JP4113512B2 - Hot water use system - Google Patents

Hot water use system Download PDF

Info

Publication number
JP4113512B2
JP4113512B2 JP2004107202A JP2004107202A JP4113512B2 JP 4113512 B2 JP4113512 B2 JP 4113512B2 JP 2004107202 A JP2004107202 A JP 2004107202A JP 2004107202 A JP2004107202 A JP 2004107202A JP 4113512 B2 JP4113512 B2 JP 4113512B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
heat
storage tank
season
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004107202A
Other languages
Japanese (ja)
Other versions
JP2005291623A (en
Inventor
秀峰 村端
直孝 藍沢
茂樹 村山
正之 林
雅司 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Denso Corp
Corona Corp
Original Assignee
Denso Corp
Corona Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Corona Corp, Matsushita Electric Works Ltd filed Critical Denso Corp
Priority to JP2004107202A priority Critical patent/JP4113512B2/en
Publication of JP2005291623A publication Critical patent/JP2005291623A/en
Application granted granted Critical
Publication of JP4113512B2 publication Critical patent/JP4113512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Description

本発明は、熱交換器を用いた温水利用システムに関するものである。   The present invention relates to a hot water utilization system using a heat exchanger.

従来、温水を保温貯蔵する貯湯タンクと、貯湯タンク内の水を加熱する温水生成手段と、貯湯タンク内の温水のうち上方側に溜まっている高温水の熱交換を行なう熱交換器と、熱交換器によって高温となった熱媒体が供給される熱負荷端末と、熱交換器を通過した後の温度が低下した中間温度の温水を貯湯タンクに戻す温水戻し手段とを備えた温水利用システムが知られている(例えば、特許文献1参照)。   Conventionally, a hot water storage tank for storing hot water, hot water generating means for heating water in the hot water storage tank, a heat exchanger for exchanging heat of hot water stored in the upper side of the hot water in the hot water storage tank, A hot water use system comprising a heat load terminal to which a heat medium having a high temperature by an exchanger is supplied, and a hot water return means for returning warm water having an intermediate temperature that has been lowered after passing through the heat exchanger to a hot water storage tank. It is known (see, for example, Patent Document 1).

ところで、一般に、熱交換器付きの温水利用システムにあっては、最も熱を必要とする冬の季節に合わせて、熱負荷端末(例えば、浴室暖房乾燥機)に70℃の熱媒体を送っている。そのため、貯湯タンクには90℃の高温水を蓄える必要があった。つまり、90℃の高温水を熱交換器で熱媒体に熱を伝え、70℃となるように制御するため、ある程度の温度差が必要であった。一方、最も熱を必要としない夏の季節は、低温(例えば55℃)の熱媒体を熱負荷端末に送れば必要とする性能を発揮することができるため、貯湯タンクには70℃の温水を蓄えればよい。にもかかわらず、従来では1年中、貯湯タンクに90℃の温水を蓄えるシステムとなっており、不必要なエネルギーロスを招くという問題があった。
特開2003−185251号公報
By the way, in general, in a hot water utilization system with a heat exchanger, a heat medium of 70 ° C. is sent to a heat load terminal (for example, a bathroom heater / dryer) in accordance with the winter season that requires the most heat. Yes. Therefore, it was necessary to store high-temperature water at 90 ° C. in the hot water storage tank. That is, since a high temperature water of 90 ° C. is transferred to the heat medium with a heat exchanger and controlled to be 70 ° C., a certain temperature difference is required. On the other hand, in the summer season when most heat is not needed, if a low temperature (for example, 55 ° C) heat medium is sent to the heat load terminal, the required performance can be exhibited. You only have to store it. Nevertheless, the conventional system has been a system that stores hot water of 90 ° C. in a hot water storage tank all year round, which causes unnecessary energy loss.
JP 2003-185251 A

本発明は上記の従来の問題点に鑑みて発明したものであって、季節に応じた熱負荷端末への熱媒体の温度制御ができると共に、貯湯タンクに蓄える温水の温度制御が可能となり、省エネルギー化を実現できる温水利用システムを提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and can control the temperature of the heat medium to the heat load terminal according to the season and can control the temperature of the hot water stored in the hot water storage tank, thereby saving energy. It is an object to provide a hot water use system that can be realized.

上記課題を解決するために請求項1記載の発明にあっては、温水を貯蔵する貯湯タンク1と、貯湯タンク1内の水を加熱する温水生成手段2と、貯湯タンク1の上方側から温水を取り出し、熱交換器4の一次側配管4a及び熱交換器一次用ポンプ5を経て貯湯タンク1の下方側に戻す一次側循環経路7と、上記熱交換器4の二次側配管4bの一端からの加熱された熱媒体9を熱負荷端末10の入側に供給すると共に熱負荷端末10の出側から排出される熱媒体9を熱交換器4の二次側配管4bの他端に戻す二次側循環経路8と、上記二次側循環経路8の熱媒体9の温度を検知する熱媒体温度センサ11とを具備した温水利用システムであって、上記温水生成手段2は、貯湯タンク1の下方側から水を取り出して貯湯タンク1の上方側に戻す流水経路14と、流水経路14内に水を取り出す加熱側ポンプ15と、流水経路14内に取り出した水を加熱するヒートポンプ3と、ヒートポンプ3で加熱された温水の温度を検出する温水温度センサ16とで構成され、現在の季節を検出する季節検出手段13と、上記季節検出手段13で検出された季節に応じて熱媒体9の設定温度を可変にすると共に、上記貯湯タンク1内の温水の温度が異なるように上記加熱側ポンプ15の単位時間当たりの回転数を制御する制御部12とを有することを特徴としている。 In order to solve the above problems, in the invention described in claim 1, hot water storage tank 1 for storing hot water, hot water generating means 2 for heating water in hot water storage tank 1, and hot water from the upper side of hot water storage tank 1 are used. The primary side circulation path 7 returning to the lower side of the hot water storage tank 1 through the primary side pipe 4a of the heat exchanger 4 and the heat exchanger primary pump 5, and one end of the secondary side pipe 4b of the heat exchanger 4 The heated heat medium 9 is supplied to the inlet side of the heat load terminal 10 and the heat medium 9 discharged from the outlet side of the heat load terminal 10 is returned to the other end of the secondary side pipe 4b of the heat exchanger 4. A hot water utilization system comprising a secondary side circulation path 8 and a heat medium temperature sensor 11 for detecting the temperature of the heat medium 9 in the secondary side circulation path 8, wherein the hot water generating means 2 is a hot water storage tank 1. Of water taken out from the lower side of the water and returned to the upper side of the hot water storage tank 1 A path 14, a heating-side pump 15 that extracts water into the flowing water path 14, a heat pump 3 that heats the water extracted into the flowing water path 14, and a hot water temperature sensor 16 that detects the temperature of hot water heated by the heat pump 3. The temperature detecting means 13 for detecting the current season, and the temperature of the heat medium 9 is made variable according to the season detected by the season detecting means 13, and the temperature of the hot water in the hot water storage tank 1 is varied. And a controller 12 for controlling the number of revolutions per unit time of the heating side pump 15 so as to be different from each other.

このような構成とすることで、季節に合わせて貯湯タンク1に蓄える温水の温度を自動的に制御可能となり、特に最も熱を必要としない夏の季節では熱媒体9の設定温度が55℃の場合、貯湯タンク1の温水温度も70℃であればよく、従来のように1年中、90℃に加熱する必要がなくなる。従って、貯湯タンク1に温水を蓄えるのに必要なエネルギーを少なくできると共に、貯湯タンク1の温度が低くなるので、そこからの放熱も少なくできる。 With such a configuration, the temperature of the hot water stored in the hot water storage tank 1 can be automatically controlled according to the season, and the set temperature of the heat medium 9 is 55 ° C. particularly in the summer season when heat is not required most. In this case, the hot water temperature of the hot water storage tank 1 may be 70 ° C., and it is not necessary to heat the hot water storage tank 1 to 90 ° C. throughout the year. Therefore, the energy required to store hot water in the hot water storage tank 1 can be reduced, and the temperature of the hot water storage tank 1 is lowered, so that heat radiation therefrom can also be reduced.

また請求項2記載の発明にあっては、温水を保温貯蔵する貯湯タンク1と、貯湯タンク1内の水を加熱する温水生成手段2と、貯湯タンク1の上方側から温水を取り出し、熱交換器4の一次側配管4a及び熱交換器一次用ポンプ5を経て貯湯タンク1の下方側に戻す一次側循環経路7と、上記熱交換器4の二次側配管4bの一端からの加熱された熱媒体9を熱負荷端末10の入側に供給すると共に熱負荷端末10の出側から排出される熱媒体9を熱交換器4の二次側配管4bの他端に戻す二次側循環経路8と、上記熱負荷端末10の入側に供給される熱媒体9の温度を検知する熱媒体温度センサ11とを具備した温水利用システムであって、上記温水生成手段2は、貯湯タンク1の下方側から水を取り出して貯湯タンク1の上方側に戻す流水経路14と、流水経路14内に水を取り出す加熱側ポンプ15と、流水経路14内に取り出した水を加熱するヒートポンプ3と、ヒートポンプ3で加熱された温水の温度を検出する温水温度センサ16とで構成され、1年を複数の期間に分割し、分割された各期間に応じて熱媒体9の設定温度が異なるように熱交換器一次用ポンプ5及び分割された各期間に応じて上記貯湯タンク1内の温水の温度が異なるように加熱側ポンプ15のそれぞれの単位時間当たりの回転数を制御する複数の異なる季節制御モードを備えた制御部12と、上記複数の季節制御モードを切り換えるための季節検出手段13とを具備することを特徴としている。 In the invention described in claim 2, the hot water storage tank 1 for keeping hot water warm, the hot water generating means 2 for heating the water in the hot water storage tank 1, hot water is taken out from the upper side of the hot water tank 1, and heat exchange is performed The primary side circulation path 7 returning to the lower side of the hot water storage tank 1 through the primary side pipe 4a and the heat exchanger primary pump 5 of the heat exchanger 4 and the one end of the secondary side pipe 4b of the heat exchanger 4 were heated. A secondary side circulation path for supplying the heat medium 9 to the inlet side of the heat load terminal 10 and returning the heat medium 9 discharged from the outlet side of the heat load terminal 10 to the other end of the secondary side pipe 4b of the heat exchanger 4 8 and a heat medium temperature sensor 11 for detecting the temperature of the heat medium 9 supplied to the inlet side of the heat load terminal 10 , wherein the hot water generating means 2 is connected to the hot water storage tank 1. Water flowing out from the lower side and returning to the upper side of the hot water storage tank 1 A path 14, a heating-side pump 15 that extracts water into the flowing water path 14, a heat pump 3 that heats the water extracted into the flowing water path 14, and a hot water temperature sensor 16 that detects the temperature of hot water heated by the heat pump 3. The heat storage primary pump 5 and the hot water storage according to each divided period so that one year is divided into a plurality of periods and the set temperature of the heat medium 9 is different according to each divided period. In order to switch between the plurality of seasonal control modes, and a control unit 12 having a plurality of different seasonal control modes for controlling the number of rotations per unit time of the heating pump 15 so that the temperature of the hot water in the tank 1 is different. The season detecting means 13 is provided.

このような構成とすることで、熱負荷端末10に供給される熱媒体9の温度を季節に応じた温度に設定するにあたって、季節検出手段13にて選ばれた季節制御モードは貯湯タンク1の温水の温度を変えるのではなく、熱交換器一次用ポンプ5の回転数を変えることによって、熱媒体9の温度を目標とする設定温度に制御するシステムを採用することにより、季節に応じた熱負荷端末10への熱媒体9の温度制御ができると共に、季節に合わせて貯湯タンク1に蓄える温水の温度を自動的に制御可能となり、特に最も熱を必要としない夏の季節では熱媒体9の設定温度が55℃の場合、貯湯タンク1の温水温度も70℃であればよく、従来のように1年中、90℃に加熱する必要がなくなる。従って、貯湯タンク1に温水を蓄えるのに必要なエネルギーを少なくできると共に、貯湯タンク1の温度が低くなるので、そこからの放熱も少なくできる。 By setting it as such a structure, in setting the temperature of the heat medium 9 supplied to the heat load terminal 10 to the temperature according to a season, the season control mode selected in the season detection means 13 is the hot water storage tank 1's. Instead of changing the temperature of the hot water, by changing the number of rotations of the heat exchanger primary pump 5, a system that controls the temperature of the heat medium 9 to the target set temperature is adopted, so that The temperature of the heat medium 9 to the load terminal 10 can be controlled, and the temperature of the hot water stored in the hot water storage tank 1 can be automatically controlled according to the season. Especially in the summer season when the heat is not required, the heat medium 9 When the set temperature is 55 ° C., the hot water temperature of the hot water storage tank 1 only needs to be 70 ° C., and there is no need to heat to 90 ° C. throughout the year as in the past. Therefore, the energy required to store hot water in the hot water storage tank 1 can be reduced, and the temperature of the hot water storage tank 1 is lowered, so that heat radiation therefrom can also be reduced.

また、請求項3記載の発明は、上記季節検出手段13は、制御部12に内蔵されて季節情報を管理するカレンダー機能回路部13aからなるのが好ましく、この場合、カレンダー機能回路部13aが制御部12に組み込まれてシステム全体としてスリム化できると共に、季節検出のためのセンサ等を別途設ける必要がないため、センサの保守も不要となる。   In the invention according to claim 3, the season detecting means 13 is preferably composed of a calendar function circuit unit 13a built in the control unit 12 for managing season information. In this case, the calendar function circuit unit 13a controls the calendar function circuit unit 13a. The system can be slimmed down as a whole by being incorporated in the unit 12, and it is not necessary to separately provide a sensor or the like for detecting the season, so that maintenance of the sensor is also unnecessary.

また請求項4記載の発明は、上記季節検出手段13は、外気温度を検出する気温センサ13bからなるのが好ましく、この場合、外気温による制御は、その日、次の日の気温に合わせた熱負荷端末10の制御、及び、貯湯タンク1に蓄える温度制御が可能になり、不必要なエネルギーロスの低減をより一層図ることができる。   In the invention according to claim 4, the season detecting means 13 is preferably composed of an air temperature sensor 13b for detecting the outside air temperature. In this case, the control by the outside air temperature is performed according to the temperature of the next day. Control of the load terminal 10 and temperature control stored in the hot water storage tank 1 are possible, and unnecessary energy loss can be further reduced.

また、請求項5記載の発明は、上記季節検出手段13は、貯湯タンク1に供給される水道水の温度を検出する水道水温度センサ13cからなるのが好ましく、この場合、水道水による制御は、水道水の1日の温度変化が少ないので、温度測定後の処理が簡単になり、また、外気の変動要因を削除できるというメリットもある。   Further, in the invention described in claim 5, the season detection means 13 preferably comprises a tap water temperature sensor 13c for detecting the temperature of tap water supplied to the hot water storage tank 1, and in this case, control by tap water is performed. Since the daily temperature change of the tap water is small, the processing after the temperature measurement is simplified, and there is an advantage that the fluctuation factor of the outside air can be eliminated.

本発明に係る温水利用システムにあっては、貯湯タンクに溜められる温水の温度を季節に応じて自動的に制御可能となるので、夏場において貯湯タンクに温水を蓄えるのに必要なエネルギーを少なくできると共に、貯湯タンクの温度を低くすることで、そこからの放熱も少なくできる。結果、熱交換器を用いた温水利用システムを効率よく運転することが可能となり、不必要なエネルギーロスの低減が図れるものである。 In the hot water utilization system according to the present invention, since the temperature of the hot water stored in the hot water storage tank can be automatically controlled according to the season, it is possible to reduce the energy required to store the hot water in the hot water storage tank in summer. At the same time, by reducing the temperature of the hot water storage tank, heat radiation from the hot water tank can be reduced. As a result, it becomes possible to efficiently operate a hot water utilization system using a heat exchanger, and unnecessary energy loss can be reduced.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

図1は、本実施形態の温水利用システムの一例を示し、図2は、温水利用システムのブロック図を示している。   FIG. 1 shows an example of a hot water use system of the present embodiment, and FIG. 2 shows a block diagram of the hot water use system.

本温水利用システムは、温水を保温貯蔵する貯湯タンク1と、貯湯タンク1内の水を加熱する温水生成手段2と、貯湯タンク1の上方側から温水を取り出し、熱交換器4の一次側配管4a及び熱交換器一次用ポンプ5を経て貯湯タンク1の下方側に戻す一次側循環経路7と、上記熱交換器4の二次側配管4bの一端からの加熱された熱媒体9を熱負荷端末10の入側に供給すると共に熱負荷端末10の出側から排出される熱媒体9を熱交換器4の二次側配管4bの他端に戻す二次側循環経路8と、上記熱負荷端末10の入側に供給される熱媒体9の温度を検知する熱媒体温度センサ11とを具備していると共に、複数の異なる季節制御モードを備えた制御部12と、上記複数の季節制御モードを切り換えるための季節検出手段13とを具備している。なお、本例では熱負荷端末10の熱媒体9として、水や不凍液を使用し、貯湯タンク1内の水として水道水を使用し、また温水生成手段2としてCOヒートポンプユニットを使用しているが、これらに限定されるものではない。 The hot water utilization system includes a hot water storage tank 1 for storing hot water, hot water generating means 2 for heating water in the hot water storage tank 1, hot water taken out from the upper side of the hot water storage tank 1, and a primary side pipe of the heat exchanger 4 4a and the primary side circulation path 7 returning to the lower side of the hot water storage tank 1 through the heat exchanger primary pump 5 and the heat medium 9 heated from one end of the secondary side pipe 4b of the heat exchanger 4 The secondary side circulation path 8 for supplying the heat medium 9 supplied to the inlet side of the terminal 10 and discharged from the outlet side of the thermal load terminal 10 to the other end of the secondary side pipe 4b of the heat exchanger 4, and the thermal load A heat medium temperature sensor 11 for detecting the temperature of the heat medium 9 supplied to the entry side of the terminal 10, and a controller 12 having a plurality of different seasonal control modes, and the plurality of seasonal control modes. Season detecting means 13 for switching between There. In this example, water or antifreeze is used as the heat medium 9 of the heat load terminal 10, tap water is used as the water in the hot water storage tank 1, and a CO 2 heat pump unit is used as the hot water generating means 2. However, it is not limited to these.

上記貯湯タンク1の下端には、水道水の供給口17と、ヒートポンプユニットの流水経路14の入側に通じる低温水出口18と、熱交換器4の一次側循環経路7の戻り側に通じる戻り口19とがそれぞれ設けられており、貯湯タンク1の上端には、上記流水経路14の戻り側に通じる高温水戻り口20と、風呂やシャワーなどの給湯機器に高温水を送るための給湯経路22に通じる給湯出口21とがそれぞれ設けられている。   At the lower end of the hot water storage tank 1, a tap water supply port 17, a low-temperature water outlet 18 that leads to the inlet side of the flowing water path 14 of the heat pump unit, and a return that leads to the return side of the primary circulation path 7 of the heat exchanger 4. The hot water storage tank 1 is provided at its upper end with a hot water return port 20 leading to the return side of the flowing water path 14 and a hot water supply path for sending hot water to a hot water supply device such as a bath or a shower. A hot water outlet 21 leading to 22 is provided.

上記温水生成手段2を構成するヒートポンプユニットは、貯湯タンク1の下方側から低温の水を取り出して貯湯タンク1の上方側に戻す流水経路14と、流水経路14内に水を取り出す加熱側ポンプ15と、流水経路14内に取り出された低温の水を加熱して高温水(70〜90℃)とするCOヒートポンプ3と、COヒートポンプ3で加熱された温水の温度を検出する温水温度センサ16とを備えている。ここでCOヒートポンプ3は、その配管内にCOを高圧封入し、COを熱媒として圧縮と膨張とを行なうことで吸熱と放熱とを行なうものであり、放熱部を流水経路14の途中に介設することで、低温の水を加熱して高温水として貯湯タンク1の上方側に戻せるようになっている。 The heat pump unit constituting the hot water generating means 2 includes a flowing water path 14 that takes out low-temperature water from the lower side of the hot water tank 1 and returns it to the upper side of the hot water tank 1, and a heating side pump 15 that takes water into the flowing water path 14. A CO 2 heat pump 3 that heats the low-temperature water taken out into the flowing water path 14 to make high-temperature water (70 to 90 ° C.), and a hot-water temperature sensor that detects the temperature of the hot water heated by the CO 2 heat pump 3 16. Here, the CO 2 heat pump 3 encloses high pressure CO 2 in its pipe, performs heat absorption and heat dissipation by compressing and expanding using CO 2 as a heat medium, and the heat radiating portion is connected to the flowing water path 14. By interposing it in the middle, the low temperature water can be heated and returned to the upper side of the hot water storage tank 1 as the high temperature water.

上記給湯経路22の途中からは、熱交換器4の一次側循環経路7が分岐している。一次側循環経路7の途中には熱交換器4の一次側配管4aが設けられ、この一次側配管4aの下流側に熱交換器一次用ポンプ5が設けられている。熱交換器一次用ポンプ5は、貯湯タンク1の上方側からの高温水を、給湯経路22から熱交換器4の一次側配管4aに通して貯湯タンク1の下方側へ戻すためのものであり、制御部12からの信号に応答して熱交換器一次用ポンプ5の単位時間当たりの回転数(指定流量)が決定されるようになっている。   From the middle of the hot water supply path 22, the primary side circulation path 7 of the heat exchanger 4 branches off. A primary side pipe 4a of the heat exchanger 4 is provided in the middle of the primary side circulation path 7, and a heat exchanger primary pump 5 is provided downstream of the primary side pipe 4a. The heat exchanger primary pump 5 is for returning the hot water from the upper side of the hot water storage tank 1 to the lower side of the hot water storage tank 1 through the hot water supply path 22 through the primary pipe 4 a of the heat exchanger 4. In response to a signal from the control unit 12, the rotational speed (designated flow rate) of the heat exchanger primary pump 5 per unit time is determined.

熱交換器4の二次側配管4bは、熱負荷端末10の二次側循環経路8に設けられている。熱交換器4によって貯湯タンク1からの温水の熱が熱媒体9に伝えられ、高温の熱媒体9にして浴室暖房乾燥機などからなる熱負荷端末10に供給される。また、二次側循環経路8には、熱交換器4の二次側配管4bよりも下流側に、熱媒体温度センサ11が配置され、上流側に熱交換器二次用ポンプ6が配置されている。熱媒体温度センサ11は、熱負荷端末10に送る熱媒体9の温度を測定してその結果を制御部12に送るものである。   The secondary side pipe 4 b of the heat exchanger 4 is provided in the secondary side circulation path 8 of the heat load terminal 10. Heat of the hot water from the hot water storage tank 1 is transmitted to the heat medium 9 by the heat exchanger 4, and is supplied as a high-temperature heat medium 9 to a heat load terminal 10 including a bathroom heating dryer. Further, in the secondary circulation path 8, the heat medium temperature sensor 11 is disposed on the downstream side of the secondary side pipe 4 b of the heat exchanger 4, and the heat exchanger secondary pump 6 is disposed on the upstream side. ing. The heat medium temperature sensor 11 measures the temperature of the heat medium 9 sent to the heat load terminal 10 and sends the result to the controller 12.

上記制御部12はその内部に、図2に示すように季節検出手段13としてのカレンダー機能回路部13aを持っている。カレンダー機能回路部13aは、例えば、年・月・日・時刻を管理するマイクロコンピュータによって構成されている。例えば、1年を冬の季節と夏の季節の2つの期間に分割し、分割された期間のうち現在の期間に応じた信号(冬の季節を示す信号又は夏の季節を示す信号)を出力するものである。また制御部12には、夏の季節制御モードを実行する夏モード回路23と、冬の季節制御モードを実行する冬モード回路24とが設けられ、上記カレンダー機能回路部13aから出力される信号に応じて夏モード回路23と冬モード回路24のいずれか一方に切り換えられるようになっている。   The control unit 12 has a calendar function circuit unit 13a as a season detection means 13 as shown in FIG. The calendar function circuit unit 13a is constituted by, for example, a microcomputer that manages year, month, date, and time. For example, a year is divided into two periods, a winter season and a summer season, and a signal (a signal indicating the winter season or a signal indicating the summer season) corresponding to the current period is output. To do. Further, the control unit 12 is provided with a summer mode circuit 23 for executing the summer season control mode and a winter mode circuit 24 for executing the winter season control mode, and the signal outputted from the calendar function circuit unit 13a is provided. In response to this, either the summer mode circuit 23 or the winter mode circuit 24 is switched.

上記制御部12は、カレンダー機能回路部13aから得られる季節信号に基いて現在の季節に応じた季節制御モードを選択して実行する。つまり、夏の場合は、カレンダー機能回路部13aによって夏モード回路23が選択され、夏の季節制御モードを実行する。夏の季節制御モードは、熱媒体9の設定温度は55℃となり、この設定温度と熱媒体温度センサ11による検知温度とを比較する。このとき、熱媒体温度センサ11の方が温度が高い場合は、熱交換器一次用ポンプ5の単位時間当たりの回転数を下げる信号を出力する。これにより、熱交換器4の一次側配管4aを通過する温水の単位時間当たりの流量が減少し、熱媒体9の温度は低下する。逆に、熱媒体温度センサ11の方が温度が低い場合は、熱交換器一次用ポンプ5の単位時間当たりの回転数を上げる信号を出力する。これにより、熱交換器4の一次側配管4aを通過する温水の単位時間当たりの流量が上昇し、熱媒体9の温度が上昇する。これを繰り返すことで、熱媒体9の温度を夏の季節用の目標温度(55℃)に到達させることができる。一方、冬の季節では、冬モード回路24を選択して冬の季節制御モードを実行する。冬の季節制御モードは、熱媒体9の温度を70℃に設定すると共に、この設定温度と熱媒体温度センサ11による検知温度とを比較し、上記と同様な方法で、熱媒体9の温度を冬の季節用の目標温度(70℃)に到達させるものである。   The control unit 12 selects and executes a seasonal control mode corresponding to the current season based on a seasonal signal obtained from the calendar function circuit unit 13a. That is, in the summer, the summer mode circuit 23 is selected by the calendar function circuit unit 13a, and the summer seasonal control mode is executed. In the summer season control mode, the set temperature of the heat medium 9 is 55 ° C., and the set temperature is compared with the temperature detected by the heat medium temperature sensor 11. At this time, if the temperature of the heat medium temperature sensor 11 is higher, a signal for lowering the number of revolutions per unit time of the heat exchanger primary pump 5 is output. Thereby, the flow rate per unit time of the hot water passing through the primary side pipe 4a of the heat exchanger 4 is decreased, and the temperature of the heat medium 9 is decreased. Conversely, when the temperature of the heat medium temperature sensor 11 is lower, a signal for increasing the number of revolutions per unit time of the heat exchanger primary pump 5 is output. Thereby, the flow rate per unit time of the hot water passing through the primary side pipe 4a of the heat exchanger 4 is increased, and the temperature of the heat medium 9 is increased. By repeating this, the temperature of the heat medium 9 can reach the target temperature for summer season (55 ° C.). On the other hand, in the winter season, the winter mode circuit 24 is selected to execute the winter season control mode. In the winter season control mode, the temperature of the heat medium 9 is set to 70 ° C., the set temperature is compared with the temperature detected by the heat medium temperature sensor 11, and the temperature of the heat medium 9 is set in the same manner as described above. The target temperature for winter season (70 ° C.) is reached.

また図1に示す例では、制御部12は、季節検出手段13にて切り換えられた季節制御モードに応じて貯湯タンク1内の温水の温度が異なるように加熱側ポンプ15の単位時間当たりの回転数を制御する機能も併せ持っている。図4はそのブロック図の一例を示している。本例では、夏の季節制御モードを実行した場合は、制御部12は貯湯タンク1に送られる温水の温度を75℃とし、この設定温度と温水温度センサ16による検知温度とを比較する。このとき、温水温度センサ16の方が温度が高い場合は、制御部12は加熱側ポンプ15の単位時間当たりの回転数を下げる信号を出力する。これにより、図1に示すCOヒートポンプ3を通過する温水の単位時間当たりの流量が減少して、温水の温度を下げることができ、逆に、温水温度センサ16の方が温度が低い場合は、制御部12は加熱側ポンプ15の単位時間当たりの回転数を上げる信号を出力する。これにより、COヒートポンプ3を通過する温水の単位時間当たりの流量が上昇し、温水の温度を上げることができる。これを繰り返すことで、貯湯タンク1に送られる温水の温度を目標温度(70℃)に到達させることができる。一方、冬の季節制御モードが実行されている場合は、貯湯タンク1に送られる温水の設定温度が90℃となり、この設定温度と温水温度センサ16による検知温度とを比較して、上記と同様な方法で、貯湯タンク1に送られる温水の温度を冬の季節用の目標温度(90℃)に到達させるものである。これにより、貯湯タンク1に溜められる温水の温度を季節に応じて自動的に制御可能となる。なお、貯湯タンク1の下方側には、貯湯タンク1内の温水の温度を検出する温度センサ50が設けられており、例えば貯湯タンク1内の温度が夏場で70℃、冬場で90℃を超えた場合、温度センサ50からの信号によって加熱側ポンプ15を停止させる仕組みとなっている。 Further, in the example shown in FIG. 1, the control unit 12 rotates the heating side pump 15 per unit time so that the temperature of the hot water in the hot water storage tank 1 varies depending on the season control mode switched by the season detection means 13. It also has a function to control the number. FIG. 4 shows an example of the block diagram. In this example, when the summer season control mode is executed, the control unit 12 sets the temperature of the hot water sent to the hot water storage tank 1 to 75 ° C., and compares the set temperature with the temperature detected by the hot water temperature sensor 16. At this time, when the temperature of the hot water temperature sensor 16 is higher, the control unit 12 outputs a signal for lowering the number of revolutions per unit time of the heating pump 15. Thereby, the flow rate per unit time of the hot water passing through the CO 2 heat pump 3 shown in FIG. 1 can be reduced, and the temperature of the hot water can be lowered. Conversely, when the temperature of the hot water temperature sensor 16 is lower The control unit 12 outputs a signal for increasing the number of rotations per unit time of the heating pump 15. Thereby, the flow rate per unit time of the hot water passing through the CO 2 heat pump 3 is increased, and the temperature of the hot water can be increased. By repeating this, the temperature of the hot water sent to the hot water storage tank 1 can reach the target temperature (70 ° C.). On the other hand, when the winter season control mode is executed, the set temperature of the hot water sent to the hot water storage tank 1 is 90 ° C., and the set temperature and the temperature detected by the hot water temperature sensor 16 are compared and the same as described above. In this way, the temperature of the hot water sent to the hot water storage tank 1 is made to reach the target temperature for winter season (90 ° C.). Thereby, the temperature of the hot water stored in the hot water storage tank 1 can be automatically controlled according to the season. A temperature sensor 50 for detecting the temperature of hot water in the hot water storage tank 1 is provided below the hot water storage tank 1. For example, the temperature in the hot water storage tank 1 exceeds 70 ° C. in summer and 90 ° C. in winter. In this case, the heating side pump 15 is stopped by a signal from the temperature sensor 50.

上記構成によれば、熱負荷端末10に供給される熱媒体9の温度を季節に応じた温度に設定するにあたって、季節検出手段13にて選ばれた季節制御モードは貯湯タンク1の温水の温度を変えるのではなく、熱交換器一次用ポンプ5の回転数を変えることによって、熱媒体9の温度を目標とする設定温度に制御するシステムを採用することにより、季節に応じた熱負荷端末10への熱媒体9の温度制御ができると共に、季節に合わせて貯湯タンク1に蓄える温水の温度を異ならせることが可能となり、特に最も熱を必要としない夏の季節では熱媒体9の設定温度が55℃の場合、貯湯タンク1の温水温度も70℃であればよく、従来のように1年中、90℃に加熱する必要がなくなる。従って、貯湯タンク1に温水を蓄えるのに必要なエネルギーを少なくできると共に、貯湯タンク1の温度が低くなるので、そこからの放熱も少なくできる。結果、熱交換器4を用いた温水利用システムを効率よく運転することが可能となり、不必要なエネルギーロスの低減が図れるものである。   According to the above configuration, when the temperature of the heat medium 9 supplied to the heat load terminal 10 is set to a temperature according to the season, the season control mode selected by the season detection means 13 is the temperature of the hot water in the hot water storage tank 1. The heat load terminal 10 according to the season is adopted by adopting a system that controls the temperature of the heat medium 9 to a target set temperature by changing the rotation speed of the heat exchanger primary pump 5 instead of changing The temperature of the heat medium 9 can be controlled, and the temperature of the hot water stored in the hot water storage tank 1 can be varied according to the season, and the set temperature of the heat medium 9 is particularly high in the summer season when the heat is not required. In the case of 55 ° C., the hot water temperature of the hot water storage tank 1 only needs to be 70 ° C., and it is not necessary to heat to 90 ° C. throughout the year as in the past. Therefore, the energy required to store hot water in the hot water storage tank 1 can be reduced, and the temperature of the hot water storage tank 1 is lowered, so that heat radiation therefrom can also be reduced. As a result, it is possible to efficiently operate a hot water utilization system using the heat exchanger 4, and an unnecessary energy loss can be reduced.

しかも、本例の季節検出手段13は、制御部12に内蔵されて季節情報を管理するカレンダー機能回路部13aからなるので、季節検出手段13が制御部12に組み込まれてシステム全体のスリム化を図ることができ、そのうえ季節検出のためのセンサ等を別途設ける必要がないため、センサの保守も不要である。なお、カレンダー機能回路部13aを例えば衛星信号を受信して該衛星信号から年月日時分秒の時刻情報を抽出する衛星信号受信手段(GPS)の受信機を備えたカレンダー時計機構により構成することも可能である。   Moreover, since the season detection means 13 of this example comprises a calendar function circuit section 13a that is built in the control section 12 and manages the season information, the season detection means 13 is incorporated into the control section 12 to reduce the overall system. In addition, since it is not necessary to separately provide a sensor or the like for detecting the season, maintenance of the sensor is unnecessary. The calendar function circuit unit 13a is constituted by, for example, a calendar clock mechanism having a receiver of a satellite signal receiving means (GPS) that receives a satellite signal and extracts time information of year / month / day / hour / minute / second from the satellite signal. Is also possible.

なお、図2の実施形態では、季節制御モードの一例として夏モード回路23と冬モード回路24とを例示したが、図3に示すように、秋及び春の中間モード回路25を追加してもよい。この中間モード回路25では、例えば、熱媒体9の温度は冬場の70℃と夏場の55℃の略中間値に設定され、貯湯タンク1内の温水の温度は冬場の90℃と夏場の70℃の略中間値に設定する。これにより、夏、冬以外の春、秋の中間の季節においても省エネ化を実現できるものとなる。   In the embodiment of FIG. 2, the summer mode circuit 23 and the winter mode circuit 24 are illustrated as an example of the seasonal control mode. However, as shown in FIG. 3, an intermediate mode circuit 25 for autumn and spring may be added. . In the intermediate mode circuit 25, for example, the temperature of the heat medium 9 is set to a substantially intermediate value between 70 ° C. in winter and 55 ° C. in summer, and the temperature of hot water in the hot water storage tank 1 is 90 ° C. in winter and 70 ° C. in summer. Set to approximately the middle value of. This makes it possible to achieve energy saving even in the middle of spring and autumn other than summer and winter.

図5及び図6は季節検出手段13として、外気温を測定する気温センサ13bを用いた場合の一例を示している。他の構成は図1と基本的に同様であり、対応する部分には同一符号を付して説明は省略する。本例において、制御部12は、気温センサ13bの温度から1日の温度データを測定し、平均する。その平均値が高いとき(例えば、15℃以上)は、熱媒体9の設定温度を55℃とし、熱媒体温度センサ11と比較する。逆に、上記平均値が低いとき(例えば、15℃未満)は、熱媒体9の設定温度を70℃とし、熱媒体温度センサ11と比較する。いずれの場合においても、熱媒体温度センサ11の方が温度が高い場合、熱交換器一次用ポンプ5の単位時間当たりの回転数を下げる信号を出して、熱交換器4の一次側配管4aにおける単位時間当たりの流量を減らすようにし、逆に、熱媒体温度センサ11の方が温度が低い場合は、熱交換器一次用ポンプ5の単位時間当たりの回転数を上げる信号を出して、熱交換器4の一次側配管4aにおける単位時間当たりの流量を増やす。これにより熱媒体9の温度を目標温度に到達させることができる。しかして、外気温による制御システムを採用することで、その日、次の日の気温に合わせた熱負荷端末10の制御、貯湯タンク1に蓄える温度制御が可能になり、不必要なエネルギーロスの低減を一層図ることができるものである。   5 and 6 show an example in which an air temperature sensor 13b that measures the outside air temperature is used as the season detection means 13. FIG. Other configurations are basically the same as those in FIG. 1, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. In this example, the control unit 12 measures and averages the temperature data for one day from the temperature of the temperature sensor 13b. When the average value is high (for example, 15 ° C. or higher), the set temperature of the heat medium 9 is set to 55 ° C. and compared with the heat medium temperature sensor 11. Conversely, when the average value is low (for example, less than 15 ° C.), the set temperature of the heat medium 9 is set to 70 ° C. and compared with the heat medium temperature sensor 11. In any case, when the temperature of the heat medium temperature sensor 11 is higher, a signal for lowering the number of revolutions per unit time of the heat exchanger primary pump 5 is issued, and in the primary side pipe 4a of the heat exchanger 4 The flow rate per unit time is reduced, and conversely, when the temperature of the heat medium temperature sensor 11 is lower, a signal for increasing the number of revolutions per unit time of the heat exchanger primary pump 5 is issued to perform heat exchange. The flow rate per unit time in the primary side pipe 4a of the vessel 4 is increased. Thereby, the temperature of the heat medium 9 can be made to reach the target temperature. Thus, by adopting a control system based on the outside air temperature, it becomes possible to control the thermal load terminal 10 in accordance with the air temperature of the next day, and the temperature control stored in the hot water storage tank 1, thereby reducing unnecessary energy loss. Can be further improved.

図7は、季節検出手段13として、貯湯タンク1に供給される水道水の温度を検出する水道水温度センサ13cを用いた場合の一例を示し、図8は水道水の1年間の温度変化の一例を示している。他の構成は図1と基本的に同様であり、対応する部分には同一符号を付して説明は省略する。本例では、水道水温度センサ13cにより現在の水道水の温度を検出して制御部12に入力する。制御部12は、水道水温度センサ13cにより検知した水道水の温度値が高いとき(例えば、15℃以上)は、熱媒体9の設定温度を55℃とし、熱媒体温度センサ11と比較する。逆に上記水道水温度センサ13cにより検知した温度値が低いとき(例えば、15℃未満)は、熱媒体9の設定温度を70℃とし、熱媒体温度センサ11と比較する。いずれの場合においても、熱媒体温度センサ11の方が温度が高い場合は、熱交換器一次用ポンプ5の単位時間当たりの回転数を下げる信号を出し、熱交換器4の一次側配管4aにおける単位時間当たりの流量を減らす。逆に、熱媒体温度センサ11の方が温度が低い場合、熱交換器一次用ポンプ5の単位時間当たりの回転数を上げる信号を出し、熱交換器4の一次側配管4aにおける単位時間当たりの流量を増やす。これにより熱媒体9の温度を夏又は冬の季節の設定温度に到達させることができる。しかして、水道水による制御は、1日の温度変化が少ないので、温度測定後の処理が簡単になり、また、外気の変動要因を削除できるというメリットがある。   FIG. 7 shows an example in which a tap water temperature sensor 13c that detects the temperature of tap water supplied to the hot water storage tank 1 is used as the season detection means 13, and FIG. An example is shown. Other configurations are basically the same as those in FIG. 1, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. In this example, the current temperature of tap water is detected by the tap water temperature sensor 13 c and input to the control unit 12. When the temperature value of the tap water detected by the tap water temperature sensor 13 c is high (for example, 15 ° C. or more), the control unit 12 sets the set temperature of the heat medium 9 to 55 ° C. and compares it with the heat medium temperature sensor 11. Conversely, when the temperature value detected by the tap water temperature sensor 13 c is low (for example, less than 15 ° C.), the set temperature of the heat medium 9 is set to 70 ° C. and compared with the heat medium temperature sensor 11. In any case, when the temperature of the heat medium temperature sensor 11 is higher, a signal for lowering the rotational speed per unit time of the heat exchanger primary pump 5 is issued, and the heat exchanger 4 in the primary side pipe 4a Reduce the flow rate per unit time. On the other hand, when the temperature of the heat medium temperature sensor 11 is lower, a signal for increasing the rotational speed per unit time of the heat exchanger primary pump 5 is issued, and the heat exchanger 4 per unit time in the primary side pipe 4a of the heat exchanger 4 is given. Increase flow rate. Thereby, the temperature of the heat medium 9 can be made to reach the set temperature in the summer or winter season. Therefore, the control with tap water has a merit that since the temperature change per day is small, the processing after the temperature measurement is simplified, and the fluctuation factor of the outside air can be eliminated.

なお上記実施形態で説明した熱媒体9の設定温度、貯湯タンク1の温度の各数値等はいずれも一例であり、適宜設定変更自在である。   Note that the numerical values of the set temperature of the heat medium 9 and the temperature of the hot water storage tank 1 described in the above embodiment are merely examples, and can be appropriately changed.

本発明の一実施形態の温水利用システムの説明図である。It is explanatory drawing of the hot water utilization system of one Embodiment of this invention. 同上の制御部に関連するブロック図である。It is a block diagram relevant to the control part same as the above. 他の実施形態のブロック図である。It is a block diagram of other embodiments. 更に他の実施形態のブロック図である。It is a block diagram of other embodiment. 更に他の実施形態のブロック図である。It is a block diagram of other embodiment. 図5の温水利用システムの説明図である。It is explanatory drawing of the hot water utilization system of FIG. 更に他の実施形態の温水利用システムの説明図である。It is explanatory drawing of the hot water utilization system of other embodiment. 図7において用いる水道水の1年間の温度変化の一例を示すグラフである。It is a graph which shows an example of the temperature change for one year of the tap water used in FIG.

符号の説明Explanation of symbols

1 貯湯タンク
2 温水生成手段
3 ヒートポンプ
4 熱交換器
4a 一次側配管
4b 二次側配管
5 熱交換器一次用ポンプ
7 一次側循環経路
8 二次側循環経路
9 熱媒体
10 熱負荷端末
11 熱媒体温度センサ
12 制御部
13 季節検出手段
13a カレンダー機能回路部
13b 気温センサ
13c 水道水温度センサ
14 流水経路
15 加熱側ポンプ
16 温水温度センサ
DESCRIPTION OF SYMBOLS 1 Hot water storage tank 2 Hot water production | generation means 3 Heat pump 4 Heat exchanger 4a Primary side piping 4b Secondary side piping 5 Heat exchanger primary pump 7 Primary side circulation path 8 Secondary side circulation path 9 Heat medium 10 Heat load terminal 11 Heat medium Temperature sensor 12 Control unit 13 Season detection means 13a Calendar function circuit unit 13b Temperature sensor 13c Tap water temperature sensor 14 Flow path 15 Heating side pump 16 Hot water temperature sensor

Claims (5)

温水を貯蔵する貯湯タンクと、貯湯タンク内の水を加熱する温水生成手段と、貯湯タンクの上方側から温水を取り出し、熱交換器の一次側配管及び熱交換器一次用ポンプを経て貯湯タンクの下方側に戻す一次側循環経路と、上記熱交換器の二次側配管の一端からの加熱された熱媒体を熱負荷端末の入側に供給すると共に熱負荷端末の出側から排出される熱媒体を熱交換器の二次側配管の他端に戻す二次側循環経路と、上記二次側循環経路の熱媒体の温度を検知する熱媒体温度センサとを具備した温水利用システムであって、上記温水生成手段は、貯湯タンクの下方側から水を取り出して貯湯タンクの上方側に戻す流水経路と、流水経路内に水を取り出す加熱側ポンプと、流水経路内に取り出した水を加熱するヒートポンプと、ヒートポンプで加熱された温水の温度を検出する温水温度センサとで構成され、現在の季節を検出する季節検出手段と、上記季節検出手段で検出された季節に応じて熱媒体の設定温度を可変にすると共に、上記貯湯タンク内の温水の温度が異なるように上記加熱側ポンプの単位時間当たりの回転数を制御する制御部とを有することを特徴とする温水利用システム。 Hot water storage tank for storing hot water, hot water generating means for heating the water in the hot water storage tank, hot water is taken out from the upper side of the hot water storage tank, passed through the primary side piping of the heat exchanger and the heat exchanger primary pump, Heat that is supplied to the inlet side of the heat load terminal and discharged from the outlet side of the heat load terminal while supplying the heated heat medium from one end of the primary side circulation path returning to the lower side and the secondary side pipe of the heat exchanger. A hot water utilization system comprising a secondary side circulation path for returning the medium to the other end of the secondary pipe of the heat exchanger, and a heat medium temperature sensor for detecting the temperature of the heat medium in the secondary side circulation path. The hot water generating means heats the water taken out into the flowing water path, a flowing water path for taking out water from the lower side of the hot water tank and returning it to the upper side of the hot water tank, a heating pump for taking water into the flowing water path, and With heat pump and heat pump Is composed of a hot water temperature sensor for detecting the temperature of the heated was heated, and seasonal detecting means for detecting the current season, while the set temperature of the heating medium varied in accordance with the detected season the season detecting means And a control unit that controls the number of revolutions per unit time of the heating-side pump so that the temperature of the hot water in the hot water storage tank is different . 温水を保温貯蔵する貯湯タンクと、貯湯タンク内の水を加熱する温水生成手段と、貯湯タンクの上方側から温水を取り出し、熱交換器の一次側配管及び熱交換器一次用ポンプを経て貯湯タンクの下方側に戻す一次側循環経路と、上記熱交換器の二次側配管の一端からの加熱された熱媒体を熱負荷端末の入側に供給すると共に熱負荷端末の出側から排出される熱媒体を熱交換器の二次側配管の他端に戻す二次側循環経路と、上記熱負荷端末の入側に供給される熱媒体の温度を検知する熱媒体温度センサとを具備した温水利用システムであって、上記温水生成手段は、貯湯タンクの下方側から水を取り出して貯湯タンクの上方側に戻す流水経路と、流水経路内に水を取り出す加熱側ポンプと、流水経路内に取り出した水を加熱するヒートポンプと、ヒートポンプで加熱された温水の温度を検出する温水温度センサとで構成され、1年を複数の期間に分割し、分割された各期間に応じて熱媒体の設定温度が異なるように熱交換器一次用ポンプ及び分割された各期間に応じて上記貯湯タンク内の温水の温度が異なるように加熱側ポンプのそれぞれの単位時間当たりの回転数を制御する複数の異なる季節制御モードを備えた制御部と、上記複数の季節制御モードを切り換えるための季節検出手段とを具備することを特徴とする温水利用システム。 Hot water storage tank for storing hot water, hot water generating means for heating the water in the hot water storage tank, hot water is taken out from the upper side of the hot water storage tank, and passes through the primary side piping of the heat exchanger and the heat exchanger primary pump. The primary side circulation path returning to the lower side of the heat exchanger and the heated heat medium from one end of the secondary side pipe of the heat exchanger are supplied to the inlet side of the heat load terminal and discharged from the outlet side of the heat load terminal Hot water comprising a secondary side circulation path for returning the heat medium to the other end of the secondary side pipe of the heat exchanger, and a heat medium temperature sensor for detecting the temperature of the heat medium supplied to the inlet side of the heat load terminal In the utilization system, the hot water generating means is configured to take out water from the lower side of the hot water storage tank and return it to the upper side of the hot water storage tank, a heating side pump for taking out water into the flowing water path, and take out into the flowing water path. A heat pump that heats water Is composed of a hot water temperature sensor for detecting the temperature of the heated hot water by the heat pump, by dividing one year into a plurality of periods, the heat exchanger primary, as the set temperature of the heating medium is different depending on each divided period was And a controller having a plurality of different seasonal control modes for controlling the number of revolutions per unit time of the heating-side pump so that the temperature of the hot water in the hot water storage tank differs according to each divided period. And a hot water utilization system comprising season detection means for switching the plurality of season control modes. 上記季節検出手段は、制御部に内蔵されて季節情報を管理するカレンダー機能回路部からなることを特徴とする請求項1又は請求項2記載の温水利用システム。   The hot water utilization system according to claim 1 or 2, wherein the season detection means comprises a calendar function circuit part built in the control part and manages season information. 上記季節検出手段は、外気温度を検出する気温センサからなることを特徴とする請求項1又は請求項2記載の温水利用システム。   The hot water utilization system according to claim 1 or 2, wherein the season detection means comprises an air temperature sensor for detecting an outside air temperature. 上記季節検出手段は、貯湯タンクに供給される水道水の温度を検出する水道水温度センサからなることを特徴とする請求項1又は請求項2記載の温水利用システム。 The season detecting means, hot water utilization system of claim 1 or claim 2, wherein the consisting of tap water temperature sensor for detecting the temperature of the tap water supplied to the hot water storage tank.
JP2004107202A 2004-03-31 2004-03-31 Hot water use system Expired - Fee Related JP4113512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107202A JP4113512B2 (en) 2004-03-31 2004-03-31 Hot water use system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107202A JP4113512B2 (en) 2004-03-31 2004-03-31 Hot water use system

Publications (2)

Publication Number Publication Date
JP2005291623A JP2005291623A (en) 2005-10-20
JP4113512B2 true JP4113512B2 (en) 2008-07-09

Family

ID=35324744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107202A Expired - Fee Related JP4113512B2 (en) 2004-03-31 2004-03-31 Hot water use system

Country Status (1)

Country Link
JP (1) JP4113512B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985384B1 (en) * 2008-06-27 2010-10-05 주식회사 경동네트웍 Method for controlling a hot water temperature in using low flux in hot water supply system
KR101210219B1 (en) 2010-12-03 2012-12-07 린나이코리아 주식회사 Automatic operation controlling method using detection of city-water temperature for estimating season in boiler
KR101772956B1 (en) 2016-01-25 2017-08-30 주식회사 경동나비엔 Hot water supply system having pre-heating function and the control method thereof
CN114263957A (en) * 2021-12-06 2022-04-01 河北工业大学 Self-capacity-increasing heating system with energy coupling of primary/secondary heating power pipe network

Also Published As

Publication number Publication date
JP2005291623A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4605008B2 (en) Hot water supply device and control device for hot water supply device
US7945146B2 (en) Tankless hot water heater with power modulation
US9010281B2 (en) Hot water supply system
JP2641701B2 (en) Solar heat storage device and hot water supply system including the device
US11002492B2 (en) Energy storage system
RU2668861C2 (en) In-line heated solar thermal storage collector
JP2008002776A (en) Heat pump hot water supply system
GB2451362A (en) Temperature responsive valve
JP4113512B2 (en) Hot water use system
HU229686B1 (en) Water heater assembly
JP2008076014A (en) Storable heat source device and storable heat source system
JP4208792B2 (en) Cogeneration system
JP6104208B2 (en) Solar thermal gas hot water system
JP2012063101A (en) Liquid heating supply device
JP3962753B2 (en) Hot water system
JP2009293868A (en) Hot water supply system
JP2002013811A (en) Hot water storage hot water supply apparatus
JP2009127992A (en) Hot water supply apparatus, and operation method of hot water supply apparatus
JPH05126413A (en) Hot water feeder
JP3836526B2 (en) Hot water system
JP4155162B2 (en) Hot water storage water heater
WO2018181101A1 (en) Heating device and heating method
CN109798662B (en) Heat storage and exchange heat pump water heater and control method thereof
GB2576327A (en) A heater and a method of operating such a heater
JPS59185940A (en) Gas boiler control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent or registration of utility model

Ref document number: 4113512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees