JP2781335B2 - Rubber-modified styrenic resin composition and method for producing the same - Google Patents

Rubber-modified styrenic resin composition and method for producing the same

Info

Publication number
JP2781335B2
JP2781335B2 JP5363794A JP5363794A JP2781335B2 JP 2781335 B2 JP2781335 B2 JP 2781335B2 JP 5363794 A JP5363794 A JP 5363794A JP 5363794 A JP5363794 A JP 5363794A JP 2781335 B2 JP2781335 B2 JP 2781335B2
Authority
JP
Japan
Prior art keywords
weight
parts
rubber
styrene
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5363794A
Other languages
Japanese (ja)
Other versions
JPH07258508A (en
Inventor
真祥 方
文峯 施
Original Assignee
奇美実業股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇美実業股▲分▼有限公司 filed Critical 奇美実業股▲分▼有限公司
Priority to JP5363794A priority Critical patent/JP2781335B2/en
Publication of JPH07258508A publication Critical patent/JPH07258508A/en
Application granted granted Critical
Publication of JP2781335B2 publication Critical patent/JP2781335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ゴム変性スチレン系樹
脂組成物及びその製造方法に関し、特に、その樹脂成形
物が面衝撃強度に優れ、且つ、該樹脂成形物を再利用し
てなる製品等も良好な強度及び物性を有する耐衝撃性ゴ
ム変性ポリスチレン系樹脂組成物及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber-modified styrenic resin composition and a method for producing the same, and more particularly, to a product obtained by reusing the resin molded product having excellent surface impact strength. The present invention also relates to an impact-resistant rubber-modified polystyrene resin composition having good strength and physical properties and a method for producing the same.

【0002】[0002]

【従来の技術】従来、スチレン系樹脂の耐衝撃性を向上
させようとするのに、ポリスチレンとゴム状重合体とを
混練したり、ゴム状重合体をスチレン系単量体に溶解し
てグラフト重合反応を行ったりすることにより、ゴム状
グラフト重合体(分散相)とポリスチレン(マトリック
スの連続相)の混合状態を得る。上記によるゴム変性ス
チレン系樹脂は耐衝撃性が比較的良好であるので、耐衝
撃性スチレン系樹脂(以下、HIPSと略する)とも言
われている。一般に、このようにして得られた耐衝撃性
スチレン系樹脂の衝撃強度を測定する方法としては、よ
く圧縮成形又は射出成形により得られた試験片によりア
イゾット衝撃強度試験を行う。上記アイゾット衝撃強度
はスチレン系樹脂の機械的性質の一種であるが、製品に
対しては面衝撃強度も非常に重要な評価のパラメータで
あるので、近年、当業者がポリスチレン系樹脂について
アイゾット衝撃強度を重視する他、その面衝撃強度も同
様に要求して注目している。
2. Description of the Related Art Conventionally, in order to improve the impact resistance of a styrene-based resin, polystyrene and a rubber-like polymer are kneaded, or the rubber-like polymer is dissolved in a styrene-based monomer and grafted. By performing a polymerization reaction or the like, a mixed state of the rubbery graft polymer (dispersed phase) and polystyrene (continuous matrix phase) is obtained. Since the rubber-modified styrene resin described above has relatively good impact resistance, it is also referred to as impact-resistant styrene resin (hereinafter abbreviated as HIPS). In general, as a method for measuring the impact strength of the impact-resistant styrene-based resin thus obtained, an Izod impact strength test is performed using a test piece obtained by compression molding or injection molding. Although the above Izod impact strength is a kind of mechanical property of styrene resin, surface impact strength is also a very important evaluation parameter for products. In addition to emphasizing, the surface impact strength is similarly requested and paid attention.

【0003】しかしながら、従来の技術例えば特開昭57
−172948号、特開昭57−170949号及び特開昭57−187346
号等には、HIPSの耐衝撃強度を増加する手段とし
て、スチレン系樹脂に有機ポリシロキサンを少量添加す
る方法などが提案されているが、十分な面衝撃強度の向
上が得られない。
[0003] However, conventional techniques such as Japanese Patent Laid-Open No.
-172948, JP-A-57-170949 and JP-A-57-187346
In Japanese Patent Application Laid-Open No. H11-163, as a means for increasing the impact resistance of HIPS, a method of adding a small amount of an organic polysiloxane to a styrene-based resin has been proposed, but sufficient improvement in surface impact strength cannot be obtained.

【0004】又、特公昭55−30525 号には、特殊なブタ
ジエンゴム(1,2 −ビニル結合15〜35%含有)をスチレ
ンに加えて重合反応を行うことにより、面衝撃強度良好
なHIPSを得る方法が開示されているが、この方法に
より製造したHIPSは、ゴムのグラフト率が 350%以
上と高く、流動性が悪いので、加工性が劣るという欠点
があり、その用途は限られている。
Japanese Patent Publication No. Sho 55-30525 discloses a HIPS having a good surface impact strength by adding a special butadiene rubber (containing 15 to 35% of 1,2-vinyl bond) to styrene to carry out a polymerization reaction. Although a method for obtaining the HIPS is disclosed, the HIPS produced by this method has a drawback that the rubber graft ratio is as high as 350% or more and the flowability is poor, so that the processability is poor, and its use is limited. .

【0005】更に、 USP第3945976 号、第4294937 号及
び第4451612 号等には、連続式塊状又は溶液重合でHI
PSを製造する工程において、色相、熱安定性に優れる
樹脂を得るために、通常、スチレン単量体を仕込む時、
フェノール系又はリン系の酸化防止剤、例えば、2,6 −
ジ−第三ブチル−4−メチルフェノール、オクタデシル
−3−(3,5 −ジ−第三ブチル−4−ヒドロキシ−フェ
ニル)プロピオネート、トリ(ノニルフェニル)ホスフ
ァイト等を少量添加する方法が記載されているが、この
加工方法によって、色相に優れる樹脂が得られるもの
の、HIPSの面衝撃強度にとっては少しも改善となっ
ていない。
Further, US Pat. Nos. 3,954,976, 4,294,937 and 4,451,612 include HI by continuous bulk or solution polymerization.
In the process of producing PS, hue, in order to obtain a resin having excellent thermal stability, usually when charging a styrene monomer,
Phenolic or phosphorus antioxidants, for example, 2,6-
A method is described in which di-tert-butyl-4-methylphenol, octadecyl-3- (3,5-di-tert-butyl-4-hydroxy-phenyl) propionate, tri (nonylphenyl) phosphite and the like are added in small amounts. However, although this processing method provides a resin excellent in hue, it does not improve HIPS surface impact strength at all.

