JP4112112B2 - Displacement measuring device - Google Patents

Displacement measuring device Download PDF

Info

Publication number
JP4112112B2
JP4112112B2 JP08626299A JP8626299A JP4112112B2 JP 4112112 B2 JP4112112 B2 JP 4112112B2 JP 08626299 A JP08626299 A JP 08626299A JP 8626299 A JP8626299 A JP 8626299A JP 4112112 B2 JP4112112 B2 JP 4112112B2
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
measurement
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08626299A
Other languages
Japanese (ja)
Other versions
JP2000283713A (en
Inventor
映治 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP08626299A priority Critical patent/JP4112112B2/en
Publication of JP2000283713A publication Critical patent/JP2000283713A/en
Application granted granted Critical
Publication of JP4112112B2 publication Critical patent/JP4112112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光による三角測量を利用して測定対象面上で光を走査させて前記測定対象面の変位量を非接触で測定する変位測定装置に係り、特に受光素子の応答特性の影響を排除して高速かつ正確な変位量が得られる変位測定装置に関するものである。
【0002】
【従来の技術】
光を用いて測定対象面の高さ変位(凹凸)を測定する場合、図11に示すように、投光器51からレーザビームを測定対象物52の表面に照射し、その照射点Pの像Kを結像レンズ53によって受光素子54の受光面上に結像させる三角測量方法による変位測定装置が用いられている。
この受光素子54は、受光面54a上の結像点がKの位置からK’,K”へ移動する移動量に対応した信号を出力するように構成されている。受光素子54は、図11に示すように、結像レンズ53の光軸に対し傾いて配置されており、受光面54aのどの位置に対しても結像するようになっている。
【0003】
この変位測定装置では、測定対象物52の表面の凹凸(変位)により照射点Pが高さ方向に移動して照射点P’又は照射点P”に位置する。これにより、受光素子54の受光面54aの結像点Kが結像点K’又は結像点K”の位置に移動する。受光素子54からの信号も結像点Kの移動量に応じて変化する。この信号の変化量から測定対象面の高さ方向(Z)の変位を検出することができる。なお、装置は、高さ方向Zの変位測定に所定限度の測定範囲を有している。測定範囲は、上限位置RUと下限位置RLとの間であり、測定対象物52の表面がこの測定範囲RU,RL間に位置していればこの測定対象物52表面の変位量を測定できる。
【0004】
また、図12は走査型の変位測定装置60を示す斜視図である。
この走査型の変位測定装置60の投光系は、光源61と振動ミラー型等の偏向装置62と収束レンズ63で構成されている。光源61から照射される照射光は、偏向装置62によって一定角度内の範囲で偏向される。偏向された照射光は、収束レンズ63によってその光軸が一平面上で平行に移動する。そして、その照射光は、測定台71上に載置されている測定対象物70の表面70aに所定の入射角度により照射される。照射光により形成された照射点Pは、直線的に往復走査又は片道走査される。
【0005】
照射光は照射点Pの位置で受光系に正反射される。照射点Pの像は、第1円筒面レンズ(シリンドリカルレンズ)64及び第2円筒面レンズ65によって受光素子66の受光面66aに結像される。この変位測定装置60では、測定対象面70aが鏡面のように反射率が高い場合は、照射点Pで反射される光の殆どが、照射点Pを対称にして入射角度と同じ角度で受光系に反射される。
【0006】
【発明が解決しようとする課題】
しかし、測定対象面70aが粗面の場合は反射率が低い。この場合は、受光系に円筒面レンズ64,65を用いた従来の走査型の変位測定装置60では、照射点Pからの反射光が散乱して受光面66aに結像されると、受光素子66の受光面66aの像がぼけてしまい、測定精度が著しく低下するという問題点があった。
【0007】
即ち、円筒面レンズ64,65は、基本的にレンズ円筒面の周方向に対してのみ収束性を示し、他の方向には収束性はない。このため、図13(a)に示すように、照射点Pで反射した測定光のうち、第1円筒面レンズ64の円筒面の周方向に拡がった散乱光は、第1円筒面レンズ64で収束されて第2円筒面レンズ65に入射される。そして、第2円筒面レンズ65で受光素子66の受光面66aの中心へ向かうように偏向されて、受光面66a上に結像点Kを形成する。
【0008】
また、図13(b)に示すように、照射点Pで反射した測定光のうち、第1円筒面レンズ64の円筒面の軸方向に拡がった散乱光は、第1円筒面レンズ64では全く収束されずに拡がったままで第2円筒面レンズ65へ入射される。このため、受光素子66の受光面66a上の結像点Kは、受光面66aの幅方向に伸びた直線になる。
【0009】
しかも、照射点Pの像を焦点距離の短い第1円筒面レンズ64だけで絞り込むようにしている。このため、第1円筒面レンズ64の収差により、受光素子66の受光面66a上の像Kにおける、図14に示す横長の長円状の短い径方向を、小さく絞り込むことができない。これにより、受光素子66から出力される信号の変動が大きくなり、測定表面の変位を高い精度で測定することができない問題点を生じる。
【0010】
また、上記の走査型の構成においては、測定表面を高速に走査するため新たな問題が生じた。
変位測定装置は、予め高さ方向(Z)に測定範囲RU,RLが定められているため、測定表面がこの測定範囲を越えると、受光素子54,66の受光面から外れた位置に結像点Kが作られることになる。
ここで、受光側の光学系で受光素子54,66の受光面上の所定範囲内にのみ結像点Kが作られるよう製造することはできない。
受光素子54,66は、受光面の端部で応答性が劣る特性を有している。以下、図11の構成の受光素子54を例に用いて説明する。
【0011】
例えば、半導体素子であるBGAの半田ボールの変位量を測定する等の場合には、BGAの半田ボールの頂点部分での変位量を正確に測定するために変位測定装置の高さを調整しておく。すると、BGAの底部(即ち、半導体素子の面)が測定範囲から外れた位置となることがある。
このような場合、走査型の構成であると、照射点Pの位置が短時間で測定範囲から外れ、また、復帰することとなる。対応して受光素子54の受光面54a上では結像点KがZ方向における端部位置54bを高速に通過することになる。
これにより、受光素子54の受光面54aの端部位置54bを結像点Kが通過した際に出力される誤差を含む検出信号が、受光面54a上で正確に検出された変位量の検出信号に影響を与え、結果として変位測定精度を向上できない問題が生じた。
【0012】
図15は、受光素子54の受光面54aを示す図である。
受光素子54は、受光面54a上に一対の細長い電極54A,54Bが配置される。通常、この電極54A,54B同士の内側の有効エリア(図中範囲L21で記載)内に結像点Kが作られれば変位量を正確に検出できる。
この電極54A,54Bは、受光面54aの端部54eから所定距離内側に形成されており、電極54A,54Bの外側の部分(端部位置54b)に結像点Kが作られると、前述した応答性が劣り変位量に誤差を含む検出信号が出力されてしまう。
【0013】
装置が走査型でない場合にあっては、この端部位置54bで検出された変位量が測定範囲外であると判断して使用しない等の対処が可能である。
しかし、走査型の構成であると、前述したように、BGAの半田ボールの測定のように照射光がRU,又はRLの外側になる場合は、受光素子54の端部位置54bを光が瞬間に通過することになる。このように端部位置54bを通過した際に出力された検出信号は応答性が劣り、有効エリアの範囲L21内で検出された際の検出信号を鈍らせる如く影響を与える。上記BGAの具体的では、測定範囲外であるBGA底部での変位量の検出信号によって測定したいBGA頂点部の変位量が正確に得られないことがあった。
【0014】
図16は、使用している受光素子の光入射位置による応答性の違いを示す図である。仮に(a)のような変調光(変調周波数は例えば10kHz)が入射した場合、その検出信号(図は受光素子出力A+Bの波形;受光量に相当する)は、有効受光面上に入射した場合の応答(b)に比べ、端部に入射した場合には(c)のように立ち上がり、下がり共に時間のかかった(なまった)応答となる。この部分では、正しい変位測定結果を得ることができない。立ち上がり、立ち下がりに要している時間は現状のデータサンプリングピッチ;83nsピッチ;12Mサンプル/s)の200〜300データ分に相当し、測定結果に大きな影響を与えている。
【0015】
上記のように受光素子の端部位置で応答性が低下する問題は、受光素子から出力される変位量のデータを電気的処理で解消することはできない。
また、図15に図示したが、受光素子54の受光面54a上では、四方の端部位置がいずれも同様に応答特性が劣り、上記Z方向の端部位置54bに加えて、走査方向Xに対応した端部位置54dについても同様に応答性が劣る特性を保有している。(図15には、この端部位置54b,54dを斜線で示した。)
そして、近年の変位測定装置は、次第に走査速度が高速化されてきており、この走査速度の高速化によって、上記受光素子の応答性に係る問題が表出してきたためこの解決策が求められていた。
【0016】
本発明は、上記課題を解決するためになされたものであり、測定範囲を越えた測定や光の走査に起因して光が受光素子の端部位置を通過しても、受光素子の端部位置での劣特性の影響を受けることなく、測定対象面の変位を高速なまま高精度に測定できる変位測定装置を提供することにある。
【0017】
【課題を解決するための手段】
上記目的を達成するために、本発明の変位測定装置は、請求項1記載のように、測定対象面上にあてる照射光を走査し、受光素子の受光面上に形成された結像点の検出位置に基づき、前記測定対象面の変位量を非接触で測定する変位測定装置において、
照射光を屈曲させて一定の振り幅で走査させる偏向装置を備え前記走査した照射光を前記測定対象面上に照射して照射点を形成する投光手段と、
前記照射点からの測定光を受光素子の受光面上で受光して結像点を形成する受光手段とを有し、
該受光手段は、
光軸廻りに均等な結像特性を有する複数の集光レンズ部が前記照射光の走査方向に沿って構成され、前記測定光を収束させるレンズアレイと、
光軸廻りに均等な結像特性を有し、前記収束された測定光を前記受光面上に前記結像点を形成させる結像レンズを備え、
前記受光素子の受光面には、前記照射光の走査に対応した該受光面上での光の移動方向両端部であって応答性の劣る部分に、前記受光手段による前記光の集束特性に応じて予め設定される隣接した結像点のスポット間隔に対応した所定幅の開口範囲内で前記光の結像点を形成させ、前記スポット間隔を越えた箇所に対応する前記受光面の端部位置では前記光を遮蔽するマスク部が形成されていることを特徴とする。
【0018】
また、請求項2記載の発明は、請求項1記載の変位測定装置において、前記受光素子の受光面には、前記測定対象面の前記変位量の変化による前記光の結像点の移動方向両端部であって応答性の劣る部分に、それぞれ所定幅で前記光を遮蔽する他のマスク部を形成したことを特徴とする。
【0022】
また、請求項記載のように、前記マスク部は、前記受光素子の受光面上に光を遮蔽する部材を塗布あるいは貼付して形成することができる。
【0023】
また、請求項記載のように、前記マスク部は、前記受光素子の受光面上に設けられた透明板の内面又は外面に光を遮蔽する部材を塗布あるいは貼付して形成してもよい。
【0024】
上記構成によれば、受光素子の端部には、変位量の変化による前記光の結像点の移動方向両端部と、予め設定される変位量の測定範囲に対応した所定長さの開口範囲内で前記光の結像点を形成させ前記測定範囲を越えた箇所に対応する前記受光面の端部位置に、それぞれ所定幅で前記光を遮蔽するマスク部が形成されている。
これにより、光を高速に走査して変位量を測定する際に、短時間で変位量が測定範囲を越えたとき、及びこの光の走査が受光素子の端部位置を通過する際、この光を遮蔽するため、応答性の劣るこの端部位置の検出信号を出力することなく、良好な受光範囲の検出信号のみ出力することができ、走査速度が高速であっても正確な変位量を得られるようになる。
【0025】
【発明の実施の形態】
〔第1実施形態〕
図1及び図2に示すように、変位測定装置1は、投光手段2から照射される照射光を、測定対象物の測定対象面30a上で走査し、その反射光を受光手段6で受光するものである。測定対象物30は、測定台31に載置されている。
投光手段2は、レーザダイオード等の光源3と、回転ミラー型,振動ミラー型又はポリゴンミラー型等の偏向装置4と、偏向装置4から出射した光を測定対象面上に収束させる収束レンズ5で構成されている。
【0026】
偏向装置4は、照射光を測定対象面30a上に斜め入射させる位置に配置される。偏向装置4は、光源3から入射された照射光を屈曲させ、一定の振り幅で照射光をX方向に走査する。
収束レンズ5は、その長手方向を走査方向Xと一致させて、偏向装置4から出射された光の光路上に配置される。収束レンズ5は、偏向装置4で走査された照射光を収束させて、光軸が平行移動するビームを測定対象面30aに出射する。
測定対象面上では、照射光により照射点Pが形成される。
【0027】
受光手段6は、レンズアレイ7と、光軸廻りに均等な結像特性を有する結象レンズ8と、受光素子9で構成されている。受光手段6は反射光の光路上に配置される。
レンズアレイ7は、複数(図1では6個)の集光レンズ部7a〜7fが走査方向Xに沿って所定ピッチを有して一列に並んだ状態で構成されている。各集光レンズ部7a〜7fは、照射光の走査幅より小さい寸法で、合成樹脂又はガラスで形成されてレンズアレイ7を構成する。各集光レンズ部7a〜7fの焦点距離f1(たとえば20mm)は互いに等しく、その各光軸はそれぞれ平行である。各集光レンズ部7a〜7fは、光軸廻りに均等な結像特性を有するレンズ部となっている。
【0028】
結像レンズ8は、反射光の走査幅寸法(たとえば36mm)より大きい径を有する。結像レンズ8は、その光軸と反射光の光路が一致するように配置されている。結像レンズ8の入射面は各集光レンズ部7a〜7fと対面しており、出射面は受光面と対面している。結像レンズ8は、入射面に入射した反射光を光軸廻りに均等に絞込み、受光素子9の受光面9a上に一点に結像させる。なお、結像レンズ8の入射面は、球面,非球面を問わない。また、反射光が入射する範囲に対応した部分のみを切り出した形状にしてもよい。
【0029】
受光素子9は、矩形状の受光面9aを有する。受光面9aの中心は結像レンズ8の光軸と交わっている。受光素子9は、結像レンズ8の焦点距離f2離れた位置に配置されている。受光面9aの走査方向Xと平行な受光幅wは、1個の集光レンズ部7a(〜7f)の走査方向Xの幅tに、集光レンズ部7a〜7fの焦点距離f1と結像レンズ8の焦点距離f2の比(倍率)f2/f1を乗じた値よりも大きく設定されている。たとえば、1個の集光レンズ部7aの走査方向Xの幅が6mmで、倍率4のときは受光面9aの走査方向Xの幅wは24mmよりも大きい。
【0030】
受光面9a上に結像された像(結像点K)は、測定対象面30aの変位により、この受光面9a上での走査方向x(受光面9aの幅方向)と直交する方向z(縦方向)に移動するようになっている。この縦方向zは、測定対象面30aの変位に伴い、結像位置が結像レンズ8の光軸方向に移動するのに対応させるため、水平方向に対し図2に示すような所定の傾きをもって配置されている。
【0031】
図3は、受光素子9を示す平面図である。
図3(a)に示すように、受光素子9は縦方向zに長さL2を有し、縦方向の両端部にはそれぞれ幅方向xに沿って互いが平行な電極9A,9Bが設けられる。これら電極9A,9B間の受光範囲L21に結像点Kが結像されると、この結像位置に対応して一対の検出信号A,Bが出力される。
測定対象面30aがレンズアレイ7に近づくと、相対的に検出信号Aが大きくなり、検出信号Bが小さくなる。一方、測定対象面30aがレンズアレイ7から遠ざかると、相対的に検出信号Bが大きくなり、検出信号Aが小さくなる。
【0032】
受光素子9の受光面9a上の受光範囲L21は、測定範囲(上限位置RU、下限位置RL)の距離に対応している。測定対象面30aが上下限の測定範囲RU,RL内(図11参照)に位置していれば、この測定対象面30aの変位量を示す検出信号が正確な値で出力される。
なお、これら受光面9aの縦方向zの長さL2、測定範囲RU,RL間の距離(測定対象面30aの測定可能な高さ方向Zの距離範囲)、受光側の光学系7,8の焦点距離と倍率、はそれぞれが相互に関係している。例えば、装置に用いる受光素子と測定範囲に合わせた受光の光学系を作成するようになっている。
【0033】
装置は、受光面9aの受光範囲L21の範囲内に測定範囲(上限位置RU,下限位置RL)がいずれも位置するよう各部を設定する。そしてこの受光素子9には、縦方向zの長さL2方向の端部位置9cに幅L23を有して前述した応答性が劣る部分が存在している。
【0034】
この受光面9a上で縦方向zの長さL2方向の端部位置9cには、電極9A,9Bと受光面9aの端部9eとの間にマスク部20を形成する。
図3(b)に示すように、このマスク部20は、端部位置9c及び電極9A,9B上をいずれも覆う略長方形状に設けられる。
これら一対のマスク部20の一端部20a,20a同士間の間隔(開口範囲)L22は、前記測定範囲に対応して設定する。図示の例では、この開口範囲L22は、受光素子9の受光範囲L21よりも若干短い距離に設定されている。
【0035】
マスク部20は、受光面9a上に光を透過及び反射しない材質(例えば、遮光性インキ等)を塗布、あるいはシートを貼付して形成する。あるいは、受光面9a上には所定厚さを有するガラス等の透明体が設けられるため、この透明体の表面又は裏面にマスク部20を設けた構成とすれば、透明体での光の屈折を防げ、開口範囲L22をより厳密に設定できる。
【0036】
受光素子9から出力される検出信号A,Bは、図4に示すような変位演算手段に出力される。変位演算手段10には、検出信号A,Bを電流/電圧変換する一対の電流電圧変換部I/Vが設けられている。各電流電圧変換部I/Vで変換された検出信号A,Bはそれぞれ加算部12と減算部13に出力される。
加算部12では検出信号A,Bが加算され、加算信号を出力する。減算部13では検出信号A,Bが減算され、減算信号を出力する。
加算信号及び減算信号は除算部14に入力されて除算され、変位信号Dを出力するようになっている。
【0037】
次に、本実施の形態の作用について、図1〜図6を用いて説明する。光源3から照射された照射光は、偏向装置4により屈曲され、所定のストロークで走査される。
走査された照射光は収束レンズ5に入射され、測定対象面30a上に照射点Pを形成し、この測定対象面30a上で走査方向Xに平行に移動するビームとなる。照射光は照射点Pごとに反射又は散乱し、その反射,散乱光(測定光)は受光手段6側へ出射される。
【0038】
図5(a)に示すように、照射点Pが走査されて、レンズアレイ7の一端にある集光レンズ部7aに対向する位置に移動する。この照射点から反射,散乱した光(測定光)は、集光レンズ部7aによってほぼ平行なビームとなって収束する。収束された測定光は、結像レンズ8の光軸に対し角度のある状態で結像レンズに入射される。
【0039】
結像レンズ8は、集光レンズ部7aに入射された測定光を、向きを変えて受光素子9の受光面9aの一端側の位置に結像させる。図6(a)に示すように、側方からみても、照射点Pから反射,散乱する光は、集光レンズ部7a〜7eによってほぼ平行に収束され、結像レンズ8によって受光素子9の受光面9a上に結像される。
【0040】
このため、受光素子9の受光面9aには、照射点Pの高さに正確に対応した位置に点状の像Ka(結像点)が形成される。受光素子9は、受光面9aの縦方向zでの結像点Kの位置に対応した検出信号A,Bを電極から出力する。なお、照射点Pから他の集光レンズ部7b〜7fに入射する測定光も収束されて結像レンズ8に入射される。しかし、これらの光は受光素子9の受光面9a上には結像されない。
【0041】
また、照射点の走査によって、図5(b)に示すように、照射点Pはレンズアレイ7の集光レンズ部7aの光軸と交わる位置に移動する。この照射点Pから反射,散乱した光(測定光)は、主に集光レンズ部7aによってほぼ平行なビームに収束される。収束された測定光は、結像レンズ8の光軸と平行な状態で入射される。このため、照射点Pの像Kaは、受光素子9の受光面9aの幅方向xのほぼ中心位置に形成される。
【0042】
更に、照射点の走査によって図5(c)に示すように、照射点は、レンズアレイ7の集光レンズ部7aに対向する範囲内で、その光軸に対し隣の集光レンズ部7b寄りに移動する。すると、この照射点Pから反射,散乱した光(測定光)は、主に集光レンズ部7aによって収束され、結像レンズ8の光軸に対し図5(a)の場合と逆の角度をもって結像レンズに入射される。このため、結像レンズ8は、受光素子9の受光面9aの幅方向xの他端側の位置で点状の像Kaを形成する。
【0043】
このように、照射点Pが集光レンズ部7aに対向する範囲内で移動すると、受光素子9の受光面9a上の像Kaの位置は、受光面9aの幅方向xの一端部から他端部(図面上では上から下)に移動することになる。
また、照射点の走査にともなって、例えば図6(b)に示すように照射点PがP’のように高さ方向にδだけ移動すると、受光素子9の受光面9a上の像がK’のように縦方向zに移動し、その位置に対応する検出信号A,Bが出力される。そして、この検出信号A,Bから照射点P’の高さ、照射点Pの高さとの差δが判り、測定対象面30aの変位量が得られる。
【0044】
そして、図5(d)に示すように、照射点Pが幅方向xへの走査で集光レンズ部7aと集光レンズ部7bの境界部に対向する位置に来ると、その照射点Pからの光は、隣接する2つの集光レンズ部7a,7bによってそれぞれほぼ平行なビームに集束されて結像レンズ8に入射される。このため、受光素子9の受光面9aの幅方向の両端に像Ka,Kbがつくられるが、この2つの結像点Ka,Kbの受光面9aの縦方向xの位置はともに等しいので、受光素子9からは像が1つの場合と同様にその縦方向xの位置に対応した検出信号が出力される。
【0045】
照射点Pが更に幅方向xに走査されると、図5(e)に示すように、照射点Pが集光レンズ部7bに対向する範囲内まで移動する。すると、照射点Pから反射、散乱した光(測定光)は、主に集光レンズ部7bによって収束され、その光軸に対し角度のある状態で結像レンズ8に入射される。そして、結像レンズ8は、受光素子9の受光面9aの幅方向xの一端側の位置で点状の像Kbをつくる。
【0046】
以下同様に、照射点Pがレンズアレイ7の走査方向幅(ここでは36mm)を走査される間に、結像点Kは、各集光レンズ部7a〜7fごとに受光面9aの幅方向xの一端から他端まで移動する。これと同時に、測定対象面30aの変位に応じて結像点Kは受光面9a上で縦方向zに移動する。
そして受光素子9から、測定対象面30aの高さ変位に正確に対応した一対の検出信号A,Bが変位演算手段10に出力される。検出信号A,Bは、図4に示すように、電流電圧変換部I/Vにより、それぞれ電圧変換される。変換された検出信号A,Bは、ともに加算部12と減算部13に出力される。そして、加減演算後、加算部12から加算信号、減算部13から減算信号が出力され、除算部14で除算されて変位信号Dを出力する。
【0047】
この変位信号Dに基づいて各測定対象面30aの変位を測定することができる。また、照射光の走査範囲より径が大きい1つの光軸廻りに均等な結像特性を有する集光レンズのみで照射点からの測定光をほぼ平行に収束して結像レンズへ出射する従来の方式に比べて、受光面9aの幅が小さい受光素子9を用いることができるようになる。
つまり、この種の受光素子9は、その面積が大きい程、応答速度が遅くなることが知られている。上記実施形態のように、小さな複数の集光レンズ部7a〜7fで照射点Pからの測定光を収束するように構成することで、受光面9aの幅方向xが小さく応答速度の速い受光素子9を用いることができる。これにより、走査速度を上げて受光素子9の信号出力に対する処理速度を上げることができ、測定時間を短縮することが可能となる。
【0048】
そして、上記説明による走査型の変位測定においては、測定対象面30aの段差(凹凸)が大きい場合、この測定対象面30aが短時間のうちに測定範囲RU,RLを越え、また、測定範囲内に復帰する場合がある。
しかし、上記受光素子9の受光面9aは、マスク部20により測定範囲RU,RLに対応した開口範囲L22が設定されている。
【0049】
このため、例え測定対象面30aの高さ方向Zの位置が測定範囲を越えても、受光素子9の受光面9a上の結像点Kは、このマスク部20上に位置し、受光面9a(端部位置9b)への入射を遮蔽することができる。この際、受光素子9は検出信号A,Bを出力しない。
これにより、受光素子9の縦方向zの端部位置9bでの劣る応答性に起因する検出精度低下を未然に防止できる。
【0050】
〔第2実施形態〕
以下に説明する第2実施形態は、上記構成のレンズアレイ7を用いた構成において、受光素子9の幅方向xでの応答特性の劣化を防止しようとするものである。
【0051】
この受光素子9の受光面9a上では、上記走査によって結像点Kが幅方向xに移動する。
図7(a)に示すように、この結像点K(Ka,Kb)のスポット間隔Sdは、レンズアレイ7の各集光レンズ部7a〜7fの配列ピッチと、受光側の光学系(レンズアレイ7,結像レンズ8)の倍率によって決まる。
【0052】
この結像点Kのスポット間隔Sdは、受光素子9の受光面9aの幅方向xの幅wより小さくなるよう設定されており、受光面9a上で集光レンズ7a〜7fのうち、測定点Pが隣接する任意の2つの集光レンズ(例えば7a,7b)の境界面近くにあるときは、隣接する任意の2つの集光レンズ(例えば7a,7b)による結像点Ka,Kbが同時に存在するようになっている。
【0053】
受光素子9は、この幅方向xに関しても両端の端部位置9dに幅w23を有して応答性が劣る部分が存在している。
幅w21で示した部分が応答性の問題なく使用することができる受光範囲となっている。
【0054】
図8は、受光素子9の受光面9a上での結像点Kの移動状態を示す動作図である。同図は、上記第1実施形態の図5で説明した動作に、受光素子9の実際的な配置を記載し、受光面9a上での結像点Kの移動状態を示したものである。
図8(a)〜(e)に示すように、測定対象面30a上での照射点Pの走査に応じて、受光面9a上では結像点Kが幅方向xに移動していく。
レンズアレイ7は、複数の集光レンズ7a〜7fを有するため、隣接する集光レンズの結像点Ka〜Kfが上記スポット間隔Sdを有して移動する。
【0055】
この走査の際、各結像点K(Ka〜Kf)は、それぞれ受光面9aの端部位置9dを通過することになる。
したがって、図8(c)の如く、結像点Kaが受光範囲w21に位置している際に、結像点Kbが応答性の劣る端部位置9dに位置する状態が生じる。同様に、図8(d)のようにこの後、結像点Kbが受光範囲w21に位置している際に、結像点Kaが応答性の劣る端部位置9dに位置する状態となる。
このように、結像点Kが受光素子9で応答性の劣る端部位置9dを通過すると、このとき、受光範囲w21で検出されていた結像点Kに基づく検出信号の出力に影響を与える。
【0056】
したがって、図7(b)に示すように、受光面9a上で幅方向xの端部位置9dには、前記幅w23を有する略長方形状のマスク部21を形成する。
これら一対のマスク部21の一端部21a,21a同士間の間隔(開口範囲)w22は、前記スポット間隔Sdに対応して設定している。図示の如く、この開口範囲w22は、受光素子9の受光範囲w21よりも若干短く、また、同時に2つの結像点K(Ka,Kb)を受光できる間隔に設定されている。
厳密には、受光範囲w21≧開口範囲w22≧(スポット間隔Sd+スポット径)に設定する。
【0057】
図9は、マスク部21を設けた状態での結像点Kの移動状態を示す図である。上述したマスク部21を設けることにより、受光素子9の受光面9aは、開口範囲w22部分でのみ光を受光することができる。マスク部21は、結像点がこのマスク部21上に位置している期間は、受光面9aへの入射を遮蔽し、受光素子9は検出信号A,Bを出力しない。
【0058】
図9(a)〜(e)の順で結像点Kは、幅方向xに沿って移動するが、図9(c)の如く、結像点Kaが開口範囲w22に位置している際に、結像点Kbが応答性の劣る端部位置9dに位置しても、受光面9aはこの結像点Kbの光を受光しない。同様に、図9(d)のようにこの後、結像点Kbが開口範囲w22に位置している際に、結像点Kaが応答性の劣る端部位置9dに位置しても、受光面9aはこの結像点Kaの光を受光しない。
これにより、受光素子9の幅方向xの端部位置9dでの劣る応答性に起因する検出精度の低下を未然に防止できる。
【0059】
図10は、上記各実施形態で説明したマスク部20,21を一体的に設けた構成である。
図示のように、マスク部23は、受光素子9の受光面9aの各辺に沿った四角な環状に形成してもよい。このマスク部23は、前述した開口範囲L22,w22を有して構成される。
このマスク部23を設けることにより、受光素子9の4辺それぞれの端部位置9c,9dでの劣る応答性の箇所に結像点Kを形成しないよう構成できる。そして、前述したレンズアレイ7を用いて光を高速に走査しても、また、測定対象面30aの変位量が測定範囲RU,RLを越え、復帰しても、受光素子9からは精度よい検出信号A,Bを得ることができ、高精度な変位量を得られるようになる。
【0060】
上記実施形態では、ビームの走査範囲が36mmに対して、6つの集光レンズ部7a〜7fを有するレンズアレイ7を用いた構成であったが、これは本発明を限定するものではない。例えば、集光レンズ部7a〜7fをより小さくすれば(例えば幅2mm)、受光素子9の受光面9aの幅方向xの幅をさらに小さくすることができるので、受光素子9の応答速度が上がりその結果、受光素子9から出力される検出信号に対する処理速度をさらに上げることができる。
【0061】
また、レンズアレイ7の各集光レンズ部7a〜7fの焦点距離f1と、結像レンズ8の焦点距離f2の比f2/f1を小さくすれば受光素子9の縦方向zの長さも小さくできる。一方、結像レンズ8の焦点距離f2を小さくすると、結像レンズ8の周辺部においては収差が増大し、集光レンズ部7a〜7fの幅が一定のまま焦点距離f1を大きくすると、集光レンズ部7a〜7fは暗くなり受光量が低下する。このため、測定対象面30aの表面状態や測定に要求される精度等に応じて、各レンズ7,8の外径、焦点距離等を決定すればよい。
【0062】
また、上記実施形態のレンズアレイ7は、複数の集光レンズ部7a〜7fが合成樹脂あるいはガラスで一体成形されたものを用いたが、個別につくられた複数の集光レンズ部7a〜7fを接着して一体化してもよく、また、各集光レンズ部7a〜7fを接着せずに隙間のない状態で一列に並べたものであってもよい。
また、上記実施形態では、結像レンズ8は、一方の面が実際に球面状に形成されているレンズを用いていたが、光をその光軸の周りに均等にしぼり込むことができる結像レンズであればよく、両面が球面または非球面のレンズを用いてもよい。
【0063】
【発明の効果】
本発明の変位測定装置によれば、測定対象面が測定範囲を越える際、受光素子の受光面上で光の結像点は変位量に対応して端部位置に移動するが、マスク部材はこの端部位置で光を遮蔽する構成であり、応答性の劣る端部位置では光を検出せず、正常に検出された検出信号に影響を与えないようにできる。
これにより、変位量が瞬間的に増減する場合であっても変位測定精度を維持して正確な変位量を得ることができるようになる。特に、光を高速走査する装置の場合、変位量が短時間で増減する為有効となる。
【0064】
また、測定対象面上で光を走査させると、この走査に対応して受光素子の受光面上で光の結像点が走査方向に対応して端部位置に移動するが、マスク部はこの端部位置で光を遮蔽する構成であり、応答性の劣る端部位置では光を検出せず、正常に検出された検出信号に影響を与えないようにできる。
これにより、光を高速走査させても変位測定精度を維持して正確な変位量を得ることができるようになる。
特に、受光系にレンズアレイを用いた構成により、結像点の収差を少なくして像がぼやけることなく結像でき、小型で応答性の良い受光素子を用いることができ、変位測定精度を向上できる等の効果を有する。加えて、このレンズアレイを用いた際に走査された光は受光素子の端部位置でマスク部材により遮蔽され、有効な開口範囲内でのみ光を受光する構成であるため、走査による高速測定の利点を活かし、測定精度を向上できるようになる。
【図面の簡単な説明】
【図1】本発明の変位測定装置を示す斜視図。
【図2】同変位測定装置の側面図。
【図3】受光素子を示す平面図(その1)。
【図4】変位測定装置の変位演算手段を示すブロック図。
【図5】受光素子上での結像点の移動状態を示す図。
【図6】図5の側面図。
【図7】受光素子を示す平面図(その2)。
【図8】受光素子の端部位置での光の通過を説明するための図。
【図9】受光素子上のマスク部による光の遮蔽を説明するための図。
【図10】マスク部の他の構成例を示す図。
【図11】変位測定の原理を示す図。
【図12】従来の走査型の変位測定装置を示す斜視図。
【図13】従来装置の受光側での光の集束を示す図。
【図14】同従来装置の受光側での光の集束を示す図。
【図15】受光素子の端部位置での劣特性を説明するための平面図。
【図16】受光素子の端部位置での劣特性を説明するための図。
【符号の説明】
1…変位測定装置、2…投光手段、3…光源、4…偏向装置、5…収束レンズ、6…受光手段、7…レンズアレイ、7a〜7f…集光レンズ部、8…結像レンズ、9…受光素子、9a…受光面、9A,9B…電極、9c,9d…端部位置、20,21,23…マスク部、30…測定対象物、30a…測定対象面、X…測定対象面上での光の走査方向、x…受光面上での光の走査方向、Z…測定対象面の高さ方向、z…受光面での変位量に対応した光の移動方向、RU,RL…測定限度位置(上限位置、下限位置)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a displacement measuring apparatus that scans light on a surface to be measured using light triangulation and measures the amount of displacement of the surface to be measured in a non-contact manner, and particularly affects the response characteristics of a light receiving element. The present invention relates to a displacement measuring device that can be eliminated to obtain a high-speed and accurate displacement amount.
[0002]
[Prior art]
When measuring the height displacement (unevenness) of the surface to be measured using light, as shown in FIG. 11, the surface of the measurement object 52 is irradiated with a laser beam from a projector 51, and an image K of the irradiation point P is irradiated. A displacement measuring device using a triangulation method in which an image is formed on the light receiving surface of the light receiving element 54 by the imaging lens 53 is used.
The light receiving element 54 is configured to output a signal corresponding to the amount of movement of the imaging point on the light receiving surface 54a from the position K to K ′, K ″. As shown in FIG. 4, the lens is arranged to be inclined with respect to the optical axis of the imaging lens 53 so that an image is formed at any position on the light receiving surface 54a.
[0003]
In this displacement measuring apparatus, the irradiation point P moves in the height direction due to the unevenness (displacement) of the surface of the measurement object 52 and is positioned at the irradiation point P ′ or the irradiation point P ″. The imaging point K of the surface 54a moves to the position of the imaging point K ′ or the imaging point K ″. The signal from the light receiving element 54 also changes according to the amount of movement of the imaging point K. The displacement in the height direction (Z) of the measurement target surface can be detected from the change amount of the signal. The apparatus has a predetermined measurement range for displacement measurement in the height direction Z. The measurement range is between the upper limit position RU and the lower limit position RL. If the surface of the measurement object 52 is located between the measurement ranges RU and RL, the displacement amount of the measurement object 52 surface can be measured.
[0004]
FIG. 12 is a perspective view showing a scanning displacement measuring device 60.
The light projection system of the scanning type displacement measuring device 60 includes a light source 61, a deflecting device 62 such as a vibrating mirror type, and a converging lens 63. Irradiation light emitted from the light source 61 is deflected in a range within a certain angle by the deflecting device 62. The optical axis of the deflected irradiation light is moved in parallel on one plane by the converging lens 63. Then, the irradiation light is applied to the surface 70a of the measurement object 70 placed on the measurement table 71 at a predetermined incident angle. The irradiation point P formed by the irradiation light is linearly reciprocated or one-way scanned.
[0005]
The irradiated light is regularly reflected by the light receiving system at the position of the irradiation point P. The image of the irradiation point P is formed on the light receiving surface 66a of the light receiving element 66 by the first cylindrical lens (cylindrical lens) 64 and the second cylindrical lens 65. In the displacement measuring device 60, when the measurement target surface 70a has a high reflectivity like a mirror surface, most of the light reflected at the irradiation point P is symmetrical with the irradiation point P at the same angle as the incident angle. Is reflected.
[0006]
[Problems to be solved by the invention]
However, when the measurement target surface 70a is a rough surface, the reflectance is low. In this case, in the conventional scanning displacement measuring device 60 using the cylindrical lens 64, 65 in the light receiving system, when the reflected light from the irradiation point P is scattered and imaged on the light receiving surface 66a, the light receiving element. 66, the image on the light receiving surface 66a is blurred, and there is a problem that the measurement accuracy is remarkably lowered.
[0007]
That is, the cylindrical lenses 64 and 65 basically exhibit convergence only in the circumferential direction of the lens cylindrical surface, and do not converge in other directions. For this reason, as shown in FIG. 13A, among the measurement light reflected at the irradiation point P, the scattered light spread in the circumferential direction of the cylindrical surface of the first cylindrical lens 64 is reflected by the first cylindrical lens 64. The light is converged and incident on the second cylindrical lens 65. Then, the second cylindrical lens 65 is deflected toward the center of the light receiving surface 66a of the light receiving element 66 to form an image point K on the light receiving surface 66a.
[0008]
Further, as shown in FIG. 13 (b), of the measurement light reflected at the irradiation point P, the scattered light spread in the axial direction of the cylindrical surface of the first cylindrical lens 64 is completely transmitted by the first cylindrical lens 64. The light enters the second cylindrical lens 65 without being converged but spreading. For this reason, the imaging point K on the light receiving surface 66a of the light receiving element 66 is a straight line extending in the width direction of the light receiving surface 66a.
[0009]
Moreover, the image of the irradiation point P is narrowed down only by the first cylindrical lens 64 having a short focal length. For this reason, due to the aberration of the first cylindrical lens 64, the horizontally elongated oval short radial direction shown in FIG. 14 in the image K on the light receiving surface 66a of the light receiving element 66 cannot be narrowed down. As a result, the fluctuation of the signal output from the light receiving element 66 becomes large, causing a problem that the displacement of the measurement surface cannot be measured with high accuracy.
[0010]
Further, in the above-described scanning type configuration, a new problem arises because the measurement surface is scanned at high speed.
In the displacement measuring device, the measurement ranges RU and RL are determined in the height direction (Z) in advance, so if the measurement surface exceeds the measurement range, the image is formed at a position off the light receiving surfaces of the light receiving elements 54 and 66. Point K will be created.
Here, the optical system on the light receiving side cannot be manufactured so that the imaging point K is formed only within a predetermined range on the light receiving surfaces of the light receiving elements 54 and 66.
The light receiving elements 54 and 66 have a characteristic that the responsiveness is inferior at the end of the light receiving surface. Hereinafter, the light receiving element 54 having the configuration of FIG. 11 will be described as an example.
[0011]
For example, when measuring the amount of displacement of a BGA solder ball, which is a semiconductor element, the height of the displacement measuring device is adjusted to accurately measure the amount of displacement at the apex of the BGA solder ball. deep. As a result, the bottom of the BGA (that is, the surface of the semiconductor element) may be out of the measurement range.
In such a case, with the scanning configuration, the position of the irradiation point P deviates from the measurement range in a short time and returns. Correspondingly, on the light receiving surface 54a of the light receiving element 54, the imaging point K passes through the end position 54b in the Z direction at high speed.
Thereby, the detection signal including the error output when the imaging point K passes through the end position 54b of the light receiving surface 54a of the light receiving element 54 is the displacement amount detection signal accurately detected on the light receiving surface 54a. As a result, there was a problem that the displacement measurement accuracy could not be improved.
[0012]
FIG. 15 is a view showing the light receiving surface 54 a of the light receiving element 54.
In the light receiving element 54, a pair of elongated electrodes 54A and 54B are disposed on the light receiving surface 54a. Usually, if the imaging point K is formed in the effective area (described by the range L21 in the figure) inside the electrodes 54A and 54B, the amount of displacement can be detected accurately.
The electrodes 54A and 54B are formed inside a predetermined distance from the end portion 54e of the light receiving surface 54a, and when the imaging point K is formed in the outer portion (end portion position 54b) of the electrodes 54A and 54B, as described above. The response is inferior and a detection signal including an error in the displacement amount is output.
[0013]
If the apparatus is not of the scanning type, it is possible to take measures such as not using the apparatus by judging that the displacement detected at the end position 54b is outside the measurement range.
However, in the case of the scanning configuration, as described above, when the irradiation light is outside the RU or RL as in the measurement of the BGA solder ball, the light instantaneously passes through the end position 54b of the light receiving element 54. Will pass through. Thus, the detection signal output when passing through the end position 54b is inferior in response, and affects the detection signal when it is detected within the effective area range L21. In the BGA, the displacement amount at the BGA apex portion to be measured may not be accurately obtained by the displacement detection signal at the BGA bottom portion outside the measurement range.
[0014]
FIG. 16 is a diagram showing a difference in response depending on the light incident position of the light receiving element used. If modulated light (a modulation frequency is, for example, 10 kHz) as in (a) is incident, the detection signal (the waveform of the light receiving element output A + B; corresponding to the amount of received light) is incident on the effective light receiving surface. Compared with the response (b), when the light is incident on the end portion, the response rises and falls as shown in (c). In this part, a correct displacement measurement result cannot be obtained. The time required for rising and falling corresponds to 200 to 300 data of the current data sampling pitch (83 ns pitch; 12 Msample / s), and has a great influence on the measurement result.
[0015]
As described above, the problem that the responsiveness decreases at the end position of the light receiving element cannot be solved by electrical processing of the displacement amount data output from the light receiving element.
Further, as shown in FIG. 15, on the light receiving surface 54a of the light receiving element 54, the response characteristics of the four end positions are similarly inferior, and in the scanning direction X in addition to the end position 54b in the Z direction. The corresponding end position 54d also has a characteristic that the response is poor. (In FIG. 15, the end positions 54b and 54d are indicated by hatching.)
In recent displacement measuring apparatuses, the scanning speed has been gradually increased, and due to the increased scanning speed, problems related to the response of the light receiving element have been revealed, and this solution has been required. .
[0016]
The present invention has been made to solve the above-described problems. Even if light passes through the end position of the light receiving element due to measurement exceeding the measurement range or scanning of the light, the end of the light receiving element is provided. An object of the present invention is to provide a displacement measuring apparatus capable of measuring a displacement of a measurement target surface with high accuracy without being affected by inferior characteristics at a position.
[0017]
[Means for Solving the Problems]
  In order to achieve the above object, the displacement measuring apparatus of the present invention is as described in claim 1.In the displacement measuring device that scans the irradiation light applied to the measurement target surface and measures the amount of displacement of the measurement target surface in a non-contact manner based on the detection position of the imaging point formed on the light receiving surface of the light receiving element.
  A light projecting unit that includes a deflecting device that bends and scans the irradiation light with a constant amplitude, and irradiates the scanned irradiation light onto the measurement target surface to form an irradiation point;
  Light receiving means for receiving the measurement light from the irradiation point on the light receiving surface of the light receiving element to form an imaging point; and
  The light receiving means
  A plurality of condensing lens portions having uniform imaging characteristics around the optical axis are configured along the scanning direction of the irradiation light, and a lens array for converging the measurement light,
  An imaging lens having uniform imaging characteristics around an optical axis, and forming the focused image on the light-receiving surface of the focused measurement light;
  The light-receiving surface of the light-receiving element corresponds to the light focusing characteristics of the light-receiving means on the both ends of the light moving direction on the light-receiving surface corresponding to the scanning of the irradiation light and inferior in response. The light-receiving surface end position corresponding to a position exceeding the spot interval, and forming the light image-forming point within an opening range having a predetermined width corresponding to a spot interval between adjacent imaging points set in advance. Then, a mask portion for shielding the light is formed.It is characterized by that.
[0018]
  The invention according to claim 2The displacement measuring device according to claim 1, wherein the light receiving surface of the light receiving element is located at both end portions in the moving direction of the imaging point of the light due to a change in the amount of displacement of the measurement target surface and inferior in response. , Each of which has another mask portion that shields the light with a predetermined width.It is characterized by that.
[0022]
  Claims3As described, the mask portion can be formed by applying or sticking a light shielding member on the light receiving surface of the light receiving element.
[0023]
  Claims4As described, the mask portion may be formed by applying or sticking a light shielding member to an inner surface or an outer surface of a transparent plate provided on the light receiving surface of the light receiving element.
[0024]
According to the above configuration, at the end of the light receiving element, both end portions in the moving direction of the light image formation point due to a change in the displacement amount, and an opening range of a predetermined length corresponding to a predetermined displacement amount measurement range A mask portion for shielding the light with a predetermined width is formed at each end position of the light receiving surface corresponding to a location where the imaging point of the light is formed and exceeds the measurement range.
As a result, when measuring the amount of displacement by scanning light at high speed, when the amount of displacement exceeds the measurement range in a short time and when this light scan passes through the end position of the light receiving element, Therefore, it is possible to output only the detection signal of the good light receiving range without outputting the detection signal of this end position which is inferior in response, and the accurate displacement amount can be obtained even when the scanning speed is high. Be able to.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
As shown in FIGS. 1 and 2, the displacement measuring apparatus 1 scans the irradiation light emitted from the light projecting means 2 on the measurement target surface 30 a of the measurement object, and receives the reflected light by the light receiving means 6. To do. The measurement object 30 is placed on the measurement table 31.
The light projecting means 2 includes a light source 3 such as a laser diode, a deflecting device 4 such as a rotating mirror type, a vibrating mirror type, or a polygon mirror type, and a converging lens 5 that converges light emitted from the deflecting device 4 on the measurement target surface. It consists of
[0026]
The deflecting device 4 is disposed at a position where the irradiation light is incident obliquely on the measurement target surface 30a. The deflecting device 4 bends the irradiation light incident from the light source 3 and scans the irradiation light in the X direction with a constant swing width.
The converging lens 5 is arranged on the optical path of the light emitted from the deflecting device 4 with its longitudinal direction coinciding with the scanning direction X. The converging lens 5 converges the irradiation light scanned by the deflecting device 4 and emits a beam whose optical axis moves in parallel to the measurement target surface 30a.
On the measurement target surface, an irradiation point P is formed by the irradiation light.
[0027]
The light receiving means 6 includes a lens array 7, a joint lens 8 having uniform imaging characteristics around the optical axis, and a light receiving element 9. The light receiving means 6 is disposed on the optical path of the reflected light.
The lens array 7 is configured such that a plurality (six in FIG. 1) of condensing lens portions 7a to 7f are arranged in a line with a predetermined pitch along the scanning direction X. Each condensing lens part 7a-7f is a dimension smaller than the scanning width of irradiation light, is formed with a synthetic resin or glass, and comprises the lens array 7. FIG. The focal lengths f1 (for example, 20 mm) of the condenser lens portions 7a to 7f are equal to each other, and their optical axes are parallel to each other. Each of the condensing lens portions 7a to 7f is a lens portion having uniform imaging characteristics around the optical axis.
[0028]
The imaging lens 8 has a diameter larger than the scanning width dimension (for example, 36 mm) of the reflected light. The imaging lens 8 is arranged so that the optical axis thereof matches the optical path of the reflected light. The entrance surface of the imaging lens 8 faces each of the condenser lens portions 7a to 7f, and the exit surface faces the light receiving surface. The imaging lens 8 uniformly narrows the reflected light incident on the incident surface around the optical axis and forms an image on the light receiving surface 9a of the light receiving element 9 at one point. The incident surface of the imaging lens 8 may be either spherical or aspheric. Moreover, you may make it the shape which cut out only the part corresponding to the range in which reflected light injects.
[0029]
The light receiving element 9 has a rectangular light receiving surface 9a. The center of the light receiving surface 9 a intersects the optical axis of the imaging lens 8. The light receiving element 9 is disposed at a position away from the focal length f2 of the imaging lens 8. The light receiving width w parallel to the scanning direction X of the light receiving surface 9a is equal to the focal length f1 of the condensing lens portions 7a to 7f and the imaging with the width t in the scanning direction X of one condensing lens portion 7a (to 7f). It is set larger than a value obtained by multiplying the ratio (magnification) f2 / f1 of the focal length f2 of the lens 8. For example, when the width of one condenser lens portion 7a in the scanning direction X is 6 mm and the magnification is 4, the width w of the light receiving surface 9a in the scanning direction X is larger than 24 mm.
[0030]
The image (image formation point K) formed on the light receiving surface 9a is displaced in the direction z (in the direction orthogonal to the scanning direction x (the width direction of the light receiving surface 9a) on the light receiving surface 9a due to the displacement of the measurement target surface 30a. (Vertical direction). This vertical direction z has a predetermined inclination as shown in FIG. 2 with respect to the horizontal direction in order to correspond to the movement of the imaging position in the optical axis direction of the imaging lens 8 with the displacement of the measurement target surface 30a. Has been placed.
[0031]
FIG. 3 is a plan view showing the light receiving element 9.
As shown in FIG. 3A, the light receiving element 9 has a length L2 in the longitudinal direction z, and electrodes 9A and 9B that are parallel to each other along the width direction x are provided at both ends in the longitudinal direction. . When the imaging point K is imaged in the light receiving range L21 between the electrodes 9A and 9B, a pair of detection signals A and B are output corresponding to the imaging position.
When the measurement target surface 30a approaches the lens array 7, the detection signal A relatively increases and the detection signal B decreases. On the other hand, when the measurement target surface 30a moves away from the lens array 7, the detection signal B relatively increases and the detection signal A decreases.
[0032]
The light receiving range L21 on the light receiving surface 9a of the light receiving element 9 corresponds to the distance of the measurement range (upper limit position RU, lower limit position RL). If the measurement target surface 30a is located within the upper and lower measurement ranges RU and RL (see FIG. 11), a detection signal indicating the amount of displacement of the measurement target surface 30a is output with an accurate value.
Note that the length L2 of the light receiving surface 9a in the vertical direction z, the distance between the measurement ranges RU and RL (the distance range in the height direction Z that can be measured on the measurement target surface 30a), and the optical systems 7 and 8 on the light receiving side. Focal length and magnification are mutually related. For example, a light receiving element used in the apparatus and a light receiving optical system matched to the measurement range are created.
[0033]
The apparatus sets each part so that the measurement ranges (upper limit position RU, lower limit position RL) are all located within the range of the light receiving range L21 of the light receiving surface 9a. In the light receiving element 9, there is a portion having the width L23 at the end position 9c in the length L2 direction in the longitudinal direction z and inferior in the responsiveness described above.
[0034]
A mask portion 20 is formed between the electrodes 9A and 9B and the end portion 9e of the light receiving surface 9a at the end position 9c in the length L2 direction in the longitudinal direction z on the light receiving surface 9a.
As shown in FIG. 3B, the mask portion 20 is provided in a substantially rectangular shape that covers both the end position 9c and the electrodes 9A, 9B.
An interval (opening range) L22 between the one end portions 20a and 20a of the pair of mask portions 20 is set corresponding to the measurement range. In the illustrated example, the opening range L22 is set to a distance slightly shorter than the light receiving range L21 of the light receiving element 9.
[0035]
The mask portion 20 is formed by applying a material that does not transmit and reflect light (for example, light-shielding ink) on the light receiving surface 9a, or affixing a sheet. Alternatively, since a transparent body such as glass having a predetermined thickness is provided on the light receiving surface 9a, if the mask portion 20 is provided on the front or back surface of the transparent body, the light is refracted by the transparent body. The opening range L22 can be set more strictly.
[0036]
The detection signals A and B output from the light receiving element 9 are output to a displacement calculating means as shown in FIG. The displacement calculation means 10 is provided with a pair of current / voltage converters I / V for converting the detection signals A and B into current / voltage. The detection signals A and B converted by the current / voltage converters I / V are output to the adder 12 and the subtractor 13, respectively.
The adder 12 adds the detection signals A and B and outputs an addition signal. The subtraction unit 13 subtracts the detection signals A and B, and outputs a subtraction signal.
The addition signal and the subtraction signal are input to the division unit 14 and divided to output a displacement signal D.
[0037]
Next, the effect | action of this Embodiment is demonstrated using FIGS. The irradiation light emitted from the light source 3 is bent by the deflecting device 4 and scanned with a predetermined stroke.
The scanned irradiation light is incident on the converging lens 5, forms an irradiation point P on the measurement target surface 30a, and becomes a beam that moves parallel to the scanning direction X on the measurement target surface 30a. Irradiation light is reflected or scattered at each irradiation point P, and the reflected and scattered light (measurement light) is emitted to the light receiving means 6 side.
[0038]
As shown in FIG. 5A, the irradiation point P is scanned and moved to a position facing the condenser lens portion 7 a at one end of the lens array 7. Light (measurement light) reflected and scattered from this irradiation point is converged as a substantially parallel beam by the condenser lens portion 7a. The converged measurement light is incident on the imaging lens at an angle with respect to the optical axis of the imaging lens 8.
[0039]
The imaging lens 8 changes the direction of the measurement light incident on the condensing lens unit 7 a and forms an image at a position on one end side of the light receiving surface 9 a of the light receiving element 9. As shown in FIG. 6A, the light reflected and scattered from the irradiation point P is converged almost in parallel by the condensing lens portions 7a to 7e even when viewed from the side. An image is formed on the light receiving surface 9a.
[0040]
For this reason, a point-like image Ka (imaging point) is formed on the light receiving surface 9a of the light receiving element 9 at a position that accurately corresponds to the height of the irradiation point P. The light receiving element 9 outputs detection signals A and B corresponding to the position of the imaging point K in the longitudinal direction z of the light receiving surface 9a from the electrodes. Note that the measurement light incident on the other condenser lens portions 7 b to 7 f from the irradiation point P is also converged and incident on the imaging lens 8. However, these lights are not imaged on the light receiving surface 9 a of the light receiving element 9.
[0041]
Further, by scanning the irradiation point, the irradiation point P moves to a position where it intersects with the optical axis of the condensing lens portion 7a of the lens array 7, as shown in FIG. Light (measurement light) reflected and scattered from the irradiation point P is converged into a substantially parallel beam mainly by the condenser lens portion 7a. The converged measurement light is incident in a state parallel to the optical axis of the imaging lens 8. For this reason, the image Ka of the irradiation point P is formed at substantially the center position in the width direction x of the light receiving surface 9 a of the light receiving element 9.
[0042]
Further, as shown in FIG. 5C by scanning the irradiation point, the irradiation point is close to the condensing lens portion 7b adjacent to the optical axis within the range facing the condensing lens portion 7a of the lens array 7. Move to. Then, the light (measurement light) reflected and scattered from this irradiation point P is mainly converged by the condensing lens unit 7a, and has an angle opposite to that in the case of FIG. Incident on the imaging lens. Therefore, the imaging lens 8 forms a dot image Ka at the position on the other end side in the width direction x of the light receiving surface 9a of the light receiving element 9.
[0043]
As described above, when the irradiation point P moves within the range facing the condenser lens portion 7a, the position of the image Ka on the light receiving surface 9a of the light receiving element 9 is changed from one end to the other end in the width direction x of the light receiving surface 9a. Part (from top to bottom in the drawing).
As the irradiation point is scanned, for example, as shown in FIG. 6B, when the irradiation point P moves by δ in the height direction as shown in P ′, the image on the light receiving surface 9a of the light receiving element 9 becomes K. It moves in the vertical direction z like ', and detection signals A and B corresponding to the position are output. Then, from the detection signals A and B, the height δ of the irradiation point P ′ and the difference δ between the height of the irradiation point P are known, and the displacement amount of the measurement target surface 30a is obtained.
[0044]
Then, as shown in FIG. 5D, when the irradiation point P comes to a position facing the boundary between the condensing lens portion 7a and the condensing lens portion 7b in the scanning in the width direction x, from the irradiation point P. Are converged into substantially parallel beams by two adjacent condensing lens portions 7a and 7b and are incident on the imaging lens 8. For this reason, images Ka and Kb are formed at both ends in the width direction of the light receiving surface 9a of the light receiving element 9. Since the positions of the two image forming points Ka and Kb in the vertical direction x of the light receiving surface 9a are equal, The detection signal corresponding to the position in the vertical direction x is output from the element 9 as in the case of one image.
[0045]
When the irradiation point P is further scanned in the width direction x, as shown in FIG. 5E, the irradiation point P moves to a range facing the condenser lens portion 7b. Then, the light (measurement light) reflected and scattered from the irradiation point P is mainly converged by the condensing lens unit 7b, and is incident on the imaging lens 8 with an angle with respect to the optical axis. The imaging lens 8 forms a dot image Kb at a position on one end side in the width direction x of the light receiving surface 9a of the light receiving element 9.
[0046]
Similarly, while the irradiation point P is scanned over the scanning direction width (here, 36 mm) of the lens array 7, the imaging point K is set in the width direction x of the light receiving surface 9a for each of the condenser lens portions 7a to 7f. Move from one end to the other. At the same time, the imaging point K moves in the vertical direction z on the light receiving surface 9a according to the displacement of the measurement target surface 30a.
Then, a pair of detection signals A and B accurately corresponding to the height displacement of the measurement target surface 30 a are output from the light receiving element 9 to the displacement calculating means 10. As shown in FIG. 4, the detection signals A and B are converted into voltages by a current-voltage conversion unit I / V, respectively. The converted detection signals A and B are both output to the adder 12 and the subtractor 13. Then, after the addition / subtraction operation, the addition signal is output from the addition unit 12 and the subtraction signal is output from the subtraction unit 13, and is divided by the division unit 14 to output the displacement signal D.
[0047]
Based on the displacement signal D, the displacement of each measurement target surface 30a can be measured. Further, the conventional method converges the measurement light from the irradiation point almost in parallel and emits it to the imaging lens only with a condensing lens having uniform imaging characteristics around one optical axis whose diameter is larger than the scanning range of the irradiation light. Compared to the method, the light receiving element 9 having a smaller width of the light receiving surface 9a can be used.
That is, it is known that the response speed of this type of light receiving element 9 becomes slower as the area thereof is larger. As in the above-described embodiment, the light receiving element having a small response in the width direction x of the light receiving surface 9a and a fast response speed is configured by converging the measurement light from the irradiation point P with a plurality of small condenser lens portions 7a to 7f. 9 can be used. As a result, the scanning speed can be increased to increase the processing speed for the signal output of the light receiving element 9, and the measurement time can be shortened.
[0048]
In the scanning-type displacement measurement according to the above description, when the level difference (unevenness) of the measurement target surface 30a is large, the measurement target surface 30a exceeds the measurement ranges RU and RL within a short time, and is within the measurement range. May return.
However, on the light receiving surface 9a of the light receiving element 9, an opening range L22 corresponding to the measurement ranges RU and RL is set by the mask unit 20.
[0049]
For this reason, even if the position in the height direction Z of the measurement target surface 30a exceeds the measurement range, the imaging point K on the light receiving surface 9a of the light receiving element 9 is located on the mask portion 20 and the light receiving surface 9a. Incident to (end position 9b) can be blocked. At this time, the light receiving element 9 does not output the detection signals A and B.
Thereby, the detection accuracy fall resulting from inferior responsiveness in the edge part position 9b of the vertical direction z of the light receiving element 9 can be prevented beforehand.
[0050]
[Second Embodiment]
The second embodiment described below is intended to prevent the deterioration of the response characteristics in the width direction x of the light receiving element 9 in the configuration using the lens array 7 having the above configuration.
[0051]
On the light receiving surface 9a of the light receiving element 9, the imaging point K moves in the width direction x by the above scanning.
As shown in FIG. 7A, the spot interval Sd of the image point K (Ka, Kb) is determined by the arrangement pitch of the condenser lens portions 7a to 7f of the lens array 7 and the optical system (lens) on the light receiving side. It is determined by the magnification of the array 7 and the imaging lens 8).
[0052]
The spot interval Sd of the imaging point K is set to be smaller than the width w in the width direction x of the light receiving surface 9a of the light receiving element 9, and the measurement point of the condensing lenses 7a to 7f on the light receiving surface 9a. When P is near the boundary surface between any two adjacent condensing lenses (for example, 7a and 7b), the image formation points Ka and Kb formed by any two adjacent condensing lenses (for example, 7a and 7b) are simultaneously It comes to exist.
[0053]
Even in the width direction x, the light receiving element 9 has a width w23 at the end positions 9d at both ends, and there is a portion inferior in responsiveness.
The portion indicated by the width w21 is a light receiving range that can be used without any problem of responsiveness.
[0054]
FIG. 8 is an operation diagram showing the moving state of the image point K on the light receiving surface 9 a of the light receiving element 9. This figure describes the actual arrangement of the light receiving elements 9 in the operation described with reference to FIG. 5 of the first embodiment, and shows the moving state of the image point K on the light receiving surface 9a.
As shown in FIGS. 8A to 8E, the imaging point K moves in the width direction x on the light receiving surface 9a in accordance with the scanning of the irradiation point P on the measurement target surface 30a.
Since the lens array 7 has a plurality of condensing lenses 7a to 7f, the image forming points Ka to Kf of the adjacent condensing lenses move with the spot interval Sd.
[0055]
During this scanning, each imaging point K (Ka to Kf) passes through the end position 9d of the light receiving surface 9a.
Therefore, as shown in FIG. 8C, when the imaging point Ka is located in the light receiving range w21, a state occurs where the imaging point Kb is located at the end position 9d having poor responsiveness. Similarly, as shown in FIG. 8D, when the image formation point Kb is located in the light receiving range w21, the image formation point Ka is located at the end position 9d having poor responsiveness.
As described above, when the imaging point K passes through the end position 9d having poor responsiveness in the light receiving element 9, the output of the detection signal based on the imaging point K detected in the light receiving range w21 is affected. .
[0056]
Therefore, as shown in FIG. 7B, a substantially rectangular mask portion 21 having the width w23 is formed at the end position 9d in the width direction x on the light receiving surface 9a.
An interval (opening range) w22 between the one end portions 21a and 21a of the pair of mask portions 21 is set corresponding to the spot interval Sd. As shown in the figure, the opening range w22 is slightly shorter than the light receiving range w21 of the light receiving element 9, and is set to an interval at which two imaging points K (Ka, Kb) can be received simultaneously.
Strictly speaking, the light receiving range w21 ≧ the opening range w22 ≧ (spot interval Sd + spot diameter) is set.
[0057]
FIG. 9 is a diagram illustrating a moving state of the imaging point K in a state where the mask portion 21 is provided. By providing the mask portion 21 described above, the light receiving surface 9a of the light receiving element 9 can receive light only in the opening range w22. During the period in which the imaging point is located on the mask portion 21, the mask portion 21 blocks the incidence on the light receiving surface 9a, and the light receiving element 9 does not output the detection signals A and B.
[0058]
The imaging point K moves along the width direction x in the order of FIGS. 9A to 9E, but when the imaging point Ka is located in the opening range w22 as shown in FIG. 9C. Even if the imaging point Kb is located at the end position 9d having poor responsiveness, the light receiving surface 9a does not receive the light at the imaging point Kb. Similarly, as shown in FIG. 9D, when the imaging point Kb is located in the opening range w22, the light reception is performed even if the imaging point Ka is located at the end position 9d having poor responsiveness. The surface 9a does not receive the light at the imaging point Ka.
Thereby, it is possible to prevent a decrease in detection accuracy due to inferior responsiveness at the end position 9d in the width direction x of the light receiving element 9.
[0059]
FIG. 10 shows a configuration in which the mask portions 20 and 21 described in the above embodiments are integrally provided.
As illustrated, the mask portion 23 may be formed in a square ring shape along each side of the light receiving surface 9 a of the light receiving element 9. The mask portion 23 is configured to have the opening ranges L22 and w22 described above.
By providing this mask part 23, it can be configured not to form the imaging point K at the inferior responsive portions at the end positions 9c and 9d on each of the four sides of the light receiving element 9. Even if the above-described lens array 7 is used to scan light at high speed, or even if the displacement amount of the measurement target surface 30a exceeds the measurement ranges RU and RL and returns, the light receiving element 9 can accurately detect the light. Signals A and B can be obtained, and a highly accurate displacement amount can be obtained.
[0060]
In the above embodiment, the beam scanning range is 36 mm, and the lens array 7 having the six condensing lens portions 7a to 7f is used. However, this does not limit the present invention. For example, if the condensing lens portions 7a to 7f are made smaller (for example, a width of 2 mm), the width of the light receiving surface 9a of the light receiving element 9 in the width direction x can be further reduced, so that the response speed of the light receiving element 9 increases. As a result, the processing speed for the detection signal output from the light receiving element 9 can be further increased.
[0061]
Further, if the ratio f2 / f1 between the focal length f1 of each of the condenser lens portions 7a to 7f of the lens array 7 and the focal length f2 of the imaging lens 8 is reduced, the length of the light receiving element 9 in the longitudinal direction z can be reduced. On the other hand, when the focal length f2 of the imaging lens 8 is reduced, aberration increases in the peripheral portion of the imaging lens 8, and when the focal length f1 is increased while the widths of the condenser lens portions 7a to 7f are constant, the light is condensed. The lens portions 7a to 7f become dark and the amount of received light decreases. For this reason, what is necessary is just to determine the outer diameter of each lens 7,8, a focal distance, etc. according to the surface state of the measurement object surface 30a, the precision requested | required for a measurement, etc. FIG.
[0062]
Moreover, although the lens array 7 of the said embodiment used what the some condensing lens parts 7a-7f were integrally molded by the synthetic resin or glass, the some condensing lens parts 7a-7f produced individually are used. The condensing lens portions 7a to 7f may be bonded and integrated in a line without gaps.
In the above-described embodiment, the imaging lens 8 is a lens whose one surface is actually formed into a spherical shape. Any lens may be used, and a lens having both spherical surfaces or aspheric surfaces may be used.
[0063]
【The invention's effect】
According to the displacement measuring apparatus of the present invention, when the measurement target surface exceeds the measurement range, the light image point moves on the light receiving surface of the light receiving element to the end position corresponding to the amount of displacement. Light is shielded at the end position, and light is not detected at the end position where the responsiveness is inferior, so that a normally detected detection signal is not affected.
As a result, even when the displacement amount is increased or decreased instantaneously, the displacement measurement accuracy can be maintained and an accurate displacement amount can be obtained. In particular, in the case of an apparatus that scans light at high speed, this is effective because the amount of displacement increases and decreases in a short time.
[0064]
In addition, when light is scanned on the surface to be measured, the light imaging point moves to the end position corresponding to the scanning direction on the light receiving surface of the light receiving element corresponding to this scanning. The light is shielded at the end position, and light is not detected at the end position where the response is inferior, so that the detection signal that is normally detected is not affected.
As a result, even when the light is scanned at high speed, the displacement measurement accuracy can be maintained and an accurate displacement amount can be obtained.
In particular, the lens array used in the light receiving system reduces the aberration at the image forming point and allows the image to be formed without blurring. It is possible to use a light receiving element that is compact and has good responsiveness, improving the accuracy of displacement measurement. It has the effect of being able to. In addition, the light scanned when this lens array is used is shielded by the mask member at the end position of the light receiving element, and the light is received only within the effective aperture range. Utilizing the advantages, the measurement accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a displacement measuring apparatus of the present invention.
FIG. 2 is a side view of the displacement measuring device.
FIG. 3 is a plan view showing a light receiving element (part 1);
FIG. 4 is a block diagram showing displacement calculation means of the displacement measuring device.
FIG. 5 is a diagram showing a moving state of an imaging point on a light receiving element.
6 is a side view of FIG. 5. FIG.
FIG. 7 is a plan view (No. 2) showing a light receiving element;
FIG. 8 is a view for explaining the passage of light at the end position of the light receiving element;
FIG. 9 is a view for explaining light shielding by a mask portion on a light receiving element;
FIG. 10 is a diagram showing another configuration example of a mask unit.
FIG. 11 is a diagram showing the principle of displacement measurement.
FIG. 12 is a perspective view showing a conventional scanning displacement measuring apparatus.
FIG. 13 is a diagram showing light focusing on the light receiving side of a conventional apparatus.
FIG. 14 is a view showing light focusing on the light receiving side of the conventional apparatus.
FIG. 15 is a plan view for explaining inferior characteristics at the end position of the light receiving element;
FIG. 16 is a diagram for explaining the inferior characteristic at the end position of the light receiving element;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Displacement measuring device, 2 ... Light projection means, 3 ... Light source, 4 ... Deflection device, 5 ... Converging lens, 6 ... Light receiving means, 7 ... Lens array, 7a-7f ... Condensing lens part, 8 ... Imaging lens , 9 ... Light receiving element, 9a ... Light receiving surface, 9A, 9B ... Electrode, 9c, 9d ... End position, 20, 21, 23 ... Mask part, 30 ... Measurement object, 30a ... Measurement object surface, X ... Measurement object Scanning direction of light on the surface, x: Scanning direction of light on the light receiving surface, Z: Height direction of the measurement target surface, z: Moving direction of light corresponding to the amount of displacement on the light receiving surface, RU, RL ... Measurement limit position (upper limit position, lower limit position).

Claims (4)

測定対象面上にあてる照射光を走査し、受光素子の受光面上に形成された結像点の検出位置に基づき、前記測定対象面の変位量を非接触で測定する変位測定装置において、
照射光を屈曲させて一定の振り幅で走査させる偏向装置を備え前記走査した照射光を前記測定対象面上に照射して照射点を形成する投光手段と、
前記照射点からの測定光を受光素子の受光面上で受光して結像点を形成する受光手段とを有し、
該受光手段は、
光軸廻りに均等な結像特性を有する複数の集光レンズ部が前記照射光の走査方向に沿って構成され、前記測定光を収束させるレンズアレイと、
光軸廻りに均等な結像特性を有し、前記収束された測定光を前記受光面上に前記結像点を形成させる結像レンズを備え、
前記受光素子の受光面には、前記照射光の走査に対応した該受光面上での光の移動方向両端部であって応答性の劣る部分に、前記受光手段による前記光の集束特性に応じて予め設定される隣接した結像点のスポット間隔に対応した所定幅の開口範囲内で前記光の結像点を形成させ、前記スポット間隔を越えた箇所に対応する前記受光面の端部位置では前記光を遮蔽するマスク部が形成されていることを特徴とする変位測定装置。
In the displacement measuring device that scans the irradiation light applied to the measurement target surface and measures the amount of displacement of the measurement target surface in a non-contact manner based on the detection position of the imaging point formed on the light receiving surface of the light receiving element.
A light projecting unit that includes a deflecting device that bends and scans the irradiation light with a constant amplitude, and irradiates the scanned irradiation light onto the measurement target surface to form an irradiation point;
Light receiving means for receiving the measurement light from the irradiation point on the light receiving surface of the light receiving element to form an imaging point; and
The light receiving means
A plurality of condensing lens portions having uniform imaging characteristics around the optical axis are configured along the scanning direction of the irradiation light, and a lens array for converging the measurement light,
An imaging lens having uniform imaging characteristics around an optical axis, and forming the focused image on the light-receiving surface of the focused measurement light;
The light-receiving surface of the light-receiving element corresponds to the light focusing characteristics of the light-receiving means on the both ends of the light moving direction on the light- receiving surface corresponding to the scanning of the irradiation light and inferior in response. The light-receiving surface end position corresponding to a position exceeding the spot interval, and forming the light image-forming point within an opening range having a predetermined width corresponding to a spot interval between adjacent imaging points set in advance. Then, a displacement measuring device, wherein a mask portion for shielding the light is formed.
前記受光素子の受光面には、前記測定対象面の前記変位量の変化による前記光の結像点の移動方向両端部であって応答性の劣る部分に、それぞれ所定幅で前記光を遮蔽する他のマスク部を形成したことを特徴とする請求項1記載の変位測定装置。 On the light receiving surface of the light receiving element, the light is shielded with a predetermined width at both ends in the moving direction of the light image formation point due to the change in the displacement amount of the measurement target surface and inferior in response. The displacement measuring apparatus according to claim 1, wherein another mask portion is formed . 前記マスク部は、前記受光素子の受光面上に光を遮蔽する部材を塗布あるいは貼付して形成されている請求項1乃至のいずれかに記載の変位測定装置。The mask portion is, displacement measuring apparatus according to any one of claims 1 to 2 is formed by a member which shields light is applied or stuck on the light receiving surface of the light receiving element. 前記マスク部は、前記受光素子の受光面上に設けられた透明板の内面または外面に光を遮蔽する部材を塗布あるいは貼付して形成されている請求項1乃至のいずれかに記載の変位測定装置。The mask portion is displaced according to any receiving surface on the provided transparent plate inner or outer surface to block the light member of coating or sticking to 1 to claim are formed two of said light receiving element measuring device.
JP08626299A 1999-03-29 1999-03-29 Displacement measuring device Expired - Fee Related JP4112112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08626299A JP4112112B2 (en) 1999-03-29 1999-03-29 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08626299A JP4112112B2 (en) 1999-03-29 1999-03-29 Displacement measuring device

Publications (2)

Publication Number Publication Date
JP2000283713A JP2000283713A (en) 2000-10-13
JP4112112B2 true JP4112112B2 (en) 2008-07-02

Family

ID=13881917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08626299A Expired - Fee Related JP4112112B2 (en) 1999-03-29 1999-03-29 Displacement measuring device

Country Status (1)

Country Link
JP (1) JP4112112B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6973206B2 (en) * 2018-03-15 2021-11-24 Jfeエンジニアリング株式会社 Displacement measuring device and displacement measuring method

Also Published As

Publication number Publication date
JP2000283713A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
US6428171B1 (en) Height measuring apparatus
JP2919267B2 (en) Shape detection method and device
JP3925986B2 (en) Height measuring device and height measuring method
JP2510786B2 (en) Object shape detection method and apparatus
KR20010034488A (en) System and method for selective scanning of an object or pattern including scan correction
JPH04319615A (en) Optical height measuring apparatus
JP2839784B2 (en) Light source device for shape measurement
JP4112112B2 (en) Displacement measuring device
US6862098B1 (en) Apparatus and method for measuring displacement
JP3326682B2 (en) Displacement measuring device
JP3984382B2 (en) Displacement measuring device
JPH06213635A (en) Examination device for mounted print substrate
JP3817232B2 (en) Displacement measuring device
US5631738A (en) Laser ranging system having reduced sensitivity to surface defects
US20220206144A1 (en) Object detector, sensing apparatus, and mobile object
JPH11304441A (en) Three-dimensional shape measuring device
JP3561433B2 (en) Displacement measuring device
JP3974062B2 (en) Displacement measuring device
CN117128866A (en) Laser displacement sensor and displacement measurement method
JP2004077906A (en) Method and device for optical scanning and displacement measuring instrument using the device
JP3064517B2 (en) Inspection device for mounted printed circuit boards
JP3561439B2 (en) Displacement measuring device and method
JPH0735988B2 (en) Dynamic surface access measuring device
JPH045556A (en) Method and device for flaw inspection of surface of sphere
JPH05322701A (en) Jitter quantity measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees