JP4112528B2 - Transparent rubber-modified styrene resin - Google Patents

Transparent rubber-modified styrene resin Download PDF

Info

Publication number
JP4112528B2
JP4112528B2 JP2004197677A JP2004197677A JP4112528B2 JP 4112528 B2 JP4112528 B2 JP 4112528B2 JP 2004197677 A JP2004197677 A JP 2004197677A JP 2004197677 A JP2004197677 A JP 2004197677A JP 4112528 B2 JP4112528 B2 JP 4112528B2
Authority
JP
Japan
Prior art keywords
reactor
weight
rubber
parts
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004197677A
Other languages
Japanese (ja)
Other versions
JP2005068406A (en
Inventor
許瑞熙
Original Assignee
奇美實業股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇美實業股▲分▼有限公司 filed Critical 奇美實業股▲分▼有限公司
Publication of JP2005068406A publication Critical patent/JP2005068406A/en
Application granted granted Critical
Publication of JP4112528B2 publication Critical patent/JP4112528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は透明ゴム変性ポリスチレン系樹脂に関するもので、特に共重合体連続相及びゴム状共重合体からなるゴム粒子分散相より構成される透明ゴム変性ポリスチレン系樹脂に関するもので、その共重合体連続相に多官能性マレイミド系単量体を含む透明ゴム変性ポリスチレン系樹脂に関する。かかる透明ゴム変性ポリスチレン系樹脂は良好な耐衝撃性を保ち、優れた透明性、耐環境応力亀裂性を有する。   The present invention relates to a transparent rubber-modified polystyrene resin, and more particularly to a transparent rubber-modified polystyrene resin composed of a copolymer particle continuous phase and a rubber particle dispersed phase composed of a rubber-like copolymer. The present invention relates to a transparent rubber-modified polystyrene resin containing a polyfunctional maleimide monomer in a phase. Such transparent rubber-modified polystyrene resin maintains good impact resistance and has excellent transparency and environmental stress crack resistance.

ゴム変性ポリスチレン系樹脂は、良好な機械強度及び成型加工性を持つ材料として幅広く食品容器、包装材料、家庭用品、電気製品、OA機器などの分野に応用されてきた。しかし一般のゴム変性ポリスチレン系樹脂は不透明なものであるため、透明用品の成型加工には応用できなかった。   Rubber-modified polystyrene-based resins have been widely applied to fields such as food containers, packaging materials, household products, electrical products, and office automation equipment as materials having good mechanical strength and moldability. However, since general rubber-modified polystyrene resins are opaque, they cannot be applied to molding transparent products.

樹脂の強度及び透明性を向上するために、既知の技術、例えば特許文献1、特許文献2、特許文献3、特許文献4などの特許文献中では、スチレン−ブタジエンブロック共重合体の存在下にスチレンとメタクリル酸メチルとを共重合させる方法が提案されている。しかし、これらの方法では、樹脂の透明性及び機械強度は改善できるものの、樹脂の耐環境応力亀裂性を満足することはできないものとなっていた。
特開平4−180907号公報 特開平6−16744号公報 特開平8−92329号公報 特開平9−71621号公報
In order to improve the strength and transparency of the resin, in known techniques such as Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, etc., in the presence of a styrene-butadiene block copolymer, A method of copolymerizing styrene and methyl methacrylate has been proposed. However, with these methods, the transparency and mechanical strength of the resin can be improved, but the environmental stress crack resistance of the resin cannot be satisfied.
Japanese Patent Laid-Open No. 4-180907 JP-A-6-16744 JP-A-8-92329 JP-A-9-71621

本発明は、耐衝撃性を保ちながら優れた透明性、耐環境応力亀裂性を有する透明ゴム変性ポリスチレン系樹脂を提供することを課題とする。   An object of the present invention is to provide a transparent rubber-modified polystyrene resin having excellent transparency and environmental stress crack resistance while maintaining impact resistance.

本発明者らは鋭意研究の結果、以下に示すゴム状共重合体からなるゴム粒子分散相(A)及び共重合体連続相(B)より構成される透明ゴム変性ポリスチレン系樹脂を見出した。   As a result of intensive studies, the present inventors have found a transparent rubber-modified polystyrene resin composed of a rubber particle dispersed phase (A) and a copolymer continuous phase (B) comprising the following rubber-like copolymer.

即ち、本発明は透明ゴム変性ポリスチレン系樹脂に関するもので、ゴム状共重合体からなるゴム粒子分散相(A) 、並びに(i-1)スチレン系単量体20〜70重量部、(i-2)(メタ)アクリル酸エステル系単量体30〜80重量部、及び(i-3)他の共重合可能な単量体0〜40重量部と、前記(i-1) 、(i-2)及び(i-3)の合計100重量部に対して多官能性マレイミド系単量体0.0005〜1.0重量部を含む共重合体連続相(B)より構成される透明ゴム変性ポリスチレン系樹脂に関する。ここで透明ゴム変性スチレン系樹脂中に残存する多官能性マレイミド系単量体系は80ppm以下で、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差は0.01以下で、且つ透明ゴム変性ポリスチレン系樹脂におけるゴム含有量は1〜40重量%であることを特徴とする。   That is, the present invention relates to a transparent rubber-modified polystyrene resin, a rubber particle dispersed phase (A) comprising a rubbery copolymer, and (i-1) 20 to 70 parts by weight of a styrene monomer, 2) 30 to 80 parts by weight of a (meth) acrylic acid ester monomer, and (i-3) 0 to 40 parts by weight of another copolymerizable monomer, and (i-1), (i- A transparent rubber-modified polystyrene resin composed of a copolymer continuous phase (B) containing 0.0005 to 1.0 part by weight of a polyfunctional maleimide monomer with respect to a total of 100 parts by weight of 2) and (i-3) . Here, the polyfunctional maleimide monomer system remaining in the transparent rubber-modified styrene resin is 80 ppm or less, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) is 0. 01 or less, and the rubber content in the transparent rubber-modified polystyrene resin is 1 to 40% by weight.

上記の透明ゴム変性スチレン系樹脂は良好な耐衝撃性を保つと共に、優れた透明性、耐環境応力亀裂性を有する。   The transparent rubber-modified styrenic resin has excellent impact resistance and excellent transparency and environmental stress crack resistance.

また、本発明の透明ゴム変性ポリスチレン系樹脂は、ゴム状共重合体からなるゴム粒子分散相(A)及び共重合体連続相(B)より構成される。ここで共重合体連続相(B)は(i-1)スチレン系単量体、(i-2)(メタ)アクリル酸エステル系単量体、及び(i-3)他の共重合可能な単量体、並びに多官能性マレイミド系単量体より構成される。   The transparent rubber-modified polystyrene resin of the present invention is composed of a rubber particle dispersed phase (A) and a copolymer continuous phase (B) made of a rubbery copolymer. Here, the copolymer continuous phase (B) is (i-1) styrene monomer, (i-2) (meth) acrylate monomer, and (i-3) other copolymerizable It is comprised from a monomer and a polyfunctional maleimide-type monomer.

本発明の透明ゴム変性ポリスチレン系樹脂は、樹脂中に残留する多官能性マレイミド系単量体の含有量、及び共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が特定の範囲にある時に、本発明の透明ゴム変性ポリスチレン系樹脂は良好な耐衝撃性を保ちながら優れた透明性、耐環境応力亀裂性を有するようになる。   The transparent rubber-modified polystyrene resin of the present invention has a polyfunctional maleimide monomer content remaining in the resin and a refractive index of the copolymer continuous phase (B) and the rubber particle dispersed phase (A). When the difference is in a specific range, the transparent rubber-modified polystyrene resin of the present invention has excellent transparency and environmental stress crack resistance while maintaining good impact resistance.

本発明の透明ゴム変性ポリスチレン系樹脂は、(i-1)スチレン系単量体20〜70重量部、(i-2)(メタ)アクリル酸エステル系単量体30〜80重量部、及び(i-3)他の共重合可能な単量体0〜40重量部と、前記(i-1) 、(i-2)及び(i-3)の合計100重量部に対して多官能性マレイミド系単量体0.0005〜1.0重量部とを共重合させて得られる共重合体連続相(B)とゴム状共重合体からなるゴム粒子分散相(A)より構成される。   The transparent rubber-modified polystyrene resin of the present invention comprises (i-1) 20 to 70 parts by weight of a styrene monomer, (i-2) 30 to 80 parts by weight of a (meth) acrylic acid ester monomer, and ( i-3) Polyfunctional maleimide with respect to 0 to 40 parts by weight of other copolymerizable monomers and a total of 100 parts by weight of the above (i-1), (i-2) and (i-3) It comprises a copolymer continuous phase (B) obtained by copolymerizing 0.0005 to 1.0 parts by weight of a system monomer and a rubber particle dispersed phase (A) comprising a rubbery copolymer.

ここで透明ゴム変性スチレン系樹脂中に残留する多官能性マレイミド系単量体は80ppm以下である。   Here, the polyfunctional maleimide monomer remaining in the transparent rubber-modified styrene resin is 80 ppm or less.

共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差は0.01以下である。   The difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) is 0.01 or less.

且つ透明ゴム変性ポリスチレン系樹脂におけるゴム含有量は1〜40重量%である。   The rubber content in the transparent rubber-modified polystyrene resin is 1 to 40% by weight.

本発明に使用するゴム状共重合体は、有機溶剤の存在下に有機リチウム化合物を重合開始剤としスチレン系単量体、ジエン系単量体、及び適量な溶剤をアニオン重合反応させて得られた共重合体である。該共重合体にはブロック共重合体とランダム共重合体があるが好ましくはブロック共重合体である。上記ゴム状共重合体はムーニ粘度 (ML1+4) が20〜80、25℃における5重量%スチレン溶液粘度が3〜60cpsのものが好ましい。またゴム状共重合体中のジエン系単位は、ジエン系単位中の1,2−ビニル構造の含有量が8重量%以上、ポリスチレンブロックの含有量が該ゴム状共重合体の5〜35重量%であるものが好ましい。上記ゴム状共重合体の構造としては、ホモポリマーブロック構造、部分ランダム−ブロック構造、テーパーブロック構造、線状構造または分岐構造などいずれでも良い。尚、本発明における1,2−ビニル構造とは、1,2−ビニル基の構造の他、置換した1,2−ビニル基(例えば、2−メチル−1,2−ビニル基)の構造を含むものとする。 The rubbery copolymer used in the present invention is obtained by anionic polymerization reaction of a styrene monomer, a diene monomer, and an appropriate amount of solvent using an organic lithium compound as a polymerization initiator in the presence of an organic solvent. Copolymer. The copolymer includes a block copolymer and a random copolymer, and a block copolymer is preferred. The rubbery copolymer preferably has a Mooney viscosity (ML 1 + 4 ) of 20 to 80 and a 5 wt% styrene solution viscosity at 25 ° C. of 3 to 60 cps. The diene unit in the rubbery copolymer has a 1,2-vinyl structure content of 8% by weight or more in the diene unit, and a polystyrene block content of 5 to 35% by weight of the rubbery copolymer. % Is preferred. The rubbery copolymer may have any structure such as a homopolymer block structure, a partial random block structure, a tapered block structure, a linear structure, or a branched structure. The 1,2-vinyl structure in the present invention includes a structure of a substituted 1,2-vinyl group (for example, 2-methyl-1,2-vinyl group) in addition to the structure of a 1,2-vinyl group. Shall be included.

本発明に使用するゴム状共重合体は、上記のブロック共重合体のほかに、100重量部のブロック共重合体に対して20重量部以下のジエン系非ブロックポリマーを併用できる。かかるジエン系非ブロックポリマーとしては、ジエン系ホモポリマーやジエン系共重合体(例えば、ブタジエン−スチレンランダム共重合体)があり、そのジエン部分の構造はローシス結合で、一般に結合中のシス/ビニル基の代表的な重量組成範囲は(30%〜40%)/(5%〜40%)であり、一方5重量%スチレン溶液粘度は5〜400cpsである。   In addition to the above block copolymer, the rubbery copolymer used in the present invention can be used in combination with 20 parts by weight or less of a diene non-block polymer with respect to 100 parts by weight of the block copolymer. Examples of such diene non-block polymers include diene homopolymers and diene copolymers (eg, butadiene-styrene random copolymers), and the structure of the diene moiety is a low-cis bond, which is generally a cis / vinyl bond. The typical weight composition range of the group is (30% to 40%) / (5% to 40%), while the 5% by weight styrene solution viscosity is 5 to 400 cps.

本発明におけるゴム状共重合体の製造方法は公知の技術であり、例えば米国特許第2,975,160号公報、米国特許第3,094,514号公報、米国特許第3,135,716号公報、米国特許第3,244,664号公報、米国特許第3,318,862号公報など、及び特公昭48−875号公報、特公昭48−46691号公報、特公昭49−36957号公報、特開昭55−40734号公報、特開昭57−40513号公報などの特許に詳細に記載されている。   The method for producing a rubbery copolymer in the present invention is a known technique, for example, US Pat. No. 2,975,160, US Pat. No. 3,094,514, US Pat. No. 3,135,716. Gazette, U.S. Pat. No. 3,244,664, U.S. Pat.No. 3,318,862, etc., and Japanese Patent Publication No. 48-875, Japanese Patent Publication No. 48-46691, Japanese Patent Publication No. 49-36957, It is described in detail in patents such as JP-A-55-40734 and JP-A-57-40513.

上記ゴム状共重合体のスチレン系単量体の具体的な例としては、スチレン、α−メチルスチレン、p−メチルスチレン、m−メチルスチレン、o−メチルスチレン、エチルスチレン、2,4−ジメチルスチレン、p−t−ブチルスチレン、α−メチル−p−メチルスチレン、ブロモスチレンなどが挙げられる。これらは一種または二種以上を混合して使用することができる。   Specific examples of the styrene monomer of the rubbery copolymer include styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, ethylstyrene, 2,4-dimethyl. Examples include styrene, pt-butyl styrene, α-methyl-p-methyl styrene, bromostyrene, and the like. These can be used alone or in combination of two or more.

