JP4110765B2 - Light emitting / receiving composite unit and displacement detection device using the same - Google Patents

Light emitting / receiving composite unit and displacement detection device using the same Download PDF

Info

Publication number
JP4110765B2
JP4110765B2 JP2001342860A JP2001342860A JP4110765B2 JP 4110765 B2 JP4110765 B2 JP 4110765B2 JP 2001342860 A JP2001342860 A JP 2001342860A JP 2001342860 A JP2001342860 A JP 2001342860A JP 4110765 B2 JP4110765 B2 JP 4110765B2
Authority
JP
Japan
Prior art keywords
light
unit
light emitting
light receiving
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001342860A
Other languages
Japanese (ja)
Other versions
JP2003149005A (en
Inventor
英廣 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001342860A priority Critical patent/JP4110765B2/en
Publication of JP2003149005A publication Critical patent/JP2003149005A/en
Application granted granted Critical
Publication of JP4110765B2 publication Critical patent/JP4110765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Polarising Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザーを光源とし偏光を用いて信号を得る光学ユニットに関するものであり、特に、回折光による干渉を用いて変位を検出する所謂「格子干渉型変位検出装置」の構造に関するものである。
【0002】
【従来の技術】
半導体製造等の分野で使用される変位検出装置には、例えば、目盛を記録した固体スケールと、当該スケールの直線的な移動方向における変位量を電気的に検出する検出手段を備えた装置(所謂リニアエンコーダ)が知られている。
【0003】
高精度、高分解能の検出を可能にするための装置として、回折格子により得られた回折光の干渉を利用して変位を検出する装置(ホログラムエンコーダ等)が挙げられる。
【0004】
図4は、従来の変位検出装置の構成について一例aを示したものであり、光照射部b、光路制御及び被検部c、受光部dの3つの部分から構成されている。
【0005】
光照射部bでは、光源として半導体レーザーLSが使用され、第1の収束レンズL1、第1の偏光ビームスプリッターPBS1が配置されている。そして、光路制御及び被検部cに関しては、第1の反射ミラーR1a、R1b、反射型回折格子RG、第2の収束レンズL2a、L2b、第1のλ/4波長板(4分の1波長板)WP1a、WP1b、さらには第2の反射ミラーR2a、R2bが配置されている。
【0006】
受光部dについては、半透過ミラーHM、第2の偏光ビームスプリッターPBS2、第3の偏光ビームスプリッターPBS3、第2のλ/4波長板WP2、そして、光検出器PD1〜4が配置されている。
【0007】
半導体レーザーLSから出射した光は第1の収束レンズL1で収束光になった後、偏光ビームスプリッターPBS1により偏光分離されて2つの光(光束LFa、LFbを参照。)となり、その一方が反射ミラーR1aにより光路変更を受けて反射型回折格子RGに到達し、他方が反射ミラーR1bにより光路変更を受けて反射型回折格子RGに到達する。尚、ここで「偏光分離」とは、入射光束をP偏光成分とS偏光成分に分離することを意味する。
【0008】
被検部(リニアスケール等)に付設された反射型回折格子RGにおいて、同一符号(正負が同じ)とされる少なくとも1次より高次の回折をしたそれぞれの光束については、第2の収束レンズL2a、L2bをそれぞれ経てから、回折角に対応した角度位置に配置されたλ/4波長板WP1a、WP1bと反射ミラーR2a、R2bによりそれぞれの偏光方向が90度回転された後で、往路と同じ光路を逆方向に辿って第1の偏光ビームスプリッターPBS1に達する。
【0009】
偏光ビームスプリッターPBS1に達した光は、各々がその偏光方向を元の方向に対して90度回転した状態となっているため、往路での入射方向とは異なる方向に出射されて半透過ミラーHMに向かう。そして、半透過ミラーHMに達した光束については光量が2分され、分かれた光の一方が偏光ビームスプリッターPBS3に達し、他方の光がλ/4波長板WP2を通過した後に偏光ビームスプリッターPBS2に達する。
【0010】
尚、偏光ビームスプリッターPBS3の取付姿勢に関しては、その光軸を中心に、到達した光束の偏光方向に対し約45度の角度をもって光軸回りに回転された配置とされている。
【0011】
偏光ビームスプリッターPBS2で偏光分離された光束については、光検出器PD1やPD2にそれぞれ到達し、光強度が電気量に変換される。また、偏光ビームスプリッターPBS3で偏光分離された光束については光検出器PD3やPD4にそれぞれ到達し、光強度が電気量に変換される。
【0012】
本例の動作原理は、以下の通りである。
【0013】
偏光ビームスプリッターPBS1で分離された、異なる偏光方向(あるいは偏光状態)をもつ2つの光束LFa、LFbについて、反射型回折格子RGで反射回折することにより同一符号の回折光となるとともに、λ/4波長板WP1a、WP1b及び反射ミラーR2a、R2bにより、往路とは偏光方向が略90度回転した光束として偏光ビームスプリッターPBS1に戻されて混合される。
【0014】
その際、混合された2つの光束は、同一の偏光成分をもつ半導体レーザーLSから2分されたものであることから、両者の光は異なる偏光方向であっても干渉を生じる。
【0015】
今、反射型回折格子RGを、他の光学系と相対的に格子の並ぶ方向(例えば、図4に矢印Aで示す方向)に移動させると、偏光ビームスプリッターPBS1で混合された光は互いに干渉し、偏光方向ごとに回折次数に応じたピッチで強度変化が発生する。この干渉による強度変化を複数の偏光成分に分離することにより、光検出器PD1〜4では互いに位相の異なる光強度分布として検出できる。つまり、この光強度変化を検波することで、回折格子ピッチに対して回折次数の逆数と回折回数の逆数に2分の1を乗じた分解能をもって、反射型回折格子RGの移動量を検出することができる。さらに光検出器PD1〜4で得られる強度変化は正弦波にきわめて近い形状となるため、検出波形を内挿分割する方法により高い分解能を得ることも可能である。
【0016】
このような回折光の干渉を用いた変位検出装置において、例えば、反射型回折格子をホログラム等で作成し、さらに得られた正弦波信号を分割することでnm(ナノメートル)オーダーの分解能を実現することも可能である。
【0017】
【発明が解決しようとする課題】
しかしながら、従来の変位検出装置にあっては、その製造工程において、単独に製作された発光部品や受光部品、あるいは光学部品を個々に調整しながら組み立てる必要性から、下記に示す問題があった。
【0018】
・装置の組み立てに際し、各部品の仕上がり精度あるいは特性のバラツキに対して精密な調整を必要とするため、複雑な工程を余儀なくされ、低価格化が困難であること。
【0019】
・各部品の調整や締結及び固定に大きなスペースを必要とすること、そのために、機器の形状を小型化することが困難であること。
【0020】
・精密調整後の本固定に接着剤を使用しなければならないので、接着状態が周囲の環境変化等に左右され易く、また、環境変化や経時変化に起因する調整部のズレが発生する虞があること。
【0021】
そこで、本発明は、低価格で小型化、軽量化に適した信頼性の高い受発光複合ユニット及び当該ユニットを搭載するとともに、回折光の干渉を利用した変位検出装置を提供することを課題とする。
【0022】
【課題を解決するための手段】
本発明に係る受発光複合ユニットは、上記した課題を解決するために、発光素子と、当該発光素子から出射した出射光が外部光学系を通ってユニットに戻ってきた戻り光を検出する複数の受光素子とを、同一の基板又は部材上に配置するとともに、1つのプリズムに、光分岐部(あるいはこれを内包する光分岐部品)を構成する発光素子からの出射光を2つに分離する偏光分離膜と出射光が外部光学系を通ってユニットに戻ってきた戻り光を分岐する光分岐膜を備え、出射光及び戻り光に対する収束又は発散用のレンズと、戻り光の偏光状態から任意方向の偏光成分を分離して異なる方向に回折させるための回折部材を、一体的に形成した構造を有するものである。
【0023】
また、本発明に係る変位検出装置は、このように一体構造をもって製造された受発光複合ユニットと、当該ユニットに対する外部光学系として、回折格子を含む被検部と、受発光複合ユニットから出射された後の回折格子による回折光を受けて偏光状態を変えるための偏光部材と、当該偏光部材を通った光を反射させて逆方向(回折格子に向かう方向)に戻すための反射部材とを設けたものである。
【0024】
従って、本発明によれば、発光素子及び受光素子、光分岐部を構成する発光素子からの出射光を2つに分離する偏光分離膜と出射光が外部光学系を通ってユニットに戻ってきた戻り光を分岐する光分岐膜を備えた1つのプリズム、レンズ、回折部材を一体構造にすることにより、各部の位置調整が簡単になり、低価格化や小型化、軽量化に適した信頼性の高い受発光複合ユニット及びこれを用いた変位検出装置を製造することができる。
【0025】
【発明の実施の形態】
図1は、本発明に係る受発光複合ユニット(あるいは送受光ユニット)を用いた変位検出装置の構成例を示したものであり、格子干渉型変位検出装置に適用したものである。
【0026】
図4との構成上の比較から分かるように、光学系の構成部品の大半部が受発光複合ユニット1内に収められており、当該ユニット内で偏光分離されてから外部に出射した2つの光束LFa、LFbについては、外部光学系ETを構成する第1の反射部材(反射鏡R1a、R1b)にそれぞれ到達して光路変更を受ける。尚、これら第1の反射部材は、受発光複合ユニット1から出射された光を反射型回折格子RG、例えば、回折効率の高いホログラム格子(体積型位相ホログラム等)に向けて反射させるために必要なものである。
【0027】
リニアスケール等の被検出部に用いられる反射型回折格子RGに到達する各光は、近い距離で当該格子に投入され(格子内の光路長の差を小さくして、原信号の波長に誤差が生じ難くするため。)、ここで1次以上の次数で回折した後、収束レンズL2a、L2bをそれぞれ介して偏光部材(λ/4波長板WP1a、WP1b)及び第2の反射部材(反射鏡R2a、R2b)へと達する。つまり、光束LFaについては反射型回折格子RGでの回折の後に、λ/4波長板WP1aを経て反射鏡R2aに到達し、また、光束LFbについては反射型回折格子RGでの回折の後に、λ/4波長板WP1bを経て反射鏡R2bに到達する。尚、これらのλ/4波長板WP1a、WP1bについては、反射型回折格子RGによる回折光を受けて偏光状態を変える役割をもっており、前記したように偏光方向を90度回転させるものである。また、反射鏡R2a、R2bは、偏光状態を変えられた光に対して、これを反射させて逆方向に戻す役割をもっており、反射された各光は、往路を逆に辿って受発光複合ユニット1にそれぞれ達する(当該ユニットへの戻り光となる。)。
【0028】
図2は受発光複合ユニット1の構成例を示すものであり、内部構造の要部を示している。
【0029】
受発光複合ユニット1は、その収容部材(あるいは封止部材)2に対して、光源3、光分岐部4、レンズ群8_1乃至8_3、回折部材5(5_1、5_2)、受光部6(6_1乃至6_4)、λ/4波長板11を配設することで一体化した構造に形成されている。
【0030】
光源3は、上記変位検出装置への適用においては測定用光源(あるいは発光部)として用いられる。そして、発光素子3a(例えば、半導体レーザーが用いられる。)は、当該素子の発する光に対して反射面7aを持つ半導体基板7上に固着されている。つまり、反射面7aは、発光素子3aから発した光を光源3の設定光軸に沿う方向(同図の上下方向)に変更する光路変更手段の役目をもっており、光を図の上方に立ち上げる働きをする。尚、半導体基板7は収容部材2の内底面に固定されている。
【0031】
収容部材2には受光部6が収められていて、回折部材5(5_1、5_2)を経た光を検出するために複数の受光素子6_1乃至6_4が半導体基板6aに形成されている。尚、図には明示していないが、発光素子3a又は半導体基板6aや7については、例えばワイヤーボンディングなどで収容部材2から外部へ通じる配線用の電極部材に対して電気的に接続されている。
【0032】
半導体基板6a、7が配置固定された収容部材2には、その開口を覆って封止するためのカバー部材8が設けられ、これによって光源3や受光部6、回折部材5がパッケージ化される。尚、カバー部材8には、例えば、透明プラスチック材料が使用され、複数のレンズ8_1乃至8_3が形成されている。つまり、レンズ8_1は、光源3の光軸上に配置された収束レンズであり、発光素子3aから発した後、反射面7aで反射された光がλ/4波長板11を介して当該レンズに入射し、レンズを透過した光が後述の偏光分離膜を経てユニット外に出射される。また、レンズ8_2、8_3については、図1に示した外部光学系ETからの戻り光を収束(又は発散)させるために設けられている。
【0033】
カバー部材8には、レンズ8_1の近辺に上記λ/4波長板11が配設される。そして、光分岐部4を構成するとともにλ/4波長板10を含む複合プリズム9、さらには、分岐された戻り光の偏光成分を分離するためにレンズ8_2、8_3の近くに配置された偏光分離用回折光学素子5_1、5_2がそれぞれ固定されている。
【0034】
つまり、カバー部材8の内面側には、λ/4波長板11と、回折光学素子5_1、5_2が固定されており、回折光学素子5_1、5_2が回折部材5を構成する。回折光学素子5_1は、レンズ8_2に対して設けられ、当該素子による回折光は受光素子6_1及び6_2により検出される。また、回折光学素子5_2は、レンズ8_3に対して設けられ、当該素子による回折光は受光素子6_3及び6_4により検出される。
【0035】
カバー部材8の上面には複合プリズム9が載置固定されており、偏光分離膜9aと、戻り光束について分岐させるための光分岐膜9b、全反射面9cを備えている。つまり、偏光分離膜9aや光分岐膜9bは光分岐部4を構成するものであり、偏光分離膜9aが上記レンズ8_1に対応した位置であって光源3の光軸上に配置され、また、光分岐膜9bが上記レンズ8_2に対応する位置に配置されている。そして、全反射面9cは上記レンズ8_3に対応した位置に配置されている。
【0036】
このように、複合プリズム9と受光部6との間に、レンズや回折光学素子を配置した構造となっている。
【0037】
光分岐膜9bの直ぐ背後(全反射面9c側)には、λ/4波長板10(前記WP2に相当する。)が配設されており、戻り光のうち当該波長板を通った光が全反射面9cに達する。
【0038】
尚、本例では、外部光学系ETを通ってユニット1に戻ってきた戻り光束について、光分岐膜9bにより2つに分けているが、分岐数がこれに限られる訳ではなく、少なくとも2つ以上に分岐されて偏光分離用の回折光学素子に導かれるように構成すれば良い。また、回折光学素子の位置についても光分岐膜9b及び全反射面9cと、受光部6との間であれば任意の位置で良い。
【0039】
しかして、本構成の動作は以下の通りである。
【0040】
先ず、発光素子3aから発した光は、半導体基板7の反射面7aで反射されて光路変更を受ける。そして、その反射光はλ/4波長板11で円偏光となり、カバー部材8に配設された収束レンズ8_1により収束光となって、複合プリズム9の偏光分離膜9aに到達する。
【0041】
偏光分離膜9aによりそれぞれ直線偏光成分に分離された光束LFa、LFbは、図1で示した外部光学系ETの反射型回折格子RGで回折されるとともに、前記したように、それぞれの偏光方向が略90度回転されて戻り光となってそれぞれ複合プリズム9に入り(光束LFbの光が図2の上方から入り、光束LFaの光が図2の左側から入る。)、再び偏光分離膜9aに戻ってくる。
【0042】
各戻り光束ついては、光源3から入射し分離された偏光状態に対してそれぞれ90度の位相差があることから、混合しつつ光分岐膜9b及び全反射面9cに向かう。また、複合プリズム9に配設されたλ/4波長板10は、直線偏光を円偏光に変えることで位相情報をさらに付与する働きを有する。
【0043】
光分岐膜9b及び全反射面9cで分岐された光束については、カバー部材8の収束レンズ8_2、8_3により収束光となった後、それぞれに対応する回折光学素子5_1、5_2で偏光成分に分離されて異なる角度をもって回折される。そして、その回折光がそれぞれに対応する受光素子6_1乃至6_4に到達する。
【0044】
尚、偏光分離用の回折光学素子5_1、5_2については、例えば、光源3の発光波長よりも短い格子周期をもつ、回折型の光学素子として半導体リソグラフィー技術等を用いて製作することができ、本例では分岐数が4であることから、例えば、偏光方向が0度、45度、90度、135度(45度間隔)に設定されて分離された光束について受光素子6_1乃至6_4にそれぞれ到達される構成となっている。
【0045】
各受光素子6_1乃至6_4に入射されるそれぞれの光束に関しては、高次回折光の干渉により反射型回折格子RGに係る移動量の情報を、受光量の変化として内包していることから、各受光素子で受光されて電気信号に変換された検出信号に対して、既知の演算処理を適宜に施すことで当該回折格子RGの移動量を得ることができる。
【0046】
尚、本例において、発光素子3aとして半導体レーザーを使用する場合に、その出射光が取付面に対して平行な直線偏光であることに起因して、複合プリズム9に配設された偏光分離膜9aで適切な光量をもって偏光分離ができるように、λ/4波長板11を用いているが、これに限らず、図3に示す構成形態(発光素子3aを実装した半導体基板7の姿勢を、収容部材2への取付面内においてほぼ45度の角度θで回転させた配置)が可能である。
【0047】
図3は、光源及び受光部の光軸方向から見た平面図であり、受発光複合ユニット1においてカバー部材8及び複合プリズム9を取り除いた状態で、発光素子3a(半導体レーザー)及び反射面7aを搭載した半導体基板7と、受光部6を構成する半導体基板6aとの位置関係を示している。
【0048】
受発光複合ユニット1をその光源3及び受光部6の光軸方向から見た場合に、直線「LN1」は、発光素子3aの発光方向(出射方向)を含む直線(発光軸)を示している(光源の設定光軸は紙面に直交する方向である。)。また、直線「LN2」は、半導体基板6aに形成された受光素子6_1乃至6_4(図には破線の四角で示す。)の各中心(受光中心、つまり、各素子の光軸と受光面との交点)を通る直線を示しており、半導体基板6aの長手方向に延びている。そして、角度「θ」は直線LN1と直線LN2とがなす角度を表しており、45度(あるいはほぼ45度)の角度とされている。
【0049】
この配置によれば、発光素子3aから反射面7aで偏向(光路変更による、光源3の光軸方向への立ち上げ)された出射光が、半導体基板7の取り付け角度に応じた略45度の偏光角度をもって偏光分離膜9aに達することになり、ほぼ同じ光量のP偏光成分とS偏光成分に分離されるので、光束の不均等な分離を防止できる。
【0050】
また、受光素子6_1乃至6_4が形成された半導体基板6aについては、受光用回路の他に、検出信号の増幅回路(電流電圧変換増幅回路等)や検出信号に係る演算回路等を一体的に形成することにより、集積化の利点、例えば、S/N比(信号対ノイズ比)の向上による検出精度の向上や、装置全体の小型化、低コスト化等が可能になる。
【0051】
尚、前記した構成は、あくまで本発明の一例を示したものであり、例えば、半導体基板6a、7が収容部材2の内底面に配置されて固定されているが、同様の機能として本発明の主旨に基づいていればこの構造に限定されるものではなく、また、カバー部材8に一体化して形成されている収束レンズ8_1乃至8_3等についても、その機能として同等の光学部品を代用した構造等、各種の実施態様が挙げられる。
【0052】
そして、上記した受発光複合ユニット1及びこれを用いた変位検出装置によれば、下記に示す利点が得られる。
【0053】
先ず、従来の変位検出装置では、図4に示したように、光源LSから偏光ビームスプリッターPBS1への光路及び当該ビームスプリッターから光検出器PD1乃至PD4に至るまでの光路において、それぞれ単独の光学部品を配置した構造となるため、例えば、光学ベース等の基台部に各部品を固定しておく必要があり、各部品の位置関係についての調整が面倒であるが、本発明によれば、そのような不都合がない。
【0054】
つまり、本発明のように、光学部品(光学素子等)を半導体封止構造内にパッケージ化して一体的に形成する場合には、戻り光束に係る偏光成分を分離するための偏光分離回折光学素子5_1、5_2を光路中に置き、発光素子3aと受光素子6_1乃至6_4とを平面的に配置することができるとともに、一体的に形成した光学部品を移動させ、あるいはその取り付け姿勢を変えて調整した後で固定することにより容易に製造することができる。特に、半導体素子を、例えば、シリコンウエハー上又は位置の基準部を有する、連結された半導体封止部品において、精密に配置して固定することや、固定後に電子部品(発光素子や受光素子等)に通電して動作させ、その後に光学部品を所定の位置に配置して発光素子から受光素子に達する光束の状態や光量を検知してから当該光学部品の位置を微調整した上で固定することが、既存の技術を用いて容易に実現できる(例えば、光学式ディスク用のヘッド装置(光学ピックアップ等)における光学系等で実現されている。)。従って、調整や組立工程については、半導体製造設備を用いて容易に行うことができる。
【0055】
このように半導体封止構造内に部品を一体に形成することで、調整が極めて容易になるとともに、その形状や質量について小型化、軽量化を図ることが可能となり、併せて半導体製造で実績のある高信頼性が保証される。
【0056】
さらには、偏光分離用の回折光学素子を用いることによって、コンパクトな構成を実現することが可能となる。
【0057】
【発明の効果】
以上に記載したところから明らかなように、請求項1や請求項3に係る発明によれば、発光素子及び受光素子、光分岐部を構成する発光素子からの出射光を2つに分離する偏光分離膜と出射光が外部光学系を通ってユニットに戻ってきた戻り光を分岐する光分岐膜を備えた1つのプリズム、レンズ、回折部材を一体的な構造にすることで精密な位置調整が容易になり、また、部品の配置スペースを大きくとる必要がないので小型化に適している。そして、各部を同一の収容部材内に閉じ込めることで環境変化や経時変化の影響を受け難くなるので、調整ずれの発生を防止でき、ユニットの信頼性を高めることができる。
【0058】
請求項2や請求項4に係る発明によれば、光分岐部と受光素子との間に回折部材を配置することにより、コンパクトな構成を実現でき、戻り光の偏光成分を分離できる。
【0059】
請求項5や請求項6に係る発明によれば、偏光分離(P偏光、S偏光への分離)をほぼ均等な光量をもって行うことができる。
【図面の簡単な説明】
【図1】本発明に係る受発光複合ユニットを用いた格子干渉型変位検出装置の構成例を示す図である。
【図2】本発明に係る受発光複合ユニットの構成について一例を示す図である。
【図3】受発光複合ユニットにおける光源及び受光部の配置例について説明するための平面図である。
【図4】従来の格子干渉型変位検出装置の構成例を示す図である。
【符号の説明】
1…受発光複合ユニット、1、ET…変位検出装置、3…光源、3a…発光素子、4…光分岐部、5、5_1、5_2……回折部材、6…受光部、6_1乃至6_4…受光素子、8_1乃至8_3…レンズ、9…プリズム、9a…偏光分離膜、9b…光分岐膜、ET…外部光学系、RG…回折格子、R2a、R2b…反射部材、WP1a、WP1b…偏光部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical unit that obtains a signal using polarized light using a semiconductor laser as a light source, and more particularly to a structure of a so-called “lattice interference displacement detector” that detects displacement using interference by diffracted light. is there.
[0002]
[Prior art]
The displacement detection device used in the field of semiconductor manufacturing or the like includes, for example, a device (so-called so-called “solid scale” on which scales are recorded, and detection means that electrically detects the amount of displacement in the linear movement direction of the scale. Linear encoders) are known.
[0003]
An apparatus (such as a hologram encoder) that detects displacement using interference of diffracted light obtained by a diffraction grating can be cited as an apparatus that enables detection with high accuracy and high resolution.
[0004]
FIG. 4 shows an example a of the configuration of a conventional displacement detection device, which is composed of three parts: a light irradiation part b, an optical path control and test part c, and a light receiving part d.
[0005]
In the light irradiation part b, a semiconductor laser LS is used as a light source, and a first converging lens L1 and a first polarizing beam splitter PBS1 are arranged. As for the optical path control and the test part c, the first reflecting mirrors R1a and R1b, the reflective diffraction grating RG, the second converging lenses L2a and L2b, the first λ / 4 wavelength plate (quarter wavelength) Plate) WP1a, WP1b, and further second reflection mirrors R2a, R2b are arranged.
[0006]
For the light receiving part d, a transflective mirror HM, a second polarizing beam splitter PBS2, a third polarizing beam splitter PBS3, a second λ / 4 wavelength plate WP2, and photodetectors PD1 to PD4 are arranged. .
[0007]
The light emitted from the semiconductor laser LS is converted into convergent light by the first converging lens L1, and then polarized and separated by the polarization beam splitter PBS1 to become two lights (see the light beams LFa and LFb), one of which is a reflection mirror. The optical path is changed by R1a and reaches the reflective diffraction grating RG, and the other optical path is changed by the reflecting mirror R1b and reaches the reflective diffraction grating RG. Here, “polarization separation” means that the incident light beam is separated into a P-polarized component and an S-polarized component.
[0008]
A second converging lens is used for each light beam that is diffracted at least higher than the first order, which has the same sign (the same sign is the same) in the reflection type diffraction grating RG attached to the test part (linear scale or the like). After passing through each of L2a and L2b, after the respective polarization directions are rotated by 90 degrees by the λ / 4 wave plates WP1a and WP1b and reflection mirrors R2a and R2b arranged at the angular positions corresponding to the diffraction angles, the same as the forward path Following the optical path in the reverse direction, the first polarization beam splitter PBS1 is reached.
[0009]
Since the light reaching the polarization beam splitter PBS1 is in a state in which the polarization direction is rotated by 90 degrees with respect to the original direction, the light is emitted in a direction different from the incident direction in the forward path and is transmitted through the semi-transmissive mirror HM. Head for. Then, the amount of light reaching the translucent mirror HM is divided into two, one of the divided lights reaches the polarization beam splitter PBS3, and the other light passes through the λ / 4 wavelength plate WP2 and then enters the polarization beam splitter PBS2. Reach.
[0010]
The mounting posture of the polarization beam splitter PBS3 is arranged around the optical axis around the optical axis and at an angle of about 45 degrees with respect to the polarization direction of the reached light beam.
[0011]
The light beams polarized and separated by the polarization beam splitter PBS2 reach the photodetectors PD1 and PD2, respectively, and the light intensity is converted into an electric quantity. Further, the light beams polarized and separated by the polarization beam splitter PBS3 reach the photodetectors PD3 and PD4, respectively, and the light intensity is converted into an electric quantity.
[0012]
The operation principle of this example is as follows.
[0013]
The two light beams LFa and LFb having different polarization directions (or polarization states) separated by the polarization beam splitter PBS1 are reflected and diffracted by the reflection type diffraction grating RG to be diffracted light of the same sign, and λ / 4 By the wave plates WP1a and WP1b and the reflection mirrors R2a and R2b, the forward path is returned to the polarization beam splitter PBS1 and mixed as a light beam whose polarization direction is rotated by approximately 90 degrees.
[0014]
At that time, since the two mixed light beams are divided by two from the semiconductor laser LS having the same polarization component, the two lights interfere with each other even in different polarization directions.
[0015]
Now, when the reflection type diffraction grating RG is moved in the direction in which the gratings are aligned relative to other optical systems (for example, the direction indicated by the arrow A in FIG. 4), the lights mixed by the polarization beam splitter PBS1 interfere with each other. However, intensity changes occur at a pitch corresponding to the diffraction order for each polarization direction. By separating the intensity change due to the interference into a plurality of polarization components, the photodetectors PD1 to PD4 can detect light intensity distributions having different phases. That is, by detecting this change in light intensity, the amount of movement of the reflective diffraction grating RG can be detected with a resolution obtained by multiplying the diffraction grating pitch by the inverse of the diffraction order and the inverse of the number of diffractions by a factor of two. Can do. Furthermore, since the intensity change obtained by the photodetectors PD1 to PD4 has a shape very close to a sine wave, it is possible to obtain a high resolution by a method of interpolating the detection waveform.
[0016]
In such a displacement detection device using diffracted light interference, for example, a reflective diffraction grating is created with a hologram, etc., and the obtained sine wave signal is further divided to achieve resolution of the order of nm (nanometers). It is also possible to do.
[0017]
[Problems to be solved by the invention]
However, the conventional displacement detection device has the following problems due to the necessity of assembling the light-emitting component, the light-receiving component, or the optical component separately manufactured in the manufacturing process.
[0018]
-When assembling the equipment, it is necessary to make precise adjustments for the finishing accuracy of each part or variation in characteristics, so complicated processes are required and it is difficult to reduce the cost.
[0019]
-A large space is required for adjustment, fastening and fixing of each part, and it is therefore difficult to reduce the size of the device.
[0020]
-Since an adhesive must be used for the final fixing after precision adjustment, the adhesion state is likely to be influenced by the surrounding environmental changes, etc., and there is a possibility that the adjustment part may be displaced due to environmental changes or changes over time. There is.
[0021]
Accordingly, an object of the present invention is to provide a highly reliable light receiving / emitting composite unit suitable for miniaturization and weight reduction at low cost, and a displacement detection device using the interference of diffracted light while mounting the unit. To do.
[0022]
[Means for Solving the Problems]
In order to solve the above-described problems, a light receiving / emitting composite unit according to the present invention includes a light emitting element and a plurality of return lights that detect light emitted from the light emitting element and returned to the unit through an external optical system. The light receiving element is arranged on the same substrate or member, and the polarized light that separates the light emitted from the light emitting element constituting the light branching part (or the light branching part including the light splitting part) into one prism. A separation film and a light branching film for branching the return light returned to the unit through the external optical system, and a converging or diverging lens for the output light and the return light, and an arbitrary direction from the polarization state of the return light This structure has a structure in which diffractive members for separating and diffracting the polarized light components in different directions are integrally formed.
[0023]
Further, the displacement detection device according to the present invention includes a light receiving / emitting composite unit manufactured with an integral structure as described above, a test part including a diffraction grating as an external optical system for the unit, and a light receiving / emitting composite unit. A polarizing member for changing the polarization state by receiving the diffracted light from the diffraction grating after the reflection, and a reflecting member for reflecting the light passing through the polarizing member and returning it in the reverse direction (direction toward the diffraction grating) It is a thing.
[0024]
Therefore, according to the present invention, the light-emitting element, the light-receiving element, the polarization separation film that separates the emitted light from the light-emitting element constituting the light branching portion, and the emitted light have returned to the unit through the external optical system. By integrating a single prism, lens, and diffractive member with a light branching film that branches the return light, it is easy to adjust the position of each part, and it is suitable for cost reduction, size reduction, and weight reduction. High-intensity light emitting / receiving composite unit and a displacement detection device using the same can be manufactured.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a configuration example of a displacement detection device using a light receiving / emitting composite unit (or light transmission / reception unit) according to the present invention, which is applied to a lattice interference type displacement detection device.
[0026]
As can be seen from the structural comparison with FIG. 4, most of the components of the optical system are housed in the light receiving / emitting composite unit 1, and the two light beams emitted after being polarized and separated in the unit. LFa and LFb reach the first reflecting members (reflecting mirrors R1a and R1b) constituting the external optical system ET, respectively, and undergo an optical path change. These first reflecting members are necessary for reflecting the light emitted from the light receiving / emitting composite unit 1 toward a reflection diffraction grating RG, for example, a hologram grating (volume type phase hologram or the like) having high diffraction efficiency. It is a thing.
[0027]
Each light reaching the reflection type diffraction grating RG used in the detected part such as a linear scale is input to the grating at a short distance (the difference in the optical path length in the grating is reduced, and the error in the wavelength of the original signal is generated). In this case, after diffracting at the first or higher order, the polarizing member (λ / 4 wavelength plates WP1a and WP1b) and the second reflecting member (reflecting mirror R2a) are respectively passed through the converging lenses L2a and L2b. R2b). That is, the light beam LFa reaches the reflecting mirror R2a via the λ / 4 wave plate WP1a after being diffracted by the reflective diffraction grating RG, and the light beam LFb is λd after being diffracted by the reflective diffraction grating RG. / 4 It reaches the reflecting mirror R2b through the / 4 wavelength plate WP1b. The λ / 4 wave plates WP1a and WP1b have a role of changing the polarization state upon receiving the diffracted light from the reflection type diffraction grating RG, and rotate the polarization direction by 90 degrees as described above. Further, the reflecting mirrors R2a and R2b have a role of reflecting the light whose polarization state has been changed and returning it in the reverse direction, and each of the reflected light travels back and forth in the reverse direction. 1 is reached (becomes the return light to the unit).
[0028]
FIG. 2 shows a configuration example of the light emitting / receiving composite unit 1 and shows a main part of the internal structure.
[0029]
The light receiving / emitting composite unit 1 has a light source 3, a light branching unit 4, lens groups 8_1 to 8_3, a diffractive member 5 (5_1, 5_2), and a light receiving unit 6 (6_1 to 6) with respect to the housing member (or sealing member) 2. 6_4), a λ / 4 wavelength plate 11 is provided to form an integrated structure.
[0030]
The light source 3 is used as a measurement light source (or a light emitting unit) in application to the displacement detection device. The light emitting element 3a (for example, a semiconductor laser is used) is fixed on the semiconductor substrate 7 having a reflection surface 7a with respect to light emitted from the element. That is, the reflecting surface 7a serves as an optical path changing unit that changes the light emitted from the light emitting element 3a in a direction along the set optical axis of the light source 3 (vertical direction in the figure), and raises the light upward in the figure. Work. The semiconductor substrate 7 is fixed to the inner bottom surface of the housing member 2.
[0031]
The receiving member 6 is housed in the housing member 2, and a plurality of light receiving elements 6_1 to 6_4 are formed on the semiconductor substrate 6a in order to detect light that has passed through the diffraction member 5 (5_1, 5_2). Although not clearly shown in the figure, the light emitting element 3a or the semiconductor substrates 6a and 7 are electrically connected to an electrode member for wiring that leads from the housing member 2 to the outside, for example, by wire bonding or the like. .
[0032]
The housing member 2 on which the semiconductor substrates 6a and 7 are arranged and fixed is provided with a cover member 8 for covering and sealing the opening, whereby the light source 3, the light receiving unit 6, and the diffraction member 5 are packaged. . For example, a transparent plastic material is used for the cover member 8, and a plurality of lenses 8_1 to 8_3 are formed. In other words, the lens 8_1 is a converging lens disposed on the optical axis of the light source 3, and light emitted from the light emitting element 3a and then reflected by the reflecting surface 7a passes through the λ / 4 wavelength plate 11 to the lens. The incident light that has passed through the lens is emitted out of the unit through a polarization separation film described later. Further, the lenses 8_2 and 8_3 are provided for converging (or diverging) the return light from the external optical system ET shown in FIG.
[0033]
The cover member 8 is provided with the λ / 4 wavelength plate 11 in the vicinity of the lens 8_1. The composite prism 9 that constitutes the light branching unit 4 and includes the λ / 4 wavelength plate 10, and further, the polarization separation disposed near the lenses 8_2 and 8_3 in order to separate the polarization components of the branched return light. The diffractive optical elements 5_1 and 5_2 are fixed.
[0034]
That is, the λ / 4 wavelength plate 11 and the diffractive optical elements 5_1 and 5_2 are fixed to the inner surface side of the cover member 8, and the diffractive optical elements 5_1 and 5_2 constitute the diffractive member 5. The diffractive optical element 5_1 is provided for the lens 8_2, and diffracted light by the element is detected by the light receiving elements 6_1 and 6_2. The diffractive optical element 5_2 is provided for the lens 8_3, and the diffracted light from the element is detected by the light receiving elements 6_3 and 6_4.
[0035]
A composite prism 9 is mounted and fixed on the upper surface of the cover member 8, and includes a polarization splitting film 9a, a light branching film 9b for branching the return light beam, and a total reflection surface 9c. That is, the polarization separation film 9a and the light branching film 9b constitute the light branching section 4, and the polarization separation film 9a is disposed on the optical axis of the light source 3 at a position corresponding to the lens 8_1, The light branching film 9b is disposed at a position corresponding to the lens 8_2. The total reflection surface 9c is disposed at a position corresponding to the lens 8_3.
[0036]
Thus, the lens and the diffractive optical element are arranged between the composite prism 9 and the light receiving unit 6.
[0037]
A λ / 4 wavelength plate 10 (corresponding to the WP2) is disposed immediately behind the light branching film 9b (on the total reflection surface 9c side), and light passing through the wavelength plate among the return light. It reaches the total reflection surface 9c.
[0038]
In this example, the return light beam that has returned to the unit 1 through the external optical system ET is divided into two by the light branching film 9b. However, the number of branches is not limited to this, but at least two. What is necessary is just to comprise so that it may branch to the above and may be guide | induced to the diffractive optical element for polarization separation. Further, the position of the diffractive optical element may be any position as long as it is between the light branching film 9 b and the total reflection surface 9 c and the light receiving unit 6.
[0039]
Thus, the operation of this configuration is as follows.
[0040]
First, the light emitted from the light emitting element 3a is reflected by the reflecting surface 7a of the semiconductor substrate 7 and undergoes an optical path change. Then, the reflected light becomes circularly polarized light by the λ / 4 wavelength plate 11 and becomes convergent light by the convergent lens 8_1 disposed on the cover member 8, and reaches the polarization separation film 9a of the composite prism 9.
[0041]
The light beams LFa and LFb separated into the linearly polarized light components by the polarization separation film 9a are diffracted by the reflection type diffraction grating RG of the external optical system ET shown in FIG. Rotated approximately 90 degrees to return light and enter the respective composite prisms 9 (the light beam LFb enters from the upper side of FIG. 2 and the light beam LFa enters from the left side of FIG. 2), and enters the polarization separation film 9a again. Come back.
[0042]
Since each return light beam has a phase difference of 90 degrees with respect to the polarization state incident and separated from the light source 3, it is directed to the light branching film 9b and the total reflection surface 9c while being mixed. The λ / 4 wavelength plate 10 disposed in the composite prism 9 has a function of further providing phase information by changing linearly polarized light to circularly polarized light.
[0043]
The light beams branched by the light branching film 9b and the total reflection surface 9c are converged by the converging lenses 8_2 and 8_3 of the cover member 8, and then separated into polarization components by the corresponding diffractive optical elements 5_1 and 5_2. Diffracted at different angles. The diffracted light reaches the corresponding light receiving elements 6_1 to 6_4.
[0044]
Note that the diffractive optical elements 5_1 and 5_2 for separating the polarization can be manufactured using a semiconductor lithography technique or the like as a diffractive optical element having a grating period shorter than the emission wavelength of the light source 3, for example. In the example, since the number of branches is 4, for example, the light beams separated with the polarization directions set to 0 degrees, 45 degrees, 90 degrees, and 135 degrees (45-degree intervals) are respectively transmitted to the light receiving elements 6_1 to 6_4. It is the composition which becomes.
[0045]
With respect to each light beam incident on each light receiving element 6_1 to 6_4, information on the amount of movement related to the reflective diffraction grating RG is included as a change in the amount of received light due to interference of higher-order diffracted light. The amount of movement of the diffraction grating RG can be obtained by appropriately performing a known calculation process on the detection signal received in step S4 and converted into an electrical signal.
[0046]
In this example, when a semiconductor laser is used as the light emitting element 3a, the polarized light separation film disposed on the composite prism 9 due to the emitted light being linearly polarized light parallel to the mounting surface. The λ / 4 wavelength plate 11 is used so that polarization separation can be performed with an appropriate amount of light at 9a, but not limited to this, the configuration shown in FIG. 3 (the posture of the semiconductor substrate 7 on which the light emitting element 3a is mounted) (Positioning rotated at an angle θ of about 45 degrees in the mounting surface to the housing member 2) is possible.
[0047]
FIG. 3 is a plan view of the light source and the light receiving unit viewed from the optical axis direction. In the light receiving / emitting composite unit 1, the light emitting element 3a (semiconductor laser) and the reflecting surface 7a are removed with the cover member 8 and the composite prism 9 removed. 2 shows the positional relationship between the semiconductor substrate 7 on which is mounted and the semiconductor substrate 6a constituting the light receiving unit 6.
[0048]
When the light receiving / emitting composite unit 1 is viewed from the optical axis direction of the light source 3 and the light receiving unit 6, the straight line “LN1” indicates a straight line (light emitting axis) including the light emitting direction (emission direction) of the light emitting element 3a. (The set optical axis of the light source is a direction orthogonal to the paper surface). Further, the straight line “LN2” is the center of each of the light receiving elements 6_1 to 6_4 (shown by a broken line in the drawing) formed on the semiconductor substrate 6a (light receiving center, that is, the optical axis of each element and the light receiving surface). A straight line passing through (intersection point) is shown and extends in the longitudinal direction of the semiconductor substrate 6a. The angle “θ” represents an angle formed by the straight line LN1 and the straight line LN2, and is an angle of 45 degrees (or approximately 45 degrees).
[0049]
According to this arrangement, the emitted light deflected from the light emitting element 3 a by the reflecting surface 7 a (starting up in the optical axis direction of the light source 3 by changing the optical path) is approximately 45 degrees according to the mounting angle of the semiconductor substrate 7. Since the light reaches the polarization separation film 9a with a polarization angle and is separated into a P-polarized component and an S-polarized component having substantially the same light amount, uneven separation of the luminous flux can be prevented.
[0050]
For the semiconductor substrate 6a on which the light receiving elements 6_1 to 6_4 are formed, in addition to the light receiving circuit, a detection signal amplification circuit (current voltage conversion amplification circuit, etc.), a calculation circuit related to the detection signal, and the like are integrally formed. By doing so, it is possible to improve the detection accuracy by improving the S / N ratio (signal-to-noise ratio), for example, the size of the entire apparatus, and the cost.
[0051]
Note that the above-described configuration is merely an example of the present invention. For example, the semiconductor substrates 6a and 7 are disposed and fixed on the inner bottom surface of the housing member 2, but the same function is achieved by the present invention. The structure is not limited to this structure as long as it is based on the gist, and the converging lenses 8_1 to 8_3 and the like formed integrally with the cover member 8 also have a structure in which equivalent optical components are substituted as their functions. Various embodiments can be mentioned.
[0052]
And according to the above-described light emitting / receiving composite unit 1 and the displacement detection device using the same, the following advantages are obtained.
[0053]
First, in the conventional displacement detection apparatus, as shown in FIG. 4, in the optical path from the light source LS to the polarization beam splitter PBS1 and the optical path from the beam splitter to the photodetectors PD1 to PD4, individual optical components are provided. Therefore, for example, it is necessary to fix each part to a base part such as an optical base, and adjustment of the positional relationship of each part is troublesome. There is no such inconvenience.
[0054]
That is, as in the present invention, when an optical component (such as an optical element) is packaged and integrally formed in a semiconductor sealing structure, the polarization separation diffractive optical element for separating the polarization component related to the return light beam 5_1 and 5_2 are placed in the optical path, and the light-emitting element 3a and the light-receiving elements 6_1 to 6_4 can be arranged in a plane, and the integrally formed optical components are moved or adjusted by changing their mounting postures. It can be easily manufactured by fixing later. In particular, a semiconductor element is precisely placed and fixed in a connected semiconductor sealing part having, for example, a silicon wafer or a reference part on the position, and an electronic component (such as a light emitting element or a light receiving element) after fixing. After that, the optical component is placed at a predetermined position, and after detecting the state of the light flux from the light emitting element to the light receiving element and the amount of light, the position of the optical component is finely adjusted and fixed. However, it can be easily realized by using existing technology (for example, realized by an optical system or the like in a head device (optical pickup or the like) for an optical disk). Therefore, adjustment and assembly processes can be easily performed using semiconductor manufacturing equipment.
[0055]
In this way, by integrally forming the parts in the semiconductor sealing structure, adjustment becomes extremely easy, and it is possible to reduce the size and weight of the shape and mass, and at the same time, it has been proven in semiconductor manufacturing. A certain high reliability is guaranteed.
[0056]
Furthermore, a compact configuration can be realized by using a diffractive optical element for polarization separation.
[0057]
【The invention's effect】
As is apparent from the above description, according to the inventions according to claims 1 and 3, polarized light that separates the light emitted from the light emitting element , the light receiving element, and the light emitting element constituting the light branching portion into two. Precise position adjustment is possible by integrating a single prism, lens, and diffractive member with a light splitting film that splits the return light that has been returned to the unit through the external optical system. It is easy, and it is not necessary to make a large arrangement space for the parts, so it is suitable for downsizing. Since each part is confined in the same housing member, it is difficult to be affected by environmental changes and changes over time, so that the occurrence of misalignment can be prevented and the reliability of the unit can be improved.
[0058]
According to the invention which concerns on Claim 2 or Claim 4, a compact structure can be implement | achieved by arrange | positioning a diffraction member between an optical branching part and a light receiving element, and the polarization component of return light can be isolate | separated.
[0059]
According to the inventions according to claims 5 and 6, polarization separation (separation into P-polarized light and S-polarized light) can be performed with a substantially uniform light amount.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of a lattice interference type displacement detection apparatus using a light receiving / emitting composite unit according to the present invention.
FIG. 2 is a diagram showing an example of a configuration of a light receiving / emitting composite unit according to the present invention.
FIG. 3 is a plan view for explaining an arrangement example of a light source and a light receiving unit in the light emitting / receiving composite unit.
FIG. 4 is a diagram illustrating a configuration example of a conventional grating interference type displacement detection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light reception / emission composite unit 1, ET ... Displacement detection device, 3 ... Light source, 3a ... Light emitting element, 4 ... Light branching part, 5, 5_1, 5_2 ... Diffraction member, 6 ... Light receiving part, 6_1 to 6_4 ... Light reception Element, 8_1 to 8_3 ... lens, 9 ... prism, 9a ... polarization separation film, 9b ... light branching film, ET ... external optical system, RG ... diffraction grating, R2a, R2b ... reflection member, WP1a, WP1b ... polarization member

Claims (6)

発光素子及び当該発光素子から出射した出射光が外部光学系を通ってユニットに戻ってきた戻り光を検出する複数の受光素子が、同一の基板又は部材上に配設されるとともに、
1つのプリズムに、光分岐部を構成する上記発光素子からの出射光を2つに分離する偏光分離膜と出射光が外部光学系を通ってユニットに戻ってきた戻り光を分岐する光分岐膜が備えられ、
上記出射光及び戻り光に対する収束又は発散用のレンズと、上記戻り光の偏光状態から任意方向の偏光成分を分離して異なる方向に回折させるための回折部材とが配置され、かつそれらの部材が一体的に形成された構造を有する
ことを特徴とする受発光複合ユニット。
A plurality of light receiving elements for detecting a light emitting element and return light from which the emitted light emitted from the light emitting element returns to the unit through the external optical system are disposed on the same substrate or member,
A polarization splitting film that separates the light emitted from the light emitting element constituting the light branching portion into two and a light branching film that branches the return light that has returned to the unit through the external optical system. Is provided,
A converging or diverging lens for the outgoing light and return light, and a diffractive member for separating a polarization component in an arbitrary direction from the polarization state of the return light and diffracting it in different directions, and these members A combined light receiving and emitting unit characterized by having an integrally formed structure.
請求項1に記載した受発光複合ユニットにおいて、
回折部材が光分岐部と受光素子との間に配置されている
ことを特徴とする受発光複合ユニット。
In the light emitting / receiving composite unit according to claim 1,
A diffractive member is disposed between the light branching portion and the light receiving element.
発光素子及び当該発光素子から出射した出射光が外部光学系を通ってユニットに戻ってきた戻り光を検出する複数の受光素子が、同一の基板又は部材上に配設されるとともに、
1つのプリズムに、光分岐部を構成する上記発光素子からの出射光を2つに分離する偏光分離膜と出射光が外部光学系を通ってユニットに戻ってきた戻り光を分岐する光分岐膜が備えられ、
上記出射光及び戻り光に対する収束又は発散用のレンズと、上記戻り光の偏光状態から任意方向の偏光成分を分離して異なる方向に回折させるための回折部材とが配置され、かつそれらの部材が一体的に形成された構造を有する受発光複合ユニットと、
回折格子を含む被検部及び上記受発光複合ユニットから出射された後の回折格子による回折光を受けて偏光状態を変えるための偏光部材と、偏光部材を通った光を反射させて逆方向に戻すための反射部材とを含む外部光学系を設けた
ことを特徴とする変位検出装置。
A plurality of light receiving elements for detecting a light emitting element and return light from which the emitted light emitted from the light emitting element returns to the unit through the external optical system are disposed on the same substrate or member,
A polarization splitting film that separates the light emitted from the light emitting element constituting the light branching portion into two and a light branching film that branches the return light that has returned to the unit through the external optical system. Is provided,
A converging or diverging lens for the outgoing light and return light, and a diffractive member for separating a polarization component in an arbitrary direction from the polarization state of the return light and diffracting it in different directions, and these members A light receiving and emitting composite unit having a structure formed integrally;
A polarizing member for changing the polarization state by receiving the diffracted light emitted from the test part including the diffraction grating and the diffraction grating after being emitted from the light receiving / emitting composite unit, and reflecting the light passing through the polarizing member in the reverse direction An external optical system including a reflecting member for returning is provided.
請求項3に記載した変位検出装置において、
回折部材が光分岐部と受光素子との間に配置されている
ことを特徴とする変位検出装置。
In the displacement detection apparatus according to claim 3,
A displacement detecting device, wherein the diffractive member is disposed between the light branching portion and the light receiving element.
請求項1に記載した受発光複合ユニットにおいて、
発光素子から発した光が設定光軸に沿う方向に光路変更を受けてから、偏光分離膜に到達するように構成され、
上記発光素子を含む光源及び受光素子を含む受光部の光軸方向から見た場合に、当該発光素子に係る光の出射方向を含む直線と、受光部を構成する各受光素子の中心を通る直線とが、ほぼ45゜の角度をなすように配置されている
ことを特徴とする受発光複合ユニット。
In the light emitting / receiving composite unit according to claim 1,
The light emitted from the light emitting element is configured to reach the polarization separation film after undergoing an optical path change in the direction along the set optical axis,
When viewed from the optical axis direction of the light source including the light emitting element and the light receiving unit including the light receiving element, a straight line including the light emitting direction of the light emitting element and a straight line passing through the center of each light receiving element constituting the light receiving unit Are arranged so as to form an angle of approximately 45 °.
請求項3に記載した変位検出装置において、
受発光複合ユニット内の発光素子から発した光が設定光軸に沿う方向に光路変更を受けてから、偏光分離膜に到達するように構成され、
上記発光素子を含む光源及び受光素子を含む受光部の光軸方向から上記受発光複合ユニットを見た場合に、上記発光素子に係る光の出射方向を含む直線と、受光部を構成する各受光素子の中心を通る直線とが、ほぼ45゜の角度をなすように配置されている
ことを特徴とする変位検出装置。
In the displacement detection apparatus according to claim 3,
The light emitted from the light emitting element in the light receiving / emitting composite unit is configured to reach the polarization separation film after undergoing an optical path change in the direction along the set optical axis,
When the light receiving / emitting composite unit is viewed from the optical axis direction of the light source including the light emitting element and the light receiving unit including the light receiving element, each light receiving unit constituting the light receiving unit and a straight line including the light emitting direction of the light emitting element. A displacement detecting device, wherein the straight line passing through the center of the element is arranged at an angle of approximately 45 °.
JP2001342860A 2001-11-08 2001-11-08 Light emitting / receiving composite unit and displacement detection device using the same Expired - Lifetime JP4110765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001342860A JP4110765B2 (en) 2001-11-08 2001-11-08 Light emitting / receiving composite unit and displacement detection device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342860A JP4110765B2 (en) 2001-11-08 2001-11-08 Light emitting / receiving composite unit and displacement detection device using the same

Publications (2)

Publication Number Publication Date
JP2003149005A JP2003149005A (en) 2003-05-21
JP4110765B2 true JP4110765B2 (en) 2008-07-02

Family

ID=19156642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342860A Expired - Lifetime JP4110765B2 (en) 2001-11-08 2001-11-08 Light emitting / receiving composite unit and displacement detection device using the same

Country Status (1)

Country Link
JP (1) JP4110765B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559056B2 (en) * 2003-10-17 2010-10-06 ソニーマニュファクチュアリングシステムズ株式会社 Displacement detector
JP3963885B2 (en) * 2003-10-27 2007-08-22 オリンパス株式会社 Reflective optical encoder sensor head
JP5105197B2 (en) * 2006-09-29 2012-12-19 株式会社ニコン MOBILE BODY SYSTEM, EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP2003149005A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP4862108B2 (en) Light emitting / receiving composite unit and displacement detection device using the same
US7471397B2 (en) Position-measuring device
JP3478567B2 (en) Rotation information detection device
EP0603905B1 (en) Displacement detection apparatus
US4970388A (en) Encoder with diffraction grating and multiply diffracted light
US7336367B2 (en) Light-receiving/emitting composite unit, method for manufacturing the same, and displacement detection device
US7738112B2 (en) Displacement detection apparatus, polarization beam splitter, and diffraction grating
US6192020B1 (en) Semiconductor laser device
KR100479701B1 (en) Photoelectronic device
JP4110765B2 (en) Light emitting / receiving composite unit and displacement detection device using the same
US6399940B1 (en) Optical rotary position encoder
JP2001336952A (en) Measuring apparatus
JP3038860B2 (en) Encoder
JPH05340719A (en) Optical displacement sensor and driving system using it
JP3490128B2 (en) Photoelectric encoder
EP0534373A2 (en) Optical pickup device
WO2016143694A1 (en) Reflection-type encoder
JPH05250751A (en) Optical integrated circuit, optical pickup, and optical information processor
JPH0944893A (en) Optical pickup
JPH07161065A (en) Optical pickup device
JPH11110782A (en) Semiconductor laser device
JPH11110781A (en) Semiconductor laser device
JPH05203824A (en) Optical integrated circuit, optical pickup, and optical information processor
JPH09297935A (en) Optical pickup device
JPH10141916A (en) Displacement measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R151 Written notification of patent or utility model registration

Ref document number: 4110765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250