【0006】一方、当業者にとって実際にHIPS製品
を大量生産する場合、不良品やスクラップが多少発生す
るのを免れず、コストを低減させるために、普通、上記
不良品やスクラップを改めて破砕して再生・成形する。
しかしながら、上記回収された樹脂は、その熱履歴及び
摩擦せん断応力の影響により製品の耐衝撃性は元来より
低下する。酸化防止剤を添加することによりアイゾット
衝撃強度を幾分かは補うことができるとは言え、面衝撃
強度の改善には効果が少ない。従って、現状では、HI
PS樹脂の製品には面衝撃強度がいま一つ足らないとい
う難点が存在している。
[0006] On the other hand, when a mass production of HIPS products is actually performed by those skilled in the art, inevitably some defective products and scraps are generated, and in order to reduce costs, the defective products and scraps are usually crushed again. Regenerate and mold.
However, the impact resistance of the recovered resin is originally reduced due to the influence of the heat history and the frictional shear stress. Although it is possible to supplement the Izod impact strength to some extent by adding an antioxidant, it is less effective in improving the surface impact strength. Therefore, at present, HI
The PS resin product has a disadvantage that the surface impact strength is still insufficient.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明は、樹
脂製品のみならず、その不良品やスクラップからその組
成物を回収して再生した製品の場合でも、良好な面衝撃
強度及び物性がある耐衝撃性ポリスチレン系樹脂組成物
及びその製造方法を提供することを目的とする。
Accordingly, the present invention provides good surface impact strength and physical properties not only for resin products but also for products reclaimed by recovering the composition from defective products or scraps. An object of the present invention is to provide an impact-resistant polystyrene resin composition and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
解決するために、ゴム粒径分布及び特定の化合物との間
の関係について一層鋭意研究した結果、スチレン系樹脂
に、分散粒子の分散係数が0.8 以上となるようにゴム状
重合体を分散させて得られるスチレン系樹脂に、特定比
率でチオジプロピオネート系化合物及び有機ポリシロキ
サンを添加することにより、樹脂が高度のアイゾット衝
撃強度及び引張強度を保有すると共に、その製品のみな
らず、これを回収して再生品としたものについても面衝
撃強度を一層向上し得ることを見出し、本発明を完成し
た。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made further studies on the relationship between the rubber particle size distribution and the specific compound, and as a result, it has been found that the dispersion of dispersed particles in a styrene resin is improved. By adding a thiodipropionate-based compound and an organic polysiloxane at a specific ratio to a styrene-based resin obtained by dispersing a rubber-like polymer so that the dispersion coefficient becomes 0.8 or more, the resin has a high Izod impact strength. It has been found that the surface impact strength can be further improved not only for the product but also for a recycled product as well as the product, and the present invention has been completed.

【0009】すなわち本発明は、(A) スチレン系樹脂98
〜80重量部と、該スチレン系樹脂中に分散するゴム状重
合体2〜20重量部とからなり、レーザー光散乱法で下記
式(I)により算出される前記ゴム状重合体の分散粒子
の粒径分布係数が 0.8以上を示すゴム変性スチレン系樹
脂 100重量部と、(B1)チオジプロピオネート系化合物0.
02〜1.0 重量部と、(B2)有機ポリシロキサン 0.002〜0.
8 重量部とからなることを特徴とするゴム変性スチレン
系樹脂組成物を提供するものである。
That is, the present invention relates to (A) a styrene resin 98
~ 80 parts by weight and 2 to 20 parts by weight of a rubbery polymer dispersed in the styrene resin, and the dispersion particles of the rubbery polymer calculated by the following formula (I) by a laser light scattering method 100 parts by weight of a rubber-modified styrenic resin having a particle size distribution coefficient of 0.8 or more, and (B 1 ) a thiodipropionate compound 0.
02 to 1.0 parts by weight, and (B 2 ) organopolysiloxane 0.002 to 0.
The present invention provides a rubber-modified styrenic resin composition comprising 8 parts by weight.

【0010】[0010]

【数1】 (Equation 1)

【0011】又、上記ゴム変性スチレン系樹脂組成物の
製造方法については、ゴム状重合体2〜20重量部をスチ
レン系単量体98〜80重量部に溶解し、90〜250 ℃で重合
反応を行い、スチレン系単量体の転化率が55重量%以上
に達した後、揮発分を除去するゴム変性スチレン系樹脂
組成物の製造方法において、前記ゴム状重合体と前記ス
チレン系単量体の合計100 重量部に対して、(B1)チオジ
プロピオネート系化合物0.02〜1.0 重量部を上記重合反
応工程の何れかにおいて添加し、且つ、前記ゴム状重合
体が粒子化する相反転前に、前記ゴム状重合体と前記ス
チレン系単量体の合計100 重量部に対して、(B2)有機ポ
リシロキサン0.002〜0.8 重量部を添加することを特徴
とする。
In the method for producing the rubber-modified styrenic resin composition, 2 to 20 parts by weight of a rubbery polymer is dissolved in 98 to 80 parts by weight of a styrene monomer and the polymerization reaction is carried out at 90 to 250 ° C. And after the conversion of the styrene-based monomer reaches 55% by weight or more, the method for producing a rubber-modified styrene-based resin composition in which volatile components are removed. 0.02 to 1.0 part by weight of (B 1 ) thiodipropionate-based compound in any of the above polymerization reaction steps, and before the phase inversion where the rubbery polymer becomes particles, based on 100 parts by weight of to the to the total of 100 parts by weight of the rubbery polymer and the styrene monomer, characterized by adding (B 2) organopolysiloxanes 0.002 to 0.8 parts by weight.

【0012】本発明でいうゴム変性スチレン系樹脂は、
ゴム状重合体をビニル基芳香族単量体に溶解させ、塊
状、溶液、或いは、溶液−懸濁又は塊状−懸濁二段式等
の重合方法により重合反応を行って得るものを指す。
The rubber-modified styrenic resin according to the present invention comprises:
It is obtained by dissolving a rubber-like polymer in a vinyl-based aromatic monomer and performing a polymerization reaction by a polymerization method such as bulk, solution, or solution-suspension or bulk-suspension two-stage system.

【0013】本発明において(A) のゴム変性スチレン系
樹脂を構成するビニル芳香族単量体としては、例えば、
スチレン、o−メチルスチレン、m−メチルスチレン、
p−メチルスチレン、2,4 −ジメチルスチレン、エチル
スチレン、p−第3ブチルスチレン等のアルキル置換の
スチレン、α−メチルスチレン、α−メチル−p−メチ
ルスチレン等のα−アルキル置換のスチレン、ブロモス
チレン、ジブロモスチレン、及び2,4,6 −トリブロモス
チレン等が挙げられ、これらの一種又は二種以上が用い
られる。上記スチレン系単量体に、さらに共重合可能な
他の単量体を添加してもよい。この場合の共重合可能な
他の単量体としては、例えば、不飽和ニトリル類(例え
ばアクリロニトリル)、アクリレート類(例えば、メチ
ルメタクリレート、ブチルアクリレート)、アクリル酸
類、無水マレイン酸、マレイミド類(例えばN−フェニ
ルマレイミド)等の単量体が挙げられる。
In the present invention, the vinyl aromatic monomer constituting the rubber-modified styrenic resin (A) includes, for example,
Styrene, o-methylstyrene, m-methylstyrene,
alkyl-substituted styrenes such as p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, α-methylstyrene, α-alkyl-substituted styrenes such as α-methyl-p-methylstyrene, Bromostyrene, dibromostyrene, 2,4,6-tribromostyrene and the like can be mentioned, and one or more of these are used. Other copolymerizable monomers may be added to the styrene monomer. In this case, other copolymerizable monomers include, for example, unsaturated nitriles (eg, acrylonitrile), acrylates (eg, methyl methacrylate, butyl acrylate), acrylic acids, maleic anhydride, maleimides (eg, N -Phenylmaleimide) and the like.

【0014】本発明に用いられるゴム重合体の種類は特
に制限はない。従来のHIPS系樹脂に用いられるゴム
が使用できる。例えば、天然ゴム、ポリブタジエン、ポ
リイソプレン、スチレン−ブタジエンゴム状重合体、ス
チレン−ポリイソプレンゴム状重合体、ブチルゴム、エ
チレン−プロピレンゴム等が挙げられ、これらの一種又
は二種以上を使用することができる。その内、ポリブタ
ジエンゴムはローシスポリブタジエンとハイシスポリブ
タジエンを含む。
The type of the rubber polymer used in the present invention is not particularly limited. Rubber used in conventional HIPS resins can be used. For example, natural rubber, polybutadiene, polyisoprene, styrene-butadiene rubber-like polymer, styrene-polyisoprene rubber-like polymer, butyl rubber, ethylene-propylene rubber, and the like, and one or more of these may be used. it can. Among them, polybutadiene rubber includes low cis polybutadiene and high cis polybutadiene.

【0015】本発明におけるHIPS樹脂 100重量部中
のゴム含有量は2〜20重量部であり、特に3〜15重量部
がより好ましい。上記ゴムの量が2重量部未満の場合で
は、面衝撃強度が不足し、20重量部を越える場合では、
流動性が低下し、引張強度も低下することもある。
In the present invention, the rubber content in 100 parts by weight of the HIPS resin is 2 to 20 parts by weight, particularly preferably 3 to 15 parts by weight. When the amount of the rubber is less than 2 parts by weight, the surface impact strength is insufficient, and when the amount exceeds 20 parts by weight,
The fluidity is reduced, and the tensile strength may be reduced.

【0016】(A) のゴム変性スチレン系樹脂を製造する
工程を次に示す。即ち、約2〜20重量部のゴム状重合体
をスチレン系単量体98〜80重量部に溶解して重合させる
ことにより、粒子状であってスチレン系重合体をグラフ
トしたゴム状グラフト重合体と、スチレン樹脂のマトリ
ックス連続相との混合状態とさせる。上記ゴム状グラフ
ト重合体の平均粒径は0.5 〜10μm の範囲で、0.6 〜5
μm の範囲が好ましく、特に 0.7〜3.0 μm の範囲がよ
り好ましい。ここで言うゴム粒子の平均粒径(Dave
は、レーザー光散乱法(LASER scattering)に基づいて各
粒子径(Di)に対応する粒子の数(ni)を測定した
後、ザウタ平均粒径(Sauter Mean Diamter)という平均
式により得られるものである。
The step of producing the rubber-modified styrenic resin (A) is as follows. That is, by dissolving about 2 to 20 parts by weight of a rubbery polymer in 98 to 80 parts by weight of a styrene monomer and polymerizing the rubbery polymer, the rubbery graft polymer in the form of particles and grafted with a styrene polymer is obtained. And a styrene resin matrix continuous phase. The average particle size of the rubbery graft polymer is in the range of 0.5 to 10 μm, and 0.6 to 5 μm.
The range of μm is preferable, and the range of 0.7 to 3.0 μm is more preferable. Average particle size of rubber particles (D ave )
Is obtained by measuring the number (ni) of particles corresponding to each particle diameter (Di) based on a laser light scattering method (LASER scattering), and then obtaining the average equation called Sauter Mean Diamter. is there.

【0017】[0017]

【数2】 (Equation 2)

【0018】本発明のHIPS樹脂(A) におけるグラフ
トゴム粒子の粒径分布係数は 0.8以上であり、好ましく
は 0.9より大きく、更に好ましくは 0.9〜2.8 の範囲で
ある。粒径分布係数が 0.8未満の場合では、HIPS樹
脂を回収・再利用してなるものは面衝撃強度が劣り、粒
径の分布係数が 2.8を越える場合では、HIPS樹脂の
引張強度が低下してなる。
The particle size distribution coefficient of the graft rubber particles in the HIPS resin (A) of the present invention is 0.8 or more, preferably larger than 0.9, and more preferably 0.9 to 2.8. When the particle size distribution coefficient is less than 0.8, the surface impact strength of the one obtained by collecting and reusing the HIPS resin is inferior, and when the particle size distribution coefficient exceeds 2.8, the tensile strength of the HIPS resin decreases. Become.

【0019】前記粒径分布係数は、更に、重合反応の攪
拌速度、チオジプロピオネート系化合物(B1)と有機ポリ
シロキサン(B2)とを添加する量及び時期、反応温度等を
調整することにより得られる。
The particle size distribution coefficient is further adjusted by adjusting the stirring speed of the polymerization reaction, the amount and timing of adding the thiodipropionate compound (B 1 ) and the organic polysiloxane (B 2 ), the reaction temperature and the like. It can be obtained by:

【0020】本発明におけるゴム状重合体粒子の粒径分
布係数は、前記レーザー光散乱法(LASER scattering)
に基づいて測定したものであり、その定義を下記の式
(I)のように示す。
In the present invention, the particle size distribution coefficient of the rubber-like polymer particles is determined by the laser light scattering method (LASER scattering).
And its definition is shown as the following formula (I).

【0021】[0021]

【数3】 (Equation 3)

【0022】〔但し、D(V,0.1 )はゴムの粒径を横
軸とし、粒子の累積重量%を縦軸とした小粒径から大粒
径までの累積分布曲線において、累積重量%が10%に対
応するゴム粒径であり、D(V,0.5 )はゴムの粒径を
横軸とし、粒子の累積重量%を縦軸とした小粒径から大
粒径までの累積分布曲線において、累積重量%が50%に
対応するゴム粒径であり、D(V,0.9 )はゴムの粒径
を横軸とし、粒子の累積重量%を縦軸とした小粒径から
大粒径までの累積分布曲線において、累積重量%が90%
に対応するゴム粒径である。〕。
[Where D (V, 0.1) is the cumulative distribution curve from small particle size to large particle size, where the horizontal axis is the particle diameter of rubber and the vertical axis is the cumulative weight% of the rubber. D (V, 0.5) is the cumulative distribution curve from small particle size to large particle size with D (V, 0.5) being the horizontal axis of the rubber particle diameter and the vertical axis being the cumulative weight% of the particles. , D (V, 0.9) is the rubber particle diameter on the horizontal axis and the cumulative weight% of the particle is on the vertical axis, from small particle diameter to large particle diameter. In the cumulative distribution curve, the cumulative weight% is 90%
Is the rubber particle size corresponding to ].

【0023】前記レーザー光散乱測定方法は、0.1 gの
試料をメチルエチルケトン10ml中に十分溶解するまで振
動したのち、レーザー光散乱装置により、焦点を100mm
として測定を行うことにより、粒径分布図を得るか、或
いは 1.0gの試料をメチルエチルケトン10mlに十分溶解
するまでに振動したのち、レーザー光散乱装置により、
焦点を45mmとして測定を行うことにより、粒径分布図を
得る。これより上記の式からゴム状重合体粒子の粒径分
布係数を求める。即ち、粒径分布係数の数値が小さけれ
ば、粒径分布が狭くなり、逆に大きけれは、粒径分布が
広くなる。
In the laser light scattering measurement method, a sample of 0.1 g was vibrated until it was sufficiently dissolved in 10 ml of methyl ethyl ketone, and then the focal point was set to 100 mm by a laser light scattering device.
As a result, a particle size distribution map is obtained, or a sample of 1.0 g is vibrated until sufficiently dissolved in 10 ml of methyl ethyl ketone, and then a laser light scattering device is used.
A particle size distribution diagram is obtained by performing the measurement with the focal point set to 45 mm. From this, the particle size distribution coefficient of the rubbery polymer particles is determined from the above equation. That is, if the numerical value of the particle size distribution coefficient is small, the particle size distribution becomes narrow, and if it is large, the particle size distribution becomes wide.

【0024】本発明に使用されるチオジプロピオネート
系化合物(B1)としては、具体的に言えば、ジステアリル
チオジプロピオネート(DSTDPと称する)、ジラウ
リルチオジプロピオネート、ジトリデシルチオジプロピ
オネート、ジミリスチルチオジプロピオネート等が挙げ
られる。その使用量はHIPS樹脂(A) 100 重量部に対
して0.02〜1.0 重量部であり、0.04〜0.4 重量部が好ま
しい。チオジプロピオネート系化合物(B1)の添加量が0.
02重量部未満の場合では、面衝撃強度の向上効果が少な
く、逆に、その添加量が 1.0重量部を越える場合では、
面衝撃強度が劣るばかりでなく、ゴムの粒径分布係数が
3.0以上にして、引張強度を更に低下させる。
Specific examples of the thiodipropionate compound (B 1 ) used in the present invention include distearyl thiodipropionate (referred to as DSTDP), dilauryl thiodipropionate, and ditridecyl thiopionate. Dipropionate, dimyristylthiodipropionate and the like can be mentioned. The amount used is 0.02 to 1.0 part by weight, preferably 0.04 to 0.4 part by weight, based on 100 parts by weight of the HIPS resin (A). The amount of the thiodipropionate-based compound (B 1 ) added is 0.
When the amount is less than 02 parts by weight, the effect of improving the surface impact strength is small, and when the amount exceeds 1.0 part by weight,
Not only is the surface impact strength inferior, but also the rubber particle size distribution coefficient
If it is 3.0 or more, the tensile strength is further reduced.

【0025】本発明に使用される有機ポリシロキサン(B
2)としては、下記の構造式により示されるものとする。
The organic polysiloxane (B) used in the present invention
2 ) is represented by the following structural formula.

【0026】[0026]

【化1】 Embedded image

【0027】〔但し、m 、n は整数であり、R1〜R4はア
ルキル又はアリール基である。〕上記有機ポリシロキサ
ン(B2)の25℃における動的粘度は10〜10,000センチスト
ークスで、特に20〜2,000 センチストークスがより好ま
しい。HIPS樹脂(A)100 重量部に対し、上記有機ポ
リシロキサン(B2)の添加量は 0.002〜0.8 重量部の範囲
で、特に0.04〜0.3 重量部が好ましい。上記有機ポリシ
ロキサン(B2)の添加量が0.002 重量部未満の場合では、
樹脂の面衝撃強度が劣り、逆に、その添加量が0.8 重量
部を越える場合では、HIPS樹脂の引張強度が低下す
るし、樹脂成形品の二次加工(例えば、化学接着性、印
刷性、塗装性等)を施し難くなる。
[Where m and n are integers, and R 1 to R 4 are an alkyl or aryl group. ] Dynamic viscosity at 25 ° C. of the organopolysiloxane (B 2) is 10 to 10,000 centistokes, especially 20 to 2,000 centistokes, more preferably. The amount of the organic polysiloxane (B 2 ) to be added is in the range of 0.002 to 0.8 parts by weight, preferably 0.04 to 0.3 parts by weight, based on 100 parts by weight of the HIPS resin (A). When the amount of the organic polysiloxane (B 2 ) is less than 0.002 parts by weight,
If the surface impact strength of the resin is inferior, and if the addition amount exceeds 0.8 parts by weight, the tensile strength of the HIPS resin decreases and the secondary processing of the resin molded product (for example, chemical adhesion, printability, Paintability).

【0028】本発明に有機ポリシロキサン(B2)を添加す
る時期としては、HIPS樹脂の重合反応時において、
ゴム状重合体が粒子化する相反転前に添加しなければな
らず、好ましくは、重合反応におけるゴム成分が相反転
をまだ完成せず、且つ、スチレン系単量体の転化率が12
重量%に達する前とする。ここで「相反転」とは、ゴム
とスチレン系単量体との混合溶液が重合の最初の段階に
おいてはゴム相は連続相の状態で存在しているが、スチ
レン系単量体の転化率が次第に増加し、且つ、反応系も
攪拌されるに伴って、ついにゴム成分が逆にスチレン系
単量体及びその重合体に囲まれて、分散粒子の状態(不
連続相)になり、他方、スチレン系単量体及びその重合
体が連続相に逆転する現象を言う。なお、本発明では、
樹脂の面衝撃強度を著しく向上させるためには、チオジ
プロピオネート系化合物(B1)が重合反応工程中に添加し
て、且つ、及び有機ポリシロキサン(B2)が重合反応の相
反転前に添加しなければならない。又、必要に応じて、
反応速度やゴムのグラフト状態をも適切に調整し、更に
は、適当な攪拌によりゴムの粒径分布係数をコントロー
ルすることができる。上記チオジプロピオネート系化合
物(B1)及び有機ポリシロキサン(B2)のいずれが欠けて
も、十分な面衝撃強度を得ることができない。
The timing of adding the organic polysiloxane (B 2 ) to the present invention is as follows during the polymerization reaction of the HIPS resin.
It must be added before the phase inversion of the rubbery polymer into particles. Preferably, the rubber component in the polymerization reaction has not yet completed phase inversion, and the conversion of the styrene monomer is 12%.
Before reaching the weight%. Here, “phase inversion” means that at the initial stage of polymerization of a mixed solution of rubber and styrene monomer, the rubber phase exists in a continuous phase, but the conversion of styrene monomer is Gradually increases, and as the reaction system is agitated, the rubber component is finally surrounded by the styrene-based monomer and its polymer, and becomes a dispersed particle state (discontinuous phase). , A phenomenon in which a styrene monomer and a polymer thereof are reversed to a continuous phase. In the present invention,
In order to significantly improve the surface impact strength of the resin, the thiodipropionate compound (B 1 ) is added during the polymerization reaction step, and the organic polysiloxane (B 2 ) is added before the phase inversion of the polymerization reaction. Must be added. Also, if necessary
The reaction rate and the graft state of the rubber can be appropriately adjusted, and the particle size distribution coefficient of the rubber can be controlled by appropriate stirring. If either the thiodipropionate-based compound (B 1 ) or the organic polysiloxane (B 2 ) is missing, sufficient surface impact strength cannot be obtained.

【0029】本発明で使用するチオジプロピオネート系
化合物(B1)及び有機ポリシロキサン(B2)はそれぞれ計量
ポンプで反応槽へ仕込むことができる。又、(B1)又は(B
2)を、反応単量体及び/又は溶媒とゴム状重合体とから
なる溶液に添加した後、反応槽に仕込んでもよい。特
に、良好な面衝撃強度を得るために、有機ポリシロキサ
ン(B2)の添加時期は重合反応の相反転前に行わなければ
ならない。従って、有機ポリシロキサン(B2)の添加方法
は特別に考慮する必要がある。例えば、プラグフロー式
反応槽を相反転ゾーンとする場合には、(B2)を単量体及
び/又は溶媒とゴムに入れて混合してからなる仕込混合
物を前記反応槽に添加してもよいし(その添加時期を単
量体の転化率が0重量%と称する)、単量体の転化率が
所定の値に達する反応ゾーンに添加してもよい。一方、
完全混合式の反応槽を相反転ゾーンとする場合には、(B
2)を単量体及び/又は溶媒とゴムに入れて混合してから
なる仕込混合物を前記反応槽に添加しなければならない
(その添加時期を単量体の転化率が0重量%と称す
る)。
The thiodipropionate compound (B 1 ) and the organic polysiloxane (B 2 ) used in the present invention can each be charged into a reaction tank by a metering pump. In addition, (B 1 ) or (B
2 ) may be added to a reaction monomer and / or a solution comprising a solvent and a rubbery polymer, and then charged into a reaction tank. In particular, in order to obtain good surface impact strength, the addition time of the organic polysiloxane (B 2 ) must be performed before the phase inversion of the polymerization reaction. Therefore, the method of adding the organic polysiloxane (B 2 ) must be specially considered. For example, when a plug flow type reaction vessel is used as a phase inversion zone, a charged mixture obtained by mixing (B 2 ) with a monomer and / or a solvent and rubber is added to the reaction vessel. It may be added (the timing of addition is referred to as the conversion of the monomer being 0% by weight), or may be added to the reaction zone where the conversion of the monomer reaches a predetermined value. on the other hand,
When using a complete mixing type reaction tank as the phase inversion zone, (B
2 ) The monomer and / or solvent and a mixture prepared by mixing the rubber in a rubber must be added to the reaction vessel (the timing of the addition is referred to as the conversion of the monomer being 0% by weight). .

【0030】本発明のHIPS樹脂の製造方法は、塊
状、溶液、或いは、溶液−懸濁又は塊状−懸濁等の重合
方法により重合反応を行うことができるが、好ましくは
塊状又は溶液重合を使用する。その重合温度は、90〜25
0 ℃が好ましく、特に95〜210℃がより好ましい。本発
明に用いる反応槽は限定されない。例えば、完全混合式
又はプラグ式のいずれかの反応槽又はそれらの組合せを
使用してもよく、或いは、反応槽を数個並列又は直列し
て使用してもよい。また上記反応槽は攪拌器付きのもの
でもよい。攪拌器が付く時はその攪拌速度は5〜55rpm
であり、特に8〜45rpm がより好適である。なお、反応
物を仕込む時、或いは、反応進行中において、必要に応
じて分子量調整剤、重合開始剤、酸化防止剤、可塑剤、
滑剤、溶媒等を添加してもよい。重合反応が相反転まで
に達した後、引き続き、スチレン系単量体の転化率が55
重量%以上、好ましくは70重量%以上になるように反応
させるが、その後、重合体溶液を予熱器に送り、 180〜
300 ℃までに加熱し、真空脱気槽に排出して未反応の残
留単量体、溶媒及びその他の揮発分を除去させる。又、
回収された溶媒、単量体等は適当な割合で反応槽に仕込
んで使用する。かかる脱気過程により得られた重合体に
おける残留揮発分は1重量%以下にして、通常、ギアポ
ンプにより連続的に押出し、粒状の樹脂を製造する。
In the method for producing the HIPS resin of the present invention, the polymerization reaction can be carried out by a polymerization method such as bulk, solution, or solution-suspension or bulk-suspension. Preferably, bulk or solution polymerization is used. I do. The polymerization temperature is 90-25
0 ° C is preferable, and particularly preferably 95 to 210 ° C. The reaction tank used in the present invention is not limited. For example, either a completely mixed or plug-type reactor or a combination thereof may be used, or several reactors may be used in parallel or in series. Further, the reaction tank may be equipped with a stirrer. When a stirrer is attached, the stirring speed is 5 to 55 rpm
In particular, 8-45 rpm is more preferable. Incidentally, when charging the reactants, or during the progress of the reaction, if necessary, a molecular weight modifier, a polymerization initiator, an antioxidant, a plasticizer,
A lubricant, a solvent and the like may be added. After the polymerization reaction reached phase inversion, the conversion of the styrenic monomer was
%, Preferably 70% by weight or more. Thereafter, the polymer solution was sent to a preheater,
Heat to 300 ° C and discharge to a vacuum degassing tank to remove unreacted residual monomers, solvents and other volatiles. or,
The recovered solvent, monomer and the like are used by charging them to a reaction tank at an appropriate ratio. The residual volatile matter in the polymer obtained by the degassing process is set to 1% by weight or less, and usually extruded continuously by a gear pump to produce a granular resin.

【0031】本発明に適用する分子量調整剤としては、
n−ドデシルメルカプタン、α−メチルスチレン二量
体、t−ドデシルメルカプタン、1−フェニルブチル−
2−フルオレン、ジペンテン、四塩化炭素等、メルカプ
タン、テルペン類、ハロゲン化炭化水素等が挙げられ
る。
As the molecular weight modifier applied to the present invention,
n-dodecyl mercaptan, α-methylstyrene dimer, t-dodecyl mercaptan, 1-phenylbutyl-
Examples include 2-fluorene, dipentene, carbon tetrachloride and the like, mercaptans, terpenes, halogenated hydrocarbons and the like.

【0032】又、本発明に適用する重合開始剤として
は、1,1 −ビス(t−ブチルパーオキシ)シクロヘキサ
ン等のパーオキシケタール類、ジクミルパーオキサイ
ド、ジ−t−ブチルパーオキサイド等のジアルキルパー
オキサイド類、ジベンゾイルパーオキサイド等のジアシ
ルパーオキサイド類、ジミリスチルパーオキシジカーボ
ネート等のパーオキシジカーボネート、t−ブチルパー
オキシイソプロピルカーボネート等のパーオキシエステ
ル類、シクロヘキサノンパーオキサイド等のケトンパー
オキサイド類、p−メンタハイドロパーオキサイド等の
ハイドロパーオキサイド類等が挙げられ、上記重合開始
剤の使用量は普通 0.6重量%以下を使用する。
Examples of the polymerization initiator applicable to the present invention include peroxyketals such as 1,1-bis (t-butylperoxy) cyclohexane, dicumyl peroxide and di-t-butyl peroxide. Dialkyl peroxides, diacyl peroxides such as dibenzoyl peroxide, peroxy dicarbonates such as dimyristyl peroxy dicarbonate, peroxy esters such as t-butyl peroxy isopropyl carbonate, ketone peroxides such as cyclohexanone peroxide. Examples thereof include oxides and hydroperoxides such as p-mentha hydroperoxide. The amount of the polymerization initiator is usually 0.6% by weight or less.

【0033】本発明に用いられる可塑剤としては、鉱
油、ポリブテン等が挙げられる。又、用いられる滑剤と
しては、ステアリン酸、亜鉛ステアレート、カルシウム
ステアレート、ステアリルアミド、N,N'−エチレン−ビ
ス(ステアリルアミド)等が挙げられる。酸化防止剤と
しては、2,6 −ジ−t−ブチル−4−メチルフェノー
ル、オクタデシル−3−(3,5 −ジ−t−ブチル−4−
ヒドロキシ−フェニル)プロピオネート等のフェノール
系化合物、及びトリス(ノニルフェニル)ホスファイ
ト、トリ(2,4 −ジ−t−ブチルフェニル)ホスファイ
ト等のリン系化合物が挙げられる。不活性溶媒として
は、エチルベンゼン、トルエン、キシレン、メチルエチ
ルケトン、ベンゼン、イソプロピルベンゼン等が挙げら
れ、その添加量は必要に応じて最高40重量%まで添加可
能である。
The plasticizer used in the present invention includes mineral oil, polybutene and the like. Examples of the lubricant used include stearic acid, zinc stearate, calcium stearate, stearylamide, N, N'-ethylene-bis (stearylamide) and the like. Antioxidants include 2,6-di-t-butyl-4-methylphenol, octadecyl-3- (3,5-di-t-butyl-4-
Examples include phenol compounds such as (hydroxy-phenyl) propionate and phosphorus compounds such as tris (nonylphenyl) phosphite and tri (2,4-di-t-butylphenyl) phosphite. Examples of the inert solvent include ethylbenzene, toluene, xylene, methylethylketone, benzene, isopropylbenzene, and the like, and the amount of addition can be up to 40% by weight as needed.

【0034】更に、本発明のHIPS樹脂においては、
必要に応じ、滑剤、酸化防止剤、可塑剤、難燃剤、光安
定剤、着色剤、ガラス繊維、無機充填剤等を添加しても
よく、なお、その他の重合体、例えばPPO(ポリフェ
ニレンオキシド樹脂)、ナイロン−11、ナイロン−12、
ナイロン−6、PC(ポリカーボネート樹脂)、ABS
樹脂、AS樹脂、PE(ポリエステル樹脂)、PP(ポ
リプロピレン樹脂)等と合わせて使用してもよい。
Further, in the HIPS resin of the present invention,
If necessary, lubricants, antioxidants, plasticizers, flame retardants, light stabilizers, coloring agents, glass fibers, inorganic fillers, etc. may be added. Other polymers such as PPO (polyphenylene oxide resin) ), Nylon-11, nylon-12,
Nylon-6, PC (polycarbonate resin), ABS
You may use together with resin, AS resin, PE (polyester resin), PP (polypropylene resin), etc.

【0035】[0035]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明の範囲はこれらの実施例に限定されるもので
はない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the scope of the present invention is not limited to these examples.

【0036】実施例1 本実施例の処方は下記のように示される。 (成分) (使用量) スチレン 83.0 重量部 エチルベンゼン 10.0 重量部 ポリブタジエン 6.0 重量部 DSTDP 0.2 重量部 ポリジメチルシロキサン 0.004 重量部 重合開始剤(Trigonox D-E50) 0.02 重量部 (但し、Trigonox D-E50は2,2-ジ(t−ブチルパーオキ
シ)ブタンである。)。上記処方を40リットル/hrの流
量で攪拌機付の第一反応槽(当該反応槽は容積が100 リ
ットルで、温度は 100〜120 ℃の範囲とし、攪拌速度が
40rpm である。)に連続的に仕込んだ。スチレン単量体
の転化率が14重量%の程度に達した際、相反転が生じ
た。第一反応槽の出口の転化率はほぼ22重量%になり、
その後、それを後続の反応槽に送って重合反応を行いな
がら、重合温度を 125〜220 ℃の範囲に制御し、重合体
の転化率が80重量%程度に達した後、その重合体溶液を
脱気槽に送って揮発分を除去し、それから、ギアポンプ
を用いて、ダイより樹脂ペレットを製造した。
Example 1 The formulation of this example is shown below. (Components) (Amount) Styrene 83.0 parts by weight Ethylbenzene 10.0 parts by weight Polybutadiene 6.0 parts by weight DSTDP 0.2 parts by weight Polydimethylsiloxane 0.004 parts by weight Polymerization initiator (Trigonox D-E50) 0.02 parts by weight (However, Trigonox D-E50 is 2 parts by weight) , 2-di (t-butylperoxy) butane). The above formulation was stirred at a flow rate of 40 l / hr in a first reaction vessel equipped with a stirrer (the reaction vessel had a volume of 100 liters, a temperature in the range of 100 to 120 ° C, and a stirring speed of
40 rpm. ). Phase inversion occurred when the conversion of the styrene monomer reached about 14% by weight. The conversion at the outlet of the first reactor is almost 22% by weight,
After that, it is sent to the subsequent reaction tank to carry out the polymerization reaction, the polymerization temperature is controlled in the range of 125 to 220 ° C., and after the conversion of the polymer reaches about 80% by weight, the polymer solution is cooled. It was sent to a degassing tank to remove volatile components, and then a resin pump was produced from a die using a gear pump.

【0037】得られたペレットは下記の方法により物性
を測定した。 アイゾット衝撃強度:ASTM D−256 引張強度:ASTM D−638 粒径分布係数:レーザー光散乱法 面衝撃強度:ASTM D−3763の落球衝撃試験に
よって測定した。
The physical properties of the obtained pellets were measured by the following methods. Izod impact strength: ASTM D-256 Tensile strength: ASTM D-638 Particle size distribution coefficient: Laser light scattering method Surface impact strength: Measured by a falling ball impact test of ASTM D-3763.

【0038】回収・再生品の面衝撃強度:HIPS樹脂
ペレットを二軸スクリューの押出機で2回繰り返して押
出した後、射出して試験片を成形し、試験片の面衝撃強
度を測定した。
Surface Impact Strength of Recovered / Recycled Product: A HIPS resin pellet was repeatedly extruded twice with a twin screw extruder, then injected to form a test piece, and the surface impact strength of the test piece was measured.

【0039】(実施例2)実施例2は実施例1と同様に
ペレットを製造し、試験を行ったが、反応槽へのポリジ
メチルシロキサン及びDSTDPの添加時期は、スチレ
ン転化率が4重量%に達した際であり、又、添加量はそ
れぞれDSTDP 0.05 重量部に、ポリジメチルシロキ
サン0.25重量部に換えた。
Example 2 In Example 2, pellets were produced and tested in the same manner as in Example 1. The timing of adding polydimethylsiloxane and DSTDP to the reaction tank was such that the styrene conversion was 4% by weight. , And the amounts of addition were respectively changed to 0.05 parts by weight of DSTDP and 0.25 parts by weight of polydimethylsiloxane.

【0040】(実施例3)反応槽にポリジメチルシロキ
サン及びDSTDPを加える時期をスチレン転化率が8
重量%に達した際に、又、DSTDPの添加量を 0.6重
量部、ポリジメチルシロキサンの添加量を 0.5重量部に
換える他、実施例1と同様にペレットを製造し、試験を
行った。
Example 3 The time when polydimethylsiloxane and DSTDP were added to the reaction tank was determined when the styrene conversion rate was 8%.
When the weight reached%, the amount of DSTDP was changed to 0.6 part by weight and the amount of polydimethylsiloxane was changed to 0.5 part by weight, and pellets were produced and tested in the same manner as in Example 1.

【0041】(比較例1)反応槽にポリジメチルシロキ
サン及びDSTDPを加える時期をスチレン転化率が10
重量%に達した際に、又、DSTDPの添加量を1.2 重
量部、ポリジメチルシロキサンの添加量を 0.1重量部に
換える他、実施例1と同様にペレットを製造し、試験を
行った。
(Comparative Example 1) The timing at which polydimethylsiloxane and DSTDP were added to the reaction tank was determined when the styrene conversion rate was 10%.
When the weight reached%, the amount of DSTDP was changed to 1.2 parts by weight and the amount of polydimethylsiloxane was changed to 0.1 parts by weight. In addition, pellets were produced and tested in the same manner as in Example 1.

【0042】(比較例2−1)反応槽にポリジメチルシ
ロキサン及びDSTDPを加える時期をスチレン転化率
が80重量%に達した際に、又、DSTDPの添加量を
0.4重量部、ポリジメチルシロキサンの添加量を0重量
部に換える他、実施例1と同様にペレットを製造し、試
験を行った。
(Comparative Example 2-1) The time when polydimethylsiloxane and DSTDP were added to the reaction tank was determined when the styrene conversion reached 80% by weight and the amount of DSTDP added was changed.
Pellets were produced and tested in the same manner as in Example 1, except that 0.4 parts by weight and the amount of polydimethylsiloxane added were changed to 0 parts by weight.

【0043】(比較例2−2)DSTDPの添加量を0
重量部、ポリジメチルポリシロキサンの添加量を1.2重
量部に換える他、比較例2−1と同様にペレットを製造
し、試験を行った。
(Comparative Example 2-2) The amount of DSTDP added was 0
Pellets were produced and tested in the same manner as in Comparative Example 2-1 except that the amount by weight of polydimethylpolysiloxane was changed to 1.2 parts by weight.

【0044】(実施例4)本実施例の処方は下記に示し
たものとする。
Example 4 The prescription of this example is as shown below.

【0045】 (成分) (使用量) スチレン 83.0 重量部 エチルベンゼン 8.0 重量部 ポリブタジエン 8.0 重量部 DSTDP 0.15重量部 ポリジメチルシロキサン 0.4 重量部 重合開始剤(Tx 29A) 0.01 重量部 (但し、Tx 29A は 1,1−t−ブチルパーオキシ−3,3,5
−トリメチルシクロヘキサンである。)上記処方を36リ
ットル/hrの流量で攪拌機付の第一反応槽(当該反応
槽は体積が100 リットルで、温度を 105〜130 ℃の範囲
とし、攪拌速度が30rpm である。)に連続的に仕込ん
だ。スチレン単量体の転化率が17重量%の程度に達した
際、相反転が生じた。第一反応槽の出口の転化率は約28
重量%になり、その後、それを後続の反応槽に送って重
合反応を行わせながら、重合温度を 135〜220 ℃の範囲
に制御し、重合体の転化率が87重量%に達した後、その
重合体溶液を脱気槽に送って揮発分を除去する処理を行
った。次には実施例1と同様にペレットを製造し、試験
を行った。
(Component) (Amount) Styrene 83.0 parts by weight Ethylbenzene 8.0 parts by weight Polybutadiene 8.0 parts by weight DSTDP 0.15 parts by weight Polydimethylsiloxane 0.4 parts by weight Polymerization initiator (Tx 29A) 0.01 parts by weight (where Tx 29A is 1,5 parts by weight) 1-t-butylperoxy-3,3,5
-Trimethylcyclohexane. ) The above formulation is continuously fed into a first reactor with a stirrer at a flow rate of 36 l / hr (the reactor has a volume of 100 l, a temperature in the range of 105-130 ° C and a stirring speed of 30 rpm). Was charged. Phase inversion occurred when the conversion of the styrene monomer reached about 17% by weight. The conversion at the outlet of the first reactor is about 28
Wt.%, And then send it to the subsequent reactor to carry out the polymerization reaction, while controlling the polymerization temperature in the range of 135-220 ° C., and after the conversion of the polymer reaches 87 wt. The polymer solution was sent to a degassing tank to remove volatile components. Next, pellets were manufactured and tested in the same manner as in Example 1.

【0046】(実施例5)反応槽にポリジメチルシロキ
サン及びDSTDPを加える時期をスチレン転化率が10
重量%に達した際に、又、DSTDPの添加量を 0.4重
量部に、ポリジメチルシロキサンの添加量を 0.1重量部
に換える他、実施例4と同様にペレットを製造し、試験
を行った。
(Example 5) The time when polydimethylsiloxane and DSTDP were added to the reaction tank was determined when the styrene conversion rate was 10%.
When the amount of DSTDP reached 0.4% by weight, the amount of DSTDP was changed to 0.4 part by weight and the amount of polydimethylsiloxane was changed to 0.1 part by weight.

【0047】(実施例6)反応槽にDSTDPを加える
時期をスチレン転化率が55重量%に達した際に、又、D
STDPの添加量を 0.2重量部、ポリジメチルシロキサ
ンの添加量を0.2重量部、第一反応槽の攪拌速度は30rpm
に換える他、実施例1と同様にペレットを製造し、試
験を行った。
Example 6 DSTDP was added to the reactor when the styrene conversion reached 55% by weight.
The addition amount of STDP was 0.2 parts by weight, the addition amount of polydimethylsiloxane was 0.2 parts by weight, and the stirring speed of the first reaction tank was 30 rpm.
In addition to the above, pellets were produced and tested in the same manner as in Example 1.

【0048】(比較例3)反応槽にポリジメチルシロキ
サン及びDSTDPを加える時期をスチレン転化率が50
重量%に達した際に、又、ポリジメチルシロキサンの添
加量を0.004 重量部、エチルベンゼンの使用量を10重量
部、反応槽の攪拌速度を45rpm に換える他、実施例4と
同様にペレットを製造し、試験を行った。
(Comparative Example 3) The time when polydimethylsiloxane and DSTDP were added to the reaction vessel was set at a styrene conversion rate of 50.
In addition, when the weight of the pellets was reached, the amount of polydimethylsiloxane added was changed to 0.004 parts by weight, the amount of ethylbenzene used was changed to 10 parts by weight, and the stirring speed of the reaction tank was changed to 45 rpm. And tested.

【0049】(比較例4)DSTDPの添加量を0重量
部、ポリジメチルシロキサンの添加量を 0.4重量部に換
える他、実施例4と同様にペレットを製造し、試験を行
った。
Comparative Example 4 Pellets were produced and tested in the same manner as in Example 4 except that the amount of DSTDP was changed to 0 parts by weight and the amount of polydimethylsiloxane was changed to 0.4 parts by weight.

【0050】(比較例5)DSTDPの成分をトリスノ
ニルフェニルホスファイト(TNPPと略する)0.15重
量部、ポリジメチルシロキサンの添加量を 0.6重量部に
換える他、実施例4と同様にペレットを製造し、試験を
行った。
Comparative Example 5 Pellets were produced in the same manner as in Example 4 except that the component of DSTDP was changed to 0.15 part by weight of trisnonylphenyl phosphite (abbreviated as TNPP) and the added amount of polydimethylsiloxane was changed to 0.6 part by weight. And tested.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 83:04) (58)調査した分野(Int.Cl.6,DB名) C08L 51/04,83/04 - 83/12 C08K 5/36,5/54 C08F 279/00 - 279/06 CA(STN) REGISTRY(STN)Continued on the front page (51) Int.Cl. 6 identification code FI C08L 83:04) (58) Investigated field (Int.Cl. 6 , DB name) C08L 51 / 04,83 / 04-83/12 C08K 5 / 36,5 / 54 C08F 279/00-279/06 CA (STN) REGISTRY (STN)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(A) スチレン系樹脂98〜80重量部と、該ス
チレン系樹脂中に分散するゴム状重合体2〜20重量部と
からなり、レーザー光散乱法で下記式(I)により算出
される前記ゴム状重合体の分散粒子の粒径分布係数が
0.8以上を示すゴム変性スチレン系樹脂 100重量部と、
(B1)チオジプロピオネート系化合物0.02〜1.0 重量部
と、(B2)有機ポリシロキサン 0.002〜0.8 重量部とから
なることを特徴とするゴム変性スチレン系樹脂組成物。 【数1】
1. A method comprising: (A) 98 to 80 parts by weight of a styrene-based resin and 2 to 20 parts by weight of a rubbery polymer dispersed in the styrene-based resin. The calculated particle size distribution coefficient of the dispersed particles of the rubbery polymer is
100 parts by weight of a rubber-modified styrenic resin showing 0.8 or more,
(B 1) thio and thiodipropionate compound 0.02 to 1.0 parts by weight, (B 2) rubber-modified styrene resin composition characterized by comprising the organopolysiloxane from 0.002 to 0.8 parts by weight. (Equation 1)
【請求項2】 前記ゴム状重合体の粒径分布係数が 0.9
〜2.8 の範囲である請求項1に記載のゴム変性スチレン
系樹脂組成物。
2. The rubbery polymer has a particle size distribution coefficient of 0.9.
The rubber-modified styrenic resin composition according to claim 1, wherein the composition ranges from 2.8 to 2.8.
【請求項3】 上記チオジプロピオネート系化合物がジ
ステアリルチオジプロピオネートである請求項1に記載
のゴム変性スチレン系樹脂組成物。
3. The rubber-modified styrene resin composition according to claim 1, wherein the thiodipropionate compound is distearyl thiodipropionate.
【請求項4】 ゴム状重合体2〜20重量部をスチレン系
単量体98〜80重量部に溶解し、90〜250 ℃で重合反応を
行い、スチレン系単量体の転化率が55重量%以上に達し
た後、揮発分を除去してゴム変性スチレン系樹脂組成物
を製造する方法において、 前記ゴム状重合体と前記スチレン系単量体の合計100 重
量部に対して、(B1)チオジプロピオネート系化合物0.02
〜1.0 重量部を上記重合反応工程の何れかにおいて添加
し、且つ、前記ゴム状重合体が粒子化する相反転前に、
前記ゴム状重合体と前記スチレン系単量体の合計100 重
量部に対して、(B2)有機ポリシロキサン0.002〜0.8 重
量部を添加することを特徴とするゴム変性スチレン系樹
脂組成物の製造方法。
4. A rubbery polymer of 2 to 20 parts by weight is dissolved in 98 to 80 parts by weight of a styrene monomer, and a polymerization reaction is carried out at 90 to 250 ° C. to give a conversion of the styrene monomer of 55 parts by weight. % Or more, the volatile component is removed to produce a rubber-modified styrenic resin composition, wherein (B 1 ) Thiodipropionate compound 0.02
~ 1.0 parts by weight added in any of the above polymerization reaction steps, and before the phase inversion of the rubbery polymer into particles,
Production of a rubber-modified styrenic resin composition characterized by adding 0.002 to 0.8 parts by weight of (B 2 ) an organic polysiloxane to 100 parts by weight of the total of the rubbery polymer and the styrenic monomer. Method.
【請求項5】 上記(B2)有機ポリシロキサンは、スチレ
ン系単量体の転化率が12重量%に達する前に添加するこ
とを特徴とする請求項4に記載のゴム変性スチレン系樹
脂組成物の製造方法。
5. The rubber-modified styrene resin composition according to claim 4, wherein the (B 2 ) organic polysiloxane is added before the conversion of the styrene monomer reaches 12% by weight. Method of manufacturing a product.
JP5363794A 1994-03-24 1994-03-24 Rubber-modified styrenic resin composition and method for producing the same Expired - Lifetime JP2781335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5363794A JP2781335B2 (en) 1994-03-24 1994-03-24 Rubber-modified styrenic resin composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5363794A JP2781335B2 (en) 1994-03-24 1994-03-24 Rubber-modified styrenic resin composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07258508A JPH07258508A (en) 1995-10-09
JP2781335B2 true JP2781335B2 (en) 1998-07-30

Family

ID=12948425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5363794A Expired - Lifetime JP2781335B2 (en) 1994-03-24 1994-03-24 Rubber-modified styrenic resin composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP2781335B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994660B2 (en) * 2005-12-27 2012-08-08 日本エイアンドエル株式会社 Recycling reinforcements and products
JP5486146B2 (en) * 2006-06-08 2014-05-07 東洋スチレン株式会社 Aromatic vinyl compound resin composition and method for producing the same

Also Published As

Publication number Publication date
JPH07258508A (en) 1995-10-09

Similar Documents

Publication Publication Date Title
AU720375B2 (en) Polymers containing highly grafted rubbers
JP2006206926A (en) Process for manufacture of composition comprising vinylaromatic polymer and rubber by polymerization in the presence of stable free radical
JP2002509576A (en) High gloss and high impact monovinylidene aromatic polymer
US20130144013A1 (en) Process for Preparing High Impact Monovinylaromatic Polymers in the Presence of a Borane Complex
TW200819494A (en) Transparent rubber modified styrene resin and method for preparing the same by continuous bulk polymerization
JPH0696661B2 (en) ABS composition and method for producing the same
JP3020112B2 (en) Monovinylidene aromatic polymer with improved properties and process for its preparation
CZ157696A3 (en) Composition containing vinyl aromatic polymer and rubber, and process for preparing thereof
JP6210255B2 (en) Heat resistant styrene copolymer and styrene resin composition containing the same
JP2781335B2 (en) Rubber-modified styrenic resin composition and method for producing the same
JP2645749B2 (en) Styrene resin composition
KR20100062417A (en) Transparent resin having excellent heat resistance and impact resistance and method for preparing the same
TWI732307B (en) Vinylidene substituted aromatic monomer and cyclic (meth)acrylate ester polymers
EP1312641A1 (en) Transparent impact-resistant thermoplastic resin composition
US20110054123A1 (en) High Impact Polymers and Methods of Making and Using Same
JP4833529B2 (en) Rubber-modified styrenic resin composition
KR100829850B1 (en) Continuous bulk polymerization process of rubber-modified transparent styrenic resin having uniform composition, good transparency and high impact strength
JPH04255705A (en) Highly glossy abs produced by continuous process
JP3349859B2 (en) Thermoplastic resin composition and method for producing the same
JPH0238437A (en) High-gloss and high-impact styrene resin composition
JPS63243156A (en) Thermoplastic resin composition
JPH01279943A (en) Styrene resin composition
JPH08269137A (en) Production of styrene-based resin
JP2004339357A (en) Transparent rubber-modified polystyrene resin
JPH03140314A (en) Styrene-based resin composition