上記ゴム状共重合体のジエン系単量体の具体例としては、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエンなどが挙げられる。これらは単独または二種以上を混合して使用することができる。中でも1,3−ブタジエンまたは2−メチル−1,3−ブタジエンが好ましい。   Specific examples of the diene monomer of the rubbery copolymer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3- Examples thereof include pentadiene and 1,3-hexadiene. These can be used individually or in mixture of 2 or more types. Of these, 1,3-butadiene or 2-methyl-1,3-butadiene is preferred.

本発明に使用するゴム状共重合体の製造において触媒となる有機リチウム化合物は、その分子中に一個以上のリチウム原子を有する化合物を指し、その具体例としてはエチルリチウム、n−ペンチルリチウム、イソプロピルリチウム、n−ブチルリチウム、s−ブチルリチウム、t−ブチルリチウム、ヘキシルリチウム、シクロヘキシルリチウム、フェニルリチウム、ベンジルリチウム、t−ブチルリチウム、トリメチレン−ジリチウム、テトラメチレン−ジリチウム、ブタジエン−ジリチウム及びペンタジエン−ジリチウムなどが挙げられ、それらは単独使用または二種以上を混合して使用することができる。   The organolithium compound used as a catalyst in the production of the rubbery copolymer used in the present invention refers to a compound having one or more lithium atoms in the molecule, and specific examples thereof include ethyllithium, n-pentyllithium, isopropyl. Lithium, n-butyllithium, s-butyllithium, t-butyllithium, hexyllithium, cyclohexyllithium, phenyllithium, benzyllithium, t-butyllithium, trimethylene-dilithium, tetramethylene-dilithium, butadiene-dilithium and pentadiene-dilithium These may be used alone or in combination of two or more.

本発明におけるゴム状共重合体を重合する際の重合速度、1,2−ビニル基の含有量、及びジエン系単量体とスチレン系単量体との反応性比やランダム化状態などは、極性化合物またはランダム化剤を用いて調整することができる。上記の極性化合物またはランダム化剤は、エーテル類、アミン類、チオエーテル類、アルキルフェニルスルホン酸のカリウム塩やナトリウム塩、カリウムやナトリウムのアルコキサイドなどから選んで使用できる。   The polymerization rate when polymerizing the rubbery copolymer in the present invention, the content of 1,2-vinyl group, the reactivity ratio between the diene monomer and the styrene monomer, the randomized state, etc. It can be adjusted using polar compounds or randomizing agents. The polar compound or randomizing agent can be selected from ethers, amines, thioethers, potassium or sodium salts of alkylphenylsulfonic acid, alkoxides of potassium or sodium, and the like.

本発明の透明ゴム変性ポリスチレン系樹脂におけるゴム含有量は1〜40重量%であるが、その含有量が1重量%未満の場合は樹脂の耐環境応力亀裂性が悪くなり、一方40重量%を越えると樹脂の透明性が悪くなる。   The rubber content in the transparent rubber-modified polystyrene resin of the present invention is 1 to 40% by weight. However, if the content is less than 1% by weight, the environmental stress crack resistance of the resin is deteriorated, while 40% by weight is reduced. If it exceeds, the transparency of the resin will deteriorate.

一方、本発明に使用する共重合体連続相(B)は、(i-1)スチレン系単量体が20〜70重量部で、好ましくは25〜60重量部、更に好ましくは30〜50重量部、(i-2)(メタ)アクリル酸エステル系単量体が30〜80重量部で、好ましくは40〜75重量部、更に好ましくは50〜70重量部、及び(i-3)他の共重合可能な単量体0〜40重量部で、好ましくは1〜30重量部、更に好ましくは2〜20重量部(これらの(i-1)、(i-2)及び(i-3)の合計は100重量部)と、前記(i-1) 、(i-2)及(i-3)の合計100重量部に対して多官能性マレイミド系単量体0.0005〜1.0重量部とを共重合させて得られる。ここで、(i-1)スチレン系単量体の具体例は前述のゴム状共重合体に使用されるスチレン系単量体と同様なのでここでは省略する。   On the other hand, in the copolymer continuous phase (B) used in the present invention, (i-1) the styrene monomer is 20 to 70 parts by weight, preferably 25 to 60 parts by weight, more preferably 30 to 50 parts by weight. Parts, (i-2) (meth) acrylic acid ester monomer is 30 to 80 parts by weight, preferably 40 to 75 parts by weight, more preferably 50 to 70 parts by weight, and (i-3) other 0 to 40 parts by weight of copolymerizable monomer, preferably 1 to 30 parts by weight, more preferably 2 to 20 parts by weight (these (i-1), (i-2) and (i-3) And a total of 100 parts by weight of (i-1), (i-2) and (i-3), and 0.0005 to 1.0 part by weight of a polyfunctional maleimide monomer. Obtained by copolymerization. Here, specific examples of (i-1) styrenic monomers are the same as the styrenic monomers used in the above-mentioned rubbery copolymer, and are omitted here.

上記(i-2)(メタ)アクリル酸エステル系単量体としてはメタクリル酸エステル類およびアクリル酸エステルがある。メタクリル酸エステルとしてはメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸フェニル、メタクリル酸シクロヘキシル、メタクリル酸2−ヒドロキシルエチル、メタクリル酸グリシジルなどが挙げられ、一方アクリル酸エステルとしてはアクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸2−メチルペンチル、アクリル酸2−エチルペンチル、アクリル酸オクチルなどが挙げられる。これらの中でメタクリル酸メチル及びアクリル酸n−ブチルが好ましい。   Examples of the (i-2) (meth) acrylic acid ester monomer include methacrylic acid esters and acrylic acid esters. Examples of methacrylic acid esters include methyl methacrylate, ethyl methacrylate, butyl methacrylate, phenyl methacrylate, cyclohexyl methacrylate, 2-hydroxyl methacrylate, glycidyl methacrylate, and the like, while acrylates include methyl acrylate, Examples include ethyl acrylate, n-butyl acrylate, 2-methylpentyl acrylate, 2-ethylpentyl acrylate, octyl acrylate, and the like. Of these, methyl methacrylate and n-butyl acrylate are preferred.

本発明に使用する共重合体連続相(B)における、上記(i-3)の他の共重合可能な単量体は0〜40重量部であり、その種類に関しては特に制限は無いが、必要に応じて各共重合単量体の比率を調整することによって共重合体連続相(B)の屈折率を調整して、樹脂が透明となるようにする。かかる(i-3)他の共重合可能な単量体としては、イタコン酸、マレイン酸、フマル酸、ブテン酸、桂皮酸、アクリル酸、メタクリル酸などの不飽和脂肪酸;アクリロニトリル、α−メチルアクリロニトリルなどのシアノ化ビニル系単量体;単官能性マレイミド系単量体、無水マレイン酸、無水イタコン酸、無水シトラコン酸などの不飽和無水カルボン酸から選ぶことができるが、中でもアクリロニトリルが剛性(引っ張り強度など)が大きい点で特に好ましい。   In the copolymer continuous phase (B) used in the present invention, the other copolymerizable monomer (i-3) is 0 to 40 parts by weight, and the type thereof is not particularly limited. If necessary, the refractive index of the copolymer continuous phase (B) is adjusted by adjusting the ratio of each comonomer to make the resin transparent. Such (i-3) other copolymerizable monomers include unsaturated fatty acids such as itaconic acid, maleic acid, fumaric acid, butenoic acid, cinnamic acid, acrylic acid, methacrylic acid; acrylonitrile, α-methylacrylonitrile Cyanide vinyl monomers such as monofunctional maleimide monomers, unsaturated carboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, etc., but acrylonitrile is particularly rigid (tensile) This is particularly preferable in terms of high strength.

上記の(i-3)の他の共重合可能な単量体として使用され得る単官能性マレイミド系単量体は一個のマレイミド官能基を含む単量体で、具体例としては、マレイミド、N-メチルマレイミド、N-イソプロピルマレイミド、N-ブチルマレイミド、N-ヘキシルマレイミド、N-オクチルマレイミド、N-ドデシルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-2,3-ジメチルフェニルマレイミド、N-2,4-ジメチルフェニルマレイミド、N-2,3-ジエチルフェニルマレイミド、N-2,4-ジエチルフェニルマレイミド、N-2,3-ジブチルフェニルマレイミド、N-2,4-ジブチルフェニルマレイミド、N-2,6-ジメチルフェニルマレイミド、N-2,3-ジクロロフェニルマレイミド、N-2,4-ジクロロフェニルマレイミド、N-2,3-ジブロモフェニルマレイミド、N-2,4-ジブロモフェニルマレイミド等が挙げられるが、N-フェニルマレイミドが特に好ましい。   The monofunctional maleimide monomer that can be used as the other copolymerizable monomer (i-3) is a monomer containing one maleimide functional group. Specific examples include maleimide, N -Methylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-hexylmaleimide, N-octylmaleimide, N-dodecylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-2,3-dimethylphenylmaleimide, N -2,4-dimethylphenylmaleimide, N-2,3-diethylphenylmaleimide, N-2,4-diethylphenylmaleimide, N-2,3-dibutylphenylmaleimide, N-2,4-dibutylphenylmaleimide, N -2,6-dimethylphenylmaleimide, N-2,3-dichlorophenylmaleimide, N-2,4-dichlorophenylmaleimide, N-2,3-dibromophenylmaleimide, N-2,4-dibromophenylmale Although bromide and the like, N- phenylmaleimide is particularly preferred.

本発明に使用される共重合体連続相(B)を構成する多官能性マレイミド系単量体は、少なくとも2個のマレイミド官能基を有する化合物を指し、例えば2個、3個または4個のマレイミド官能基を有する化合物である。中でもビスマレイミド系単量体(2個のマレイミド基を持つ単量体)が好ましく、その構造式の例を下記の化学式 (1) 及び化学式 (2)に示す。   The polyfunctional maleimide monomer constituting the copolymer continuous phase (B) used in the present invention refers to a compound having at least two maleimide functional groups, for example, 2, 3 or 4 It is a compound having a maleimide functional group. Among these, bismaleimide monomers (monomers having two maleimide groups) are preferable, and examples of the structural formula are shown in the following chemical formulas (1) and (2).

Figure 0004112528
Figure 0004112528

Figure 0004112528
Figure 0004112528

上記式(1)及び(2)中、Xは炭素数1〜10のアルキレン基、アリーレン基、オキシカルボニル基、カルボニル基、−SO2−、−SO−、−O−、−O−R−O−(Rは炭素数2〜10のアルキレン基又はアリーレン基である)である。また化学式(2)中、Y及びY’は相互に同一でも異なっていても良い炭素数1〜4のアルキル基又はアリール基である。上記化学式 (1) 及び化学式 (2)で示されるビスマレイミド系単量体の具体例としてはN,N’−4,4’−(3,3’−ジメチルジフェニルメタン)ビスマレイミド、N,N’−4,4’−(3,3’−ジエチルジフェニルメタン)ビスマレイミド、N,N’−4,4’−ジフェニルメタンビスマレイミド、N,N’−4,4’−(2,2−ジフェニルプロパン)ビスマレイミド、N,N’−4,4’−ジフェニルエーテルビスマレイミド、N,N’−3,3’−ジフェニルスルホンビスマレイミド、N,N’−4,4’−ジフェニルスルホンビスマレイミド、N,N’−4,4’−ジフェニルスルホキシドビスマレイミド、N,N’−4,4’−ベンゾフェノンビスマレイミドなどが挙げられる。 In the above formulas (1) and (2), X represents an alkylene group having 1 to 10 carbon atoms, an arylene group, an oxycarbonyl group, a carbonyl group, —SO 2 —, —SO—, —O—, —O—R—. O- (R is an alkylene group or arylene group having 2 to 10 carbon atoms). Moreover, in Chemical formula (2), Y and Y 'are the C1-C4 alkyl groups or aryl groups which may mutually be same or different. Specific examples of the bismaleimide monomer represented by the chemical formulas (1) and (2) include N, N′-4,4 ′-(3,3′-dimethyldiphenylmethane) bismaleimide, N, N ′. -4,4 '-(3,3'-diethyldiphenylmethane) bismaleimide, N, N'-4,4'-diphenylmethane bismaleimide, N, N'-4,4'-(2,2-diphenylpropane) Bismaleimide, N, N′-4,4′-diphenyl ether bismaleimide, N, N′-3,3′-diphenylsulfone bismaleimide, N, N′-4,4′-diphenylsulfone bismaleimide, N, N Examples include '-4,4'-diphenylsulfoxide bismaleimide, N, N'-4,4'-benzophenone bismaleimide, and the like.

また、ビスマレイミド系単量体の中でもN,N’−4,4’−ジフェニルメタンビスマレイミド、ビス(4−マレイミドフェニルオキシフェニル)2,2−プロパン、N,N’−1,3−フェニレンビスマレイミドが好ましい。   Among the bismaleimide monomers, N, N'-4,4'-diphenylmethane bismaleimide, bis (4-maleimidophenyloxyphenyl) 2,2-propane, N, N'-1,3-phenylenebis Maleimide is preferred.

本発明において、共重合体連続相(B)に使用される多官能性マレイミド系単量体の使用量は、(i-1)スチレン系単量体、(i-2)(メタ)アクリル酸エステル系単量体、及び(i-3)他の共重合可能な単量体の合計100重量部に対して、0.0005〜1.0重量部、好ましくは0.001〜0.3重量部、更に好ましくは0.003重量部以上、0.1重量部未満である。その多官能性マレイミド系単量体の使用量が1.0重量部を超えると、重合時に架橋を生じ重合体の粘度が高くなり、その結果反応の進行が困難となる。一方、多官能性マレイミド系単量体の使用量が0.0005重量部未満の時は樹脂の耐環境応力亀裂性が悪くなる。また透明ゴム変性スチレン系樹脂中に残留する多官能性マレイミド系単量体の量は80ppm以下が好ましく、より好ましくは40ppm以下、更に好ましくは20ppm以下、特に好ましくは0ppm(即ち、透明ゴム変性スチレン系樹脂中に残留する多官能性マレイミド系単量体を検出できないとき)である。透明ゴム変性スチレン系樹脂に残存する多官能性マレイミド系単量体の量が80ppmを超えると樹脂の透明性が悪くなり、且つ耐環境応力亀裂性が十分に改善できない。   In the present invention, the amount of the polyfunctional maleimide monomer used for the copolymer continuous phase (B) is (i-1) styrene monomer, (i-2) (meth) acrylic acid. 0.0005 to 1.0 parts by weight, preferably 0.001 to 0.3 parts by weight, more preferably 0.003 parts by weight, based on 100 parts by weight of the total amount of ester monomers and (i-3) other copolymerizable monomers As mentioned above, it is less than 0.1 weight part. When the amount of the polyfunctional maleimide monomer used exceeds 1.0 part by weight, crosslinking occurs during the polymerization and the viscosity of the polymer increases, and as a result, the progress of the reaction becomes difficult. On the other hand, when the amount of the polyfunctional maleimide monomer used is less than 0.0005 parts by weight, the environmental stress crack resistance of the resin is deteriorated. The amount of the polyfunctional maleimide monomer remaining in the transparent rubber-modified styrene resin is preferably 80 ppm or less, more preferably 40 ppm or less, still more preferably 20 ppm or less, and particularly preferably 0 ppm (that is, transparent rubber-modified styrene). When the polyfunctional maleimide monomer remaining in the resin is not detected). If the amount of the polyfunctional maleimide monomer remaining in the transparent rubber-modified styrene resin exceeds 80 ppm, the transparency of the resin deteriorates and the environmental stress crack resistance cannot be sufficiently improved.

本発明の透明ゴム変性ポリスチレン系樹脂中に残存する多官能性マレイミド系単量体の量は下記の一種または数種の方法により調整できる。
1)重合の反応温度、滞留時間、単量体の最終転化率(好ましい単量体の転化率は70%以上)により調整する。
2)重合反応器の形式及び数量の組合せで調整する。好ましくは最後の反応器はプラグフロー(以下、PFRと示す)式を使うことができる。
3)重合を行う時に多官能性マレイミド系単量体を添加する時期として、例えばそれぞれ第一、第二反応器に多官能性マレイミド系単量体を添加する。好ましくは、最後の反応器よりも前の反応器に添加する。
4)脱揮発の温度及び脱揮発の滞留時間により調整する。
The amount of the polyfunctional maleimide monomer remaining in the transparent rubber-modified polystyrene resin of the present invention can be adjusted by one or several methods described below.
1) It adjusts by the reaction temperature of polymerization, residence time, and the final conversion rate of a monomer (The conversion rate of a preferable monomer is 70% or more).
2) Adjust by combination of polymerization reactor type and quantity. Preferably, the last reactor can use a plug flow (hereinafter referred to as PFR) equation.
3) As a time for adding the polyfunctional maleimide monomer at the time of polymerization, for example, the polyfunctional maleimide monomer is added to the first and second reactors, respectively. Preferably, it is added to the reactor before the last reactor.
4) Adjust the temperature according to the devolatization temperature and the devolatization residence time.

本発明の透明ゴム変性ポリスチレン系樹脂を重合製造する時に、必要に応じて単官能性及び/又は多官能性重合開始剤、単官能性及び/又は多官能性連鎖移動剤を添加することができる。   When the transparent rubber-modified polystyrene resin of the present invention is produced by polymerization, a monofunctional and / or polyfunctional polymerization initiator, monofunctional and / or polyfunctional chain transfer agent can be added as necessary. .

本発明に使用できる単官能性重合開始剤の具体例としては、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t−ブチルパーオキサイド、t−ブチルヒドロパーオキサイド、クミルヒドロパーオキサイド、t−ブチルパーオキシベンゾエート、ビス−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシイソプロピルカーボネート(以下、BPICと略称する)、シクロヘキサノンパーオキサイド、2,2'−アゾ−ビスイソブチロニトリル、1,1'−アゾビス−(シクロヘキサン−1−カルボニトリル)、2,2'−アゾ−ビス-2-メチルブチロニトリル、ジメチル2,2'−アゾビス(2-メチルプロピオネート)などが挙げられる。これらの中でベンゾイルパーオキサイド、ジクミルパーオキサイドが好ましい。   Specific examples of the monofunctional polymerization initiator that can be used in the present invention include benzoyl peroxide, dicumyl peroxide, t-butyl peroxide, t-butyl hydroperoxide, cumyl hydroperoxide, and t-butyl peroxide. Benzoate, bis-2-ethylhexyl peroxydicarbonate, t-butylperoxyisopropyl carbonate (hereinafter abbreviated as BPIC), cyclohexanone peroxide, 2,2'-azo-bisisobutyronitrile, 1,1'- Examples include azobis- (cyclohexane-1-carbonitrile), 2,2′-azo-bis-2-methylbutyronitrile, dimethyl 2,2′-azobis (2-methylpropionate), and the like. Of these, benzoyl peroxide and dicumyl peroxide are preferred.

本発明に使用できる多官能性重合開始剤の具体例としては、1,1−ビス−(t−ブチルパーオキシ)シクロヘキサン(以下、TX-22と略称する)、1,1−ビス−(t−ブチルパーオキシ)−3,3,5ートリメチルシクロヘキサン(以下、TX-29Aと略称する)、2,5−ジメチル−2,5−ビス−(2-エチルヘキサノイルパーオキシ)ヘキサン、4−(t−ブチルパーオキシカルボニル)−3−ヘキシル−6−[7−(t−ブチルパーオキシカルボニル)へプチル]シクロヘキサン、ジ−t−ブチル−ジパーオキシアゼレート、2,5−ジメチル−2,5−ビス−(ベンゾイルパーオキシ)ヘキサン、ジ−t−ブチルパーオキシヘキサハイドロ−テレフタレート(以下、BPHTPと略称する)、2,2−ビス−(4,4−ジ−t−ブチルパーオキシ)シクロヘキシルプロパン(以下、PX-12と略称する)、多官能モノパーオキシカーボネート(例えば米国ATOFINA社の商品名Luperox JWE)等が挙げられる。これらの中でTX-29A、BPHTPが好ましい。   Specific examples of the polyfunctional polymerization initiator that can be used in the present invention include 1,1-bis- (t-butylperoxy) cyclohexane (hereinafter abbreviated as TX-22), 1,1-bis- (t -Butylperoxy) -3,3,5-trimethylcyclohexane (hereinafter abbreviated as TX-29A), 2,5-dimethyl-2,5-bis- (2-ethylhexanoylperoxy) hexane, 4- (T-butylperoxycarbonyl) -3-hexyl-6- [7- (t-butylperoxycarbonyl) heptyl] cyclohexane, di-t-butyl-diperoxyazelate, 2,5-dimethyl-2 , 5-bis- (benzoylperoxy) hexane, di-t-butylperoxyhexahydro-terephthalate (hereinafter abbreviated as BPHTP), 2,2-bis- (4,4-di-t-butylperoxy) ) Cyclohexylpropane (hereinafter abbreviated as PX-12), many officials Monoperoxycarbonate (e.g. US ATOFINA trade name Luperox JWE of), and the like. Of these, TX-29A and BPHTP are preferred.

反応に使用される上記の単官能性重合開始剤及び多官能性重合開始剤の使用量は、重合に使用される単量体100重量部に対して0〜2重量部であって、好ましくは0.001〜0.7重量部である。   The amount of the above-mentioned monofunctional polymerization initiator and polyfunctional polymerization initiator used for the reaction is 0 to 2 parts by weight with respect to 100 parts by weight of the monomer used for polymerization, preferably 0.001 to 0.7 parts by weight.

本発明に使用し得る連鎖移動剤には単官能性連鎖移動剤と多官能性連鎖移動剤があり、その単官能性連鎖移動剤の具体例としては下記のものが挙げられる。
1)メルカプタン類:メチルメルカプタン、n−ブチルメルカプタン、シクロヘキシルメルカプタン、n−ドデシルメルカプタン、ステアリルメルカプタン、t−ドデシルメルカプタン(以下、TDMと略称する)、n−プロピルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、t−ノニルメルカプタン、5−t−ブチル−2−メチル−チオフェノールなど。
2)アルキルアミン類:モノエチルアミン、ジエチルアミン、トリエチルアミン、モノイソプロピルアミン、ジイソプロピルアミン、モノブチルアミン、ジ−n−ブチルアミン、トリ−n−ブチルアミンなど。
3)その他:例えばペンタフェニルエタン、α−メチルスチレン二量体、テルピノレン、等が挙げられる。上記の中でメルカプタン類のn−ドデシルメルカプタン、t−ドデシルメルカプタンが好ましい。
The chain transfer agent that can be used in the present invention includes a monofunctional chain transfer agent and a polyfunctional chain transfer agent. Specific examples of the monofunctional chain transfer agent include the following.
1) Mercaptans: methyl mercaptan, n-butyl mercaptan, cyclohexyl mercaptan, n-dodecyl mercaptan, stearyl mercaptan, t-dodecyl mercaptan (hereinafter abbreviated as TDM), n-propyl mercaptan, n-octyl mercaptan, t-octyl Mercaptans, t-nonyl mercaptans, 5-t-butyl-2-methyl-thiophenol and the like.
2) Alkylamines: monoethylamine, diethylamine, triethylamine, monoisopropylamine, diisopropylamine, monobutylamine, di-n-butylamine, tri-n-butylamine and the like.
3) Others: Examples include pentaphenylethane, α-methylstyrene dimer, terpinolene, and the like. Among these, mercaptans such as n-dodecyl mercaptan and t-dodecyl mercaptan are preferable.

一方、多官能性連鎖移動剤の具体例としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2−メルカプトアセテート)、トリメチロールプロパントリス(2−メルカプトアセテート)、トリメチロールプロパントリス(3−メルカプトプロピオネート)(以下、TMPTと略称する)、トリメチロールプロパントリス(6−メルカプトヘキサネート)、1,8-ジメルカプトオクタンなどが挙げられる。これらの中でトリメチロールプロパントリス(3−メルカプトプロピオネート)が好ましい。   On the other hand, specific examples of the multifunctional chain transfer agent include pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (2-mercaptoacetate), trimethylolpropane tris (2-mercaptoacetate), trimethylolpropane. Tris (3-mercaptopropionate) (hereinafter abbreviated as TMPT), trimethylolpropane tris (6-mercaptohexanate), 1,8-dimercaptooctane, and the like can be given. Of these, trimethylolpropane tris (3-mercaptopropionate) is preferred.

上記の連鎖移動剤は重合に使用される単量体100重量部に対して0〜2重量部であって、好ましくは0.001〜1重量部である。   Said chain transfer agent is 0-2 weight part with respect to 100 weight part of monomers used for superposition | polymerization, Preferably it is 0.001-1 weight part.

本発明の透明ゴム変性ポリスチレン系樹脂において、共重合体連続相(B)の重量平均分子量は一般に50,000〜300,000であって、好ましくは60,000〜200,000、更に好ましくは70,000〜150,000である。   In the transparent rubber-modified polystyrene resin of the present invention, the weight average molecular weight of the copolymer continuous phase (B) is generally 50,000 to 300,000, preferably 60,000 to 200,000, more preferably 70. , 150,000 to 150,000.

本発明の透明ゴム変性ポリスチレン系樹脂において、ゴム粒子分散相(A)の重量平均粒子径は0.1μm〜1.5μmが好ましく、より好ましくは0.15μm〜1.3μm、更に好ましくは0.2μm〜1.0μmである。ゴム粒子の重量平均粒子径が0.1μm〜1.5μmの時に樹脂の透明性及び衝撃強度の物性バランスが良好である。   In the transparent rubber-modified polystyrene resin of the present invention, the rubber particle dispersed phase (A) preferably has a weight average particle diameter of 0.1 μm to 1.5 μm, more preferably 0.15 μm to 1.3 μm, and still more preferably 0.8. 2 μm to 1.0 μm. When the weight average particle diameter of the rubber particles is 0.1 μm to 1.5 μm, the physical property balance between transparency and impact strength of the resin is good.

上記ゴム粒子の重量平均粒子径の調整は、ゴム種類の選択(例えば、粘度、分子量、シス/トランス/ビニル構造など)、重合反応器の種類及び攪拌速度、反応温度、重合単量体の転化率、溶剤の種類及び使用量などの一種又は数種の方法によって行うことができる。   The weight average particle diameter of the rubber particles is adjusted by selecting the type of rubber (for example, viscosity, molecular weight, cis / trans / vinyl structure, etc.), type and stirring speed of the polymerization reactor, reaction temperature, conversion of the polymerization monomer. It can be carried out by one or several methods such as rate, type of solvent and amount used.

上記ゴム粒子の重量平均粒子径は透過型電子顕微鏡を用いて超薄切片法で得られた写真から解析して求めることができる。得られた写真中に存在する粒子は300個以上が必要であり、写真の解析に際しては、下式でその重量平均粒子径を算出する。   The weight average particle diameter of the rubber particles can be obtained by analyzing from a photograph obtained by an ultrathin section method using a transmission electron microscope. The number of particles present in the obtained photograph is required to be 300 or more, and the weight average particle diameter is calculated by the following formula when analyzing the photograph.

Figure 0004112528
Figure 0004112528

上記式中、niは粒子径Diのゴム粒子の個数を表す。   In the above formula, ni represents the number of rubber particles having a particle diameter Di.

本発明の透明ゴム変性ポリスチレン系樹脂の透明性は、樹脂の共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差で決定される。かかる共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差は0.01以下が好ましく、より好ましくは0.007以下、更に好ましくは0.005以下である。その差が0.01以下であると樹脂の透明性が良好である。   The transparency of the transparent rubber-modified polystyrene resin of the present invention is determined by the difference in refractive index between the resin continuous copolymer phase (B) and the rubber particle dispersed phase (A). The difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) is preferably 0.01 or less, more preferably 0.007 or less, and still more preferably 0.005 or less. When the difference is 0.01 or less, the transparency of the resin is good.

上記共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差は、共重合体連続相(B)の(i-1)スチレン系単量体、(i-2)(メタ)アクリル酸エステル系単量体及び(i-3)その他共重合可能な単量体の組合せ、及びゴム粒子分散相(A)中のゴム状重合体の単量体組成(例えばスチレン系及びブタジエン系)の組合せにより調整することができる。   The difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) is as follows: (i-1) styrene monomer of the copolymer continuous phase (B), (i-2) Combination of (meth) acrylic acid ester monomer and (i-3) other copolymerizable monomer, and monomer composition of rubbery polymer in rubber particle dispersed phase (A) (for example, styrene) And a butadiene type).

本発明の透明ゴム変性ポリスチレン系樹脂の製造方法としては、ゴム状共重合体の存在下において、(i-1)スチレン系単量体、(i-2)(メタ)アクリル酸エステル系単量体、多官能性マレイミド系単量体、及び必要に応じて(i-3)その他の共重合可能な単量体を添加して、バッチ式又は連続式塊状又は溶液グラフト重合反応を行うことができる。連続式溶液グラフト重合反応を例に挙げれば、先ずはゴム状共重合体1〜40重量部、並びに(i-1)スチレン系単量体20〜70重量部(好ましくは25〜60重量部、更に好ましくは30〜50重量部)、(i-2)(メタ)アクリル酸エステル系単量体30〜80重量部(好ましくは40〜75重量部、更に好ましくは50〜70重量部)、及び(i-3)その他共重合可能な単量体0〜40重量部(好ましくは1〜30重量部、更に好ましくは2〜20重量部)(上記の(i-1)〜(i-3)の単量体合計は100重量部とする)、及び多官能性マレイミド系単量体0.0005〜1.0重量部(好ましくは0.001〜0.3重量部、更に好ましくは0.003〜0.15重量部)及び必要に応じて適当な溶剤を用いて原料混合溶液を形成させる。上記の原料混合溶液は公知の高剪断力、高攪拌速度を有する溶解槽で溶解する。かかる溶解槽としては、テープ状螺旋攪拌ブレード、スパイラル攪拌ブレードまたはその他の高剪断力を生じさせる攪拌ブレードを備え、十分に時間をかけて上記のゴム状共重合体を完全に溶かしてゴム溶液とした後、ポンプによって反応器へ送出するものでなければならない。前記の原料溶液または単量体溶液を別々に連続的に第一の反応器及び/又は第二の反応器、及び/又はさらに次の反応器へフィードする。同時に必要に応じて第一及び/又は第二及び/又はさらに次の反応器へ追加分のスチレン単量体、(メタ)アクリル酸エステル単量体、その他共重合可能な単量体、多官能性マレイミド系単量体、連鎖移動剤、重合開始剤などを添加してグラフト重合反応を行わせる。   The method for producing the transparent rubber-modified polystyrene resin of the present invention includes (i-1) a styrene monomer, (i-2) a (meth) acrylic acid ester monomer in the presence of a rubbery copolymer. Body, polyfunctional maleimide monomer, and (i-3) other copolymerizable monomer as required, and batch type or continuous type bulk or solution graft polymerization reaction may be performed. it can. Taking a continuous solution graft polymerization reaction as an example, first, 1-40 parts by weight of a rubbery copolymer, and (i-1) 20-70 parts by weight of a styrene monomer (preferably 25-60 parts by weight, More preferably 30-50 parts by weight), (i-2) (meth) acrylic acid ester monomer 30-80 parts by weight (preferably 40-75 parts by weight, more preferably 50-70 parts by weight), and (i-3) Other copolymerizable monomers 0 to 40 parts by weight (preferably 1 to 30 parts by weight, more preferably 2 to 20 parts by weight) (the above (i-1) to (i-3) The total amount of the monomers is 100 parts by weight), and the polyfunctional maleimide monomer is 0.0005 to 1.0 parts by weight (preferably 0.001 to 0.3 parts by weight, more preferably 0.003). ~ 0.15 parts by weight) and, if necessary, a suitable solvent is used to form a raw material mixed solution. Said raw material mixed solution melt | dissolves in the dissolution tank which has a well-known high shear force and a high stirring speed. As such a dissolution tank, a tape-shaped spiral stirring blade, a spiral stirring blade or other stirring blade that generates a high shearing force is provided, and the rubber-like copolymer is completely dissolved over a sufficient amount of time to obtain a rubber solution. And then pumped to the reactor. The raw material solution or the monomer solution is separately and continuously fed to the first reactor and / or the second reactor, and / or further to the next reactor. At the same time, if necessary, additional styrene monomer, (meth) acrylate monomer, other copolymerizable monomer, multifunctional to the first and / or second and / or further reactor A graft polymerization reaction is carried out by adding a functional maleimide monomer, a chain transfer agent, a polymerization initiator and the like.

上記の反応器としては連続攪拌式反応器(以下、CSTRと示す)、プラグフロー式反応器(PFR)又は静止型混合式反応器等が挙げられ、同種又は異種の反応器を組合わせて使用することができる。反応温度を70〜230℃間に制御し最終単量体の転化率を30〜95%にすることができるが、50〜90%がより好ましく、65〜90%が最も好ましい。   Examples of the reactor include a continuous stirring reactor (hereinafter referred to as CSTR), a plug flow reactor (PFR), a static mixed reactor, etc., and the same or different reactors are used in combination. can do. Although the reaction temperature can be controlled between 70-230 ° C. and the conversion rate of the final monomer can be 30-95%, 50-90% is more preferable, and 65-90% is most preferable.

本発明の透明ゴム変性ポリスチレン系樹脂の重合方式は、好ましくは第一反応器が連続攪拌式の反応器 (CSTR) を用いる。そして第二及び/又は後続の反応器に引き継がせるが、後続の反応器は連続攪拌式反応器、プラグフロー式反応器又は静止型混合式反応器などであっても良い。   In the polymerization method of the transparent rubber-modified polystyrene resin of the present invention, a reactor (CSTR) in which the first reactor is preferably a continuous stirring type is preferably used. The second and / or subsequent reactor can be taken over, and the subsequent reactor may be a continuous stirring reactor, a plug flow reactor, a static mixing reactor, or the like.

一般的に第一反応器における単量体転化率は約1〜40重量%となることが好ましく、より好ましくは2〜35重量%、更に好ましくは3〜30重量%である。上記の第一反応器の単量体転化率は、使用するゴム状共重合体の含有量、種類、粘度などにより調整することができる。   In general, the monomer conversion in the first reactor is preferably about 1 to 40% by weight, more preferably 2 to 35% by weight, and still more preferably 3 to 30% by weight. The monomer conversion rate in the first reactor can be adjusted by the content, type, viscosity, etc. of the rubbery copolymer used.

本発明の透明ゴム変性ポリスチレン系樹脂を重合する時に使用される溶剤としては、芳香族系炭化水素化合物ではトルエン、エチルベンゼン、ジメチルベンゼン、ケトン類ではブタノン、エステル類では酢酸エチルが好ましい。その他に本発明ではn−ヘキサン、シクロヘキサン、n−ヘプタン等の脂肪族炭化水素化合物を溶剤の一部として使用することもできる。   The solvent used when polymerizing the transparent rubber-modified polystyrene resin of the present invention is preferably toluene, ethylbenzene, dimethylbenzene, butanone for ketones, and ethyl acetate for esters, for aromatic hydrocarbon compounds. In addition, in the present invention, aliphatic hydrocarbon compounds such as n-hexane, cyclohexane, and n-heptane can be used as a part of the solvent.

上記の重合反応が終了した後に反応器から反応物を出して、脱揮発装置で未反応の単量体、溶剤などの低揮発成分を取除き重合体を回収することで、本発明の透明ゴム変性ポリスチレン系樹脂が得られる。   After the above polymerization reaction is completed, the reaction product is removed from the reactor, and the polymer is recovered by removing low-volatile components such as unreacted monomers and solvents with a devolatilization apparatus, whereby the transparent rubber of the present invention is recovered. A modified polystyrene resin is obtained.

上記脱揮発装置としては、脱揮発槽および/または一軸および/または二軸の排出口付押出機がある。必要に応じて上記押出機に脱揮補助剤、例えば水、シクロヘキサン、二酸化炭素などを加えることもあり、その補助剤の使用量は一般に10重量%以下である(押出機へのフィード量100重量%に対して)。押出機は必要に応じて混練ゾーン、推進ゾーンなどを設け、スクリューの回転速度を120〜350rpmとする。本発明においては排出口付二軸押出機が好ましい。また真空手段付脱揮タンクも使用できる。上記の脱揮タンクは一つまたは数個を直列に配置して使うことができ、温度は180〜350℃に制御するが、良好な実用透明性および色相を得るには好ましくは200〜320℃、最も好ましくは220〜300℃に制御する。タンクの真空度は300Torr以下に制御するものとし、好ましくは200Torr以下、更に好ましくは100Torr以下に制御する。その他の脱揮発手段には例えば薄膜蒸発器(Thin film evaporator)を採用することができる。   Examples of the devolatilization device include a devolatilization tank and / or a single-screw and / or twin-screw extruder. If necessary, a devolatilization aid such as water, cyclohexane, carbon dioxide, etc. may be added to the extruder, and the amount of the aid used is generally 10% by weight or less (feed amount to the extruder is 100 weights). %). The extruder is provided with a kneading zone, a propulsion zone, etc. as necessary, and the rotational speed of the screw is 120 to 350 rpm. In the present invention, a twin screw extruder with a discharge port is preferable. A devolatilizing tank with vacuum means can also be used. One or several of the above devolatilization tanks can be used in series, and the temperature is controlled at 180 to 350 ° C., but preferably 200 to 320 ° C. in order to obtain good practical transparency and hue. Most preferably, the temperature is controlled at 220 to 300 ° C. The degree of vacuum of the tank is controlled to 300 Torr or less, preferably 200 Torr or less, more preferably 100 Torr or less. For example, a thin film evaporator can be used as the other devolatilization means.

本発明の透明ゴム変性ポリスチレン系樹脂には、本発明の樹脂の性能に著しい影響を与えない範囲内で他の成分を調合することができる。かかる他の成分としては、例えば着色剤、充填剤、難燃剤、難燃助剤(三酸化アンチモンなど)、光安定剤、熱安定剤、可塑剤、滑剤、離型剤、粘度増加剤、静電防止剤、酸化防止剤、導電剤などの添加剤が挙げられる。具体例として例えば鉱油、ステアリル酸ブチルのエステル系可塑剤、ポリエステル系可塑剤、ポリジメチルシロキサンなどの有機ポリシロキサン、高級脂肪酸及びその金属塩、立体障害アミン系酸化防止剤、ガラス繊維などが挙げられる。それらの添加剤は単独使用又は混合使用ができ、加える時期としては重合反応の段階又は反応終了後に添加混合することができる。   In the transparent rubber-modified polystyrene resin of the present invention, other components can be blended within a range that does not significantly affect the performance of the resin of the present invention. Examples of such other components include colorants, fillers, flame retardants, flame retardant aids (such as antimony trioxide), light stabilizers, heat stabilizers, plasticizers, lubricants, mold release agents, viscosity increasing agents, static Examples thereof include additives such as antistatic agents, antioxidants, and conductive agents. Specific examples include mineral oil, ester plasticizers of butyl stearylate, polyester plasticizers, organic polysiloxanes such as polydimethylsiloxane, higher fatty acids and metal salts thereof, sterically hindered amine antioxidants, glass fibers, and the like. . These additives can be used alone or in combination, and can be added and mixed at the stage of the polymerization reaction or after completion of the reaction.

上記エステル系可塑剤又は鉱油の使用量(透明ゴム変性ポリスチレン系樹脂100重量部に対する使用量)は一般に0〜5重量部で、好ましくは0.05〜2重量部である。一方、有機ポリシロキサンの使用量(透明ゴム変性ポリスチレン系樹脂100重量部に対する使用量)は0〜0.5重量部で好ましくは0.002〜0.2重量部である。   The amount of the ester plasticizer or mineral oil used (the amount used relative to 100 parts by weight of the transparent rubber-modified polystyrene resin) is generally 0 to 5 parts by weight, preferably 0.05 to 2 parts by weight. On the other hand, the amount of the organic polysiloxane used (the amount used relative to 100 parts by weight of the transparent rubber-modified polystyrene resin) is 0 to 0.5 parts by weight, preferably 0.002 to 0.2 parts by weight.

また本発明の樹脂には、その透明性を著しく影響しない範囲で他の樹脂を添加調合することができる。かかる添加調合し得る樹脂としては、スチレン系−(メタ)アクリレート系−アクリロニトリル系共重合体、スチレン系−(メタ)アクリレート系共重合体、スチレン系−(メタ)アクリレート系−アクリロニトリル系−マレイミド系共重合体、スチレン系−(メタ)アクリレート系−マレイミド系共重合体、(メタ)アクリレート系−マレイミド系共重合体、又はジエン系ゴム変性した前記の共重合体、例えばスチレン系‐ジエン系‐(メタ)アクリレート系‐アクリルニトリル系共重合物、スチレン系‐ジエン系‐(メタ)アクリレート系共重合物、スチレン系‐ジエン系‐(メタ)アクリレート系‐アクリルニトリル系‐マレイミド系共重合物、スチレン系‐ジエン系‐(メタ)アクリレート系‐マレイミド系共重合物、(メタ)アクリレート系‐ジエン系‐マレイミド系共重合物などが挙げられる。   In addition, other resins can be added to the resin of the present invention within a range that does not significantly affect its transparency. Examples of the resin that can be added and formulated include styrene- (meth) acrylate-acrylonitrile copolymer, styrene- (meth) acrylate copolymer, styrene- (meth) acrylate-acrylonitrile-maleimide Copolymers, styrene- (meth) acrylate-maleimide copolymers, (meth) acrylate-maleimide copolymers, or diene rubber-modified copolymers such as styrene-diene- (Meth) acrylate-acrylonitrile copolymer, styrene-diene- (meth) acrylate copolymer, styrene-diene- (meth) acrylate-acrylonitrile-maleimide copolymer, Styrene-diene- (meth) acrylate-maleimide copolymer, (meth) acrylic Rate-based - diene - like maleimide copolymer.

上記の添加し得るその他の樹脂の使用量は、透明ゴム変性ポリスチレン系樹脂100重量部に対して0〜200重量部であって、その添加量で樹脂の耐熱性、剛性及び流動加工性を調整又は高めることができる。   The amount of the other resin that can be added is 0 to 200 parts by weight with respect to 100 parts by weight of the transparent rubber-modified polystyrene resin, and the added amount adjusts the heat resistance, rigidity, and fluid processability of the resin. Or it can be increased.

本発明の透明ゴム変性ポリスチレン系樹脂の用途は特に限定されないが、射出成形、圧縮成形の各種成形品、押出成形、ブロー成形、熱成形(真空成形など)および中空成形による成形品、薄膜成形品などがあり、処方により高流動性、高耐熱性の要求を充足するように設計することができる。   The use of the transparent rubber-modified polystyrene resin of the present invention is not particularly limited, but various molded products such as injection molding, compression molding, extrusion molding, blow molding, thermoforming (vacuum molding, etc.), molded products by hollow molding, and thin film molded products. It can be designed to meet the requirements of high fluidity and high heat resistance depending on the formulation.

上記のその他の成分又は樹脂の添加混合は、例えばバンバリーミキサー、ロール混練機、一軸または二軸押出機などの一般の溶融混練機を用いて、一般に160℃〜280℃、好ましくは180℃〜250℃の温度で混練する。各配合成分の添加順序には特に制限が無い。   Addition and mixing of the above-mentioned other components or resin is generally 160 ° C. to 280 ° C., preferably 180 ° C. to 250 ° C., using a general melt kneader such as a Banbury mixer, roll kneader, single screw or twin screw extruder. Kneading at a temperature of ° C. There is no restriction | limiting in particular in the addition order of each compounding component.

物性測定Physical property measurement

以下に示す実施例では、次の方法によりそれぞれの物性を測定した。
1.透明性測定方法(曇度、単位は%):
樹脂を3mm厚さの試験片に成形して、ASTM D−1003標準に従ってその透明性を測定する。得られたHaze値は高い程透明性が悪いことを示す。なお、表1〜4中には「透明度」と示す。
2.耐衝撃性:
ASTM D−256法に従って測定を行う(ノッチ付1/4インチ肉厚のシート、単位:kg−cm/cm。)。なお、表1〜4中には「耐衝撃強度」と示す。
3.樹脂の耐環境応力亀裂性試験方法:
100mm×12.7mm×3mmの試験片を半径165mmの治具上に取り付けてサラダ油に漬ける。漬けた後に試験片に亀裂を発生する時間を測定する。発生時間が長ければ樹脂の耐環境応力亀裂性が良いこを示す。なお、表1〜4中には「耐環境応力亀裂性」と示す。
○:48時間以上。
△:24時間以上48時間未満。
×:24時間未満。
4.樹脂の共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差:
樹脂10gを秤り300mlのアセトンに24時間溶かしてから遠心分離機(12000rpm×30min)で可溶分と不可溶分を分離する。分離された可溶分を更に加熱濃縮してからメタノールを加えて重合体を析出させる。そして、得られた可溶分と不可溶分を真空恒温槽(80℃×4時間)にて乾燥した後にそれぞれを薄膜にして、アッベ屈折率計でそれぞれの屈折率を計測する。得られた可溶分の屈折率と不可溶分の屈折率の差は即ち樹脂の共重合体連続相(B)の屈折率と分散相(A)の屈折率の差となる。なお、表1〜4中には「(A)と(B)の屈折率の差」と示す。
In the following examples, each physical property was measured by the following method.
1. Transparency measurement method (haze, unit:%):
The resin is molded into a 3 mm thick test piece and its transparency is measured according to ASTM D-1003 standard. The higher the Haze value obtained, the worse the transparency. In Tables 1 to 4, “transparency” is indicated.
2. Impact resistance:
Measurement is performed according to ASTM D-256 method (1/4 inch thick sheet with notch, unit: kg-cm / cm). In Tables 1 to 4, “impact resistance strength” is shown.
3. Environmental stress crack resistance test method for resin:
A test piece of 100 mm × 12.7 mm × 3 mm is mounted on a jig having a radius of 165 mm and immersed in salad oil. Measure the time to crack the specimen after soaking. The longer the generation time, the better the environmental stress crack resistance of the resin. In Tables 1 to 4, “environmental stress crack resistance” is shown.
○: 48 hours or more.
Δ: 24 hours or more and less than 48 hours.
X: Less than 24 hours.
4). Difference in refractive index between the resin continuous copolymer phase (B) and the rubber particle dispersed phase (A):
10 g of the resin is weighed and dissolved in 300 ml of acetone for 24 hours, and then the soluble component and the insoluble component are separated with a centrifuge (12000 rpm × 30 min). The separated soluble component is further heated and concentrated, and then methanol is added to precipitate a polymer. And after drying the obtained soluble part and insoluble part in a vacuum thermostat (80 degreeC x 4 hours), each is made into a thin film and each refractive index is measured with an Abbe refractometer. The difference between the refractive index of the obtained soluble component and the refractive index of the insoluble component is the difference between the refractive index of the continuous copolymer phase (B) and the refractive index of the dispersed phase (A). In Tables 1 to 4, “difference in refractive index between (A) and (B)” is shown.

ゴム状共重合体14.0重量部(奇美社製のPR−1205で、スチレン/ブタジエン含有量=25/75、1,2−ビニル基含有量=15.4wt%、溶液粘度は10、テーパーブロック共重合体の重量平均分子量は13万)、及びスチレン38重量部、メタクリル酸メチル62重量部、エチルベンゼン46重量部、N,N’−4,4’−ジフェニルメタンビスマレイミド0.03重量部、ドデシルメルカプタン0.11重量部、ベンゾイルパーオキサイド0.13重量部よりなる原料溶液を作り、ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部、N,N’−4,4’−ジフェニルメタンビスマレイミド0.01重量部よりなる原料溶液をポンプで1kg/hrの流量で連続的に第二反応器へ送り反応をさせた。第二反応器で反応を終了した重合体溶液を第三反応器へ送った。上記の第三反応器で反応が終了した重合体溶液を更に第四反応器へ送り重合させた。   14.0 parts by weight of a rubbery copolymer (PR-1205 manufactured by Kitami Co., Ltd., styrene / butadiene content = 25/75, 1,2-vinyl group content = 15.4 wt%, solution viscosity is 10, taper The weight average molecular weight of the block copolymer is 130,000), and 38 parts by weight of styrene, 62 parts by weight of methyl methacrylate, 46 parts by weight of ethylbenzene, 0.03 part by weight of N, N′-4,4′-diphenylmethane bismaleimide, A raw material solution consisting of 0.11 part by weight of dodecyl mercaptan and 0.13 part by weight of benzoyl peroxide is prepared and continuously sent to a first reactor of a continuous polymerization apparatus at a flow rate of 35 kg / hr by a pump to cause a polymerization reaction. The finished polymer solution was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene and 0.01 parts by weight of N, N′-4,4′-diphenylmethane bismaleimide is continuously sent to the second reactor by a pump at a flow rate of 1 kg / hr to cause the reaction. It was. The polymer solution which finished the reaction in the second reactor was sent to the third reactor. The polymer solution that had been reacted in the third reactor was further sent to the fourth reactor for polymerization.

上記の第一、第二、第三、第四反応器は、この順序に繋げられた連続装置で、第一、第二及び第三反応器の容量はそれぞれ40リットルとなる連続攪拌式反応器(CSTR)で、第四反応器は75リットルのプラグフロー式反応器(PFR)である。それぞれ第一反応器は温度が95℃、攪拌速度が300rpm、第二反応器は温度が105℃、攪拌速度が200rpm、第三反応器は温度が115℃、攪拌速度が150rpm、第四反応器は温度が135℃、攪拌速度が35rpmであった。最終重合転化率は75%となった。反応終了後に脱揮発装置で未反応の単量体及び溶剤を取除いてから押出機で押出し、冷却、ペレット化して本発明の透明性ゴム変性スチレン系樹脂を得た。   Said 1st, 2nd, 3rd, 4th reactor is a continuous apparatus connected in this order, and the capacity | capacitance of a 1st, 2nd, and 3rd reactor becomes a 40 liter each, and is a continuous stirring type reactor (CSTR), the fourth reactor is a 75 liter plug flow reactor (PFR). The first reactor has a temperature of 95 ° C. and a stirring speed of 300 rpm, the second reactor has a temperature of 105 ° C. and a stirring speed of 200 rpm, the third reactor has a temperature of 115 ° C. and a stirring speed of 150 rpm, and the fourth reactor. The temperature was 135 ° C. and the stirring speed was 35 rpm. The final polymerization conversion was 75%. After completion of the reaction, unreacted monomer and solvent were removed with a devolatilizer, and then extruded with an extruder, cooled and pelletized to obtain the transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.39μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.002、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが4ppmとなった。測定したそれぞれの物性を表1に示す。また、この樹脂につき、ASTM D-368により求めた引っ張り強度は、405kg/cmであった。 As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle size was 0.39 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 002, the remaining N, N′-4,4′-diphenylmethane bismaleimide was 4 ppm. The measured physical properties are shown in Table 1. Moreover, the tensile strength calculated | required by ASTM D-368 about this resin was 405 kg / cm < 2 >.

本実施例で使用した原料溶液の組成を表1に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部よりなる原料溶液をポンプで2kg/hrの流量で連続的に第二反応器へ送り反応をさせた。反応器の数量、型式及び配置は実施例1と同じであり、各反応器温度及び攪拌速度はそれぞれ表1に示す。最終重合転化率が74%となった。反応終了後に実施例1と同じ方法で処理して、本発明の透明性ゴム変性スチレン系樹脂を得た。   The composition of the raw material solution used in this example is shown in Table 1. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene was continuously sent to the second reactor at a flow rate of 2 kg / hr by a pump to cause a reaction. The number, type and arrangement of the reactors are the same as those in Example 1, and the reactor temperatures and stirring speeds are shown in Table 1, respectively. The final polymerization conversion was 74%. After completion of the reaction, the same treatment as in Example 1 was performed to obtain a transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が20.6重量%、ゴム粒子重量平均粒子径が0.43μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率差のが0.002、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが1ppm未満となった。測定したそれぞれの物性を表1に示す。   As a result of the analysis, the rubber content was 20.6% by weight, the rubber particle weight average particle diameter was 0.43 μm, and the refractive index difference between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 002, the remaining N, N′-4,4′-diphenylmethane bismaleimide was less than 1 ppm. The measured physical properties are shown in Table 1.

本実施例で使用した原料溶液の組成を表1に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部よりなる原料溶液をポンプで2kg/hrの流量で連続的に第二反応器へ送り反応をさせた。反応器の数量、型式及び配置は実施例1と同じであり、各反応器の温度及び攪拌速度はそれぞれ表1に示す。最終重合転化率が75%となった。反応終了後に実施例1と同じ方法で後処理して本発明の透明性ゴム変性スチレン系樹脂を得た。   The composition of the raw material solution used in this example is shown in Table 1. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene was continuously sent to the second reactor at a flow rate of 2 kg / hr by a pump to cause a reaction. The number, type and arrangement of the reactors are the same as in Example 1, and the temperature and stirring speed of each reactor are shown in Table 1, respectively. The final polymerization conversion was 75%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1 to obtain a transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.37μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.002、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが18ppmとなった。測定したそれぞれの物性を表1に示す。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle diameter was 0.37 μm, and the refractive index difference between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 002, residual N, N′-4,4′-diphenylmethane bismaleimide was 18 ppm. The measured physical properties are shown in Table 1.

本実施例で使用した原料溶液の組成を表1に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部、N,N’−4,4’−ジフェニルメタンビスマレイミド0.01重量部よりなる原料溶液をポンプで1kg/hrの流量で連続に第二反応器へ送り反応をさせ、第二反応器での反応が終了した後に重合体溶液を更に第三反応器へ送った。また、スチレン100重量部よりなる原料溶液をポンプで1kg/hrの流量で連続的に第三反応器へ送った。反応器の数量、型式及び配置は実施例1と同じであり、各反応器温度及び攪拌速度はそれぞれ表1に示す。最終重合転化率が76%となった。反応終了後に実施例1と同じ方法で後処理して本発明の透明性ゴム変性スチレン系樹脂を得た。   The composition of the raw material solution used in this example is shown in Table 1. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene and 0.01 parts by weight of N, N′-4,4′-diphenylmethane bismaleimide is continuously sent to the second reactor at a flow rate of 1 kg / hr by a pump to cause reaction. After the reaction in the second reactor was completed, the polymer solution was further sent to the third reactor. Moreover, the raw material solution which consists of 100 weight part of styrene was sent to the 3rd reactor continuously with the flow volume of 1 kg / hr with the pump. The number, type and arrangement of the reactors are the same as those in Example 1, and the reactor temperatures and stirring speeds are shown in Table 1, respectively. The final polymerization conversion was 76%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1 to obtain a transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.42μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.004、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが6ppmとなった。測定したそれぞれの物性を表1に示す。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle diameter was 0.42 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 004, the remaining N, N′-4,4′-diphenylmethane bismaleimide was 6 ppm. The measured physical properties are shown in Table 1.

本実施例で使用した原料溶液の組成を表1に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部、N,N’−4,4’−ジフェニルメタンビスマレイミド0.01重量部よりなる原料溶液をポンプで1kg/hrの流量で連続に第二反応器へ送り反応をさせ、第二反応器での反応が終了した後に重合体溶液を更に第三反応器へ送った。またスチレン100重量部よりなる原料溶液をポンプで1kg/hrの流量で連続的に第三反応器へ送った。反応器の数量、型式及び配置は実施例1と同じであり、各反応器の温度及び攪拌速度はそれぞれ表1に示す。最終重合転化率が77%となった。反応終了後に実施例1と同じ方法で後処理して本発明の透明性ゴム変性スチレン系樹脂を得た。   The composition of the raw material solution used in this example is shown in Table 1. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene and 0.01 parts by weight of N, N′-4,4′-diphenylmethane bismaleimide is continuously sent to the second reactor at a flow rate of 1 kg / hr by a pump to cause reaction. After the reaction in the second reactor was completed, the polymer solution was further sent to the third reactor. A raw material solution consisting of 100 parts by weight of styrene was continuously sent to the third reactor by a pump at a flow rate of 1 kg / hr. The number, type and arrangement of the reactors are the same as in Example 1, and the temperature and stirring speed of each reactor are shown in Table 1, respectively. The final polymerization conversion was 77%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1 to obtain a transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.4μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.002、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが5ppmとなった。測定したそれぞれの物性を表1に示す。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle size was 0.4 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 002, the remaining N, N′-4,4′-diphenylmethane bismaleimide was 5 ppm. The measured physical properties are shown in Table 1.

本実施例で使用した原料溶液の組成を表1に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部、N,N’−4,4’−ジフェニルメタンビスマレイミド0.002重量部よりなる原料溶液をポンプで2kg/hrの流量で連続的に第二反応器へ送り反応をさせた。反応器の数量、型式及び配置は実施例1と同じであり、各反応器の温度及び攪拌速度はそれぞれ表1に示す。最終重合転化率が73%となった。反応終了後に実施例1と同じ方法で後処理して本発明の透明性ゴム変性スチレン系樹脂を得た。   The composition of the raw material solution used in this example is shown in Table 1. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene and 0.002 parts by weight of N, N′-4,4′-diphenylmethane bismaleimide is continuously sent to the second reactor by a pump at a flow rate of 2 kg / hr to cause a reaction. It was. The number, type and arrangement of the reactors are the same as in Example 1, and the temperature and stirring speed of each reactor are shown in Table 1, respectively. The final polymerization conversion was 73%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1 to obtain a transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.39μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.003、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが1ppm未満となった。測定したそれぞれの物性を表1に示す。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle size was 0.39 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 003, remaining N, N′-4,4′-diphenylmethane bismaleimide was less than 1 ppm. The measured physical properties are shown in Table 1.

本実施例で使用した原料溶液の組成を表2に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部、N,N’−4,4’−ジフェニルメタンビスマレイミド0.01重量部、TX−29A0.05重量部よりなる原料溶液をポンプで1kg/hrの流量で連続的に第二反応器へ送り反応をさせ、第二反応器での反応が終了した後に重合体溶液を更に第三反応器へ送った。また、スチレン100重量部よりなる原料溶液をポンプで1kg/hrの流量で連続的に第三反応器へ送った。反応器の数量、型式及び配置は実施例1と同じであり、各反応器の温度及び攪拌速度はそれぞれ表2に示す。最終重合転化率が75%となった。反応終了後に実施例1と同じ方法で後処理して本発明の透明性ゴム変性スチレン系樹脂を得た。   Table 2 shows the composition of the raw material solution used in this example. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene, 0.01 parts by weight of N, N′-4,4′-diphenylmethane bismaleimide and 0.05 parts by weight of TX-29A was continuously pumped at a flow rate of 1 kg / hr. The reaction was sent to the two reactors, and after the reaction in the second reactor was completed, the polymer solution was further sent to the third reactor. Moreover, the raw material solution which consists of 100 weight part of styrene was sent to the 3rd reactor continuously with the flow volume of 1 kg / hr with the pump. The number, type and arrangement of the reactors are the same as in Example 1, and the temperature and stirring speed of each reactor are shown in Table 2, respectively. The final polymerization conversion was 75%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1 to obtain a transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.39μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.003、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが4ppmとなった。測定したそれぞれの物性を表2に示す。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle size was 0.39 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 003, the remaining N, N′-4,4′-diphenylmethane bismaleimide was 4 ppm. The measured physical properties are shown in Table 2.

本実施例で使用した原料溶液の組成を表2に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部をポンプで2kg/hrの流量で連続的に第二反応器へ送り反応をさせ、第二反応器での反応が終了した後に重合体溶液を更に第三反応器へ送り反応させ、第三反応器での反応が終了した後に重合体溶液を更に第四反応器へ送った。四つの反応器は、この順序で連続に繋がり、また四つの反応器は共に容量が40リットルの連続攪拌式反応器(CSTR)であった。各反応器の温度及び攪拌速度をそれぞれ表2に示す。最終重合転化率が75%となった。反応終了後に実施例1と同じ方法で後処理して本発明の透明性ゴム変性スチレン系樹脂を得た。   Table 2 shows the composition of the raw material solution used in this example. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, 100 parts by weight of styrene is continuously sent to the second reactor by a pump at a flow rate of 2 kg / hr to cause the reaction, and after the reaction in the second reactor is completed, the polymer solution is further sent to the third reactor. After the reaction in the third reactor, the polymer solution was further sent to the fourth reactor. The four reactors were connected in series in this order, and the four reactors were both continuously stirred reactors (CSTR) with a capacity of 40 liters. Table 2 shows the temperature and stirring speed of each reactor. The final polymerization conversion was 75%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1 to obtain a transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.4μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.004、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが3ppmとなった。測定したそれぞれの物性を表2に示す。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle size was 0.4 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 004, the remaining N, N′-4,4′-diphenylmethane bismaleimide was 3 ppm. The measured physical properties are shown in Table 2.

本実施例で使用した原料溶液の組成を表2に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部よりなる原料溶液をポンプで2kg/hrの流量で連続的に第二反応器へ送り反応をさせた。反応器の数量、型式及び配置は実施例1と同じであり、各反応器の温度及び攪拌速度はそれぞれ表2に示す。最終重合転化率が74%となった。反応終了後に実施例1と同じ方法で後処理して本発明の透明性ゴム変性スチレン系樹脂を得た。   Table 2 shows the composition of the raw material solution used in this example. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene was continuously sent to the second reactor at a flow rate of 2 kg / hr by a pump to cause a reaction. The number, type and arrangement of the reactors are the same as in Example 1, and the temperature and stirring speed of each reactor are shown in Table 2, respectively. The final polymerization conversion was 74%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1 to obtain a transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.44μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.002、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが8ppmとなった。測定したそれぞれの物性を表2に示す。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle size was 0.44 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 002, the remaining N, N′-4,4′-diphenylmethane bismaleimide was 8 ppm. The measured physical properties are shown in Table 2.

本実施例で使用した原料溶液の組成を表2に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部よりなる原料溶液をポンプで2kg/hrの流量で連続的に第二反応器へ送り反応をさせた。反応器の数量、型式及び配置は実施例1と同じであり、各反応器温度及び攪拌速度はそれぞれ表2に示す。最終重合転化率が76%となった。反応終了後に実施例1と同じ方法で後処理して本発明の透明性ゴム変性スチレン系樹脂を得た。   Table 2 shows the composition of the raw material solution used in this example. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene was continuously sent to the second reactor at a flow rate of 2 kg / hr by a pump to cause a reaction. The number, type and arrangement of the reactors are the same as those in Example 1, and the reactor temperatures and stirring speeds are shown in Table 2, respectively. The final polymerization conversion was 76%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1 to obtain a transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.4μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.006、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが6ppmとなった。測定したそれぞれの物性を表2に示す。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle size was 0.4 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 006, the remaining N, N′-4,4′-diphenylmethane bismaleimide was 6 ppm. The measured physical properties are shown in Table 2.

本実施例で使用した原料溶液組成を表2に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部よりなる原料溶液をポンプで2kg/hrの流量で連続的に第二反応器へ送り反応をさせた。反応器の数量、型式及び配置は実施例1と同じであり、各反応器の温度及び攪拌速度はそれぞれ表2に示す。最終重合転化率が78%となった。反応終了後に実施例1と同じ方法で後処理して本発明の透明性ゴム変性スチレン系樹脂を得た。   The raw material solution composition used in this example is shown in Table 2. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene was continuously sent to the second reactor at a flow rate of 2 kg / hr by a pump to cause a reaction. The number, type and arrangement of the reactors are the same as in Example 1, and the temperature and stirring speed of each reactor are shown in Table 2, respectively. The final polymerization conversion was 78%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1 to obtain a transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.42μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.005、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが14ppmとなった。測定したそれぞれの物性を表2に示す。また、この樹脂につき、ASTM D-368により求めた引っ張り強度は、440kg/cmであった。 As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle diameter was 0.42 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 005, the remaining N, N′-4,4′-diphenylmethane bismaleimide was 14 ppm. The measured physical properties are shown in Table 2. Moreover, the tensile strength calculated | required by ASTM D-368 about this resin was 440 kg / cm < 2 >.

ゴム状共重合体14.0重量部(奇美社製のPR−1205で、スチレン/ブタジエン含有量=25/75、1,2−ビニル基含有量=15.4wt%、溶液粘度は10、テーパーブロック共重合体の重量平均分子量は13万)、及びスチレン38重量部、メタクリル酸メチル62重量部、エチルベンゼン46重量部、N,N’−4,4’−(2,2−ジフェニルプロパン)ビスマレイミド0.03重量部、ドデシルメルカプタン0.11重量部、ベンゾイルパーオキサイド0.13重量部よりなる原料溶液を作り、ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部、N,N’−4,4’−(2,2−ジフェニルプロパン)ビスマレイミド0.01重量部よりなる原料溶液をポンプで1kg/hrの流量で連続的に第二反応器へ送り反応をさせた。第二反応器で反応を終了した重合体溶液を第三反応器へ送った。上記の第三反応器で反応が終了した重合体溶液を更に第四反応器へ送り重合させた。   14.0 parts by weight of a rubbery copolymer (PR-1205 manufactured by Kitami Co., Ltd., styrene / butadiene content = 25/75, 1,2-vinyl group content = 15.4 wt%, solution viscosity is 10, taper The weight average molecular weight of the block copolymer is 130,000), 38 parts by weight of styrene, 62 parts by weight of methyl methacrylate, 46 parts by weight of ethylbenzene, N, N′-4,4 ′-(2,2-diphenylpropane) bis A raw material solution consisting of 0.03 part by weight of maleimide, 0.11 part by weight of dodecyl mercaptan and 0.13 part by weight of benzoyl peroxide is prepared and continuously fed to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr by a pump. The polymerization reaction was carried out, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution comprising 100 parts by weight of styrene and 0.01 parts by weight of N, N′-4,4 ′-(2,2-diphenylpropane) bismaleimide is continuously pumped at a flow rate of 1 kg / hr. The reaction was sent to the reactor. The polymer solution which finished the reaction in the second reactor was sent to the third reactor. The polymer solution that had been reacted in the third reactor was further sent to the fourth reactor for polymerization.

上記の第一、第二、第三、第四反応器は、この順序に繋げられた連続装置で、第一、第二及び第三反応器の容量はそれぞれ40リットルとなる連続攪拌式反応器(CSTR)で、第四反応器は75リットルのプラグフロー式反応器(PFR)である。それぞれ第一反応器は温度が95℃、攪拌速度が300rpm、第二反応器は温度が105℃、攪拌速度が200rpm、第三反応器は温度が115℃、攪拌速度が150rpm、第四反応器は温度が135℃、攪拌速度が35rpmであった。最終重合転化率は75%となった。反応終了後に脱揮発装置で未反応の単量体及び溶剤を取除いてから押出機で押出し、冷却、ペレット化して本発明の透明性ゴム変性スチレン系樹脂を得た。   Said 1st, 2nd, 3rd, 4th reactor is a continuous apparatus connected in this order, and the capacity | capacitance of a 1st, 2nd, and 3rd reactor becomes a 40 liter each, and is a continuous stirring type reactor (CSTR), the fourth reactor is a 75 liter plug flow reactor (PFR). The first reactor has a temperature of 95 ° C. and a stirring speed of 300 rpm, the second reactor has a temperature of 105 ° C. and a stirring speed of 200 rpm, the third reactor has a temperature of 115 ° C. and a stirring speed of 150 rpm, and the fourth reactor. The temperature was 135 ° C. and the stirring speed was 35 rpm. The final polymerization conversion was 75%. After completion of the reaction, unreacted monomer and solvent were removed with a devolatilizer, and then extruded with an extruder, cooled and pelletized to obtain the transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.39μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.002、残留するN,N’−4,4’−(2,2−ジフェニルプロパン)ビスマレイミドが8ppmとなった。測定したそれぞれの物性は、Haze値が3.92%で、耐環境応力亀裂性が○の評価で、耐衝撃強度が13.8kg−cm/cmであった。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle size was 0.39 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 002, the remaining N, N′-4,4 ′-(2,2-diphenylpropane) bismaleimide was 8 ppm. As for the measured physical properties, the haze value was 3.92%, the environmental stress crack resistance was evaluated as ◯, and the impact strength was 13.8 kg-cm / cm.

ゴム状共重合体14.0重量部(奇美社製のPR−1205で、スチレン/ブタジエン含有量=25/75、1,2−ビニル基含有量=15.4wt%、溶液粘度は10、テーパーブロック共重合体の重量平均分子量は13万)、及びスチレン38重量部、メタクリル酸メチル62重量部、エチルベンゼン46重量部、N,N’−4,4’−ジフェニルエーテルビスマレイミド0.03重量部、ドデシルメルカプタン0.11重量部、ベンゾイルパーオキサイド0.13重量部よりなる原料溶液を作り、ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部、N,N’−4,4’−ジフェニルエーテルビスマレイミド0.01重量部よりなる原料溶液をポンプで1kg/hrの流量で連続的に第二反応器へ送り反応をさせた。第二反応器で反応を終了した重合体溶液を第三反応器へ送った。上記の第三反応器で反応が終了した重合体溶液を更に第四反応器へ送り重合させた。   14.0 parts by weight of a rubbery copolymer (PR-1205 manufactured by Kitami Co., Ltd., styrene / butadiene content = 25/75, 1,2-vinyl group content = 15.4 wt%, solution viscosity is 10, taper The weight average molecular weight of the block copolymer is 130,000), and 38 parts by weight of styrene, 62 parts by weight of methyl methacrylate, 46 parts by weight of ethylbenzene, 0.03 part by weight of N, N′-4,4′-diphenyl ether bismaleimide, A raw material solution consisting of 0.11 part by weight of dodecyl mercaptan and 0.13 part by weight of benzoyl peroxide is prepared and continuously sent to a first reactor of a continuous polymerization apparatus at a flow rate of 35 kg / hr by a pump to cause a polymerization reaction. The finished polymer solution was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene and 0.01 parts by weight of N, N′-4,4′-diphenyl ether bismaleimide is continuously sent to the second reactor with a pump at a flow rate of 1 kg / hr to cause a reaction. It was. The polymer solution which finished the reaction in the second reactor was sent to the third reactor. The polymer solution that had been reacted in the third reactor was further sent to the fourth reactor for polymerization.

上記の第一、第二、第三、第四反応器は、この順序に繋げられた連続装置で、第一、第二及び第三反応器の容量はそれぞれ40リットルとなる連続攪拌式反応器(CSTR)で、第四反応器は75リットルのプラグフロー式反応器(PFR)である。それぞれ第一反応器は温度が95℃、攪拌速度が300rpm、第二反応器は温度が105℃、攪拌速度が200rpm、第三反応器は温度が115℃、攪拌速度が150rpm、第四反応器は温度が135℃、攪拌速度が35rpmであった。最終重合転化率は75%となった。反応終了後に脱揮発装置で未反応の単量体及び溶剤を取除いてから押出機で押出し、冷却、ペレット化して本発明の透明性ゴム変性スチレン系樹脂を得た。   Said 1st, 2nd, 3rd, 4th reactor is a continuous apparatus connected in this order, and the capacity | capacitance of a 1st, 2nd, and 3rd reactor becomes a 40 liter each, and is a continuous stirring type reactor (CSTR), the fourth reactor is a 75 liter plug flow reactor (PFR). The first reactor has a temperature of 95 ° C. and a stirring speed of 300 rpm, the second reactor has a temperature of 105 ° C. and a stirring speed of 200 rpm, the third reactor has a temperature of 115 ° C. and a stirring speed of 150 rpm, and the fourth reactor. The temperature was 135 ° C. and the stirring speed was 35 rpm. The final polymerization conversion was 75%. After completion of the reaction, unreacted monomer and solvent were removed with a devolatilizer, and then extruded with an extruder, cooled and pelletized to obtain the transparent rubber-modified styrene resin of the present invention.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.38μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.002、残留するN,N’−4,4’−ジフェニルエーテルビスマレイミドが7ppmとなった。測定したそれぞれの物性は、Haze値が4.11%で、耐環境応力亀裂性が○の評価で、耐衝撃強度が13.4kg−cm/cmであった。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle diameter was 0.38 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 002, the remaining N, N′-4,4′-diphenyl ether bismaleimide was 7 ppm. As for the measured physical properties, the haze value was 4.11%, the environmental stress crack resistance was evaluated as ◯, and the impact strength was 13.4 kg-cm / cm.

比較例1Comparative Example 1

ゴム状重合体14.0重量部(奇美社製のPR−1205で、スチレン/ブタジエン含有量=25/75、1,2−ビニル基含有量=15.4wt%、溶液粘度は10、テーパーブロック共重合体の重量平均分子量が13万)、スチレン24重量部、メタクリル酸メチル76重量部、エチルベンゼン46重量部、ドデシルメルカプタン0.11重量部、ベンゾイルパーオキサイド0.13重量部よりなる原料溶液を作り、ポンプで37kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送り、第二反応器で反応が終了した後に重合体溶液を更に第三反応器へ送り、第三反応器で反応終了後に重合体溶液を更に第四反応器へ送った。上記の第一、第二、第三、第四反応器は、この順序に繋げられた連続装置で、第一、第二及び第三反応器の容量はそれぞれ40リットルとなる連続攪拌式反応器(CSTR)で、第四反応器は75リットルのプラグフロー式反応器である。それぞれ第一反応器は温度が95℃、攪拌速度が300rpm、第二反応器は温度が105℃、攪拌速度が200rpm、第三反応器は温度が115℃、攪拌速度が150rpm、第四反応器は温度が135℃、攪拌速度が90rpmであった。最終重合転化率が75%となった。反応終了後に脱揮発装置で未反応の単量体及び溶剤を取除いてから押出機で押出し、冷却、ペレット化して本比較例の透明性ゴム変性スチレン系樹脂を得た。   14.0 parts by weight of a rubber-like polymer (PR-1205 manufactured by Kitami Co., Ltd., styrene / butadiene content = 25/75, 1,2-vinyl group content = 15.4 wt%, solution viscosity is 10, taper block A raw material solution comprising a copolymer having a weight average molecular weight of 130,000), styrene 24 parts by weight, methyl methacrylate 76 parts by weight, ethylbenzene 46 parts by weight, dodecyl mercaptan 0.11 parts by weight, and benzoyl peroxide 0.13 parts by weight. Made and continuously sent to the first reactor of the continuous polymerization apparatus at a flow rate of 37 kg / hr with a pump, the polymer solution after the reaction is sent to the second reactor, and the reaction is completed in the second reactor Thereafter, the polymer solution was further sent to the third reactor, and after completion of the reaction in the third reactor, the polymer solution was further sent to the fourth reactor. Said 1st, 2nd, 3rd, 4th reactor is a continuous apparatus connected in this order, and the capacity | capacitance of a 1st, 2nd, and 3rd reactor becomes a 40 liter each, and is a continuous stirring type reactor (CSTR), the fourth reactor is a 75 liter plug flow reactor. The first reactor has a temperature of 95 ° C. and a stirring speed of 300 rpm, the second reactor has a temperature of 105 ° C. and a stirring speed of 200 rpm, the third reactor has a temperature of 115 ° C. and a stirring speed of 150 rpm, and the fourth reactor. The temperature was 135 ° C. and the stirring speed was 90 rpm. The final polymerization conversion was 75%. After completion of the reaction, the unreacted monomer and solvent were removed with a devolatilizer, and then extruded with an extruder, cooled and pelletized to obtain a transparent rubber-modified styrene resin of this comparative example.

分析の結果はゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.4μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.025、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが0ppmとなった。測定したそれぞれの物性を表3に示す。   As a result of the analysis, the rubber content was 15.2% by weight, the rubber particle weight average particle size was 0.4 μm, and the difference in refractive index between the copolymer continuous phase (B) and the rubber particle dispersed phase (A) was 0.00. 025, N, N′-4,4′-diphenylmethane bismaleimide remaining was 0 ppm. The measured physical properties are shown in Table 3.

比較例2Comparative Example 2

本比較例で使用した原料溶液の組成を表3に示す。ポンプで37kg/hrの流量で連続的に第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送り、第二反応器での反応が終了した後に重合体溶液を第三反応器へ送った。第一、第二、第三反応器はそれぞれこの順序に繋げられた連続装置で、第一と第二反応器は共に容量40リットルの連続攪拌式反応器で、第三反応器は容量75リットルのプラグフロー式反応器であった。各反応器の温度及び攪拌速度はそれぞれ表3に示す。最終重合転化率が76%となった。反応終了後に実施例1と同じ方法で後処理した。   Table 3 shows the composition of the raw material solution used in this comparative example. The polymerization reaction is continuously sent to the first reactor at a flow rate of 37 kg / hr by a pump, the polymer solution after the reaction is sent to the second reactor, and after the reaction in the second reactor is finished, the polymer solution Was sent to the third reactor. The first, second, and third reactors are continuous devices connected in this order, the first and second reactors are both 40 liters of continuous stirring reactors, and the third reactor is 75 liters in volume. Plug flow reactor. Table 3 shows the temperature and stirring speed of each reactor. The final polymerization conversion was 76%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1.

得られた樹脂について分析を行い、そのゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.68μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.022、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが13ppmとなった。測定したそれぞれの物性を表3に示す。   The obtained resin was analyzed, and its rubber content was 15.2% by weight, the weight average particle diameter of the rubber particles was 0.68 μm, and the refraction of the copolymer continuous phase (B) and the rubber particle dispersed phase (A). The difference in rate was 0.022, and the remaining N, N′-4,4′-diphenylmethane bismaleimide was 13 ppm. The measured physical properties are shown in Table 3.

比較例3Comparative Example 3

本比較例で使用した原料溶液の組成を表3に示す。ポンプで35kg/hrの流量で連続的に連続重合装置の第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部をポンプで2kg/hrの流量で連続に第二反応器へ送り反応をさせ、第二反応器での反応が終了した後に重合体溶液を第三反応器へ送った。第一、第二、第三反応器はそれぞれこの順序に繋げられた連続装置で、第一と第二反応器は共に容量40リットルの連続攪拌式反応器で、第三反応器は容量75リットルのプラグフロー式反応器であった。各反応器の温度及び攪拌速度をそれぞれ表3に示す。最終重合転化率が74%となった。反応終了後に実施例1と同じ方法で後処理した。   Table 3 shows the composition of the raw material solution used in this comparative example. The polymer solution was sent continuously to the first reactor of the continuous polymerization apparatus at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, 100 parts by weight of styrene was continuously sent to the second reactor by a pump at a flow rate of 2 kg / hr to cause the reaction, and after the reaction in the second reactor was completed, the polymer solution was sent to the third reactor. The first, second, and third reactors are continuous devices connected in this order, the first and second reactors are both 40 liters of continuous stirring reactors, and the third reactor is 75 liters in volume. Plug flow reactor. Table 3 shows the temperature and stirring speed of each reactor. The final polymerization conversion was 74%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1.

得られた樹脂について分析を行い、そのゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.39μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.004、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが0ppmとなった。測定したそれぞれの物性を表3に示す。   The obtained resin was analyzed, and its rubber content was 15.2% by weight, the weight average particle diameter of the rubber particles was 0.39 μm, and the refraction of the copolymer continuous phase (B) and the rubber particle dispersed phase (A). The difference in rate was 0.004, and the remaining N, N′-4,4′-diphenylmethane bismaleimide was 0 ppm. The measured physical properties are shown in Table 3.

比較例4Comparative Example 4

本比較例で使用した原料溶液の組成を表3に示す。ポンプで37kg/hrの流量で連続的に第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。第二反応器での反応が終了した後に重合体溶液を第三反応器へ送り、第三反応器での反応が終了した後に重合体溶液を更に第四反応器へ送った。第一、第二、第三反応器はそれぞれこの順序に繋げられた連続装置で、第一、第二と第三反応器は共に容量40リットルの連続攪拌式反応器で、第四反応器は容量75リットルのプラグフロー式反応器であった。反応中、反応系の粘度が大幅に上昇して架橋現象を起こし、重合体粘度が急激に上昇して反応器の負荷能力を超え、結果として重合反応の進行が不可能となった。   Table 3 shows the composition of the raw material solution used in this comparative example. The polymerization reaction was continuously sent to the first reactor at a flow rate of 37 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. After the reaction in the second reactor was completed, the polymer solution was sent to the third reactor, and after the reaction in the third reactor was completed, the polymer solution was further sent to the fourth reactor. The first, second, and third reactors are continuous devices connected in this order, the first, second, and third reactors are both continuous stirring reactors with a capacity of 40 liters, and the fourth reactor is It was a plug flow reactor with a capacity of 75 liters. During the reaction, the viscosity of the reaction system increased significantly, causing a crosslinking phenomenon, and the polymer viscosity increased rapidly, exceeding the load capacity of the reactor, and as a result, the polymerization reaction could not proceed.

比較例5Comparative Example 5

本比較例で使用した原料溶液の組成を表3に示す。ポンプで37kg/hrの流量で連続的に第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。第二反応器での反応が終了した後に重合体溶液を第三反応器へ送った。第一、第二、第三反応器はそれぞれこの順序に繋げられた連続装置で、第一と第二反応器は共に容量40リットルの連続攪拌式反応器で、第三反応器は容量75リットルのプラグフロー式反応器であった。各反応器の温度及び攪拌速度をそれぞれ表3に示す。最終重合転化率が70%となった。反応終了後に実施例1と同じ方法で後処理した。   Table 3 shows the composition of the raw material solution used in this comparative example. The polymerization reaction was continuously sent to the first reactor at a flow rate of 37 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. After the reaction in the second reactor was completed, the polymer solution was sent to the third reactor. The first, second, and third reactors are continuous devices connected in this order, the first and second reactors are both 40 liters of continuous stirring reactors, and the third reactor is 75 liters in volume. Plug flow reactor. Table 3 shows the temperature and stirring speed of each reactor. The final polymerization conversion was 70%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1.

得られた樹脂について分析を行い、そのゴム含有量が44.3重量%、ゴム粒子重量平均粒子径が0.54μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.008、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが18ppmとなった。測定したそれぞれの物性を表3に示す。   The obtained resin was analyzed, and its rubber content was 44.3% by weight, the weight average particle diameter of the rubber particles was 0.54 μm, and the refraction of the copolymer continuous phase (B) and the rubber particle dispersed phase (A). The difference in rate was 0.008, and the remaining N, N′-4,4′-diphenylmethane bismaleimide was 18 ppm. The measured physical properties are shown in Table 3.

比較例6Comparative Example 6

本比較例で使用した原料溶液の組成を表4に示す。ポンプで35kg/hrの流量で第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。第一、第二反応器はこの順序に繋げられた連続装置で、二つの反応器は共に容量40リットルの連続攪拌式反応器であった。各反応器の温度及び攪拌速度をそれぞれ表4に示す。最終重合転化率が63%となった。反応終了後に実施例1と同じ方法で後処理した。   Table 4 shows the composition of the raw material solution used in this comparative example. The polymerization reaction was sent to the first reactor by a pump at a flow rate of 35 kg / hr, and the polymer solution after the reaction was sent to the second reactor. The first and second reactors were continuous devices connected in this order, and the two reactors were both continuously stirred reactors with a capacity of 40 liters. Table 4 shows the temperature and stirring speed of each reactor. The final polymerization conversion was 63%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1.

得られた樹脂について分析を行い、そのゴム含有量が0.3重量%、ゴム粒子重量平均粒子径が0.31μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.001、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが40ppmとなった。測定したそれぞれの物性を表4に示す。   The obtained resin was analyzed and its rubber content was 0.3% by weight, the weight average particle diameter of the rubber particles was 0.31 μm, and the refraction of the copolymer continuous phase (B) and the rubber particle dispersed phase (A). The difference in rate was 0.001, and the remaining N, N′-4,4′-diphenylmethane bismaleimide was 40 ppm. The measured physical properties are shown in Table 4.

比較例7Comparative Example 7

本比較例で使用した原料溶液の組成を表4に示す。ポンプで44kg/hrの流量で連続的に第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部、N,N’−4,4’−ジフェニルメタンビスマレイミド0.025重量部からなる原料溶液をポンプで1kg/hrの流量で連続的に第二反応器へ送り反応をさせ、第二反応器での反応が終了した後に重合体溶液を第三反応器へ送った。第一、第二、第三反応器はそれぞれこの順序に繋げられた連続装置で、第一、第二及び第三反応器は共に容量40リットルの連続攪拌式反応器であった。各反応器の温度及び攪拌速度をそれぞれ表4に示す。最終重合転化率が64%となった。反応終了後に実施例1と同じ方法で後処理した。   Table 4 shows the composition of the raw material solution used in this comparative example. The polymerization reaction was continuously sent to the first reactor at a flow rate of 44 kg / hr by a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene and 0.025 parts by weight of N, N′-4,4′-diphenylmethane bismaleimide is continuously sent to the second reactor with a pump at a flow rate of 1 kg / hr to cause a reaction. After the reaction in the second reactor was completed, the polymer solution was sent to the third reactor. The first, second and third reactors were each a continuous apparatus connected in this order, and the first, second and third reactors were both continuous stirring reactors with a capacity of 40 liters. Table 4 shows the temperature and stirring speed of each reactor. The final polymerization conversion was 64%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1.

得られた樹脂について分析を行い、そのゴム含有量が13.9重量%、ゴム粒子重量平均粒子径が0.4μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.013、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが120ppmとなった。測定したそれぞれの物性を表4に示す。   The obtained resin was analyzed, and its rubber content was 13.9% by weight, the rubber particle weight average particle size was 0.4 μm, and the refraction of the copolymer continuous phase (B) and the rubber particle dispersed phase (A). The difference in rate was 0.013, and the remaining N, N′-4,4′-diphenylmethane bismaleimide was 120 ppm. The measured physical properties are shown in Table 4.

比較例8Comparative Example 8

本比較例で使用した原料溶液の組成を表4に示す。ポンプで35kg/hrの流量で連続的に第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。第二反応器での反応が終了した後に重合体溶液を第三反応器へ送り、第三反応器での反応が終了した後に重合体溶液を第四反応器へ送った。第一、第二、第三、第四反応器はそれぞれこの順序に繋げられた連続装置で、第一、第二、第三及び第四反応器は共に容量40リットルの連続攪拌式反応器であった。各反応器の温度及び攪拌速度をそれぞれ表4に示す。最終重合転化率が75%となった。反応終了後に実施例1と同じ方法で後処理した。   Table 4 shows the composition of the raw material solution used in this comparative example. The polymerization reaction was continuously sent to the first reactor at a flow rate of 35 kg / hr with a pump, and the polymer solution after the reaction was sent to the second reactor. After the reaction in the second reactor was completed, the polymer solution was sent to the third reactor, and after the reaction in the third reactor was completed, the polymer solution was sent to the fourth reactor. The first, second, third, and fourth reactors are each a continuous apparatus connected in this order, and the first, second, third, and fourth reactors are both continuous stirring reactors with a capacity of 40 liters. there were. Table 4 shows the temperature and stirring speed of each reactor. The final polymerization conversion was 75%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1.

得られた樹脂について分析を行い、そのゴム含有量が15.2重量%、ゴム粒子重量平均粒子径が0.45μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.04、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが3ppmとなった。測定したそれぞれの物性を表4に示す。   The obtained resin was analyzed, and its rubber content was 15.2% by weight, the weight average particle diameter of the rubber particles was 0.45 μm, and the refraction of the copolymer continuous phase (B) and the rubber particle dispersed phase (A). The difference in rate was 0.04, and the remaining N, N′-4,4′-diphenylmethane bismaleimide was 3 ppm. The measured physical properties are shown in Table 4.

比較例9Comparative Example 9

本比較例で使用した原料溶液の組成を表4に示す。ポンプで44kg/hrの流量で連続的に第一反応器へ送り重合反応させ、反応が終了した重合体溶液を第二反応器へ送った。一方、スチレン100重量部、N,N’−4,4’−ジフェニルメタンビスマレイミド0.022重量部からなる原料溶液をポンプで1kg/hrの流量で連続的に第二反応器へ送り反応をさせ、第二反応器での反応が終了した後に重合体溶液を第三反応器へ送った。第一、第二、第三反応器はそれぞれこの順序に繋げられた連続装置で、第一、第二及び第三反応器は共に容量40リットルの連続攪拌式反応器であった。各反応器の温度及び攪拌速度をそれぞれ表4に示す。最終重合転化率が63%となった。反応終了後に実施例1と同じ方法で後処理した。   Table 4 shows the composition of the raw material solution used in this comparative example. The polymerization reaction was continuously sent to the first reactor at a flow rate of 44 kg / hr by a pump, and the polymer solution after the reaction was sent to the second reactor. On the other hand, a raw material solution consisting of 100 parts by weight of styrene and 0.022 parts by weight of N, N′-4,4′-diphenylmethane bismaleimide is continuously sent to the second reactor with a pump at a flow rate of 1 kg / hr to cause a reaction. After the reaction in the second reactor was completed, the polymer solution was sent to the third reactor. The first, second and third reactors were each a continuous apparatus connected in this order, and the first, second and third reactors were both continuous stirring reactors with a capacity of 40 liters. Table 4 shows the temperature and stirring speed of each reactor. The final polymerization conversion was 63%. After completion of the reaction, post-treatment was performed in the same manner as in Example 1.

得られた樹脂について分析を行い、そのゴム含有量が13.9重量%、ゴム粒子重量平均粒子径が0.4μm、共重合体連続相(B)とゴム粒子分散相(A)との屈折率の差が0.003、残留するN,N’−4,4’−ジフェニルメタンビスマレイミドが105ppmとなった。測定したそれぞれの物性を表4に示す。   The obtained resin was analyzed, and its rubber content was 13.9% by weight, the rubber particle weight average particle size was 0.4 μm, and the refraction of the copolymer continuous phase (B) and the rubber particle dispersed phase (A). The difference in rate was 0.003, and the remaining N, N′-4,4′-diphenylmethane bismaleimide was 105 ppm. The measured physical properties are shown in Table 4.

Figure 0004112528
Figure 0004112528

Figure 0004112528
Figure 0004112528

Figure 0004112528
Figure 0004112528

Figure 0004112528
Figure 0004112528

なお、上記表1〜4における記号乃至略称は以下の通りである。
PR-1205:奇美社製、スチレン/ブタジエン含量=25/75 、溶液粘度10cps、テーパーブロック共重合体
LBR:奇美社製、ローシスポリブタジエンゴム、1,2-ビニル基含有量=13 wt%、溶液粘度170cps
CSTR:連続攪拌式反応器
PFR:プラグフロー式反応器
BPO:ベンゾイルパーオキサイド
TX-29A:1,1-ビス-t−ブチルオキシ-3,3,5-トリメチルシクロヘキサン
PX-12:2,2-ビス(4,4-ジ-t−ブチルオキシ)シクロヘキシルプロパン
BMI:N,N’-4,4’-ジフェニルメタンビスマレイミド
TDM:ドデシルメルカプタン
SM:スチレン
AN:アクリロニトリル
MMA:メタクリル酸メチル
n-BA:アクリル酸n−ブチル
上記に述べた内容は本発明の幾つかの良好な実施例を取り上げたものであり、何ら本発明を限定するものでは無い。本発明の発明精神に沿って行ったあらゆる修飾又は変更は本発明の技術的範囲内に含まれるものと主張する。
In addition, the symbol thru | or abbreviation in the said Tables 1-4 are as follows.
PR-1205: manufactured by Kitamisha Co., Ltd., styrene / butadiene content = 25/75, solution viscosity 10 cps, taper block copolymer
LBR: manufactured by Kitamisha, low-cis polybutadiene rubber, 1,2-vinyl group content = 13 wt%, solution viscosity 170cps
CSTR: Continuous stirring reactor
PFR: Plug flow reactor
BPO: Benzoyl peroxide
TX-29A: 1,1-bis-t-butyloxy-3,3,5-trimethylcyclohexane
PX-12: 2,2-bis (4,4-di-t-butyloxy) cyclohexylpropane
BMI: N, N'-4,4'-diphenylmethane bismaleimide
TDM: Dodecyl mercaptan
SM: Styrene
AN: Acrylonitrile
MMA: Methyl methacrylate
n-BA: n-Butyl acrylate The above is a description of some preferred embodiments of the present invention and is not intended to limit the present invention. Any modifications or changes made within the spirit of the invention are claimed to be within the scope of the invention.

Claims (2)

ゴム状共重合体からなるゴム粒子(A)を分散相とし、(i-1)スチレン系単量体20〜70重量部、(i-2)(メタ)アクリル酸エステル系単量体30〜80重量部、及び(i-3)他の共重合可能な単量体0〜40重量部と、前記(i-1)、(i-2)及び(i-3)の合計100重量部に対して多官能性マレイミド系単量体0.0005〜1.0重量部とを共重合させて得られる共重合体(B)を連続相とする透明ゴム変性ポリスチレン系樹脂であって、
残留多官能性マレイミド系単量体は80ppm以下で、
共重合体(B)とゴム粒子(A)との屈折率の差は0.01以下であり、且つ
前記透明ゴム変性ポリスチレン系樹脂におけるゴム含有量は1〜40重量%である透明ゴム変性スチレン系樹脂。
Rubber particles (A) made of a rubbery copolymer are used as a dispersed phase, and (i-1) 20 to 70 parts by weight of a styrene monomer, (i-2) (meth) acrylate monomer 30 to 80 parts by weight and (i-3) 0 to 40 parts by weight of other copolymerizable monomers, and a total of 100 parts by weight of the above (i-1), (i-2) and (i-3) On the other hand, a transparent rubber-modified polystyrene resin having a continuous phase copolymer (B) obtained by copolymerizing 0.0005 to 1.0 part by weight of a polyfunctional maleimide monomer,
Residual polyfunctional maleimide monomer is 80 ppm or less,
A transparent rubber-modified styrene resin in which the difference in refractive index between the copolymer (B) and the rubber particles (A) is 0.01 or less, and the rubber content in the transparent rubber-modified polystyrene resin is 1 to 40% by weight .
前記ゴム粒子(A)は、その重量平均粒子径が0.1μm〜1.5μmである請求項1記載の透明ゴム変性スチレン系樹脂。   The transparent rubber-modified styrene resin according to claim 1, wherein the rubber particles (A) have a weight average particle diameter of 0.1 µm to 1.5 µm.
JP2004197677A 2003-08-21 2004-07-05 Transparent rubber-modified styrene resin Expired - Fee Related JP4112528B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92122972A TWI257397B (en) 2003-08-21 2003-08-21 Transparent rubber-modified styrenic resin

Publications (2)

Publication Number Publication Date
JP2005068406A JP2005068406A (en) 2005-03-17
JP4112528B2 true JP4112528B2 (en) 2008-07-02

Family

ID=34420990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197677A Expired - Fee Related JP4112528B2 (en) 2003-08-21 2004-07-05 Transparent rubber-modified styrene resin

Country Status (2)

Country Link
JP (1) JP4112528B2 (en)
TW (1) TWI257397B (en)

Also Published As

Publication number Publication date
TW200508256A (en) 2005-03-01
JP2005068406A (en) 2005-03-17
TWI257397B (en) 2006-07-01

Similar Documents

Publication Publication Date Title
JP3469865B2 (en) Transparent rubber-modified styrenic resin composition
US20130144013A1 (en) Process for Preparing High Impact Monovinylaromatic Polymers in the Presence of a Borane Complex
JP5876551B2 (en) Rubber-modified styrenic resin composition, method for producing the same, and molded product
JP3923359B2 (en) Thermoplastic styrene resin composition
TWI418590B (en) Transparent Rubber Modified Styrene Resin
JP4112528B2 (en) Transparent rubber-modified styrene resin
JP4833529B2 (en) Rubber-modified styrenic resin composition
TWI432461B (en) Styrene-based resin composition, method for preparing the same and products made therefrom
JP4204527B2 (en) Rubber-modified styrene resin composition for extrusion molding
TWI630232B (en) Thermoplastic resin composition and molding product thereof
JP4610966B2 (en) Heat-resistant rubber-modified styrenic resin composition
TW202024216A (en) Chain extended or branched copolymers of vinylidene aromatic monomer and unsaturated compounds with electrophilic groups
JPS62100551A (en) Thermoplastic resin composition
CN106867128B (en) Thermoplastic resin composition and molded article formed therefrom
JP2002020575A (en) Rubber modified aromatic vinyl based copolymer composition
JP3725440B2 (en) Transparent polystyrene resin composition
WO1998044034A1 (en) Conjugated diene polymer composition and rubber-reinforced styrene resin
JP2004339357A (en) Transparent rubber-modified polystyrene resin
JPH05194676A (en) Rubber modified aromatic vinyl-based copolymer resin and its production
JP2781335B2 (en) Rubber-modified styrenic resin composition and method for producing the same
JP2005179644A (en) Transparent rubber-modified polystyrene resin
CN1269898C (en) Transparent rubber modified styrene resins
JP2002179715A (en) Rubber modified aromatic vinyl-based copolymer resin composition and method for producing the same
TWI466935B (en) Thermoplastic resin composition and molding product
JP2003183474A (en) Transparent high-impact resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees