開溶媒としたシリカゲルカラムクロマトグラフィー(φ=3.0cm,h=5cm)およびゲルろ過カラムクロマトグラフィーにより分離精製して4−(8−メルカプトオクチルチオ)−5−メチルチオ−フェナントロテトラチアフルバレン0.383g(83.0%)を橙色結晶として得た。この化合物の物性を以下に示す。
融点:80.9−81.8℃;
HNMR(400MHz,CDCl):δ1.29−1.70(m,13H,CH,SH),2.45−2.49(m,5H,CH,S−CH),2.86(t,J=7.3Hz,2H,S−CH),7.61−7.63(m,6H,Ar−H),8.60−8.62(m,2H,Ar−H);
13CNMR(101MHz,CDCl):δ19.3,24.6,28.25,28.33,28.90,28.93,29.67,30.4,34.0,36.3,110.3,110.8,123.3(2C),125.8(2C),126.1,126.6(2C),126.9(2C),127.6(2C),129.4,129.5,131.10,131.15,136.4;
IR(neat)3055,2923,2851,2553(SH),1607,1575,1488,1462,1447,1428,1294,1239,1221,1044,966,912,892,776,748,715,646,620,524,427cm−1
MSm/z577(M);
Anal.Calcd.forC1924NS:C,56.21;H,4.89%.Found:C,56.11;H,4.90%.
【0028】
[実施例4]
化合物(5)(n=8,m=0)で示されるテトラチアフルバレン誘導体の1mmol/l塩化メチレン溶液に作用極となる金電極を12時間浸漬し、塩化メチレン、アセトンで洗浄し、アルゴンガスで乾燥した。この修飾電極を、過塩素酸テトラ‐n‐ブチルアンモニウムの0.1mol/lベンゾニトリル溶液に、対電極として白金電極、参照電極としてAg/AgNO電極と共に浸漬した。比較電極に対して作用電極に−0.2Vから+0.8Vの範囲で、走引速度は500mV/secで電位を走引しサイクリックボルタングラフィーによる測定を行った。得られたサイクリックボルタモグラムより、本化合物は電位走査に伴い可逆な独立した二電子酸化・還元過程を示した。その酸化還元電位を表1に示す。
また、比較例として、「Langmuir、1999,15,8574−8576」に記載の化合物の酸化還元電位も示す。
【0029】
[実施例5]
テトラチアフルバレン誘導体として化合物(6)(n=8)で示されるものを用いた以外は実施例4と同様にして電気化学的測定を行った。その酸化還元電位を表1に示す。
【0030】
[実施例6]
テトラチアフルバレン誘導体として化合物(7)(n=8,m=0)で示されるものを用い、走引速度を100mV/secとした以外は実施例4と同様にして電気化学的測定を行った。その酸化還元電位を表1に示す。
【0031】
【表1】
Figure 0004113680
【0032】
【発明の効果】
本発明化合物の新規テトラチアフルバレン誘導体は、薄膜材料として有効であり、ダイオード、トランジスター、電極材料、配線材料、回路形成材料、EL材料等として好適である。
本発明化合物を用いた薄膜の製造法において、それを特に一定方向の磁場中で行うことにより、芳香環の磁気異方性に由来する配向制御を容易に発現させることができ、高密度、高配向の超薄膜を形成することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a novel tetrahedral compound having an aromatic ring and a thiol group or a disulfide group that is suitable as a thin film material such as a diode, transistor, electrode material, wiring material, circuit forming material, EL material, etc. The present invention relates to a thiafulvalene derivative and a method for producing the same.
[0002]
[Prior art]
Tetrathiafulvalene (TTF) is known to be a strong electron donor and forms a charge transfer complex with tetracyanoquinodimethane (TCNQ), which is an electron acceptor. It is known to have Also, practical devices such as incorporating functional organic molecules such as bisethylenedithiotetrathiafulvalene (BEDT-TTF) exhibiting superconductivity as electronic devices and using them as responsive elements utilizing their molecular recognition capabilities. In recent years, research on application of these has been actively conducted.
In addition, research on molecular recognition on metal and semiconductor surfaces and the structure of molecular aggregates is also active, and organic ultrathin films with controlled orientation, which are essential for creating practical devices that maximize the functions of organic molecules. A lot of research has been done on the production.
On the other hand, a study has been conducted to form a self-assembled film (SAM) on a smooth gold substrate or gold colloid for a TTF derivative having an alkanethiol group introduced into the TTF skeleton (Chem. Commun. 1999, 737 .; Langmuir, 1999, 15, 8574). However, a high-density, highly-oriented organic thin film has not yet been formed, and further development as a self-assembled film material is necessary.
On the other hand, as organic molecules, it is known that polycyclic aromatic compounds such as benzene, naphthalene, anthracene, phenanthrene, triphenylene, pyrene, and perylene have a large magnetic anisotropy as compared with ordinary ones. These compounds are also known to have functions such as photoconductivity, and attempts have been made to apply them to electronic devices as semiconductors.
[0003]
[Problems to be solved by the invention]
Based on these facts, it is expected that a compound having both an aromatic compound such as a benzene ring and a TTF skeleton can simultaneously exhibit a composite function such as an optical function and an electrical function. It is expected that an ultrathin film with high density and high orientation will be formed by producing a thin film in a magnetic field using the directivity.
Accordingly, an object of the present invention is to provide a novel tetrathiafulvalene derivative incorporating an aromatic ring serving as a magnetic anisotropy unit and a thiol group or a disulfide group, and further using it as a thin film material to provide a magnetic field. It is an object of the present invention to provide a method for producing a high-density, highly-oriented thin film.
[0004]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention (Claim 1)
  General formula (2)
[Chemical 6]
Figure 0004113680
A thione or a ketone (hereinafter referred to as “compound (2)”) represented by:
General formula (3)
[Chemical 7]
Figure 0004113680
(Hereinafter referred to as “compound (3)”)
Or
[Chemical 8]
Figure 0004113680
A ketone represented by the following formula (hereinafter referred to as “compound (4)”),
  General formula (1)
[Chemical formula 5]
Figure 0004113680
(In the formula (1), the aromatic ring represents a benzene ring or a condensed aromatic ring, R1 is any one of a proton, an alkyl group and an alkoxy group, and R2 and R3 are a proton, an alkyl, a mercaptoalkyl group and a mercapto group. Any of oligoethylenedioxyethyl groups, and R2 and R3 may be the same or different from each other)
It is a manufacturing method of the tetrathiafulvalene derivative represented by these.
  The present invention (Claim 2)
  General formula (1)
[Chemical formula 5]
Figure 0004113680
(In the formula (1), the aromatic ring represents a condensed aromatic ring, the condensed aromatic ring is one of naphthalene, anthracene, phenanthrene, pyrene, perylene, and triphenylene, and R1 is a proton, an alkyl group, or an alkoxy group. R2 and R3 each represent a proton, alkyl, mercaptoalkyl group, or mercapto-oligoethylenedioxyethyl group, and R2 and R3 may be the same or different from each other)
It is a tetrathiafulvalene derivative represented by.
[0005]
  The present invention (Claim 3) is a thin film body of a tetrathiafulvalene derivative characterized by having magnetic anisotropy obtained by coating the tetrathiafulvalene derivative according to claim 2 on a substrate.
  The present invention (Claim 4)
General formula (1)
[Chemical formula 5]
Figure 0004113680
(In the formula (1), the aromatic ring represents a benzene ring, R1 is any one of a proton, an alkyl group and an alkoxy group, and R2 and R3 are a proton, an alkyl, a mercaptoalkyl group, a mercapto-oligoethylenedioxyethyl group. Wherein either R2 or R3 is a mercaptoalkyl group or a mercapto-oligoethylenedioxyethyl group, and has a magnetic anisotropy in which the tetrathiafulvalene derivative is coated on a substrate. This is a thin film of a tetrathiafulvalene derivative.
  Further, the present invention (Claim 5) is characterized in that when the thin film of the tetrathiafulvalene derivative according to Claim 3 or 4 is produced, the thin film is produced by applying a magnetic field in a certain direction. A method for producing a thin film of a derivative.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The tetrathiafulvalene derivative of the present invention (hereinafter referred to as the compound of the present invention) is represented by the above compound (1), and the aromatic ring in the general formula (1) is a formula
[Chemical 9]
Figure 0004113680
And a condensed aromatic ring such as naphthalene, anthracene, phenanthrene, pyrene, perylene, triphenylene and the like. Can be mentioned.
Examples of R1 substituted on the aromatic ring include protons, alkyl groups such as methyl group / ethyl group, and alkoxy groups such as methoxy group and ethoxy group, and these are aromatic groups in the general formula (1). A plurality of the aromatic rings may be substituted.
[0007]
Specific examples of the compounds of claims 1 and 2 of the present invention include the following.
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
(Hereinafter referred to as “compound (5)”)
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
(Hereinafter referred to as “compound (6)”)
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
(Hereinafter referred to as “compound (7)”)
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
Embedded image
Figure 0004113680
[0008]
The compound of the present invention can be obtained by reacting the thiones or ketones represented by the general formula (2) with the ketones represented by the general formula (3) or the general formula (4).
The reaction is carried out using an appropriate solvent such as an aromatic hydrocarbon solvent, THF, acetonitrile, DMF, disulfide carbon, water, hydrogen halide solvent such as triethyl phosphite, acetic acid, chloroform, alcohol solvent, etc., open system or inert gas It was performed under an air current. The preferred reaction temperature is -30 ° C to 250 ° C, more preferably 0 ° C to 150 ° C.
The thiones represented by the general formula (2) of the raw material compound are represented by the general formula
Embedded image
Figure 0004113680
A compound having a condensed aromatic ring is a novel compound obtained by reacting an aromatic thiol compound represented by formula (2) with carbon disulfide, and a ketone represented by the general formula (3) of the starting compound is represented by the general formula
Embedded image
Figure 0004113680
It is obtained by reacting thiones represented by the formula with an oxidizing agent such as mercury acetate.
[0009]
Moreover, this invention provides the thin film body which coat | covered the tetrathiafulvalene derivative of the said General formula (1) on the board | substrate.
Such a thin film body is suitable as a diode, a transistor, an electrode material, a wiring material, a circuit forming material, an EL material, or the like.
Examples of the method for producing the thin film include a vapor phase method in which the compound of the general formula (1) is vacuum-deposited, and a method by self-organization in a wet method to form a solution.
Moreover, when manufacturing a thin film using the tetrathiafulvalene derivative of the general formula (1), it is preferable to carry out in a magnetic field in a fixed direction because a high-density and highly-oriented one can be obtained.
[0010]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, in addition, this invention is not limited at all by these examples.
[0011]
The synthesis of the thiones represented by the general formula (2) of the raw material compound will be described.
[Synthesis Example 1]
In a 500 ml eggplant flask with branches, N, N, N ′, N′-tetramethylenediamine (111 ml, 744 mmol) and n-hexane (300 ml) were added and stirred under a nitrogen stream, and n-butyllithium (300 ml, 744 mmol) was added and further stirred. did. To this reactor cooled to 0 ° C., 150 ml of an n-hexane solution of 34.11 ml (338 mmol) of thiophenol in a 200 ml flask with a branch joint was dropped with a cannula under a nitrogen stream. After dropping, the mixture was stirred at room temperature for 24 hours. Next, after cooling to 0 ° C., 23.86 g (744 mmol) of elemental sulfur was added and stirred at room temperature for 12 hours. After removing the solvent with a rotary evaporator, it was dissolved in 200 ml of pre-dried THF, cooled to 0 ° C., reduced with 10 g of lithium aluminum hydride, and refluxed as it was in an oil bath. After 2 hours, the solution was slowly poured into a beaker containing ice water, washed with ether and concentrated hydrochloric acid, extracted under acidic conditions, and the aqueous phase was removed. A sodium hydroxide aqueous solution (1N) was added to the organic phase remaining in the separatory funnel, and extraction was performed under basic conditions. At this time, the separated aqueous phase was added to a 500 ml eggplant flask, 6 g of sodium hydroxide and 80 ml of carbon disulfide were added, and the mixture was refluxed at a bath temperature of 60 ° C. After 6 hours, the bath temperature was raised to 100 ° C., and the cock of the fractional reflux reactor was opened to completely remove carbon disulfide. After cooling to room temperature, the crystals were separated by suction filtration and washed with water until the redness disappeared. The mixture was dried with a suction pump at 100 ° C. for 4 hours to remove water to obtain 55.84 g (90%) of 1,3-benzodithiol-2-thione as a yellow powder. The physical properties of this compound are shown below.
Melting point: 165.3-166.2 ° C;
1HNMR (400 MHz, CDCl3): Δ 7.38-7.50 (m, 4H, Ar-H);
13CNMR (101 MHz, CDCl3): Δ 121.8, 127.4, 141.3, 211.8;
UV (CHCl3) (Λmax (log ε)): 291.0 nm (4.11), 365.5 nm (4.76).
[0012]
[Synthesis Example 2]
The dried metal magnesium 1.094 g (45 mmol) was put into a 100 ml three-necked flask purged with nitrogen, and 8 ml of anhydrous THF was added and subjected to ultrasonic waves. After confirming the reaction by adding a few drops of ethylene dibromide as an initiator, 30 ml of a THF solution of 7.784 g (30 mmol) of 9-bromophenanthrene prepared in a 50 ml branch flask purged with nitrogen was added dropwise with a cannula. After completion of the reaction, the mixture was cooled to 0 ° C., 1.455 g (45 mmol) of simple sulfur was added, and the mixture was stirred for 12 hours at room temperature. Pour into a beaker containing ice water and dissolve the remaining magnesium with concentrated hydrochloric acid. The precipitate was separated by suction filtration, and the filtrate was extracted with methylene chloride, dried over magnesium sulfate, filtered, concentrated by a rotary evaporator, and dissolved in 150 ml of THF preliminarily dried together with the filter cake. The mixture was cooled to 0 ° C., 2 g of lithium aluminum hydride was added and refluxed for 2 hours, poured into a beaker containing ice water, adjusted to pH 1 with concentrated hydrochloric acid and extracted with a mixed solvent of ether and THF, and the aqueous phase was removed. An appropriate amount of 1N aqueous sodium hydroxide solution was added to the obtained organic phase for extraction, and the organic phase was removed. Concentrated hydrochloric acid was again added to the separated aqueous phase, extracted with methylene chloride, dried over magnesium sulfate, filtered, concentrated with a rotary evaporator, and silica gel column chromatography (φ = 5.0 cm) using chloroform as a developing solvent. , H = 3 cm) to obtain 5.04 g (80%) of 9-mercaptophenanthrene as a colorless powder. The physical properties of this compound are shown below.
Melting point: 97.0-98.0 ° C;
1HNMR (60 MHz, CDCl3): Δ 3.61 (s, 1H, SH), 7.48-7.85 (m, 6H, Ar—H), 8.14-8.36 (m, 1H, Ar—H), 8.45 −8.83 (m, 2H, Ar—H);
IR (KBr): 2566 (SH) cm-1
[0013]
In a 500 ml eggplant flask incorporating a branch joint, 9.72 g (70 mmol) of 9-mercaptophenanthrene, 250 ml of c-hexane and 23.1 ml (154 mmol) of N, N, N ′, N′-tetramethylenediamine were added in a nitrogen stream. After adding and stirring and cooling to 0 ° C., 62.6 ml (154 mmol) of n-butyllithium / n-hexane solution was added and stirred at room temperature for 24 hours. After further cooling to 0 ° C., 4.94 g (154 mmol) of elemental sulfur was added and stirred at room temperature for 12 hours. After removing the solvent with a rotary evaporator, it was dissolved in 300 ml of pre-dried THF, cooled to 0 ° C., reduced with 10.0 g of lithium aluminum hydride, and refluxed in an oil bath as it was. After 2 hours, the solution was slowly poured into a beaker containing ice water, washed with ether and concentrated hydrochloric acid, extracted under acidic conditions, and the aqueous phase was removed. A sodium hydroxide aqueous solution (5N) was added to the organic phase remaining in the separatory funnel, and extraction was performed under basic conditions. At this time, the separated aqueous phase was added to a 500 ml eggplant flask, 6 g of sodium hydroxide and 80 ml of carbon disulfide were added, and the mixture was refluxed at a bath temperature of 60 ° C. After 2 hours, the bath temperature was increased to 100 ° C., and the cock of the fractional reflux reactor was opened to completely remove carbon disulfide. As a result, yellow crystals were precipitated in the aqueous phase, and the crystals were separated by suction filtration and washed thoroughly with water. The mixture was dried with a suction pump at 100 ° C. for 2 hours to remove water. Chloroform was added to make a suspension solution, and the crystals were separated by suction filtration and washed thoroughly with chloroform. The filtrate collected by this operation was concentrated and crystals were taken out in the same manner several times. The separated crystals were subjected to filtration column treatment in suspension with a large amount of dichloromethane added. Concentration and drying gave 1.05 g (12%) of phenanthro [9,10-d] 1,3-dithiolene-2-thione as a yellow powder. The physical properties of this compound are shown below.
Melting point: 245.9-246.5 ° C;
1HNMR (400 MHz, CDCl3): Δ 7.65-7.75 (m, 6H, Ar-H), 8.68-8.70 (m, 2H, Ar-H);
1HNMR (400 MHz, CDCl3: CS2= 1: 10 (vol)): [delta] 7.59-7.69 (m, 6H, Ar-H), 8.59-8.62 (m, 2H, Ar-H);
13CNMR (101 MHz, CDCl3: CS2= 1: 10 (vol)): δ 67.4, 123.3 (2C), 125.4 (2C), 125.7, 127.4 (2C), 127.7 (2C), 129.1 (2C) ), 136.7 (2C);
IR (KBr): 1605, 1562, 1490, 1432, 1262, 1058, 803, 732, 717, 559, 519, 439, 436 cm-1;
MS m / z 284 (M+); Anal. Calcd. forC15H8S3: C, 63.34; H, 2.84%. Found: C, 63.63; H, 2.81%.
[0014]
It shows about the synthesis | combination of ketones represented by General formula (3) of a raw material compound.
[Synthesis Example 3]
To a flask purged with nitrogen, 4.6 g (200 mmol) of sodium and 36 ml (772 mmol) of carbon disulfide were added and refluxed for 30 minutes to activate sodium. Then, 40 ml of DMF was added and the mixture was refluxed again for 2 hours. The solvent was removed by distillation under reduced pressure in an oil bath. Next, the product was dissolved in 120 ml of methanol and 60 ml of water, 4 g (29.4 mmol) of zinc chloride and 75 ml of aqueous ammonia were added, and an aqueous solution of 10.6 g (50.4 mmol) of tetraethylammonium bromide was added. The product obtained by stirring and suction filtration was dried under reduced pressure at 80 ° C. for 12 hours and bis (tetraethylammonium) bis (2-thioxo-1,3-dithiol-4,5-dithiolate) zincate 15.95 g (88 %) As dark red crystals. The physical properties of this zinc complex compound are shown below.
Melting point: 198.7-200.1 ° C;
IR (KBr): 2979, 1458, 1417, 1182, 1059, 1038, 996, 888, 785 cm-1
[0015]
To 25 ml of acetonitrile, 1.44 g (2 mmol) of the zinc complex compound and 1.34 g (10 mmol) of 3-bromopropionitrile were added and refluxed for 1 hour. Next, the mixture was cooled to room temperature, the black precipitate was removed by suction filtration, the solvent was removed with a rotary evaporator, and the mixture was again dissolved in methylene chloride and extracted. Residual moisture was removed with a desiccant, and the desiccant was filtered off and concentrated with a rotary evaporator. Recrystallized with methylene chloride / n-hexane, filtered by suction, dried with a suction pump for 30 minutes, and 1.01 g of 4,5-bis (2-cyanoethylthio) -1,3-dithiol-2-thione (83%) was obtained as red needles. The physical properties of this compound are shown below.
Melting point 82.4-83.3 ° C .;
1HNMR (400 MHz, CDCl3): Δ 2.81 (t, J = 6.9 Hz, 4H, CH2), 3.17 (t, J = 6.9 Hz, 4H, CH2);
13CNMR (101 MHz, CDCl3): Δ 19.0, 31.8, 117.1, 135.8, 209.1;
IR (KBr): 2977, 2248, 1458, 1411, 1290, 1071, 894 cm-1
[0016]
The above solution of 4,5-bis (2-cyanoethylthio) -1,3-dithiol-2-thione dissolved in acetonitrile was stirred with a solution of 1.26 g (8.4 mmol) of cesium hydroxide dissolved in 12 ml of methanol. The solution was slowly added dropwise while stirring. After 30 minutes from the end of dropping, 11.36 g (40 mmol) of methyl iodide was added and stirred again for 30 minutes. In order to remove excess methyl iodide, nitrogen was blown in for 30 minutes and the mixture was concentrated on a rotary evaporator. The concentrate was dissolved in methyl chloride and extracted. After adding a desiccant to remove the remaining water, the concentrate was filtered off. Next, the mixture was concentrated on a rotary evaporator, separated and purified by silica gel column chromatography (φ = 5.5 cm, h = 16 cm) using chloroform as a developing solvent, and 4- (2-cyanoethylthio) -5-methylthio-1,3- 1.78 g (84%) of dithiol-2-thione was obtained as yellow needles. The physical properties of this compound are shown below.
Melting point 90.0-91.1 ° C .;
1HNMR (400 MHz, CDCl3): Δ2.56 (s, 3H, CH3), 2.75 (t, J = 7.1 Hz, 2H, CH2), 3.09 (t, J = 7.1 Hz, 2H, CH2);
13CNMR (101 MHz, CDCl3): Δ 18.8, 18.9, 31.8, 117.1, 126.0, 144.9, 209.9;
IR (KBr): 2247, 1464, 1438, 1416, 1318, 1276, 1054, 953, 900 cm-1
[0017]
[Synthesis Example 4]
1.59 g (6 mmol) of 4- (2-cyanoethylthio) -5-methylthio-1,3-dithiol-2-thione was replaced with nitrogen, and dissolved in 25 ml of a mixed solvent of chloroform / acetic acid (3: 1). Using a solid addition device, 5 g (16 mmol) of mercury acetate substituted with nitrogen was added, and after stirring for 16 hours, the filtrate was separated by suction filtration. This was poured into a beaker, neutralized with a saturated aqueous sodium hydrogen carbonate solution, and extracted with a separatory funnel. The remaining water was removed with a desiccant and filtered. The mixture was concentrated with a rotary evaporator and dried with a suction pump to quantitatively obtain 1.57 g of 4- (2-cyanoethylthio) -5-methylthio-1,3-dithiol-2-one as yellow needles. The physical properties of this compound are shown below.
Melting point 61.8-62.5 ° C .;
1HNMR (400 MHz, CDCl3): Δ2.52 (s, 3H, CH3), 2.74 (t, J = 7.1 Hz, 2H, CH2), 3.07 (t, J = 7.1 Hz, 2H, CH2);
13CNMR (101 MHz, CDCl3): Δ 18.8, 19.1, 31.6, 117.2, 118.0, 135.6, 188.7;
IR (KBr): 2922, 2246, 1777, 1661, 1618, 1413, 1274, 957, 899, 747 cm-1
[0018]
[Synthesis Example 5]
0.913 g (3 mmol) of 4,5-bis (2-cyanoethylthio) -1,3-dithiol-2-thione was replaced with nitrogen and dissolved in 25 ml of a mixed solvent of chloroform / acetic acid (3: 1). Mercury acetate 2.500 g (8 mmol) was added using a solid addition apparatus, and after stirring for 16 hours, the filtrate was separated by suction filtration. This was poured into a beaker, neutralized with a saturated aqueous sodium hydrogen carbonate solution, and extracted with a separatory funnel. The remaining water was removed with a desiccant and filtered. The solution was concentrated with a rotary evaporator and dried with a suction pump to quantitatively obtain 0.921 g of 4,5-bis (2-cyanoethylthio) -1,3-dithiol-2-one as deep yellow needles. The physical properties of this compound are shown below.
Melting point: 62.8-64.2 ° C;
1NMR (400 MHz, CDCl3): Δ 2.80 (t, J = 6.9 Hz, 4H, CH2), 3.14 (t, J = 6.9 Hz, 4H, CH2);
13CNMR (101 MHz, CDCl3): Δ 19.0, 31.6, 117.2, 127.4, 187.6;
IR (KBr): 2951, 2249, 1775, 1666, 1615, 1420, 1283, 1156, 886, 741 cm-1
[0019]
[Example 1]
0.92 g (5 mmol) of 1,3-benzodithiol-2-thione obtained in Synthesis Example 1 and 4- (2-cyanoethylthio) -5-methylthio-1,3-dithiol-2- obtained in Synthesis Example 4 1.42 g (5 mmol) of ON was substituted with nitrogen, 6.4 ml of triethyl phosphite was added, and the mixture was stirred at 120 ° C. for 1.5 hours. The reaction solution was cooled to room temperature, and the crystals were separated by suction filtration and washed with methanol. Separation and purification by silica gel column chromatography (φ = 3.0 cm, h = 3 cm) using chloroform as a developing solvent gave 1.06 g (68%) of 4- (2-cyanoethylthio) -5-methylthio-benzotetrathiafulvalene. Obtained as orange needles. The physical properties of this compound are shown below.
In addition, 1,3-benzodithiol-2-one represented by the general formula (2) and 4- (2-cyanoethylthio) -5-methylthio-1,3-dithiol-2-one obtained in Synthesis Example 4 Similarly, 4- (2-cyanoethylthio) -5-methylthiobenzotetrathiafulvalene can be obtained in a yield of 18%.
Melting point 128.5-129.4 [deg.] C;
1HNMR (400 MHz, CDCl3): Δ 2.48 (s, 3H, CH3), 2.70 (t, J = 7.2 Hz, 4H, CH2), 3.03 (t, J = 7.2 Hz, 4H, CH2), 7.11-7.27 (m, 4H, Ar-H);
13CNMR (101 MHz, CDCl3): Δ 18.7, 19.1, 31.2, 108.5, 113.4, 117.5, 120.0, 121.91, 121.93, 126.02, 126.03, 135.1, 136.2, 136.3;
IR (KBr): 2920, 2246, 1493, 1444, 1415, 1272, 1120, 896, 774, 741, 731, 674 cm-1
MS m / z 385 (M+);
Anal. Calcd. forC14H11NS6: C, 43.60; H, 2.88; N, 3.63%. Found: C, 43.24; H, 2.87; N, 3.67%.
[0020]
1.84 ml (10 mmol) of 1,8-dibromooctane was added to 20 ml of THF solution of 771 mg (2 mmol) of 4- (2-cyanoethylthio) -5-methylthio-benzotetrathiafulvalene, and 450 mg (3 mmol) of cesium hydroxide was added. A solution dissolved in 10 ml of methanol was added dropwise with stirring, and the mixture was stirred at room temperature for 3 hours. Extraction was performed by dissolving in methylene chloride, and a desiccant was added to remove the remaining water, followed by filtration. Subsequently, the mixture was concentrated on a rotary evaporator and separated and purified by silica gel column chromatography (φ = 3.5 cm, h = 10 cm) and gel filtration chromatography using chloroform: n-hexane (= 1: 2) as a developing solvent. 890 mg (85%) of 4- (8-bromooctylthio) -5-methylthio-benzotetrathiafulvalene was obtained as an orange oil. The physical properties of this compound are shown below.
1HNMR (400 MHz, CDCl3): Δ 1.30-1.86 (m, 12H, CH2), 2.43 (s, 3H, CH3), 2.81 (t, J = 7.2 Hz, 2H, CH2), 3.39 (t, J = 6.8 Hz, 2H, CH2), 7.10-7.25 (m, 4H, Ar-H);
13CNMR (101 MHz, CDCl3): Δ19.2, 28.0, 28.2, 28.6, 28.8, 30.0, 32.7, 34.0, 36.2, 110.1, 111.3, 121.9, 125.8, 125.9, 136.48, 136.53;
IR (neat): 2927, 2853, 1447, 774, 559 cm-1;
MS m / z 523 (M+);
Anal. Calcd. forC19H23BrS6: C, 43.58; H, 4.43%. Found: C, 43.53; H, 4.69%.
[0021]
20 ml of a THF solution of 262 mg (0.5 mmol) of 4- (8-bromooctylthio) -5-methylthio-benzotetrathiafulvalene was added to a 50 ml branch flask equipped with a ball cooling ring, and 191 mg of thiourea (2. 5 ml of an aqueous solution of 5 mmol) was added and refluxed for 24 hours, and then 5 ml of an aqueous solution of 300 mg (15 mmol) of sodium hydroxide was added and refluxed for 2 hours. The product was dissolved in methylene chloride, the organic phase was extracted under acidic conditions, the desiccant was added and the remaining water was removed and filtered off. Subsequently, the mixture was concentrated on a rotary evaporator and separated and purified by silica gel column chromatography (φ = 3.0 cm, h = 5 cm) and gel filtration column chromatography using chloroform: n-hexane (1: 2) as a developing solvent. There was obtained 151 mg (63.3%) of-(8-mercaptooctylthio) -5-methylthio-benzotetrathiafulvalene as an orange oil. The physical properties of this compound are shown below.
1HNMR (400 MHz, CDCl3): Δ 1.29-1.66 (m, 13H, CH2, SH), 2.43 (s, 3H, CH3), 2.51 (q, J = 7.2 Hz, 2H, CH2), 2.82 (t, J = 7.2 Hz, 2H, CH2), 7.10-7.26 (m, 4H, Ar-H);
13CNMR (101 MHz, CDCl3): Δ19.2, 24.6, 28.2, 28.3, 28.88, 28.91, 29.6, 34.0, 36.2, 96.1, 110.2, 111.3, 121.9, 125.9, 129.3, 136.51, 136.55;
IR (neat): 2925, 2852, 2563, 1446, 774, 559 cm-1;
MS m / z 476 (M +);
Anal. Calcd. forC19H24NS7: C, 47.86; H, 5.07%. Found: C, 47.57; H, 5.11%.
[0022]
[Example 2]
0.922 g (5 mmol) of 1,3-benzodithiol-2-thione obtained in Synthesis Example 1 and 4,5-bis (2-cyanoethylthio) -1,3-dithiol-2-one obtained in Synthesis Example 5 1.422 g (5 mmol) was replaced with nitrogen, 6.4 ml of triethyl phosphite was added, and the mixture was stirred at 120 ° C. for 1.5 hours. The reaction solution was cooled to room temperature, and the crystals were separated by suction filtration and washed with methanol. Separation and purification by silica gel column chromatography (φ = 3.0 cm, h = 3 cm) using chloroform as a developing solvent to obtain 0.829 g (39%) of 4,5-bis (2-cyanoethylthio) -benzotetrathiafulvalene in orange Obtained as needles. The physical properties of this compound are shown below.
Melting point: 147.2-148.0 ° C;
1H NMR (400 MHz, CDCl3): Δ 2.74 (t, J = 7.1 Hz, 4H, CH2), 3.09 (t, J = 7.1 Hz, 4H, CH2), 7.13-7.28 (m, 4H, Ar-H);
13CNMR (101 MHz, CDCl3): Δ 18.8, 31.2, 106.9, 115.4, 117.4, 122.0, 126.1, 127.9, 136.1;
IR (KBr) 2925, 2251, 1426, 1119, 892, 735 cm-1;
MS m / z 424 (M +);
Anal. Calcd. forC16H12N2S6: C, 45.25; H, 2.85; N, 6.60%. Found: C, 45.04; H, 2.81; N, 6.52%.
[0023]
To a 30 ml THF solution of 425 mg (1 mmol) of 4,5-bis (2-cyanoethylthio) -benzotetrathiafulvalene, 3.68 ml (20 mmol) of 1,8-dibromooctane was added, and 330 mg of cesium hydroxide dissolved in 5 ml of methanol. (5 mmol) was added dropwise with stirring and the mixture was stirred at room temperature for 2 hours. The extract was dissolved in methylene chloride, extracted, added with a desiccant to remove the remaining water and filtered. Subsequently, the mixture was concentrated on a rotary evaporator and separated and purified by silica gel column chromatography (φ = 3.5 cm, h = 10 cm) and gel filtration chromatography using chloroform: n-hexane (= 1: 2) as a developing solvent. There were obtained 541 mg (77%) of 4,5-bis (8-bromooctylthio) -benzotetrathiafulvalene as an orange oil. The physical properties of this compound are shown below.
1HNMR (400 MHz, CDCl3): Δ1.32-1.87 (m, 24H, CH2), 2.88 (t, J = 7.3 Hz, 4H, CH2), 3.38 (t, J = 6.8 Hz, 4H, CH2), 7.09-7.26 (m, 4H, Ar-H);
13CNMR (101 MHz, CDCl3): Δ 28.1, 28.4, 28.7, 28.9, 29.8, 32.8, 34.0, 36.5, 121.87, 121.91, 125.9, 126.0, 131.7, 136.5, 136.6;
MS m / z 700 (M +);
Anal. Calcd. forC26H36Br2S6: C, 44.56; H, 5.18%. Found: C, 44.37; H, 5.44%.
[0024]
After adding 5 ml of an aqueous solution of 761 mg (5 mmol) of thiourea to a solution of 701 mg (1 mmol) of 4,5-bis (8-bromooctylthio) -benzotetrathiafulvalene in 20 ml of THF and stirring in an oil bath at 80 ° C. for 24 hours. Then, 10 ml of an aqueous solution of 1.2 mg (30 mmol) of sodium hydroxide was added and refluxed for 2 hours. After concentrating to some extent with a rotary evaporator, it was extracted by dissolving in methylene chloride under acidic conditions, and the remaining water was removed by filtration by adding a desiccant. 50 ml of this methylene chloride reaction solution was oxidized dropwise with methylene chloride solution of iodine and triethylamine, and extracted with an aqueous sodium hydrogen sulfite solution. Concentrate on a rotary evaporator and separate and purify by silica gel column chromatography (φ = 3.5 cm, h = 10 cm) using chloroform: n-hexane (1: 3) and recrystallization with chloroform: methanol. Then, 74 mg (12%) of a benzotetrathiafulvalene derivative represented by compound (6) (n = 8) was obtained as orange needle crystals. The physical properties of this compound are shown below.
Melting point: 83.9-84.2 ° C;
1HNMR (400 MHz, CDCl3): Δ1.32-1.71 (m, 24H, CH2), 2.66 (t, J = 7.3 Hz, 4H, SS-CH2), 3.39 (t, J = 7.3 Hz, 4H, CS-CH2), 7.10-7.26 (m, 4H, Ar-H);
13CNMR (101 MHz, CDCl3): Δ 28.16, 28.24, 28.8, 28.9, 29.0, 29.6, 36.2, 40.0, 110.3, 111.3, 121.9, 125.9, 128.0, 136.5;
IR (KBr): 2922, 2847, 1463, 1444, 1259, 1120, 889, 773, 734, 675, 416, cm-1;
MS m / z 604 (M+);
Anal. Calcd. forC16H12N2S8: C, 51.61; H, 6.00%. Found: C, 51.29; H, 5.85%.
[0025]
[Example 3]
25 ml of triethyl phosphite was added to 50 ml of a branch flask equipped with a cooling ring under a nitrogen stream and heated to 120 ° C. in an oil bath. To this reactor, 1.422 g (5 mmol) of phenanthro [9,10-d] 1,3-dithiolene-2-thione obtained in Synthesis Example 3 and 4- (2-cyanoethylthio) -5- 5 obtained in Synthesis Example 4 were added. 1.327 g (5 mmol) of methylthio-1,3-dithiol-2-one was added all at once and stirred in an oil bath for 1.5 hours. The reaction solution was cooled to room temperature, suction filtered, and washed with methanol. It is dried with a suction pump at 100 ° C., separated and purified by silica gel column chromatography (φ = 5.0 cm, h = 10 cm) using chloroform as a developing solvent, and 4- (2-cyanoethylthio) -5-methylthio-phenanthro. 1.105 g (46%) of tetrathiafulvalene was obtained as orange crystals. The physical properties of this compound are shown below.
Melting point: 183.5-184.2 ° C;
1HNMR (400 MHz, CDCl3): Δ2.53 (s, 3H, CH3), 2.74 (t, J = 7.2 Hz, 4H, CH2), 3.72 (t, J = 7.2 Hz, 4H, CH2), 7.63-7.66 (m, 6H, Ar-H), 8.64-8.66 (m, 4H, Ar-H);
13CNMR (101 MHz, CDCl3): Δ 18.7, 19.1, 31.3, 108.8, 112.9, 117.6, 120.1, 123.3 (2C), 125.77, 125.82, 126.71, 126 74, 126.9 (2C), 127.69, 127.73, 129.4 (2C), 130.96, 131.05, 135.3;
IR (KBr): 3652, 3055, 2920, 2248 (CN), 1606, 1575, 1488, 1447, 1427, 1348, 1319, 1280, 1223, 1148, 1043, 963, 913, 899, 777, 750, 716, 647, 620, 525cm-1;
MS m / z 485 (M+);
Anal. Calcd. forC22H15NS6: C, 54.40; H, 3.11; N, 2.88%. Found: C, 54.41; H, 3.13; N, 2.88%.
[0026]
To 10 ml of THF solution of 145 mg (0.3 mmol) of 4- (2-cyanoethylthio) -5-methylthio-phenanthrotetrathiafulvalene, 0.92 ml (5 mmol) of 1,8-dibromooctane was added, and 75 mg of cesium hydroxide ( 0.5 mmol) in 5 ml of methanol was added dropwise with stirring, and the mixture was further stirred at room temperature for 2 hours. Extraction was performed with methylene chloride, and a desiccant was added to remove the remaining water, followed by filtration. Concentrate with a rotary evaporator and separate and purify by silica gel column chromatography (φ = 3.5 cm, h = 15 cm) and gel filtration chromatography using chloroform: n-hexane (= 1: 3) as a developing solvent. 165 mg (88%) of-(8-bromooctylthio) -5-methylthio-phenanthrotetrathiafulvalene was obtained as orange crystals. The physical properties of this compound are shown below.
Melting point: 100.1-100.7 ° C
1HNMR (400 MHz, CDCl3): Δ 1.29-1.86 (m, 12H, CH2), 2.47 (s, 1H, S-CH3), 2.86 (t, J = 7.3 Hz, 2H, S-CH)2), 3.37 (t, J = 6.9 Hz, 2H, Br-CH2), 7.59-7.62 (m, 6H, Ar-H), 8.58-8.61 (m, 2H, Ar-H);
13CNMR (101 MHz, CDCl3): Δ 19.3, 28.1, 28.3, 28.6, 28.9, 30.0, 32.7, 34.0, 36.2, 108.9, 123.3 (2C), 125 .8 (2C), 126.0, 126.6 (2C), 126.8 (2C), 127.6 (2C), 129.3, 129.5, 131.08, 131.13;
IR (KBr): 2929, 2853, 1607, 1576, 1487, 1467, 1427, 1294, 1246, 1043, 968, 912, 897, 776, 747, 715, 644, 525, 427 cm-1;
Anal. Calcd. forC19H23BrS6: C, 51.99; H, 4.36%. Found: C, 52.22; H, 4.61%.
[0027]
20 ml of a THF solution of 0.499 g (0.8 mmol) of 4- (8-bromooctylthio) -5-methylthio-phenanthrotetrathiafulvalene was added to a 50 ml branch flask equipped with a ball cooling ring. After adding 5 ml of an aqueous solution of 304 g (2.5 mmol) and refluxing for 24 hours, 5 ml of an aqueous solution of 0.480 g (12 mmol) of sodium hydroxide was further added and refluxed for 2 hours. Subsequently, the organic phase was extracted by dissolving in methylene chloride (pH 1), and the remaining water was removed by filtration by adding a desiccant. Subsequently, the mixture was concentrated on a rotary evaporator and separated and purified by silica gel column chromatography (φ = 3.0 cm, h = 5 cm) and gel filtration column chromatography using chloroform: n-hexane (1: 2) as a developing solvent. There was obtained 0.383 g (83.0%) of 4- (8-mercaptooctylthio) -5-methylthio-phenanthrotetrathiafulvalene as orange crystals. The physical properties of this compound are shown below.
Melting point: 80.9-81.8 ° C;
1HNMR (400 MHz, CDCl3): Δ 1.29-1.70 (m, 13H, CH2, SH), 2.45-2.49 (m, 5H, CH3, S-CH2), 2.86 (t, J = 7.3 Hz, 2H, S-CH)2), 7.61-7.63 (m, 6H, Ar-H), 8.60-8.62 (m, 2H, Ar-H);
13CNMR (101 MHz, CDCl3): Δ 19.3, 24.6, 28.25, 28.33, 28.90, 28.93, 29.67, 30.4, 34.0, 36.3, 110.3, 110.8, 123.3 (2C), 125.8 (2C), 126.1, 126.6 (2C), 126.9 (2C), 127.6 (2C), 129.4, 129.5, 131.10 131.15, 136.4;
IR (neat) 3055, 2923, 2851, 2553 (SH), 1607, 1575, 1488, 1462, 1447, 1428, 1294, 1239, 1221, 1044, 966, 912, 892, 776, 748, 715, 646, 620 , 524, 427cm-1;
MS m / z 577 (M+);
Anal. Calcd. forC19H24NS7: C, 56.21; H, 4.89%. Found: C, 56.11; H, 4.90%.
[0028]
[Example 4]
A gold electrode as a working electrode is immersed in a 1 mmol / l methylene chloride solution of a tetrathiafulvalene derivative represented by compound (5) (n = 8, m = 0) for 12 hours, washed with methylene chloride and acetone, and argon gas. And dried. This modified electrode was added to a 0.1 mol / l benzonitrile solution of tetra-n-butylammonium perchlorate, a platinum electrode as a counter electrode, and Ag / AgNO as a reference electrode.3It was immersed with the electrode. Measurement was performed by cyclic voltamography while the potential was run at a working speed of 500 mV / sec in the range of −0.2 V to +0.8 V on the working electrode with respect to the comparative electrode. From the obtained cyclic voltammogram, this compound showed a reversible independent two-electron oxidation / reduction process with potential scanning. The oxidation-reduction potential is shown in Table 1.
In addition, as a comparative example, the oxidation-reduction potential of the compound described in “Langmuir, 1999, 15, 8574-8576” is also shown.
[0029]
[Example 5]
The electrochemical measurement was performed in the same manner as in Example 4 except that the compound represented by the compound (6) (n = 8) was used as the tetrathiafulvalene derivative. The oxidation-reduction potential is shown in Table 1.
[0030]
[Example 6]
An electrochemical measurement was performed in the same manner as in Example 4 except that a compound represented by the compound (7) (n = 8, m = 0) was used as the tetrathiafulvalene derivative and the running speed was set to 100 mV / sec. . The oxidation-reduction potential is shown in Table 1.
[0031]
[Table 1]
Figure 0004113680
[0032]
【The invention's effect】
The novel tetrathiafulvalene derivative of the compound of the present invention is effective as a thin film material and is suitable as a diode, transistor, electrode material, wiring material, circuit forming material, EL material and the like.
In the method for producing a thin film using the compound of the present invention, the orientation control derived from the magnetic anisotropy of the aromatic ring can be easily expressed by performing it in a magnetic field in a specific direction. An oriented ultra-thin film can be formed.

Claims (5)

一般式(2)
Figure 0004113680
で表わされるチオン類又はケトン類と、
一般式(3)
Figure 0004113680
又は、
Figure 0004113680
で表わされるケトン類をを反応させ、
一般式(1)
Figure 0004113680
(式(1)中、芳香族環はベンゼン環、或いは縮合芳香族環を示し、R1はプロトン、アルキル基、アルコキシ基のいずれかであり、R2、R3はプロトン、アルキル、メルカプトアルキル基、メルカプトオリゴエチレンジオキシエチル基のいずれかを示し、かつR2、R3は互いに同一であるか或いは異なっていてもよい)
で表わされるテトラチアフルバレン誘導体の製造方法。
General formula (2)
Figure 0004113680
Thiones or ketones represented by
General formula (3)
Figure 0004113680
Or
Figure 0004113680
A ketone represented by
General formula (1)
Figure 0004113680
(In the formula (1), the aromatic ring represents a benzene ring or a condensed aromatic ring, R1 is any one of a proton, an alkyl group, and an alkoxy group, and R2 and R3 are a proton, an alkyl, a mercaptoalkyl group, and a mercapto group. Any of oligoethylenedioxyethyl groups, and R2 and R3 may be the same or different from each other)
The manufacturing method of the tetrathiafulvalene derivative represented by these.
一般式(1)
Figure 0004113680
(式(1)中、芳香族環は縮合芳香族環を示し、縮合芳香族環がナフタレン、アントラセン、フェナントレン、ピレン、ペリレン、トリフェニレンのいずれかであり、R1はプロトン、アルキル基、アルコキシ基のいずれかであり、R2、R3はプロトン、アルキル、メルカプトアルキル基、メルカプトオリゴエチレンジオキシエチル基のいずれかを示し、かつR2、R3は互いに同一であるか或いは異なっていてもよい)
で表わされるテトラチアフルバレン誘導体。
General formula (1)
Figure 0004113680
(In the formula (1), the aromatic ring represents a condensed aromatic ring, the condensed aromatic ring is one of naphthalene, anthracene, phenanthrene, pyrene, perylene, and triphenylene, and R1 is a proton, an alkyl group, or an alkoxy group. R2 and R3 each represent a proton, alkyl, mercaptoalkyl group, or mercapto-oligoethylenedioxyethyl group, and R2 and R3 may be the same or different from each other)
The tetrathiafulvalene derivative represented by these.
基板上に請求項2に記載のテトラチアフルバレン誘導体を被覆した磁気異方性を有することを特徴とするテトラチアフルバレン誘導体の薄膜体。  A thin film body of a tetrathiafulvalene derivative having magnetic anisotropy obtained by coating the tetrathiafulvalene derivative according to claim 2 on a substrate. 一般式(1)
Figure 0004113680
(式(1)中、芳香族環はベンゼン環を示し、R1はプロトン、アルキル基、アルコキシ基のいずれかであり、R2、R3はプロトン、アルキル、メルカプトアルキル基、メルカプトオリゴエチレンジオキシエチル基のいずれかを示すもので、R2、R3のいずれかはメルカプトアルキル基、メルカプトオリゴエチレンジオキシエチル基であり、基板上に前記テトラチアフルバレン誘導体を被覆した磁気異方性を有することを特徴とするテトラチアフルバレン誘導体の薄膜体。
General formula (1)
Figure 0004113680
(In the formula (1), the aromatic ring represents a benzene ring, R1 is any one of a proton, an alkyl group, and an alkoxy group, and R2 and R3 are a proton, an alkyl, a mercaptoalkyl group, and a mercapto-oligoethylenedioxyethyl group. Any one of R2 and R3 is a mercaptoalkyl group or a mercapto-oligoethylenedioxyethyl group, and has a magnetic anisotropy in which the tetrathiafulvalene derivative is coated on a substrate. A thin film of a tetrathiafulvalene derivative.
請求項3または4に記載のテトラチアフルバレン誘導体の薄膜を作製するに際し、薄膜の作成を一定方向の磁場をかけて行うことを特徴とするテトラチアフルバレン誘導体の薄膜の製造方法。  5. A method for producing a thin film of a tetrathiafulvalene derivative according to claim 3 or 4, wherein the thin film is produced by applying a magnetic field in a certain direction.
JP2001070020A 2001-03-13 2001-03-13 Tetrathiafulvalene derivatives and methods for producing them Expired - Fee Related JP4113680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070020A JP4113680B2 (en) 2001-03-13 2001-03-13 Tetrathiafulvalene derivatives and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070020A JP4113680B2 (en) 2001-03-13 2001-03-13 Tetrathiafulvalene derivatives and methods for producing them

Publications (2)

Publication Number Publication Date
JP2002265466A JP2002265466A (en) 2002-09-18
JP4113680B2 true JP4113680B2 (en) 2008-07-09

Family

ID=18927963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070020A Expired - Fee Related JP4113680B2 (en) 2001-03-13 2001-03-13 Tetrathiafulvalene derivatives and methods for producing them

Country Status (1)

Country Link
JP (1) JP4113680B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401042B2 (en) * 2008-02-28 2014-01-29 富士フイルム株式会社 Photoresist compound, photoresist solution, and etching method using the same
JP5185549B2 (en) * 2007-03-13 2013-04-17 昭和シェル石油株式会社 Lubricating oil composition
US8501801B2 (en) 2008-02-15 2013-08-06 National Institute For Materials Science Organic semiconductor compound, semiconductor element, solar battery, and process for producing organic semiconductor compound
JP2009238927A (en) * 2008-03-26 2009-10-15 Tokyo Institute Of Technology Organic semiconductor material, and organic transistor
JP5578414B2 (en) * 2010-02-09 2014-08-27 株式会社リコー Organic transistor using tetrathiafulvalene derivative and method for producing the same

Also Published As

Publication number Publication date
JP2002265466A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
US5556524A (en) Electron-conducting molecular preparations
JP5283635B2 (en) Organic transistor and manufacturing method thereof
US9761810B2 (en) Organic semiconductor material
JP2008513544A (en) Carbonyl-functionalized thiophene compounds and related device structures
WO2008047896A1 (en) Field-effect transistor
WO2004079834A1 (en) Organic field effect transistor and method for producing the same
JPS6121957B2 (en)
JP4113680B2 (en) Tetrathiafulvalene derivatives and methods for producing them
JP5187737B2 (en) FIELD EFFECT TRANSISTOR, PROCESS FOR PRODUCING THE SAME, COMPOUND USED FOR THE SAME, AND INK FOR SEMICONDUCTOR DEVICE
JP6033497B2 (en) Preparation of π-extended naphthalene diimide and use of the diimide as a semiconductor
TW201105647A (en) Tetrathiafulvalene derivative, and organic film and organic transistor using the same
JP4880850B2 (en) Di (hetaryl) arylaminophen derivatives
US10249833B2 (en) Phthalocyanine compound and synthesis method and use thereof
DE102010031897A1 (en) Semiconductors based on substituted [1] benzothieno [3,2-b] [1] benzothiophenes
JP2012169616A (en) Semiconductor compound
US8362464B2 (en) Organic nanofiber structure based on self-assembled organogel, organic nanofiber transistor using the same, and method of manufacturing the organic nanofiber transistor
JP5438326B2 (en) An organic transistor using an organic semiconductor material made of a compound having a thienothiophene skeleton for a semiconductor layer.
US6603007B1 (en) Bipyridyl derivatives
EP0021923A1 (en) Process for the preparation of vincamine derivatives
JPH0680672A (en) New electron acceptor and electrically conductive transfer complex containing the acceptor
JP2008100980A (en) ORGANIC SEMICONDUCTOR COMPOUND, ORGANIC SEMICONDUCTOR THIN FILM, ORGANIC SEMICONDUCTOR COATING LIQUID, ORGANIC THIN FILM TRANSISTOR, METHOD FOR PRODUCING BIS(BENZO[4,5]THIENO)[2,3-b:3'2'-e][1,4]DITHIIN AND BIS(BENZO[4,5]THIENO)[2,3-b:2'3'-e][1,4]DITHIIN
CN114149438A (en) Quinoxaline and diazole derivatives based on 9, 10-dimethyl-9, 10-ethylene anthracene and preparation method thereof
JPH0533274B2 (en)
US7501529B2 (en) 7-Ethynyl-2,4,9-trithiaadamantane and related methods
HU190029B (en) Process for preparing new heterocylic nitriles

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040223

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees