JP4112211B2 - Planar commutator, copper annular body manufacturing method, and grooving mold - Google Patents

Planar commutator, copper annular body manufacturing method, and grooving mold Download PDF

Info

Publication number
JP4112211B2
JP4112211B2 JP2001357974A JP2001357974A JP4112211B2 JP 4112211 B2 JP4112211 B2 JP 4112211B2 JP 2001357974 A JP2001357974 A JP 2001357974A JP 2001357974 A JP2001357974 A JP 2001357974A JP 4112211 B2 JP4112211 B2 JP 4112211B2
Authority
JP
Japan
Prior art keywords
groove
outer peripheral
annular body
mold
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357974A
Other languages
Japanese (ja)
Other versions
JP2003164114A (en
Inventor
拓三 黒沢
英樹 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Ohashi Technica Inc
Original Assignee
Mitsuba Corp
Ohashi Technica Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp, Ohashi Technica Inc filed Critical Mitsuba Corp
Priority to JP2001357974A priority Critical patent/JP4112211B2/en
Publication of JP2003164114A publication Critical patent/JP2003164114A/en
Application granted granted Critical
Publication of JP4112211B2 publication Critical patent/JP4112211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Current Collectors (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Punching Or Piercing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は端面にブラシを接触させて整流する平面型整流子およびその製造方法ならびに溝加工用金型に関する。
【0002】
【従来の技術】
一般に、整流子は、その形状が複雑で製造が難しくなるため、その整流子を設けなければならない回転子のコストを低減することは難しく、整流子のコスト削減は低価格な回転子を開発するためには必要不可欠な課題である。
近年、パワーステアリングの電動化、その他各種装置の電動化等に伴い、使用される電動機の小型化への要望が高まっている。
平面型整流子を用いた回転子は、整流子の接触面が軸と垂直な面に形成され、軸方向に移動できるように形成されたブラシが接触面に当接して通電できるようにしている。このため、ブラシの支持軸が回転子の軸と平行な向きとなり、ブラシを接触面側に押圧するためのスプリング等の押圧部材を収容するために必要なスペースが、軸方向に長くなるが径方向のスペースを拡大することがなくなり、電動機全体としては小型化され、パワーステアリングにおける駆動装置の小型化に寄与できるようになり、また、装置の小型化が実現できるため、将来の各種動作機器に適用されるであろう有望な部品の1つとなる。
【0003】
このような平面型整流子の例としては、例えば図15に示すようなロータ1に形成された電機子2の一端に一体的に取り付けられた整流子3が例示できる。また、本発明者等が先に出願した特開平9−163688号公報の平面型整流子によっても例示できる。
これらによって例示されるように、通常、平面型整流子は、多数個の整流子片(セグメント)を環状体に並べ、各整流子片の間を絶縁材であるモールド樹脂が介装されて各整流子片を互いに絶縁すると共に一体的に固着し、回転軸側に外嵌するための孔が中央部に穿設された円盤状の部品に形成されている。
【0004】
この、回転子に取り付けられる前の平面型整流子は、(1)あらかじめ回転軸側に外嵌するための孔が中央部に穿設された円盤状の銅製部品を形成し、その銅製部品に溝加工を施し、その溝と前記の孔とにモールド樹脂を充填して、モールド樹脂により溝を介して対面する面を有する部分を固着するとともに絶縁し、回転軸に外嵌した場合の軸側とを絶縁して、放射方向にモールド樹脂の絶縁部を介装した環状に一体化された部品として製造し、モールディング前に切り離されていなかった銅製部品の接続部を切り離し、各整流子片を電気的に絶縁された状態になるように形成するか、または、(2)銅製の各整流子片を所望の形状に成形し、成形された各整流子片を型枠に入れて所望の形状に並べ、モールド樹脂を注入して各整流子片を互いに固着して、各整流子片が電気的に絶縁された状態で円盤状の形状になるように成形することによって製造される。
【0005】
前記製造方法(1)では円盤状の銅製部品を加工することが難しく、前記製造方法(2)では円盤状の平面型整流子に成形することが難しい。
近年では、加工技術の進歩により、前記製造方法(1)における円盤状の銅製部品を製造する技術が進歩して、工数の削減およびコストの削減の効果が期待されるため、多くの工数がかかり高価になる前記製造方法(2)よりも前記製造方法(1)が適用されるようになりつつある。
【0006】
〔問題点〕
このような従来の技術における平面型整流子の製造では、精度良く銅製部品が加工されるようになってきているが、コスト削減のために溝加工をプレス加工により行い、プレス加工後に無用な凹凸を切削加工により除去あるいは整形して目的とする最終形態に形成するため、加工途中で切削加工により整形しなければならない箇所が多くなり、コストが期待ほど削減できず、整流子の形状の複雑さと製造の難しさにより、平面型整流子であっても、いま一つ普及に足踏みしているという問題点があった。
【0007】
【発明が解決しようとする課題】
本発明は、従来の技術における前記問題点に鑑みて成されたものであり、これを解決するため具体的に設定した技術的な課題は、主要加工をプレス加工により行い、極力、切削加工を削減することにより、銅製部品を効率良く製造してコスト削減を実現した平面型整流子および銅製環状体部品の製造方法ならびに溝加工用金型を提供することにある。
【0010】
【課題を解決するための手段】
請求項1に係る平面型整流子の製造方法は、中央空間部に中心側へフランジを突出した環状体に形成されたフランジ据込部品の外周部に、押出加工圧よりも低めのプレス圧により各加圧箇所の余肉を外周側に押し出して配線接続溝を刻設した加工中間部品を成形し、その加工中間部品の各余肉をトリミング加工により一括除去して溝加工部品を成形し、この溝加工部品に形成されている各配線接続溝の溝間の中間位置に樹脂充填溝を内周面から外周面まで放射方向に刻設しかつ一面側からその反対面側へこの反対面に形成されたブラシ接触面までは貫通しない程度に深く刻設し、この各樹脂充填溝に溝幅より径の大きい丸穴を穿設し、内径側に係合突起を突出した銅製環状体部品を成形し、この銅製環状体部品の絶縁箇所に絶縁用樹脂をモールディングして前記各樹脂充填溝の間を絶縁して整流子片分離の前段階の形態に成形し、その後、絶縁用樹脂を充填した各樹脂充填溝の刻設位置にブラシ接触面側から整流子片分離用の溝を刻設して各整流子片を互いに分離し絶縁することを特徴とする。これにより、溝加工部品の一体成形が容易になり、絶縁用樹脂によって各整流子片を絶縁した平面型整流子が生産性良く成形されるようになる。
【0011】
また、請求項2に係る平面型整流子の製造方法は、前記加工中間部品の成形には、前記フランジ据込部品におけるブラシ接触面とは反対側の面の外周端部に多数の板状部材の端面を押出加工圧よりも低めのプレス圧で押圧することにより、余肉を外周面側に押し出して、この外周面に開口しブラシ接触面側に貫通しない配線接続溝を刻設したことを特徴とする。これにより、加工中間部品を生産性良く一体成形できるようになり、量産性が向上して、コストが削減できるようになる。
【0012】
また、請求項3に係る銅製環状体部品の製造方法は、一面を平面にしてブラシ接触面を形成した環状体の外周端部に押出加工圧よりも低めのプレス圧により押圧して各加圧箇所の余肉を外周側に押し出して配線接続溝を刻設し、前記各余肉と前記環状体の外周面の表層とをトリミング加工により一括除去し、前記各配線接続溝の溝間の中間位置に樹脂充填溝を内周面から外周面まで放射方向にかつ前記ブラシ接触面とは反対側の面から前記ブラシ接触面側へ前記ブラシ接触面まで達しない程度に深く切削し、さらに前記各樹脂充填溝に溝幅より径の大きい丸穴を穿設し、前記環状体の内周面近傍に前記ブラシ接触面とは反対側の面から押圧して断面がV形の溝を刻設することにより内径側に充填樹脂との係合突起を突出させたことを特徴とする。これにより、銅製環状体部品を生産性良く一体成形できるようになり、量産性が向上し、コストが効果的に削減できるようになる。
【0013】
また、請求項4に係る溝加工用金型は、上型と下型との間に挟持される工作物を軸方向へ移動可能に支持する円筒部材とその円筒部材に外嵌する複数の分割型とを基台とラムとの間に配設し、前記円筒部材の外周部と前記各分割型の内周部には溝加工用刃部となる板状部材を軸方向へ相対的に移動可能に内蔵する円筒部材側の案内溝と分割型側の案内溝とを必要個数につき周上等ピッチに刻設し、各分割型側の案内溝と板状部材との間の間隙を精密加工の公差範囲内に設定して、加工時には前記円筒部材とともに工作物を前記分割型に対して軸方向へ相対的に移動可能にしたことを特徴とする。これにより、工作物の全ての溝加工が一行程で不要な変形を生じることなく加工できるようになり、溝加工部品の生産性が向上し、加工コストを効果的に削減する。
【0014】
また、請求項5に係る溝加工用金型は、前記間隙を100分の3mm以内に設定することを特徴とする。これにより、分割型の案内溝と板状部材との間隙が小さいため、溝加工時の余肉が切削されたかのように効果的に外周側へ排出されるとともに工作物の変形を極小に抑えることができ、後行程の工数を効果的に削減できるようになる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を具体的に説明する。
ただし、この実施の形態は、発明の趣旨をより良く理解させるため具体的に説明するものであり、特に指定のない限り、発明内容を限定するものではない。
【0016】
〔形態〕
この実施の形態における平面型整流子は、図1〜図3に示すように、銅製環状体12と絶縁用樹脂13とからなり、中央部に軸嵌合用の孔11bを設けた平面型整流子11に形成し、この平面型整流子11のブラシ接触側の面11aには放射方向に等間隔で絶縁用樹脂13の位置まで達する深さの溝11cを刻設して、環状に配置された各整流子片12a,…,12aを独立した端子として機能できるように分離する。
【0017】
銅製環状体12には、ブラシ接触面と反対側の面に係合突起形成用の円形状切込み14,15を同心的に複数本刻設する。この円形状切込み14,15は絶縁用樹脂13を充填する前に形成して、円形状切込み14,15を設けることにより形成される係合突起16,17が絶縁用樹脂13に食い込むように突出することによって、充填されて硬化した絶縁用樹脂13が銅製環状体12から抜けないようにする。
【0018】
銅製環状体12の外周面には、各整流子片12a,…,12aに2本の導線を接続するための溝12b,…,12bを、外周面だけでなくブラシ接触面と反対側の面にも開口するように刻設する。
銅製環状体12の材質には純銅又は銅合金が使用でき、このうちリン(脱酸)銅、銀入り銅、無酸素銅が好ましく使用される。
絶縁用樹脂13の材質には、耐熱用ガラス繊維、鉱物質粉末等を主基材として結合材にフェノール樹脂等の熱硬化性樹脂を使用した絶縁材が良く、特にフェノール樹脂でも耐熱性、耐衝撃性に富む材料を使用することが好ましい。
【0019】
〔製造方法〕
このような形態に形成された平面型整流子の製造方法は、図4乃至図9に示すような工程により工作物としての銅製環状体12を機械工作による加工を行い、その後に絶縁用樹脂のモールディングを行う。
まず、材料取りとして、図4(イ),(ロ)に示すように、銅管を輪切りにして所定寸法の矩形断面の環状体を切り出し、内径側を切削して肉厚を均一な環状体21に成形する。
次に、図5(イ),(ロ)に示すように、プレス加工により内周部を環状体21の軸方向に加圧し、内周部の厚み方向の一部を内側に突出させて縮径することにより、内径側のフランジ22aを据込み、内径側を段付き形状に成形したフランジ据込部品22に加工する。
【0020】
その次に、図6(イ),(ロ)に示すように、プレス加工によりフランジ据込部品22の外周部における所定箇所の溝加工部を、プレス荷重を通常の横側に余肉を逃がさない場合における荷重(例えば前方又は後方押出荷重)の6〜7割程度の荷重(例えば外径67mmの場合で約50ton)とし、加工速度を約25mm/secとして軸方向に加圧して外周部に溝加工し、所定個数の溝23a,…,23aを所定形状に刻設して余肉23b,…,23bを外周側に突出させた加工中間部品23を得る。
【0021】
さらに、図7(イ),(ロ)に示すように、軸方向へ移動する切刃(図示せず)を加工中間部品23の外周面と余肉23b,…,23bの基部との境界部にセットして、切刃を軸方向へ移動しつつ押圧力を作用させてトリミング加工することにより、外周部に突出した全ての余肉23b,…,23bを除去して、外周面を成形した溝加工部品24を得る。
【0022】
さらに、図8(イ),(ロ)に示すように、各溝23a,…,23aの中間位置に、整流子片分離用の薄い溝幅(例えば幅1mm)を有する深い溝25a,…,25aを、反対側の面からの残部25bが、銅製環状体12の形状安定性を維持できる範囲でできる限り薄い肉厚(例えば上記溝幅よりも50%厚い 1.5mm)の板状の状態に残るように刻設して絶縁用樹脂充填溝を形成した部品25を得る。
【0023】
さらに、図9(イ),(ロ)に示すように、部品25の各深い溝25a,…,25aの刻設位置には、溝25aの溝幅よりも大きな径を有し、深い溝25aと同じ深さとなる丸穴26aを、放射方向における段差部の内周面から溝23aの最奥端までの間の中間位置に軸と平行な方向に穿設し、溝刻設側の面には、段差部の内周面から所定の幅(例えば1mm)だけ外周側の位置に断面がV形をした円弧状の溝26bを銅製環状体12の外周縁又は内周縁と同心円を形成するように刻設して、溝26bよりも内側の部分を内径側に曲げて係合突起17を突出させ、さらにフランジ22aの内周面から所定の幅(例えば1mm)だけ外周側の位置に断面がV形をした円弧状の溝26cを銅製環状体12の外周縁又は内周縁と同心円を形成するように刻設して、溝26cよりも内側の部分を内径側に曲げて係合突起16を突出させて、係合突起16,17がモールディング後に絶縁用樹脂の抜止めになるように形成する。
【0024】
こうして図10に示すような、銅製環状体12の各整流子片12a,…,12aが分離されていない状態の銅製環状体部品26が成形される。
その後、銅製環状体部品26を絶縁用樹脂のモールディング装置にセットして、使用材料及び大きさ並びに溝幅等を考慮して適当な鋳込み圧(例えば 250〜500 kg/cm)によりモールディングを行う。
【0025】
銅製環状体部品26の内径部側及び深い溝25a,…,25aに絶縁用樹脂をモールディングした後、銅製環状体部品26の溝刻設側と反対側の面(すなわちブラシ接触側の面11a)に、深い溝25aを刻設した位置と同じ位置で、その裏面(面11a)側から板状に残された部分よりも僅かに深く切り込み、深い溝25aに充填された絶縁用樹脂13まで達する深さの整流子片分離用の溝11cを刻設して、各整流子片12a,…,12aが分離された銅製環状体12を成形し、図1〜3に示すような、各整流子片12a,…,12aが絶縁用樹脂13によって絶縁された状態で固められた平面型整流子11を形成する。
【0026】
〔金型〕
銅製環状体部品26を成形する製造工程のうち、図5に示すフランジ据込部品22から図6に示す加工中間部品23に成形するための金型は、図11、12に示すように、ボルトにより組み合わせる組立式の金型で、溝加工前のフランジ据込部品22あるいは溝加工後の加工中間部品23を収容することができる空間を設け、下型30には溝加工用刃部となる板状部材31を溝の数と同じ数だけ同じ向きにして収容する。
【0027】
下型30は層状に3分割された分割型30a,30b,30cからなる。
その最上層の分割型30aは、被加工部品であるフランジ据込部品22をセットして溝加工を施した加工中間部品23を得るための、溝加工用の板状部材31を内面側に必要数だけ短辺側を放射方向に向け長辺側を垂直方向に向けて、板状部材31との間で例えば100分の3mm以下の微小なクリアランスを設ける空間30となる案内溝30e,…,30eを周上等間隔に刻設した、平坦な上下面を有する断面が略矩形の環状体に形成する。
【0028】
中間層の分割型30bは、溝加工用の板状部材31を内面側に必要数だけ短辺側を放射方向に向け長辺側を垂直方向に向け、板状部材31との間で例えば100分の3mm以下の微小なクリアランスを設ける空間となる案内溝30f,…,30fとともに板状部材31の下端に設けられた突出部の形状に対応する形状の凹部を内面側の下端部に設けて係合させることにより板状部材31を上昇不能にセットできる空間となる案内溝30f,…,30fを周上等間隔に刻設した、平坦な上下面を有する断面が略矩形の環状体に形成する。
最下層の分割型30cは、板状部材31の下端を下降不能に支持する平坦な上下面を有する断面が略矩形の環状体に形成する。
【0029】
各分割型30a,30b,30cは、環状体の中央空間部を、芯出し用の円柱部材32と、この円柱部材32に外嵌して各板状部材31,…,31を相対的に軸方向へ移動する案内溝33aを刻設した円筒部材33と、この円筒部材33の下端に当接して上方に位置する円筒部材33を下側から支持する矩形断面の環状部材34とを内嵌して収容することができる空間に形成する。
【0030】
円筒部材33は、外周面側に各板状部材31,…,31を相対的に軸方向へ移動することができる案内溝33a,…,33aを、板状部材31との間で例えば10分の1mm以下のクリアランスを設けて周上等間隔に刻設し、内径側は円柱部材32に外嵌できる大きさの径を有する孔となっている厚肉円筒形に形成する。
【0031】
円柱部材32の下端部には、軸方向に長い矩形孔32aを穿設し、矩形孔32aには直方体のエジェクトバー35を移動自在に貫通して、加工後に上型40の上昇に伴い、エジェクトバー35に押圧されて環状部材34と円柱部材32が反対方向へ移動して加工中間部品23を下型30から押し上げ、成形された加工中間部品23を金型から取り出すことができるようにする。
【0032】
そして、円柱部材32の下端面にはエジェクトバー35の下端部に当接して、円柱部材32が下降した場合における初期位置への復帰用に、また、円柱部材32によってセットされたフランジ据込部品22を加工開始から加工中間部品23に成形されるまでの間、円柱部材32の外周面でフランジ据込部品22の内径を拘束して変形を防止するとともに内径寸法を維持して隙間の発生を防止するための、コイルスプリング等からなる弾性部材36を配設する。
【0033】
さらに、円柱部材32の下端部と弾性部材36とを収容する円筒状の基部支持部材37と、その基部支持部材37に外嵌して収容するとともに下型30を支持する基台38と、下型30を基台38に固定する大径の袋ナット状結合部材39とを具備して、基台38の上に載置した下型30を固定できるようにする。
【0034】
上型40はフランジ据込部品22の非溝加工面側に当接して押圧する環状の端面を有する厚肉円筒状の押圧部材41と、この押圧部材41を軸周りに回動自在に内嵌するとともに下方に抜け落ちることを防止する円筒部材42と、この円筒部材42を内嵌して軸周りに回動することを防止する回止め(図示せず)を取り付けるとともに下方に抜け落ちることを防止するように支持する支持フランジ部材43とからなり、押圧部材41と円筒部材42と支持フランジ部材43とがラム(図示せず)側で面一に接触して同時に下降して円筒部材42が下型30の最上段に位置する分割型30aの上面に当接して停止するまで、押圧部材41がフランジ据込部品22を押圧して溝加工を行い、溝加工の進行に伴い円筒部材33、環状部材34、エジェクトバー35等を押し下げ、溝加工の余肉23b,…,23bを突出させて所定の溝23a,…,23aを形成する。
【0035】
溝加工後のトリミングに用いられる金型は、図13に示すように、円筒状の外枠部材51の内部に、工作物(この場合は、加工中間部品23)を載置する台座部材52を最下端に設け、この台座部材52の上方から載置された工作物を押圧固定するため工作物の環状体部分の外径よりも加工公差範囲程度(例えば100分の5〜30mm)小さい寸法の外形を有して下端には加工物の内径部に内嵌する段付き部53aを形成した円柱状の抑え部材53を設け、工作物の環状体部分の外形よりも公差範囲程度小さい内径を有するとともに抑え部材53に外嵌する円筒状に形成され鋭利な刃を備えた切刃部材54を軸心方向へ移動自在に設け、各部材51,52,53,54を同心的に嵌合して配設する。
【0036】
台座部材52は上端部に加工中間部品23を載置するための外形が余肉23b,…,23bを除いた環状体の外形よりも僅かに小径に形成し、外周端に加工中間部品23のフランジ22aの厚みと同等の浅い矩形断面の窪み52aを形成した、外枠部材51よりも径が小さく、窪み52aを含めた高さが加工中間部品23の環状体の高さよりも高く形成した座52bを設け、この座52bの下端部に切刃部材54が下方へ落ちすぎないようにストッパとして機能するように設けた円形断面等の必要な断面形状を有する環状体55を外嵌する。
【0037】
抑え部材53に外嵌して軸方向へ移動自在に設ける切刃部材54は、工作物の環状体部分の外径よりも加工公差範囲程度(例えば100分の5〜30mm)小さい寸法の内径と、刃角(軸線に対して)30〜45度の刃先とを有し、断面が真円の円筒形状に形成して、工作物の余肉23b,…,23bと環状体部分の外周面の表層とを削ぎ落として正確な円筒面を形成することができるようにする。
【0038】
モールディング装置の金型は、図14に示すように、工作物(この場合、銅製環状体部品26)をセットし、支持する下型として、基台61に載置される下枠型62の中空部に収容された厚肉円筒状の成形用下型63と、この成形用下型63の中空部に内嵌した鋳込み用通路を形成するとともに絶縁用樹脂硬化後に部品を持ち上げて取り出し易くする移動下型64とからなる。基台61には下枠型62の鋳込み作業時に金型を閉じる方向の力が作用するように押圧する押圧ユニット65を周上等間隔に多数個内蔵して、後述する成形用上型66との当接面が密着するように形成する。
【0039】
下型と組み合わせて鋳込み用通路と成形用空間とを形成する上型は、下枠型62の上面に当接して成形用下型63と鋳込み時の移動下型64とに対する相対的な位置関係を維持するとともに鋳込み用通路66aと絶縁樹脂成形用空間66bとを形成する成形用上型66と、成形用上型66の中心部に軸方向へ移動自在に組み付けられて成形用上型66に形成された鋳込み用通路66aに連通する樹脂材料投入空間67aを設けた組合せ上型67と、成形用上型66と組合せ上型67とを一体にラム側に取り付けるとともに鋳込み時にはラムからの押圧力を受けて一様に下型側へ押圧する押圧部材68とからなる。
【0040】
モールディングをするには、まず組合せ上型67を成形用上型66の上方へ位置させて樹脂材料投入空間67aを全開にし、樹脂材料投入空間67aに粉末状の絶縁材料を投入して組合せ上型67を成形用上型66の所定の位置まで下げ、さらに押圧部材68によりラムからの押圧力を伝達して樹脂材料を加圧するとともに加熱して溶解し、鋳込み用通路66aを介して絶縁樹脂成形用空間66bへ圧入する。この時、押圧ユニット65により下枠型62と成形用上型66との間を密着し、成形用下型63に載置された工作物である銅製環状体部品26のブラシ接触面を成形用上型66との当接面に密着させて間隙を生じさせないようにして、樹脂充填時に溶融絶縁樹脂がブラシ接触面側に侵入しないようにする。絶縁樹脂成形用空間66bへ圧入された絶縁樹脂が冷却された後、押圧部材68を引き上げて成形用上型66、組合せ上型67を上昇させて金型を開き、さらに移動下型64を上昇させてモールディング済み工作物を下枠型62および成形用下型63から外して持ち上げ、金型から取り出しやすくする。
【0041】
〔作用効果〕
このような形態に構成して製造する平面型整流子では、整流子片12a,…,12aを各整流子片間に丸穴26aを設けた間隙(溝11c,25c)を均等に設けて環状に並べ、これらの間隙に絶縁用樹脂を充填することによって各整流子片12a,…,12aを独立した端子として利用できるように分離するとともに総体として整流子片12a,…,12aと絶縁用樹脂とからなる環状体を形成し、この環状体の一面にはブラシ接触面を形成し、他面には配線接続部と絶縁用樹脂充填部とを形成し、この絶縁用樹脂充填部には充填された絶縁用樹脂により覆い隠される部分に係合突起を突設し、充填されて硬化した絶縁用樹脂と係合突起が係合して環状に並べられた整流子片12a,…,12aが離脱できないように形成され、しかも、その形状が一体成形し易くかつ量産向きな形状となり、特に銅製部品は環状体の状態で効率良く一体成形できるようになり、効果的にコストを削減することができる。
【0042】
このような平面型整流子の製造方法では、銅製部品を環状体21からフランジ据込部品22にプレス成形し、さらに外周部をプレス加工することにより余肉23b,…,23bを外周側に突出して配線用の溝を成形した加工中間部品23を形成し、その余肉23b,…,23bを外周面の表層とともにトリミング加工により一括除去して溝加工部品24を成形し、成形された溝加工部品24に各溝23a,…,23aの中間位置に整流子片分離用の溝25a,…,25aを刻設し、溝25a,…,25aに溝幅より径の大きい丸穴26aを穿設するとともに溝刻設側の端面とフランジ据込み側の端面にV溝をプレス加工して各内径側に係合突起16,17を突出した銅製環状体部品26を成形し、その後、整流子片分離の前段階の形態に成形する絶縁用樹脂13のモールディングにより、溝25a,…,25aの間を絶縁し、絶縁用樹脂を所定形状に成形し、整流子片12a,…,12aと絶縁用樹脂13との離脱を防止して、銅製部品と絶縁用樹脂との一体化部品を形成し、その後、整流子片分離用の溝25a,…,25aの刻設位置にブラシ接触側から溝11c,…,11cを刻設して各整流子片12a,…,12aを分離絶縁することにより、絶縁用樹脂13によって各整流子片12a,…,12aを絶縁した平面型整流子11が成形される。このため、銅製環状体12特に銅製環状体部品26の一体成形が容易となり、量産性が向上し、コストが安価になって、平面型整流子11を量産性良く、迅速かつ安価に製造することができる。
【0043】
フランジ据込部品22に対する溝加工用の金型は、上型40と下型30との間に挟持されるフランジ据込部品22のような工作物を軸方向へ移動可能に支持する円筒部材33とその円筒部材33に外嵌する分割型30a,30bとを配設し、円筒部材33の外周部と分割型30a,30bの内周部とには溝加工用刃部となる板状部材31を軸方向へ相対的に移動可能に内蔵する案内溝33aと案内溝30e,30fとを必要個数につき周上等ピッチに刻設し、各案内溝30e,30fと板状部材31との間の間隙を微小公差の範囲内に設定して、加工時にはプレス荷重により工作物を支持している円筒部材33とともに工作物を分割型30a,30bに対して軸方向へ相対的に移動させる。このため、工作物の外周端に溝加工するとき、板状部材31により押圧された工作物の外周端では、余肉23b,…,23bを外周端の外方の案内溝30e,…,30e内へ切削に等しい状態で押し出し、溝加工部分の周辺部、特に端面に肉の盛上りあるいは押潰れを生じさせることなく必要な深さの溝加工をすることができて、後加工を削減し、生産性を向上し、加工コストを効果的に削減する。
【0044】
溝加工後の余肉を除去するトリミング用の金型は、加工中間部品23のような工作物を載置する台座部材52と、工作物の径と略同じ径を有して工作物を軸方向に挟持する抑え部材53と、抑え部材53に外嵌して工作物の外形より僅かに小さい内径を有して工作物の外周面を削ぎ落とす鋭利な刃を備えた切刃部材54を抑え部材53に外嵌して軸方向へ移動自在に設けている。このため、工作物の全ての余肉23b,…,23bを外周面の表層とともに一度に切り落とすことができ、加工時における端面の変形が少なく、板状に残された部材の周辺の凹みも少なくて済み、後加工を削減するととともに環状体部分の外周面を高精度な円筒度の部品に成形し、生産性が向上して、加工コストを効果的に削減する。
【0045】
モールディング装置の金型は、銅製環状体部品26のような工作物を位置固定する成形用下型63と、その成形用下型63の中空部に同心的に内嵌して軸方向に移動可能にした移動下型64と、成形用下型63に外嵌して鋳込み時に金型を閉じる方向の力を工作物に作用させる下枠型62と、この下枠型62の上面に当接してラム側からの荷重を伝達するとともに工作物と成形用下型63と移動下型64との間で樹脂充填用空間を形成する成形用上型66とから絶縁用樹脂の成形部としての空間が形成されて、この形成されている樹脂充填用空間を介して絶縁樹脂成形用空間66bに粉末樹脂を適当な圧力を加えながら加熱して充填し、硬化させて、絶縁用樹脂13によって絶縁樹脂成形用空間66bを埋め固める。これにより、絶縁用樹脂を一定の圧力で迅速に鋳込むことができ、ブラシ接触側に絶縁樹脂を侵入させることなく、高品質に絶縁用樹脂を成形でき、量産性を高め、生産性を向上して、コストを削減することができるようになる。
【0048】
【発明の効果】
以上のように、請求項1に係る平面型整流子の製造方法では、配線用の溝を刻設した溝加工部品を一体的に成形し、この溝加工部品に形成された各配線用の溝の中間位置に整流子片分離用の溝を刻設して銅製環状体部品を成形し、その後に、絶縁用樹脂をモールディングして前記各溝の間を絶縁して平面型整流子を製造したことにより、溝加工部品の一体成形が容易にでき、絶縁用樹脂によって各整流子片を絶縁した平面型整流子が生産性良く成形することができる。
【0049】
また、請求項2に係る平面型整流子の製造方法では、フランジ据込部品の外周部に多数の板状部材の端面を押圧することにより、切削するように余肉を外周側に突出させて、外周面に開口しブラシ接触面側に貫通しない溝を刻設することにより、精度の良い加工中間部品を生産性良く一体成形でき、量産性が向上して、コストが削減できる。
【0050】
また、請求項3に係る銅製環状体部品の製造方法では、銅製環状体をプレス加工により配線接続溝を一体的に成形することにより、銅製環状体部品を生産性良く一体成形できるようになり、量産性が向上し、コストが効果的に削減できる。
【0051】
また、請求項4に係る溝加工用金型では、加工時にプレス荷重により円筒部材とともに工作物を分割型に対して軸方向へ相対的に移動させることにより、工作物の全ての溝加工が一行程で不要な変形を生じることなく加工できるようになり、溝加工部品の生産性が向上し、加工コストを効果的に削減することができる。
【0052】
また、請求項5に係る溝加工用金型では、分割型の案内溝と板状部材との間隙が小さいため、溝加工時の余肉が切削されたかのように効果的に外周側へ排出されるとともに工作物の変形を極小に抑えることができ、後行程の工数を効果的に削減できる。
【図面の簡単な説明】
【図1】本発明の実施の形態における平面型整流子を示す縦断面図である。
【図2】本発明の実施の形態における平面型整流子を示す上平面図である。
【図3】本発明の実施の形態における平面型整流子を示す下平面図である。
【図4】本発明の実施の形態における矩形断面の環状体を示す加工説明図で、(イ)は平面図、(ロ)は縦断面図である。
【図5】本発明の実施の形態におけるフランジ据込部品を示す加工説明図で、(イ)は平面図、(ロ)は縦断面図である。
【図6】本発明の実施の形態における加工中間部品を示す加工説明図で、(イ)は平面図、(ロ)は縦断面図である。
【図7】本発明の実施の形態における溝加工部品を示す加工説明図で、(イ)は平面図、(ロ)は縦断面図である。
【図8】本発明の実施の形態における整流子分離用の溝を加工した部品を示す加工説明図で、(イ)は平面図、(ロ)は縦断面図である。
【図9】本発明の実施の形態における各整流子片と絶縁用樹脂との係合部を加工した部品を示す加工説明図で、(イ)は平面図、(ロ)は縦断面図である。
【図10】本発明の実施の形態における各整流子片が連接した銅製環状体部品を示す加工説明図で、(イ)は配線側を示す平面図、(ロ)は(イ)のA部拡大図である。
【図11】本発明の実施の形態における加工中間部品成形用の金型を示す縦断面図である。
【図12】図11のA−A矢視図である。
【図13】本発明の実施の形態におけるトリミング用の金型を示す縦断面図である。
【図14】本発明の実施の形態におけるモールディング用の金型を示す縦断面図である。
【図15】従来の平面型整流子の一例を示す斜視説明図である。
【符号の説明】
11 平面型整流子
11a ブラシ接触側の面
11b 孔
11c 溝
12 銅製環状体
12a 整流子片
12b 溝
13 絶縁用樹脂
14,15 円形状切込み
16,17 係合突起
21 環状体
22 フランジ据込部品
23 加工中間部品
23a 溝
23b 余肉
24 溝加工部品
25 部品
25a 溝
25b 残部
26 銅製環状体部品
26a 丸穴
26b,26c 円弧状の溝
30 下型
30a,30b,30c 分割型
30e,30f 案内溝
31 板状部材
32 円柱部材
32a 矩形孔
33 円筒部材
33a 案内溝
34 環状部材
35 エジェクトバー
36 弾性部材
37 基部支持部材
38 基台
39 袋ナット状結合部材
40 上型
41 押圧部材
42 円筒部材
43 支持フランジ部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a planar commutator that performs rectification by bringing a brush into contact with an end face, a method for manufacturing the same, and a groove processing mold.
[0002]
[Prior art]
In general, commutators are complicated in shape and difficult to manufacture, so it is difficult to reduce the cost of the rotor that must be provided with the commutator, and cost reduction of the commutator develops a low-cost rotor This is an indispensable issue.
In recent years, with the electrification of power steering and the electrification of various other devices, there is an increasing demand for miniaturization of the electric motor used.
In a rotor using a planar commutator, the contact surface of the commutator is formed on a surface perpendicular to the shaft, and a brush formed so as to be movable in the axial direction is in contact with the contact surface so that it can be energized. . Therefore, the support shaft of the brush is oriented parallel to the axis of the rotor, and the space necessary to accommodate a pressing member such as a spring for pressing the brush toward the contact surface side becomes longer in the axial direction. The space of the direction is not expanded, the motor as a whole is miniaturized, it can contribute to the miniaturization of the drive device in power steering, and the miniaturization of the device can be realized. It will be one of the promising parts that will be applied.
[0003]
As an example of such a planar commutator, for example, a commutator 3 integrally attached to one end of an armature 2 formed on a rotor 1 as shown in FIG. Further, it can be exemplified by a planar commutator disclosed in Japanese Patent Application Laid-Open No. 9-163688 filed earlier by the present inventors.
As exemplified by these, in general, a planar commutator has a large number of commutator pieces (segments) arranged in an annular body, and a mold resin which is an insulating material is interposed between the commutator pieces. The commutator pieces are insulated from each other and fixed integrally, and are formed in a disk-shaped part having a hole formed in the central portion thereof to be externally fitted to the rotating shaft side.
[0004]
This flat commutator before being attached to the rotor is (1) formed in advance a disk-shaped copper part with a hole for external fitting on the rotary shaft side in the center, and the copper part Shaft side when groove processing is performed, the groove and the hole are filled with mold resin, and the portion having a surface facing through the groove is fixed and insulated by the mold resin, and is externally fitted to the rotating shaft Is manufactured as a ring-integrated part with a mold resin insulation part in the radial direction, and the copper parts that were not separated before molding are cut off, and each commutator piece is (2) Each copper commutator piece is formed into a desired shape, and each shaped commutator piece is placed in a mold to form a desired shape. And inject mold resin to fix the commutator pieces together Te is produced by molding such that a disk-like shape in a state in which the commutator segments are electrically insulated.
[0005]
In the manufacturing method (1), it is difficult to process a disk-shaped copper part, and in the manufacturing method (2), it is difficult to form a disk-shaped planar commutator.
In recent years, due to advances in processing technology, the technology for manufacturing disc-shaped copper parts in the manufacturing method (1) has progressed, and it is expected to reduce man-hours and reduce costs. The manufacturing method (1) is being applied rather than the expensive manufacturing method (2).
[0006]
〔problem〕
In the manufacture of such a planar commutator in the prior art, copper parts have been processed with high precision, but grooving is performed by pressing to reduce costs. Is removed or shaped by cutting to form the final shape, so there are many places that need to be shaped by cutting during machining, and the cost cannot be reduced as expected, and the commutator shape is complicated. Due to the difficulty of manufacturing, there is a problem that even a flat commutator is still in widespread use.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems in the prior art, and the technical problem specifically set in order to solve this problem is to perform the main processing by pressing, and to perform cutting as much as possible. It is an object of the present invention to provide a planar commutator and a method for producing a copper annular body component and a die for grooving, in which copper parts are efficiently manufactured by reducing the cost and cost reduction is realized.
[0010]
[Means for Solving the Problems]
In the manufacturing method of the planar commutator according to claim 1, the outer peripheral portion of the flange upset part formed in the annular body projecting the flange toward the center side in the central space portion is pressed by a press pressure lower than the extrusion pressure. Extrude the surplus part of each pressurizing part to the outer peripheral side to mold the machining intermediate part with the wiring connection groove cut, remove the surplus part of the machining intermediate part by trimming and form the grooved part, Resin-filled grooves are engraved radially from the inner peripheral surface to the outer peripheral surface at the middle position between each wiring connection groove formed in this grooved component, and from one surface side to the opposite surface side to this opposite surface A copper ring-shaped part is formed by engraving deep enough not to penetrate to the formed brush contact surface, drilling a round hole with a diameter larger than the groove width in each resin-filled groove, and protruding an engagement protrusion on the inner diameter side. Molding and insulating resin in the insulation part of this copper annular body part The resin filling grooves are insulated to form a shape prior to the separation of the commutator pieces, and then rectified from the brush contact surface to the engraved position of each resin filling groove filled with insulating resin. A groove for separating the piece is engraved so that the commutator pieces are separated from each other and insulated. This facilitates integral molding of the grooved parts, and a planar commutator in which each commutator piece is insulated with an insulating resin is molded with high productivity.
[0011]
According to a second aspect of the present invention, there is provided a planar commutator manufacturing method in which a plurality of plate-like members are formed at an outer peripheral end portion of a surface opposite to a brush contact surface in the flange installed component for forming the processed intermediate component. By pressing the end face of the steel plate with a pressing pressure lower than the extrusion pressure, the excess wall is pushed out to the outer peripheral surface side, and the wiring connection groove that opens in the outer peripheral surface and does not penetrate the brush contact surface side is engraved. Features. As a result, the processed intermediate part can be integrally formed with high productivity, mass productivity can be improved, and cost can be reduced.
[0012]
According to a third aspect of the present invention, there is provided a method for producing a copper annular body part, wherein the outer peripheral end portion of the annular body having a flat surface formed with a brush contact surface is pressed by a press pressure lower than the extrusion pressure. Extruding the surplus portion of the part to the outer peripheral side, carving the wiring connection grooves, trimming and removing the surplus and the surface layer of the outer peripheral surface of the annular body, between the grooves of the respective wiring connection grooves The resin-filled groove is cut deeply at a position so as not to reach the brush contact surface in a radial direction from the inner peripheral surface to the outer peripheral surface and from the surface opposite to the brush contact surface to the brush contact surface side. A round hole having a diameter larger than the groove width is formed in the resin-filled groove, and a groove having a V-shaped cross section is formed by pressing from the surface opposite to the brush contact surface in the vicinity of the inner peripheral surface of the annular body. In this way, the engagement protrusion with the filling resin is projected on the inner diameter side. . As a result, the copper annular body part can be integrally formed with high productivity, mass productivity can be improved, and cost can be effectively reduced.
[0013]
A grooving die according to claim 4 is a cylindrical member that supports a workpiece sandwiched between an upper die and a lower die so as to be movable in the axial direction, and a plurality of divisions that are externally fitted to the cylindrical member. A mold is disposed between the base and the ram, and a plate-like member serving as a groove cutting blade is relatively moved in the axial direction between the outer peripheral portion of the cylindrical member and the inner peripheral portion of each of the divided molds. The built-in guide groove on the cylindrical member side and the guide groove on the split mold side are engraved at the same pitch on the circumference for the required number, and the gap between the guide groove on each split mold side and the plate member is precisely machined. In this case, the workpiece can be moved relative to the split mold in the axial direction together with the cylindrical member during machining. As a result, all the grooving of the workpiece can be performed in one step without causing unnecessary deformation, the productivity of the grooving parts is improved, and the machining cost is effectively reduced.
[0014]
Further, the groove machining die according to claim 5 is characterized in that the gap is set within 3/100 mm. As a result, since the gap between the split type guide groove and the plate-like member is small, it is effectively discharged to the outer peripheral side as if the surplus at the time of grooving was cut, and the deformation of the workpiece is minimized. It is possible to effectively reduce the man-hours in the subsequent process.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
However, this embodiment is specifically described for better understanding of the gist of the invention, and does not limit the content of the invention unless otherwise specified.
[0016]
[Form]
As shown in FIGS. 1 to 3, the planar commutator in this embodiment is composed of a copper annular body 12 and an insulating resin 13, and is provided with a shaft fitting hole 11b at the center. The groove 11c having a depth reaching the position of the insulating resin 13 at equal intervals in the radial direction is formed in the surface 11a on the brush contact side of the flat commutator 11 and arranged in an annular shape. The commutator pieces 12a,..., 12a are separated so that they can function as independent terminals.
[0017]
In the copper annular body 12, a plurality of circular cuts 14, 15 for forming engagement protrusions are concentrically formed on the surface opposite to the brush contact surface. The circular cuts 14 and 15 are formed before the insulating resin 13 is filled, and the engagement protrusions 16 and 17 formed by providing the circular cuts 14 and 15 protrude so as to bite into the insulating resin 13. By doing so, the filled and cured insulating resin 13 is prevented from coming out of the copper annular body 12.
[0018]
On the outer peripheral surface of the copper annular body 12, grooves 12b,..., 12b for connecting two conductors to each commutator piece 12a,. Also engrave so that it opens.
Pure copper or copper alloy can be used for the material of the copper annular body 12, and among these, phosphorus (deoxidized) copper, silver-containing copper, and oxygen-free copper are preferably used.
As the material of the insulating resin 13, an insulating material using a heat-resistant glass fiber, mineral powder or the like as a main base material and a thermosetting resin such as a phenol resin as a binder is preferable. It is preferable to use a material having a high impact property.
[0019]
〔Production method〕
The method of manufacturing a planar commutator formed in such a form is to machine a copper annular body 12 as a workpiece by a process as shown in FIG. 4 to FIG. Perform molding.
First, as shown in FIGS. 4 (a) and 4 (b), as the material removal, an annular body having a rectangular cross section having a predetermined size is cut out by cutting a copper tube, and the inner diameter side is cut to obtain a uniform thickness. 21.
Next, as shown in FIGS. 5 (a) and 5 (b), the inner peripheral portion is pressed in the axial direction of the annular body 21 by press work, and a part of the inner peripheral portion in the thickness direction protrudes inward to be compressed. By making the diameter, the flange 22a on the inner diameter side is installed, and the inner diameter side is processed into a flange installation part 22 formed into a stepped shape.
[0020]
Next, as shown in FIGS. 6 (a) and 6 (b), the grooved portion at a predetermined location on the outer peripheral portion of the flange upset part 22 is released by pressing, and the press load is released to the normal lateral side. If there is no load (for example, forward or backward extrusion load), the load is about 60 to 70% (for example, about 50 tons in the case of an outer diameter of 67 mm), and the processing speed is about 25 mm / sec. A groove is machined, and a predetermined number of grooves 23a,..., 23a are formed in a predetermined shape to obtain a processed intermediate part 23 in which surplus portions 23b,.
[0021]
Further, as shown in FIGS. 7 (a) and 7 (b), a cutting edge (not shown) that moves in the axial direction is a boundary between the outer peripheral surface of the machining intermediate part 23 and the base of the surpluses 23b,. And trimming by applying a pressing force while moving the cutting blade in the axial direction to remove all the surpluses 23b,..., 23b protruding from the outer peripheral portion, and molding the outer peripheral surface A grooved component 24 is obtained.
[0022]
Further, as shown in FIGS. 8 (a) and 8 (b), deep grooves 25a,..., Having a thin groove width (for example, a width of 1 mm) for separating commutator pieces at intermediate positions of the grooves 23a,. 25a in a plate-like state with the thinnest possible thickness (for example, 1.5 mm thicker than the groove width) as long as the remaining portion 25b from the opposite surface can maintain the shape stability of the copper annular body 12 A part 25 in which the resin filling groove for insulation is formed by being engraved so as to remain is obtained.
[0023]
Further, as shown in FIGS. 9A and 9B, the deep groove 25a has a diameter larger than the groove width of the groove 25a at the engraved position of each deep groove 25a,. A round hole 26a having the same depth as that in the radial direction is drilled in a direction parallel to the axis at an intermediate position between the inner peripheral surface of the stepped portion in the radial direction and the innermost end of the groove 23a, and is formed on the surface on the groove engraving side. Is configured to form a concentric circle with an outer peripheral edge or an inner peripheral edge of the copper annular body 12 in an arc-shaped groove 26b having a V-shaped cross section at a position on the outer peripheral side by a predetermined width (for example, 1 mm) from the inner peripheral surface of the stepped portion. And the engagement protrusion 17 is projected by bending the inner portion of the groove 26b to the inner diameter side, and the cross section is formed at a position on the outer peripheral side by a predetermined width (for example, 1 mm) from the inner peripheral surface of the flange 22a. The V-shaped arc-shaped groove 26 c is formed concentrically with the outer peripheral edge or the inner peripheral edge of the copper annular body 12. And engraved on, and bent to the inner diameter side is projected engagement projections 16 inside portion than the groove 26c, the engaging projections 16, 17 is formed so that the retainer of the insulating resin after molding.
[0024]
Thus, as shown in FIG. 10, the copper annular body component 26 in a state where the commutator pieces 12a,..., 12a of the copper annular body 12 are not separated is formed.
Thereafter, the copper annular part 26 is set in an insulating resin molding device, and an appropriate casting pressure (for example, 250 to 500 kg / cm2) is considered in consideration of a material used, a size, a groove width and the like. 2 ) To perform molding.
[0025]
After molding the insulating resin in the inner diameter side of the copper annular part 26 and the deep grooves 25a,..., 25a, the surface opposite to the groove engraved side of the copper annular part 26 (that is, the surface 11a on the brush contact side). In addition, at the same position as the position where the deep groove 25a is engraved, it is cut slightly deeper than the portion left in the form of a plate from the back surface (surface 11a) side to reach the insulating resin 13 filled in the deep groove 25a. A groove 11c for separating commutator pieces having a depth is formed to form a copper annular body 12 from which the respective commutator pieces 12a,..., 12a are separated, and each commutator as shown in FIGS. The planar commutator 11 is formed in which the pieces 12a,..., 12a are solidified in a state of being insulated by the insulating resin 13.
[0026]
〔Mold〕
As shown in FIGS. 11 and 12, the mold for forming the flanged part 22 shown in FIG. 5 to the processed intermediate part 23 shown in FIG. Is an assembly-type mold combined with the above, and a space for accommodating the flange upset part 22 before grooving or the machining intermediate part 23 after grooving is provided. The number of the shaped members 31 is accommodated in the same direction as the number of grooves.
[0027]
The lower mold 30 includes divided molds 30a, 30b, and 30c that are divided into three layers.
The uppermost split mold 30a requires a plate member 31 for grooving on the inner surface side in order to obtain a machining intermediate part 23 in which a flange upsetting component 22 as a workpiece is set and grooving is performed. A guide groove 30e, which becomes a space 30 in which a minute clearance of, for example, 3/100 mm or less is provided between the plate-like member 31 with the short side in the radial direction and the long side in the vertical direction. A cross-section having flat upper and lower surfaces in which 30e is engraved at equal intervals on the circumference is formed into a substantially rectangular annular body.
[0028]
The split mold 30b of the intermediate layer has, for example, 100 plates between the plate-like member 31 and the plate-like member 31 with the required number of short sides on the inner surface side and the longer side in the vertical direction. A recess having a shape corresponding to the shape of the protruding portion provided at the lower end of the plate-like member 31 is provided at the lower end portion on the inner surface side together with the guide grooves 30f,..., 30f serving as a space for providing a minute clearance of 3 mm or less. A guide groove 30f,..., 30f that becomes a space in which the plate-like member 31 cannot be set up by being engaged is engraved at equal intervals in the circumference, and a cross section having flat upper and lower surfaces is formed in a substantially rectangular annular body. To do.
The lowermost split mold 30c is formed in an annular body having a substantially rectangular cross section having flat upper and lower surfaces that support the lower end of the plate-like member 31 so as not to be lowered.
[0029]
Each of the split molds 30a, 30b, and 30c has a center space portion of the annular body fitted around the columnar member 32 for centering and the columnar member 32 so that the plate-like members 31,. A cylindrical member 33 provided with a guide groove 33a that moves in the direction and an annular member 34 having a rectangular cross section that contacts the lower end of the cylindrical member 33 and supports the cylindrical member 33 positioned above from the lower side are fitted internally. To form a space that can be accommodated.
[0030]
The cylindrical member 33 is provided with guide grooves 33a,..., 33a that can move the plate-like members 31,. A clearance of 1 mm or less is provided and engraved at equal intervals on the circumference, and the inner diameter side is formed into a thick cylindrical shape having a hole with a diameter that can be fitted onto the columnar member 32.
[0031]
A rectangular hole 32a that is long in the axial direction is formed in the lower end portion of the cylindrical member 32, and a rectangular parallelepiped eject bar 35 is movably penetrated through the rectangular hole 32a. When pressed by the bar 35, the annular member 34 and the columnar member 32 move in opposite directions to push up the machining intermediate part 23 from the lower mold 30 so that the molded machining intermediate part 23 can be taken out of the mold.
[0032]
The lower end surface of the cylindrical member 32 is in contact with the lower end portion of the eject bar 35 and is used for returning to the initial position when the cylindrical member 32 is lowered. From the start of machining to the machining intermediate part 23, the inner diameter of the flange mounting part 22 is restrained by the outer peripheral surface of the cylindrical member 32 to prevent deformation, and the inner diameter dimension is maintained to generate a gap. An elastic member 36 made of a coil spring or the like is provided for prevention.
[0033]
Further, a cylindrical base support member 37 that accommodates the lower end portion of the columnar member 32 and the elastic member 36, a base 38 that fits and accommodates the base support member 37 and supports the lower mold 30, A large-diameter cap nut-like coupling member 39 for fixing the mold 30 to the base 38 is provided so that the lower mold 30 placed on the base 38 can be fixed.
[0034]
The upper die 40 has a thick cylindrical pressing member 41 having an annular end surface that contacts and presses the non-grooved surface side of the flange installation component 22, and the pressing member 41 is rotatably fitted around the axis. At the same time, a cylindrical member 42 that prevents the cylindrical member 42 from falling down and a rotation stopper (not shown) that prevents the cylindrical member 42 from being fitted and rotated around the shaft are attached and prevented from falling downward. The pressing member 41, the cylindrical member 42, and the supporting flange member 43 are flush with each other on the ram (not shown) side and are simultaneously lowered to lower the cylindrical member 42. The pressing member 41 presses the flange mounting component 22 to perform groove processing until it comes into contact with the upper surface of the split mold 30a located at the uppermost stage 30 and stops. 34, Egi Push down Kutoba 35 etc., the excess thickness 23b of the groove processing, ..., 23b is a protruding predetermined groove 23a, ..., forming a 23a.
[0035]
As shown in FIG. 13, a mold used for trimming after grooving includes a pedestal member 52 on which a workpiece (in this case, the machining intermediate part 23) is placed inside a cylindrical outer frame member 51. Provided at the lowermost end, and for pressing and fixing the workpiece placed from above the pedestal member 52, the machining tolerance range is smaller than the outer diameter of the annular portion of the workpiece (for example, 5 to 30 mm). A cylindrical holding member 53 having a stepped portion 53a that fits inside the inner diameter portion of the workpiece is provided at the lower end, and has an inner diameter that is smaller by a tolerance range than the outer shape of the annular body portion of the workpiece. In addition, a cutting blade member 54 that is formed in a cylindrical shape and fitted to the holding member 53 and has a sharp blade is provided so as to be movable in the axial direction, and the members 51, 52, 53, and 54 are fitted concentrically. Arrange.
[0036]
The pedestal member 52 is formed so that the outer shape for placing the processing intermediate part 23 on the upper end is slightly smaller than the outer shape of the annular body excluding the surplus parts 23b, ..., 23b. A seat formed with a recess 52a having a shallow rectangular cross section equivalent to the thickness of the flange 22a, having a smaller diameter than the outer frame member 51, and a height including the recess 52a higher than the height of the annular body of the machining intermediate part 23 52b is provided, and an annular body 55 having a necessary cross-sectional shape such as a circular cross-section provided so as to function as a stopper is provided on the lower end portion of the seat 52b so as to prevent the cutting blade member 54 from falling too downward.
[0037]
The cutting blade member 54 that is externally fitted to the holding member 53 and is provided so as to be movable in the axial direction has an inner diameter that is smaller in the machining tolerance range (for example, 5 to 30 mm) than the outer diameter of the annular portion of the workpiece. , Having a blade angle of 30 to 45 degrees (relative to the axis) and having a cross-section formed into a perfect circular cylindrical shape, the workpiece surpluses 23b,. The surface layer is scraped off so that an accurate cylindrical surface can be formed.
[0038]
As shown in FIG. 14, the mold of the molding apparatus is a hollow of a lower frame mold 62 placed on a base 61 as a lower mold on which a workpiece (in this case, a copper annular body part 26) is set and supported. Forming a thick cylindrical cylindrical lower mold 63 accommodated in the portion and a casting passage internally fitted in the hollow portion of the lower mold 63, and making the parts easy to lift and take out after curing the insulating resin It consists of a lower mold 64. The base 61 incorporates a number of pressing units 65 that are pressed at equal intervals on the circumference so as to apply a force in the direction of closing the mold during the casting operation of the lower frame mold 62, and an upper mold 66 to be described later and Are formed so that the abutment surfaces are in close contact with each other.
[0039]
The upper mold that forms the casting passage and the molding space in combination with the lower mold is in contact with the upper surface of the lower frame mold 62 and is relative to the molding lower mold 63 and the moving lower mold 64 during casting. The upper mold 66 for forming the casting passage 66a and the insulating resin molding space 66b is maintained, and the upper mold 66 is assembled to the center of the upper mold 66 so as to be movable in the axial direction. The combination upper die 67 provided with a resin material input space 67a communicating with the formed casting passage 66a, the molding upper die 66 and the combination upper die 67 are integrally attached to the ram side, and the pressing force from the ram at the time of casting. And a pressing member 68 that uniformly presses to the lower mold side.
[0040]
In order to perform molding, first, the upper combination mold 67 is positioned above the upper mold 66 for molding, the resin material charging space 67a is fully opened, and a powdery insulating material is charged into the resin material charging space 67a to combine the upper mold. 67 is lowered to a predetermined position of the molding upper die 66, and further, the pressing force from the ram is transmitted by the pressing member 68 to pressurize and melt the resin material, and the insulating resin molding is performed through the casting passage 66a. Press fit into the space 66b. At this time, the lower frame mold 62 and the molding upper mold 66 are brought into close contact with each other by the pressing unit 65, and the brush contact surface of the copper annular body component 26 which is a workpiece placed on the molding lower mold 63 is used for molding. It is made to adhere to the contact surface with the upper mold 66 so as not to generate a gap so that the molten insulating resin does not enter the brush contact surface side when the resin is filled. After the insulating resin press-fitted into the insulating resin molding space 66b is cooled, the pressing member 68 is pulled up to raise the molding upper die 66 and the combination upper die 67 to open the die, and further raise the moving lower die 64 Thus, the molded workpiece is removed from the lower frame mold 62 and the molding lower mold 63 and lifted to facilitate removal from the mold.
[0041]
[Function and effect]
In the planar commutator manufactured in such a configuration, the commutator pieces 12a,..., 12a are annularly formed by equally providing gaps (grooves 11c, 25c) provided with round holes 26a between the commutator pieces. Are separated from each other so that the commutator pieces 12a,..., 12a can be used as independent terminals, and the commutator pieces 12a,. A ring contact body is formed on one surface of the ring body, a wiring contact portion and an insulating resin filling portion are formed on the other surface, and the insulating resin filling portion is filled. Engaging protrusions project from the portions covered by the insulating resin, and the commutator pieces 12a,. It is formed so that it cannot be withdrawn. Shape is integrally molded easily and suitable for mass production shape, especially copper parts are able to efficiently integrally molded in the state of the annular body, it is possible to effectively reduce the cost.
[0042]
In such a planar commutator manufacturing method, a copper part is press-molded from the annular body 21 to the flange upset part 22, and the outer peripheral portion is pressed to protrude the surplus thicknesses 23b, ..., 23b to the outer peripheral side. Then, a processed intermediate part 23 in which a wiring groove is formed is formed, and the surplus portions 23b,..., 23b are collectively removed together with the outer peripheral surface layer by trimming to form a grooved part 24, and the formed groove process In the part 24, commutator piece separating grooves 25a, ..., 25a are formed at intermediate positions of the grooves 23a, ..., 23a, and round holes 26a having a diameter larger than the groove width are formed in the grooves 25a, ..., 25a. At the same time, the V-groove is pressed on the end face on the groove engraving side and the end face on the flange installation side to form the copper annular part 26 having the engagement protrusions 16 and 17 protruding on the inner diameter side, and then the commutator piece Molded to form before separation The insulating resin 13 is molded to insulate the grooves 25a, ..., 25a, and the insulating resin is molded into a predetermined shape to prevent the commutator pieces 12a, ..., 12a from separating from the insulating resin 13. Then, an integrated part of the copper part and the insulating resin is formed, and then the grooves 11c,..., 11c are engraved from the brush contact side at the engraving positions of the commutator piece separating grooves 25a,. By separating and insulating the commutator pieces 12a, ..., 12a, the planar commutator 11 in which the commutator pieces 12a, ..., 12a are insulated by the insulating resin 13 is formed. For this reason, it becomes easy to integrally form the copper annular body 12, especially the copper annular body part 26, the mass productivity is improved, the cost is reduced, and the planar commutator 11 is manufactured quickly and inexpensively with high mass productivity. Can do.
[0043]
The groove forming mold for the flange upsetting part 22 is a cylindrical member 33 that supports a workpiece such as the flange upsetting part 22 sandwiched between the upper mold 40 and the lower mold 30 so as to be movable in the axial direction. And the split molds 30a and 30b that are externally fitted to the cylindrical member 33, and the plate-shaped member 31 serving as a grooving blade section between the outer peripheral portion of the cylindrical member 33 and the inner peripheral portion of the split molds 30a and 30b. The guide grooves 33a and the guide grooves 30e and 30f, which are built in such a manner as to be relatively movable in the axial direction, are engraved at a constant circumferential pitch for the required number, and between the guide grooves 30e and 30f and the plate-like member 31. The gap is set within a minute tolerance range, and the workpiece is moved relative to the split molds 30a and 30b in the axial direction together with the cylindrical member 33 supporting the workpiece by a press load at the time of machining. For this reason, when the outer peripheral end of the workpiece is grooved, at the outer peripheral end of the workpiece pressed by the plate-like member 31, the surplus portions 23 b,..., 23 b are guided to the outer guide grooves 30 e,. It can be extruded in the same state as the cutting, and the necessary depth of grooving can be done without causing bulging or crushing of the periphery of the grooving part, especially the end face, reducing post-processing. Improve productivity and reduce processing costs effectively.
[0044]
The trimming mold for removing the surplus after the grooving has a base member 52 on which a workpiece such as the machining intermediate part 23 is placed, and a workpiece having a diameter substantially the same as the diameter of the workpiece. A holding member 53 that holds in the direction and a cutting blade member 54 that has an inner diameter slightly smaller than the outer shape of the workpiece by being externally fitted to the holding member 53 and having a sharp blade that scrapes off the outer peripheral surface of the workpiece. It is fitted on the member 53 so as to be movable in the axial direction. For this reason, it is possible to cut off all the surpluses 23b,..., 23b of the work piece together with the surface layer of the outer peripheral surface at a time, there is little deformation of the end face during processing, and there are few dents around the member left in the plate shape As a result, post-processing is reduced and the outer peripheral surface of the annular body portion is formed into a highly accurate cylindrical part, thereby improving productivity and effectively reducing processing costs.
[0045]
The mold of the molding apparatus can be moved in the axial direction by concentrically fitting with a lower mold 63 for fixing a workpiece such as the copper annular part 26 and a hollow portion of the lower mold 63 for molding. The movable lower mold 64, the lower frame mold 62 that externally fits the molding lower mold 63 and applies a force in the direction of closing the mold during casting to the workpiece, and the upper surface of the lower frame mold 62 A space as a molding part of the insulating resin is transmitted from the molding upper mold 66 that transmits a load from the ram side and forms a resin filling space between the workpiece, the molding lower mold 63 and the movable lower mold 64. Then, the insulating resin molding space 66b is heated and filled with an appropriate pressure while being filled with the resin powder through the formed resin filling space, and is cured and cured, and the insulating resin 13 is molded with the insulating resin 13. The use space 66b is filled and solidified. As a result, the insulating resin can be cast quickly at a constant pressure, and the insulating resin can be molded with high quality without intruding the insulating resin into the brush contact side, increasing mass productivity and improving productivity. As a result, the cost can be reduced.
[0048]
【The invention's effect】
As described above, in the method for manufacturing a planar commutator according to claim 1, a grooved part formed with a groove for wiring is integrally formed, and the groove for each wiring formed in the grooved part is formed. A groove for separating the commutator piece was formed at an intermediate position of the copper to form a copper annular body part, and then a planar commutator was manufactured by molding an insulating resin to insulate between the grooves. As a result, it is possible to easily form the grooved part integrally, and a planar commutator in which each commutator piece is insulated with an insulating resin can be molded with high productivity.
[0049]
Further, in the method for manufacturing a planar commutator according to claim 2, by pressing the end faces of a large number of plate-like members on the outer peripheral portion of the flange installation component, the surplus wall protrudes to the outer peripheral side so as to cut. By forming a groove that opens in the outer peripheral surface and does not penetrate on the brush contact surface side, it is possible to integrally form an accurate machining intermediate part with high productivity, improve mass productivity, and reduce costs.
[0050]
Moreover, in the manufacturing method of the copper annular body component according to claim 3, by integrally forming the wiring connection groove by pressing the copper annular body, the copper annular body component can be integrally formed with high productivity, Mass productivity is improved and costs can be effectively reduced.
[0051]
In the grooving die according to claim 4, all the grooving of the workpiece is made uniform by moving the workpiece together with the cylindrical member in the axial direction with respect to the split die by a press load at the time of machining. Machining can be performed without causing unnecessary deformation in the process, the productivity of grooved parts can be improved, and the machining cost can be effectively reduced.
[0052]
Further, in the grooving die according to claim 5, since the gap between the split type guide groove and the plate-like member is small, it is effectively discharged to the outer peripheral side as if the surplus at the time of grooving was cut. In addition, the deformation of the workpiece can be minimized, and the number of man-hours in the subsequent process can be effectively reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a planar commutator according to an embodiment of the present invention.
FIG. 2 is an upper plan view showing a planar commutator in the embodiment of the present invention.
FIG. 3 is a lower plan view showing a planar commutator according to an embodiment of the present invention.
FIGS. 4A and 4B are processing explanatory views showing an annular body having a rectangular cross section according to an embodiment of the present invention, where FIG. 4A is a plan view and FIG.
FIGS. 5A and 5B are process explanatory views showing flange upset parts according to the embodiment of the present invention, where FIG. 5A is a plan view and FIG. 5B is a longitudinal sectional view.
6A and 6B are machining explanatory views showing a machined intermediate part according to an embodiment of the present invention, where FIG. 6A is a plan view and FIG. 6B is a longitudinal sectional view.
FIGS. 7A and 7B are machining explanatory views showing a groove machining component according to an embodiment of the present invention, where FIG. 7A is a plan view and FIG.
FIGS. 8A and 8B are machining explanatory views showing a part obtained by machining a commutator separating groove in an embodiment of the present invention, where FIG. 8A is a plan view and FIG. 8B is a longitudinal sectional view.
FIGS. 9A and 9B are processing explanatory views showing parts obtained by processing the engaging portions of the respective commutator pieces and the insulating resin in the embodiment of the present invention, where FIG. 9A is a plan view and FIG. is there.
FIGS. 10A and 10B are machining explanatory views showing copper annular body parts in which respective commutator pieces are connected in the embodiment of the present invention, where FIG. 10A is a plan view showing a wiring side, and FIG. It is an enlarged view.
FIG. 11 is a longitudinal sectional view showing a mold for forming a processed intermediate part in the embodiment of the present invention.
12 is an AA arrow view of FIG.
FIG. 13 is a longitudinal sectional view showing a trimming mold in the embodiment of the present invention.
FIG. 14 is a longitudinal sectional view showing a molding die in the embodiment of the present invention.
FIG. 15 is a perspective explanatory view showing an example of a conventional planar commutator.
[Explanation of symbols]
11 Planar commutator
11a Brush contact surface
11b hole
11c groove
12 Copper ring
12a Commutator piece
12b groove
13 Insulating resin
14,15 Circular cut
16, 17 engagement protrusion
21 Toroidal
22 Flange installation parts
23 Machining intermediate parts
23a Groove
23b surplus
24 Grooving parts
25 parts
25a groove
25b remaining
26 Copper toroid parts
26a round hole
26b, 26c Arc-shaped groove
30 Lower mold
30a, 30b, 30c Split type
30e, 30f guide groove
31 Plate member
32 Cylindrical member
32a rectangular hole
33 Cylindrical member
33a Guide groove
34 Ring member
35 Eject Bar
36 Elastic members
37 Base support member
38 base
39 Cap nut-like coupling member
40 Upper mold
41 Pressing member
42 Cylindrical member
43 Support flange member

Claims (5)

中央空間部に中心側へフランジを突出した環状体に形成されたフランジ据込部品の外周部に、押出加工圧よりも低めのプレス圧により各加圧箇所の余肉を外周側に押し出して配線接続溝を刻設した加工中間部品を成形し、その加工中間部品の各余肉をトリミング加工により一括除去して溝加工部品を成形し、この溝加工部品に形成されている各配線接続溝の溝間の中間位置に樹脂充填溝を内周面から外周面まで放射方向に刻設しかつ一面側からその反対面側へこの反対面に形成されたブラシ接触面までは貫通しない程度に深く刻設し、この各樹脂充填溝に溝幅より径の大きい丸穴を穿設し、内径側に係合突起を突出した銅製環状体部品を成形し、この銅製環状体部品の絶縁箇所に絶縁用樹脂をモールディングして前記各樹脂充填溝の間を絶縁して整流子片分離の前段階の形態に成形し、その後、絶縁用樹脂を充填した各樹脂充填溝の刻設位置にブラシ接触面側から整流子片分離用の溝を刻設して各整流子片を互いに分離し絶縁することを特徴とする平面型整流子の製造方法。Wiring by pushing the surplus part of each pressurization part to the outer peripheral side with a press pressure lower than the extrusion pressure on the outer peripheral part of the flange installation part formed in the annular body projecting the flange toward the center side in the central space part Processed intermediate parts with engraved connection grooves are formed, and each surplus of the processed intermediate parts is removed by trimming to form grooved parts, and each wiring connection groove formed in the grooved parts is formed. A resin-filled groove is engraved radially from the inner peripheral surface to the outer peripheral surface at an intermediate position between the grooves, and deeply cut so as not to penetrate from one surface side to the opposite surface side to the brush contact surface formed on this opposite surface. A circular hole having a diameter larger than the groove width is formed in each resin-filled groove, and a copper annular body part with an engagement protrusion protruding on the inner diameter side is formed. Molding resin to insulate between resin filling grooves Then, the commutator piece is molded into the form of the previous stage, and then the commutator piece separation groove is engraved from the brush contact surface side at the engraved position of each resin filling groove filled with insulating resin. A method of manufacturing a planar commutator, wherein the pieces are separated from each other and insulated. 前記加工中間部品の成形には、前記フランジ据込部品におけるブラシ接触面とは反対側の面の外周端部に多数の板状部材の端面を押出加工圧よりも低めのプレス圧で押圧することにより、余肉を外周面側に押し出して、この外周面に開口しブラシ接触面側に貫通しない配線接続溝を刻設したことを特徴とする請求項1記載の平面型整流子の製造方法。For forming the processed intermediate part, the end surfaces of a large number of plate-like members are pressed with a press pressure lower than the extrusion pressure on the outer peripheral end of the surface opposite to the brush contact surface in the flange upset part. 2. The method of manufacturing a planar commutator according to claim 1 , further comprising: extruding surplus material to the outer peripheral surface side, and forming a wiring connection groove that opens in the outer peripheral surface and does not penetrate through the brush contact surface side. 一面を平面にしてブラシ接触面を形成した環状体の外周端部に押出加工圧よりも低めのプレス圧により押圧して各加圧箇所の余肉を外周側に押し出して配線接続溝を刻設し、前記各余肉と前記環状体の外周面の表層とをトリミング加工により一括除去し、前記各配線接続溝の溝間の中間位置に樹脂充填溝を内周面から外周面まで放射方向にかつ前記ブラシ接触面とは反対側の面から前記ブラシ接触面側へ前記ブラシ接触面まで達しない程度に深く切削し、さらに前記各樹脂充填溝に溝幅より径の大きい丸穴を穿設し、前記環状体の内周面近傍に前記ブラシ接触面とは反対側の面から押圧して断面がV形の溝を刻設することにより内径側に充填樹脂との係合突起を突出させたことを特徴とする銅製環状体部品の製造方法。Pressing the outer peripheral end of the annular body with a flat surface on one side with a pressing pressure lower than the extrusion pressure to push the surplus of each pressurizing part to the outer peripheral side and carving the wiring connection groove Then, each surplus and the surface layer of the outer peripheral surface of the annular body are collectively removed by trimming, and a resin-filled groove is radially formed from the inner peripheral surface to the outer peripheral surface at an intermediate position between the wiring connection grooves. In addition, a deep hole is cut from the surface opposite to the brush contact surface to the brush contact surface side so as not to reach the brush contact surface, and a round hole having a diameter larger than the groove width is formed in each of the resin-filled grooves. In the vicinity of the inner peripheral surface of the annular body, pressing from the surface on the opposite side to the brush contact surface to form a groove having a V-shaped cross section, thereby projecting an engagement protrusion with the filling resin on the inner diameter side A method for producing a copper annular body part, characterized by 上型と下型との間に挟持される工作物を軸方向へ移動可能に支持する円筒部材とその円筒部材に外嵌する複数の分割型とを基台とラムとの間に配設し、前記円筒部材の外周部と前記各分割型の内周部には溝加工用刃部となる板状部材を軸方向へ相対的に移動可能に内蔵する円筒部材側の案内溝と分割型側の案内溝とを必要個数につき周上等ピッチに刻設し、各分割型側の案内溝と板状部材との間の間隙を精密加工の公差範囲内に設定して、加工時には前記円筒部材とともに工作物を前記分割型に対して軸方向へ相対的に移動可能にしたことを特徴とする溝加工用金型。A cylindrical member that supports the workpiece sandwiched between the upper mold and the lower mold so as to be movable in the axial direction and a plurality of divided molds that are externally fitted to the cylindrical member are disposed between the base and the ram. The cylindrical member-side guide groove and the split die side incorporate a plate-like member serving as a groove processing blade portion in the outer peripheral portion of the cylindrical member and the inner peripheral portion of each split die so as to be relatively movable in the axial direction. The guide groove is engraved at the same pitch on the circumference for the required number, and the gap between the guide groove on each divided mold side and the plate-like member is set within the tolerance range of precision machining. In addition, a grooving mold characterized in that the workpiece can be moved relative to the split mold in the axial direction. 前記間隙を100分の3mm以内に設定することを特徴とする請求項4記載の溝加工用金型。5. The groove machining die according to claim 4, wherein the gap is set within 3/100 mm.
JP2001357974A 2001-11-22 2001-11-22 Planar commutator, copper annular body manufacturing method, and grooving mold Expired - Fee Related JP4112211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357974A JP4112211B2 (en) 2001-11-22 2001-11-22 Planar commutator, copper annular body manufacturing method, and grooving mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357974A JP4112211B2 (en) 2001-11-22 2001-11-22 Planar commutator, copper annular body manufacturing method, and grooving mold

Publications (2)

Publication Number Publication Date
JP2003164114A JP2003164114A (en) 2003-06-06
JP4112211B2 true JP4112211B2 (en) 2008-07-02

Family

ID=19169236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357974A Expired - Fee Related JP4112211B2 (en) 2001-11-22 2001-11-22 Planar commutator, copper annular body manufacturing method, and grooving mold

Country Status (1)

Country Link
JP (1) JP4112211B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101513658B (en) * 2009-03-26 2010-07-21 安固集团有限公司 One-shot forming die for commutator crotch
KR101273780B1 (en) * 2010-12-23 2013-06-12 유장호 DC Motor
CN103567266B (en) * 2013-11-12 2015-11-04 上海昭程整流子科技有限公司 automatic hook device
CN109818224B (en) * 2019-04-10 2024-01-23 温州市智头换向器有限公司 Combined commutator
CN116408394B (en) * 2023-04-26 2023-09-19 无锡市和润远达科技有限公司 Copper sheet stamping die with improve raw materials utilization ratio

Also Published As

Publication number Publication date
JP2003164114A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
US11271462B2 (en) Heat sealing-type rotational laminated core manufacturing apparatus enabling automatic separation of laminated core
EP1504896B1 (en) Method and system for producing laminate
JP4112211B2 (en) Planar commutator, copper annular body manufacturing method, and grooving mold
JPH11114652A (en) Method and device for forging inner ring of constant velocity universal joint
US5937508A (en) Method for making squirrel-cage motor
JP5543753B2 (en) Method for forming powder compact of fine gear
JP4300050B2 (en) Method and apparatus for manufacturing motor coil
JP2007222879A (en) Die for powder molding and powder molding method
CN110880842A (en) Precise rotor core laminating and shaping tool
JP2004114086A (en) Forging device
JP4976983B2 (en) Core mold for molding cylindrical member, molding apparatus, molding method, and core mold for re-molding
CN102601358A (en) Compression forming mould for rare earth permanent magnet
JP5573389B2 (en) Gear forming apparatus and method
JP3999870B2 (en) Method for producing metal-rubber composite member
JP6596890B2 (en) Stator manufacturing apparatus and stator manufacturing method
JPH0568938B2 (en)
JPS6137012B2 (en)
JP3839790B2 (en) Method and apparatus for forming forging material
JP4210839B2 (en) Method for manufacturing motor stator piece
JP4523697B2 (en) Manufacturing method of laminated iron core
US6745456B2 (en) Apparatus and method of making a rotor core with elimination of outer periphery machining
WO2003013768A1 (en) Method and apparatus for manufacturing multi-material powder metal components
JP2001105045A (en) Laminated and bonded article
JP3387831B2 (en) Method of manufacturing metal product having cylindrical portion integrally formed
JP2003311793A (en) Method and apparatus for producing resin molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees