JP4110632B2 - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP4110632B2
JP4110632B2 JP27721498A JP27721498A JP4110632B2 JP 4110632 B2 JP4110632 B2 JP 4110632B2 JP 27721498 A JP27721498 A JP 27721498A JP 27721498 A JP27721498 A JP 27721498A JP 4110632 B2 JP4110632 B2 JP 4110632B2
Authority
JP
Japan
Prior art keywords
sealing plug
sealing
injection port
liquid injection
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27721498A
Other languages
Japanese (ja)
Other versions
JP2000106156A (en
Inventor
聡 三浦
琢也 中嶋
賢治 水野
義高 松政
浩司 芳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP27721498A priority Critical patent/JP4110632B2/en
Publication of JP2000106156A publication Critical patent/JP2000106156A/en
Application granted granted Critical
Publication of JP4110632B2 publication Critical patent/JP4110632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Laser Beam Processing (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、注液口を有する密閉電池に関するものである。
【0002】
【従来の技術】
近年、携帯機器の駆動用電源として、各種の小型二次電池が用いられている。このような小型二次電池として、従来ではニッケルカドミウム電池,ニッケル水素電池が用いられ、近年では特にリチウムイオン二次電池等が用いられている。
【0003】
このような密閉電池の封口方法として、封口板とケース開口部をレーザー溶接により密閉したものや、封口板をガスケットを介してケースとかしめ封口を行ったものがある。
【0004】
特に、前者のような封口板とケース開口部をレーザー溶接して封口した電池では、その封口する方法として、まず注液を行い、その後、封口板とケース開口部とをレーザー溶接して封口する場合と、封口板とケース開口部をレーザー溶接した後に、封口板または電池ケースの注液口から注液を行い封口栓をする場合がある。特に、後者のような封口板とケース開口部をレーザー溶接した後に、封口板、または電池ケースの注液口から注液を行い封口栓をする電池においては、封口栓と封口板、または封口栓と電池ケースを溶接する時の溶接不良を低減させ密閉性の高い電池を提供するために、特開平9−288999号公報では図6の(a),(b),(c)に示したように、レーザー溶接ができるように全体が金属製で注液口に密挿される密挿段部Aとレーザー溶接する鍔部Bとを一体にした封口栓形状が提案されている。
【0005】
【発明が解決しようとする課題】
従来の封口板と電池ケースを溶接した後、封口板の注液口または電池ケースの注液口から注液を行い、その注液口に封口栓を溶接する場合、その溶接不良を増加させる原因として、溶接位置への位置決めが困難であるということと、封口栓を注液口に挿入した時に電解液の這い上がりにより、溶接部近傍への電解液の付着や、溶接部分への電解液の付着によって、封口栓の溶接時に穴あきが生じることがある。特に、図6の(a),(b),(c)にそれぞれ示したような従来の封口栓の形状では、電解液が封口栓に付着して溶接不良を起こす問題があった。このような溶接不良は電池の密閉性を低下させ、漏液や生産性を低下させる原因になっていた。
【0006】
本発明は前述した課題を解決すべく、溶接時の不良を低減させ、信頼性の高い密閉電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
この課題を解決するために本発明は、注液口に密挿する封口栓の密挿段部は樹脂製とした封口栓を用いることにより、注液口と封口栓の密閉性を高め、封口栓を挿入した時の電解液の這い上がりをなくし、封口栓の溶接部分への電解液の付着を防ぐように構成すると共に、注液口に密挿される密挿段部の寸法を注液口壁面の寸法に合致する寸法として、封口栓挿入時の電解液の這い上がりを低下させ、さらに密挿段部と鍔部とが連接する内周部には凹形状の液だまりをつくり、封口栓溶接部分までの電解液の浸透を遅らせ、鍔部の下面には直線部を形成することにより、溶接時の熱の影響を低下させるように構成したものである。
【0008】
これにより、封口栓の溶接時の電解液の付着による溶接不良を低減させ、信頼性の高い密閉電池が得られる。
【0009】
【発明の実施の形態】
本発明の請求項1に記載の発明は、電解液の注液口に密挿される封口栓の密挿段部は樹脂製とし、または樹脂製の栓体を挿入後、金属製の封口栓を樹脂製の栓体に挿入し、注液口と封口栓の密閉性をさらに高め、電解液の上昇を防ぎ溶接不良を低減させるという作用を有する。
【0010】
請求項2に記載の発明は、封口栓のレーザー溶接部に薄肉部を設けることにより、レーザー出力を弱くでき、注液口までの熱影響を少なくすることにより、電解液の上昇を減少させるという作用を有する。
【0011】
請求項3に記載の発明は、封口栓の密挿段部と、注液口の壁面との間に封止剤を塗着し、注液口と封口栓の密閉性を高め、溶接不良を低減させるという作用を有する。
【0012】
請求項4に記載の発明は、電解液の注液口において封口栓嵌め込み側の周縁部上端を面取りしたものであり、密挿段部を有する封口栓の挿入を容易にし、特に封口栓の挿入による溶接不良を低減させるという作用を有する。
【0013】
請求項5に記載の発明は、極板群を収容した電池ケースの上部開口部に、封口板を載置して溶接すると共に、封口板の注液口、または電池ケースの注液口から電解液を注入した後、前記注液口に封口栓を嵌め込んで封口した電池において、前記封口栓の密挿段部の径方向の寸法を注液口壁面間の寸法に対し±0.1mmとし、その先端は曲面とし、封口栓挿入時の電解液の這い上がりを防止し、かつ密挿段部と鍔が連接する内周縁に凹部状のたまり部を形成し封口栓の溶接部分までの電解液の浸透を遅らせ、また鍔部の下面は0.3mm以上の直線部とした封口栓により封口したもので、溶接時の熱の影響を低下させ、溶接不良を低減させるという作用を有する。
【0014】
請求項6に記載の発明は、金属製封口栓のレーザー溶接部に薄肉部を設けることにより、レーザー出力を弱くでき、注液口までの熱影響を少なくすることにより電解液の上昇を減少させるという作用を有する。
【0015】
請求項7に記載の発明は、金属製の密挿段部を有する封口栓と、注液口の壁面との間に封止剤を塗着し、注液口と封口栓の密閉性を高め溶接不良を低減させるという作用を有する。
【0016】
請求項8に記載の発明は、電解液の注液口において封口栓嵌め込み側の周縁部上端を面取りしたものであり、密挿段部を有する封口栓の挿入を容易にし、特に封口栓挿入による溶接不良を低減させるという作用を有する。
【0017】
以下、本発明の実施の形態について、図1から図4を用いて説明する。
(実施の形態1)
図1は本発明の請求項1記載の封口栓の密挿段部が樹脂製である封口栓の断面を示す。図1において、1は封口栓2の密挿段部で、封口栓を注液口に挿入した時の電解液の這い上がりを防止するもので、前記密挿段部1は樹脂から構成されている。樹脂としてはポリエチレン,ポリプロピレンやゴム等が使用でき、特に封口栓2をレーザー溶接するため、熱影響を考慮すると熱的に比較的安定で、また耐電解液性に優れた樹脂が好ましい。
【0018】
(実施の形態2)
図2は本発明の請求項5記載の封口栓の断面を示す。図2において、3は金属製の封口栓で、電解液の這い上がりを減少させるために密挿段部4の径方向の寸法Cは注液口の壁面の径方向寸法に対して±0.1mmである。本発明では、その寸法を±0.1mmとすればよいが、より好ましくは0から±0.1mmとし密挿段部4を注液口に圧入することにより、より密閉性が向上し、電解液の這い上がりを減少させることができる。また、その先端の形状は、このような圧入タイプの金属製の封口栓3を用いた場合でも挿入がスムーズに行われるように曲面としたものである。そして注液口壁面に接触する金属製の封口栓3の密挿段部4が接する部分5が0.1mm以上を確保できるように面取り、またはR形状としている。また、密挿段部4と鍔6とが連接する内周縁に凹部をつけることにより液だまり7をつくり、封口栓溶接部までの電解液の浸透を遅らせることができる。さらに、鍔6の下端の直線部8の寸法を0.3mm以上にすることにより、溶接時の熱影響を低下させることができる。本発明では、鍔6の下面の直線部8の寸法を0.3mm以上とすればよいが、金属製の封口栓3の材質等による溶接時のレーザー出力の違いにより、好ましくは0.5mm以上にする方がよい。
【0019】
(実施の形態3)
図1および図2においてレーザー溶接部9は、レーザー出力をできるだけ弱くすることにより、注液口部分の熱影響を少なくし、電解液の上昇を減少させるためであり、薄肉部としたものである。
【0020】
なお、以上の説明では、レーザー溶接部の薄肉部を注液口に嵌め込むための密挿段部を設けた封口栓で構成した例で説明したが、その他の封口栓でも同様に実施可能である。
【0021】
また、図1および図2では薄肉部をR形状とした例で示したが、その他、面取りや段部等を設けても同様に実施可能である。
【0022】
(実施の形態4)
図3はケース10の開口部を封口した封口板11の注液口12に封口栓13を挿入した断面を示したもので、図3において樹脂製の密挿段部14と、注液口12との密閉性を向上し、電解液の這い上がりを防止するために封止剤15がある。
【0023】
(実施の形態5)
図4は注液口部分の断面図であり、図4において、図1,2に示したような封口栓を用いた場合の栓挿入をスムーズにし、封口栓の浮きによる溶接不良を防止させるための面取り部16を構成する目的で、注液口の周縁部上端を面取りする。面取りする寸法は、注液口壁面と封口栓密挿段部が0.1mm以上接する部分を確保できるようにすることが好ましい。
【0024】
【実施例】
以下、本発明の実施例について図を用いて説明する。図5は、本発明の実施例における角形電池の断面図を示すもので、本発明を幅22mm,高さ48mm,厚み5mmの薄型リチウムイオン二次電池に適用したものである。図5において、17はアルミニウム製の角形ケースである。18はアルミニウム製の封口板で、角形ケース17とレーザー溶接されている。19は極板群で、20は正極リード、21は負極リードである。22は封口板18に開けられた注液口で、23は注液口22を封止する封口栓である。
【0025】
本発明の角形非水電解液電池は以下のようにして作製した。正極板は、活物質であるLiCoO2 に導電剤と結着剤を混合したものをアルミニウム箔の両面に塗着,乾燥し圧延した後、所定の大きさに切断したものとした。これにアルミニウム製の正極リード20を溶接する。負極板は、炭素質材料を活物質とし、これと結着剤を混合したものを銅箔の両面に塗着,乾燥,圧延した後、所定の大きさに切断したものである。これに、ニッケル製の負極リード21を溶接する。セパレータはポリエチレン製の微多孔フィルムである。正極板,負極板とをセパレータを介して巻回し、上面が長円形の極板群19に整形する。極板群19のリードを封口板18に溶接し角形ケース17に挿入し、封口板18と角形ケース17をレーザー溶接する。正極リード20はアルミニウム製の封口板18にレーザースポット溶接し、負極リード21はニッケルメッキされた鉄製のワッシャー24に抵抗溶接した。次に電解液を注液口22から所定量注液する。電解液にはエチレンカーボネートとジエチルカーボネートを混合した溶媒に、溶質として六フッ化リン酸リチウムを溶解したものを用いた。その後、注液口22に封口栓23を施し、封口板18と封口栓23をレーザー溶接により封口した。なお図5において25は安全弁、26は樹脂製の絶縁性ガスケット、27はニッケルメッキされた鉄製の端子をかねたリベットを示す。
【0026】
(実施例1)
前述した封口栓について図を用いて説明する。本実施例1では、図1の(a)に示したような封口栓を用いた。図2において封口栓の密挿段部の樹脂は、本実施例ではエチレンプロピレンゴムを用いた。以上を実施例電池Aとする。また、レーザー溶接部の薄肉部の効果を確認するため、実施例電池Bでは薄肉部を設けない封口栓を用いた。また、図2の(a)に示した封口栓を用いた実施例を実施例電池Cとする。実施例電池Cでは、図2において密挿段部の径方向の寸法を注液口の壁面間の寸法に対し+0.1mmとし、その先端周縁部分のRを0.3mmとし、液だまりのRは0.05mmとした。さらに、鍔の直線部の寸法は0.5mmのものを用いた。また、図3に示したように、注液口と封口栓との密閉性をよくするために、注液口の壁面に封止剤を塗着した。封止剤として本実施例ではコールタールピッチを用い、封口栓は実施例電池Aのものを用いた。以上を実施例電池Dとする。これらの効果を確認するために、封口栓レーザー溶接時の電解液の付着によるレーザー溶接の穴あきによる不良率を比較した。その結果を表1に示す。また、従来品として注液口に対して封口栓の嵌め込み部分の寸法が0.2mm以下となるような封口栓を用いた。
【0027】
【表1】

Figure 0004110632
【0028】
表1より明らかなように本発明の封口栓を用いた場合、従来用いられてきた封口栓に比較しレーザー溶接不良を飛躍的に低減することができる。また、実施例電池Aと実施例電池Bを比較すると、レーザー溶接部に薄肉部を設けると、さらに効果的であることが分かる。さらに、実施例電池Dに示したように、封止剤により注液口と封口栓の密閉性をより向上させることにより、溶接不良を低減することができた。
【0029】
また、本実施例では、樹脂としてエチレンプロピレンゴム、また封止剤にコールタールピッチを用いたが、その他の樹脂、また封止剤を用いても同様の結果が得られた。
【0030】
(実施例2)
次に、電解液の注液口において封口栓嵌め込み側の周縁部上端を面取りした場合の利点を、図4を用いて説明する。図4に示したように電解液の注液口において封口栓嵌め込み側の周縁部上端を面取りすることによって、封口栓を注液口に挿入する際の挿入を容易にすることができる。本実施例では0.05mmの面取りを行い、封口栓は実施例電池Aのものを用いた。以上を実施例電池Eとする。
【0031】
本発明の効果を調べるために、注液口への封口栓挿入後の挿入不良率を表2に示す。本試験で用いた従来品は、実施例電池Aに示した発明品を用いた。
【0032】
【表2】
Figure 0004110632
【0033】
表2より明らかなように、特に本発明実施例1のような封口板を用いた場合は、本実施例のように電解液の注液口において封口栓嵌め込み側の周縁部上端を面取りすることによって、封口栓を注液口に挿入する際の挿入を容易にすることができ、封口栓の挿入不良を低減することができる。
【0034】
なお、本実施例では角形リチウムイオン二次電池を用いた場合を示したが、他の電池系、例えばニッケルカドミウム二次電池,ニッケル水素二次電池,鉛蓄電池等に用いた場合にも同様の結果が得られた。さらに角形電池に限らず、このような注液口を持ち、注液を行った後、封口栓をし、封口板とを溶接するような電池の場合にも同様な結果が得られた。また、本実施例では電池ケースおよび封口栓の材質としてアルミニウムを用いたが、他の電池系においては、その材質に鉄,ステンレス等を用いて同様な好結果が得られた。
【0035】
【発明の効果】
以上のように本発明によれば、密閉電池において注液口へ封口栓をレーザー溶接する際の溶接不良を低減し、信頼性を高めることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における封口栓を示す断面図
【図2】同実施の形態2における封口栓を示す断面図
【図3】同実施の形態4における封口栓を注液口に嵌め込んだ封口栓部分の断面図
【図4】同実施の形態5における封口板注液口部分の断面図
【図5】本発明の実施例における角形電池の断面図
【図6】従来の封口栓の断面図
【符号の説明】
1,14 樹脂製の密挿段部
2,13,23 封口栓
3 金属製の封口栓
4 密挿段部
6 鍔
7 液だまり
8 直線部
9 レーザー溶接部
10 ケース
11,18 封口板
12,22 注液口
15 封止剤
16 面取り部
17 角形ケース
19 極板群
20 正極リード
21 負極リード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed battery having a liquid inlet.
[0002]
[Prior art]
In recent years, various small secondary batteries have been used as power sources for driving portable devices. Conventionally, nickel cadmium batteries and nickel metal hydride batteries are used as such small secondary batteries, and in particular, lithium ion secondary batteries and the like are used.
[0003]
As a sealing method for such a sealed battery, there are a method in which the sealing plate and the case opening are sealed by laser welding, and a method in which the sealing plate is caulked with a case via a gasket.
[0004]
In particular, in the case of a battery in which the sealing plate and the case opening are sealed by laser welding as in the former, as a sealing method, first, liquid injection is performed, and then the sealing plate and the case opening are sealed by laser welding. In some cases, after sealing the sealing plate and the case opening, laser injection is performed from the sealing plate or from the liquid inlet of the battery case, and the sealing plug may be sealed. In particular, in the case of a battery in which the sealing plate and the case opening are laser welded to the latter and then the sealing plate or the battery case is used to inject the liquid into the sealing plug, the sealing plug and the sealing plate or the sealing plug are used. As shown in FIGS. 6 (a), 6 (b), and 6 (c) in Japanese Patent Application Laid-Open No. 9-288999, in order to provide a battery with high sealing performance by reducing welding defects when welding the battery case. In addition, a sealing plug shape in which a tightly-inserted step A that is entirely made of metal and is tightly inserted into a liquid injection port and a flange B that is laser-welded is integrated so that laser welding can be performed.
[0005]
[Problems to be solved by the invention]
When welding a conventional sealing plate and battery case and then injecting liquid from the inlet of the sealing plate or from the inlet of the battery case, and welding a sealing plug to the inlet, the cause of the increase in welding failure As a result, it is difficult to position the welding position, and when the sealing plug is inserted into the liquid injection port, the electrolytic solution creeps up, so that the electrolytic solution adheres to the vicinity of the welded portion or the electrolytic solution to the welded portion. Adhesion may cause perforation when welding the sealing plug. In particular, the conventional sealing plug shapes as shown in FIGS. 6A, 6B, and 6C have a problem in that the electrolytic solution adheres to the sealing plug to cause poor welding. Such poor welding reduces the sealing performance of the battery and causes leakage and productivity.
[0006]
In order to solve the above-described problems, an object of the present invention is to provide a highly reliable sealed battery that reduces defects during welding.
[0007]
[Means for Solving the Problems]
In order to solve this problem, the present invention uses a sealing plug made of resin for the sealing step of the sealing plug that is tightly inserted into the injection port, thereby improving the sealing property between the injection port and the sealing plug. It is configured to prevent the electrolyte from creeping up when the stopper is inserted, and to prevent the electrolyte from adhering to the welded part of the sealing stopper. As the dimensions match the dimensions of the wall surface, the electrolyte creeps up when the sealing plug is inserted, and a concave liquid puddle is formed on the inner periphery where the densely inserted step and the flange are connected. By delaying the permeation of the electrolytic solution to the welded portion and forming a straight portion on the lower surface of the flange portion, the influence of heat during welding is reduced.
[0008]
Thereby, the welding defect by adhesion of the electrolyte solution at the time of welding of a sealing plug is reduced, and a highly reliable sealed battery is obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, the sealing step of the sealing plug that is tightly inserted into the injection port for the electrolyte is made of resin, or after inserting the resin plug, the metal sealing plug is It is inserted into a resin plug and has the effect of further enhancing the sealing properties of the liquid injection port and the sealing plug, preventing the electrolyte from rising, and reducing welding defects.
[0010]
The invention according to claim 2 is that the laser output can be weakened by providing a thin wall portion in the laser welded portion of the sealing plug, and the increase in the electrolyte is reduced by reducing the thermal effect up to the liquid injection port. Has an effect.
[0011]
In the invention according to claim 3, a sealing agent is applied between the tightly-inserted step portion of the sealing plug and the wall surface of the liquid injection port to improve the sealing property of the liquid injection port and the sealing plug, thereby preventing poor welding. It has the effect of reducing.
[0012]
The invention according to claim 4 is the one in which the upper end of the peripheral edge on the side where the sealing plug is inserted is chamfered at the electrolyte injection port, and facilitates the insertion of the sealing plug having a tightly inserted step, and particularly the insertion of the sealing plug. It has the effect of reducing welding defects due to.
[0013]
According to the fifth aspect of the present invention, the sealing plate is placed and welded to the upper opening of the battery case containing the electrode plate group, and electrolysis is performed from the liquid inlet of the sealing plate or the liquid inlet of the battery case. In a battery in which a sealing plug is fitted in the liquid inlet after sealing the liquid, the dimension in the radial direction of the tightly inserted step portion of the sealing plug is ± 0.1 mm with respect to the dimension between the wall surfaces of the liquid inlet. The tip has a curved surface to prevent the electrolyte from scooping up when the sealing plug is inserted, and a recess-shaped pool is formed on the inner periphery where the tightly-inserted stepped portion and the ridge are connected. The penetration of the liquid is delayed, and the lower surface of the collar portion is sealed with a sealing plug having a straight portion of 0.3 mm or more, and has the effects of reducing the influence of heat during welding and reducing welding defects.
[0014]
In the invention according to claim 6, the laser output can be weakened by providing a thin portion in the laser welded portion of the metal sealing plug, and the rise of the electrolyte is reduced by reducing the thermal effect up to the liquid injection port. It has the action.
[0015]
In the invention according to claim 7, a sealing agent is applied between the sealing plug having a metal close insertion step portion and the wall surface of the liquid injection port, thereby improving the sealing property of the liquid injection port and the sealing plug. It has the effect of reducing welding defects.
[0016]
The invention according to claim 8 is that the upper end of the peripheral portion on the side where the sealing plug is inserted is chamfered in the electrolyte injection port, and facilitates the insertion of the sealing plug having the tight insertion step portion, and particularly by insertion of the sealing plug. It has the effect of reducing welding defects.
[0017]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(Embodiment 1)
FIG. 1 shows a cross-section of a sealing plug in which the sealing step of the sealing plug according to claim 1 of the present invention is made of resin. In FIG. 1, reference numeral 1 denotes a tight insertion step portion of the sealing plug 2, which prevents the electrolyte from creeping up when the sealing plug is inserted into the liquid injection port. The tight insertion step portion 1 is made of resin. Yes. As the resin, polyethylene, polypropylene, rubber or the like can be used. Particularly, since the sealing plug 2 is laser-welded, a resin that is relatively thermally stable and excellent in electrolytic solution resistance is preferable in consideration of thermal effects.
[0018]
(Embodiment 2)
FIG. 2 shows a cross section of the sealing plug according to claim 5 of the present invention. In FIG. 2, 3 is a metal sealing plug, and the radial dimension C of the close insertion step 4 is ± 0. 1 mm. In the present invention, the dimension may be set to ± 0.1 mm, but more preferably from 0 to ± 0.1 mm, and the tight insertion step 4 is press-fitted into the liquid injection port, so that the sealing performance is further improved. Liquid creeping can be reduced. In addition, the shape of the tip is a curved surface so that the insertion can be performed smoothly even when such a press-fit type metal sealing plug 3 is used. And the chamfering or R shape is carried out so that the part 5 which the dense insertion step part 4 of the metal sealing plug 3 which contacts the liquid injection inlet wall surface can ensure 0.1 mm or more. Further, by forming a recess 7 on the inner peripheral edge where the densely inserted step 4 and the flange 6 are connected, the liquid pool 7 can be formed, and the permeation of the electrolytic solution up to the sealing plug weld can be delayed. Furthermore, the thermal influence at the time of welding can be reduced by making the dimension of the linear part 8 of the lower end of the collar 6 0.3 mm or more. In the present invention, the dimension of the straight portion 8 on the lower surface of the flange 6 may be 0.3 mm or more, but preferably 0.5 mm or more due to the difference in laser output during welding due to the material of the metal sealing plug 3 or the like. Better to do.
[0019]
(Embodiment 3)
In FIG. 1 and FIG. 2, the laser welding part 9 is to make the laser output as weak as possible, thereby reducing the thermal effect of the liquid injection port part and reducing the rise of the electrolyte, and is a thin part. .
[0020]
In the above description, an example in which the thin portion of the laser welded portion is configured with a sealing plug provided with a close insertion step for fitting into the liquid injection port has been described, but other sealing plugs can be similarly implemented. is there.
[0021]
1 and 2 show an example in which the thin-walled portion has an R shape, but the present invention can be similarly implemented by providing chamfering, a stepped portion, or the like.
[0022]
(Embodiment 4)
FIG. 3 shows a cross-section in which a sealing plug 13 is inserted into the liquid injection port 12 of the sealing plate 11 that seals the opening of the case 10. In FIG. 3, the resin-made close insertion step 14 and the liquid injection port 12 are shown. There is a sealant 15 for improving the sealing property and preventing the electrolyte from creeping up.
[0023]
(Embodiment 5)
FIG. 4 is a cross-sectional view of the liquid injection port. In FIG. 4, in order to smooth the plug insertion when the sealing plug as shown in FIGS. 1 and 2 is used, and to prevent welding failure due to the floating of the sealing plug. For the purpose of configuring the chamfered portion 16, the upper end of the peripheral edge of the liquid injection port is chamfered. The chamfer dimension is preferably such that a portion where the wall surface of the liquid injection port and the sealing plug tightly-inserted step portion are in contact with each other by 0.1 mm or more can be secured.
[0024]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 shows a cross-sectional view of a prismatic battery according to an embodiment of the present invention, in which the present invention is applied to a thin lithium ion secondary battery having a width of 22 mm, a height of 48 mm, and a thickness of 5 mm. In FIG. 5, 17 is a square case made of aluminum. Reference numeral 18 denotes an aluminum sealing plate, which is laser-welded to the rectangular case 17. Reference numeral 19 denotes an electrode plate group, 20 denotes a positive electrode lead, and 21 denotes a negative electrode lead. 22 is a liquid injection port opened in the sealing plate 18, and 23 is a sealing plug for sealing the liquid injection port 22.
[0025]
The rectangular nonaqueous electrolyte battery of the present invention was produced as follows. The positive electrode plate was obtained by applying a mixture of a conductive agent and a binder to LiCoO 2 as an active material on both sides of an aluminum foil, drying and rolling, and then cutting into a predetermined size. An aluminum positive electrode lead 20 is welded thereto. The negative electrode plate is obtained by applying a carbonaceous material as an active material and mixing the binder and a binder onto both sides of a copper foil, drying and rolling, and then cutting the plate into a predetermined size. A nickel negative electrode lead 21 is welded thereto. The separator is a microporous film made of polyethylene. The positive electrode plate and the negative electrode plate are wound through a separator and shaped into an electrode plate group 19 having an oval upper surface. The lead of the electrode plate group 19 is welded to the sealing plate 18 and inserted into the rectangular case 17, and the sealing plate 18 and the rectangular case 17 are laser welded. The positive electrode lead 20 was laser spot welded to the sealing plate 18 made of aluminum, and the negative electrode lead 21 was resistance welded to an iron washer 24 plated with nickel. Next, a predetermined amount of electrolyte is injected from the injection port 22. As the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate as a solute in a solvent obtained by mixing ethylene carbonate and diethyl carbonate was used. Thereafter, a sealing plug 23 was applied to the liquid injection port 22, and the sealing plate 18 and the sealing plug 23 were sealed by laser welding. In FIG. 5, 25 is a safety valve, 26 is a resin insulating gasket, and 27 is a rivet that also serves as a nickel-plated iron terminal.
[0026]
(Example 1)
The sealing plug described above will be described with reference to the drawings. In Example 1, a sealing plug as shown in FIG. 1A was used. In FIG. 2, ethylene propylene rubber was used as the resin at the close insertion step portion of the sealing plug in this example. The above is referred to as Example Battery A. Moreover, in order to confirm the effect of the thin part of a laser weld part, the sealing plug which does not provide a thin part was used in Example battery B. In addition, an example using the sealing plug shown in FIG. In Example Battery C, the radial dimension of the densely inserted step in FIG. 2 is +0.1 mm with respect to the dimension between the wall surfaces of the liquid inlet, and R at the peripheral edge of the tip is 0.3 mm. Was 0.05 mm. Furthermore, the dimension of the linear part of the collar was 0.5 mm. Further, as shown in FIG. 3, a sealing agent was applied to the wall surface of the liquid injection port in order to improve the sealing property between the liquid injection port and the sealing plug. In this example, coal tar pitch was used as the sealant, and the sealing plug of Example Battery A was used. The above is referred to as Example Battery D. In order to confirm these effects, the defect rates due to laser welding holes due to the adhesion of electrolyte during sealing plug laser welding were compared. The results are shown in Table 1. Further, as a conventional product, a sealing plug was used in which the dimension of the fitting portion of the sealing plug with respect to the liquid injection port was 0.2 mm or less.
[0027]
[Table 1]
Figure 0004110632
[0028]
As is apparent from Table 1, when the sealing plug of the present invention is used, laser welding defects can be dramatically reduced as compared with conventionally used sealing plugs. In addition, when Example Battery A and Example Battery B are compared, it can be seen that it is more effective to provide a thin portion in the laser welded portion. Furthermore, as shown in Example Battery D, it was possible to reduce welding defects by further improving the sealing properties of the liquid injection port and the sealing plug with the sealant.
[0029]
In this example, ethylene propylene rubber was used as the resin, and coal tar pitch was used as the sealant. However, similar results were obtained using other resins and sealants.
[0030]
(Example 2)
Next, the advantage of chamfering the upper end of the peripheral edge on the sealing plug insertion side in the electrolyte injection port will be described with reference to FIG. As shown in FIG. 4, by chamfering the upper end of the peripheral portion on the sealing plug insertion side in the electrolyte injection port, insertion when the sealing plug is inserted into the injection port can be facilitated. In this example, chamfering of 0.05 mm was performed, and the sealing plug of Example Battery A was used. The above is referred to as Example Battery E.
[0031]
In order to examine the effect of the present invention, the insertion failure rate after inserting the sealing plug into the liquid inlet is shown in Table 2. The conventional product used in this test was the product shown in Example Battery A.
[0032]
[Table 2]
Figure 0004110632
[0033]
As is clear from Table 2, particularly when a sealing plate such as Example 1 of the present invention is used, the upper end of the peripheral edge on the side where the sealing plug is inserted is chamfered at the electrolyte injection port as in this Example. Therefore, it is possible to facilitate insertion when the sealing plug is inserted into the liquid injection port, and it is possible to reduce poor insertion of the sealing plug.
[0034]
In addition, although the case where the square lithium ion secondary battery was used was shown in the present embodiment, the same applies to the case where it is used for other battery systems such as nickel cadmium secondary batteries, nickel hydride secondary batteries, lead storage batteries, etc. Results were obtained. Furthermore, the present invention is not limited to the rectangular battery, and similar results were obtained in the case of a battery having such a liquid injection port, injecting the liquid, sealing the plug, and welding the sealing plate. In this example, aluminum was used as the material for the battery case and the sealing plug. However, in other battery systems, similar results were obtained using iron, stainless steel, or the like as the material.
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce welding defects when laser-sealing a sealing plug to a liquid inlet in a sealed battery, and to improve reliability.
[Brief description of the drawings]
1 is a cross-sectional view showing a sealing plug in Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view showing a sealing plug in Embodiment 2. FIG. 3 is a liquid injection port with the sealing plug in Embodiment 4. FIG. 4 is a cross-sectional view of a sealing plate liquid inlet portion in the fifth embodiment. FIG. 5 is a cross-sectional view of a prismatic battery in an example of the present invention. Cross section of sealing plug [Explanation of symbols]
1,14 Resin-made densely inserted step portions 2, 13, 23 Seal plug 3 Metal-made seal plug 4 Closely inserted step portion 6 鍔 7 Puddle 8 Straight portion 9 Laser welded portion 10 Cases 11, 18 Sealing plates 12, 22 Injection port 15 Sealing agent 16 Chamfer 17 Square case 19 Electrode group 20 Positive electrode lead 21 Negative electrode lead

Claims (8)

極板群を収容した電池ケースの上部開口部に、封口板を載置して溶接すると共に、封口板の注液口、または電池ケースの注液口から電解液を注入した後、前記注液口の壁面に合致する樹脂製の密挿段部を有する封口栓を前記注液口に嵌め込み、前記注液口と前記封口栓をレーザー溶接して封口した密閉電池。The sealing plate is placed and welded to the upper opening of the battery case containing the electrode plate group, and the liquid injection is performed after injecting the electrolyte from the liquid inlet of the sealing plate or the liquid inlet of the battery case. A sealed battery in which a sealing plug having a resin close insertion step portion matching the wall surface of the mouth is fitted into the liquid injection port, and the liquid injection port and the sealing plug are sealed by laser welding. 封口栓のレーザー溶接部には薄肉部を設けた請求項1記載の密閉電池。The sealed battery according to claim 1, wherein a thin-walled portion is provided in a laser welded portion of the sealing plug. 封口栓の樹脂製の密挿段部と、注液口の壁面との間に封止剤を塗着した請求項1記載の密閉電池。The sealed battery according to claim 1, wherein a sealing agent is applied between a resin-made close insertion step portion of the sealing plug and a wall surface of the liquid injection port. 電解液の注液口において、封口栓嵌め込み側の周縁部上端を面取りした請求項1記載の密閉電池。The sealed battery according to claim 1, wherein the upper end of the peripheral edge on the side where the sealing plug is fitted is chamfered in the electrolyte injection port. 極板群を収容した電池ケースの上部開口部に、封口板を載置して溶接すると共に、封口板の注液口、または電池ケースの注液口から電解液を注入した後、前記注液口に金属製の封口栓を嵌め込んで封口した電池において、前記封口栓の密挿段部の径方向寸法を、注液口壁面の径方向寸法に対して±0.1mmとし、その先端周縁は曲面とし、かつ、密挿段部と鍔が連接する内周縁に凹部状のたまり部を形成し、鍔部の下面は0.3mm以上の直線部とした金属製の封口栓により封口した密閉電池。The sealing plate is placed and welded to the upper opening of the battery case containing the electrode plate group, and the liquid injection is performed after injecting the electrolyte from the liquid inlet of the sealing plate or the liquid inlet of the battery case. In a battery that is sealed by fitting a metal sealing plug into the mouth, the radial dimension of the tightly inserted step portion of the sealing plug is ± 0.1 mm with respect to the radial dimension of the wall surface of the liquid inlet, Is a curved surface, and a recessed portion is formed on the inner peripheral edge where the densely inserted step and the flange are connected, and the bottom surface of the flange is sealed with a metal sealing plug having a straight portion of 0.3 mm or more. battery. 金属製の封口栓のレーザー溶接部に薄肉部を設けた請求項5記載の密閉電池。The sealed battery according to claim 5, wherein a thin-walled portion is provided in a laser welded portion of the metal sealing plug. 金属製の密挿段部を有する封口栓と、注液口の壁面との間に封止剤を塗着した請求項5記載の密閉電池。6. The sealed battery according to claim 5, wherein a sealing agent is applied between a sealing plug having a metal close insertion step and a wall surface of the liquid injection port. 電解液の注液口において、封口栓嵌め込み側の周縁部上端を面取りした請求項5記載の密閉電池。The sealed battery according to claim 5, wherein the upper end of the peripheral edge on the side where the sealing plug is fitted is chamfered at the electrolyte inlet.
JP27721498A 1998-09-30 1998-09-30 Sealed battery Expired - Fee Related JP4110632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27721498A JP4110632B2 (en) 1998-09-30 1998-09-30 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27721498A JP4110632B2 (en) 1998-09-30 1998-09-30 Sealed battery

Publications (2)

Publication Number Publication Date
JP2000106156A JP2000106156A (en) 2000-04-11
JP4110632B2 true JP4110632B2 (en) 2008-07-02

Family

ID=17580412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27721498A Expired - Fee Related JP4110632B2 (en) 1998-09-30 1998-09-30 Sealed battery

Country Status (1)

Country Link
JP (1) JP4110632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102630193A (en) * 2010-01-20 2012-08-08 三菱重工业株式会社 Method for repairing wall member with passage
EP2587568A2 (en) 2011-10-26 2013-05-01 GS Yuasa International Ltd. Sealing plug and energy storage element

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568955B2 (en) * 2000-04-27 2010-10-27 株式会社Ihi Lid welding method
JP2005100769A (en) * 2003-09-24 2005-04-14 Toshiba Battery Co Ltd Square nonaqueous electrolyte battery
CN2840334Y (en) * 2005-06-17 2006-11-22 深圳市比克电池有限公司 Lithium ion battery covering plate, battery case and battery
KR100898685B1 (en) 2006-03-27 2009-05-22 삼성에스디아이 주식회사 Secondary battery
KR20070108747A (en) * 2006-05-08 2007-11-13 삼성에스디아이 주식회사 Secondary battery and the sealing method of electrolyte inlet thereof
JP5120867B2 (en) * 2006-05-30 2013-01-16 日立マクセルエナジー株式会社 Sealed battery
JP5213404B2 (en) 2007-09-28 2013-06-19 三洋電機株式会社 Sealed battery and manufacturing method thereof
DE102008010827A1 (en) * 2008-02-23 2009-08-27 Daimler Ag Galvanic flat cell and method for closing an electrolyte filling opening of the galvanic flat cell
JP4702640B2 (en) * 2008-04-18 2011-06-15 トヨタ自動車株式会社 battery
WO2011102368A1 (en) 2010-02-17 2011-08-25 株式会社 東芝 Battery and method for producing same
JP5586263B2 (en) * 2010-02-17 2014-09-10 株式会社東芝 Square battery and method of manufacturing the same
JP6160049B2 (en) * 2012-09-26 2017-07-12 株式会社Gsユアサ Power storage device manufacturing method and power storage device
JP6014161B2 (en) * 2012-10-29 2016-10-25 日立オートモティブシステムズ株式会社 Method for manufacturing rectangular energy storage device
JP6197656B2 (en) * 2013-10-03 2017-09-20 株式会社豊田自動織機 Power storage device
JP6191882B2 (en) 2014-12-05 2017-09-06 トヨタ自動車株式会社 Sealed battery and manufacturing method thereof
JP6565491B2 (en) * 2015-08-27 2019-08-28 株式会社豊田自動織機 Power storage device
JP2017045660A (en) * 2015-08-27 2017-03-02 株式会社豊田自動織機 Power storage device
CN112264709A (en) * 2020-10-26 2021-01-26 乐山晟嘉电气股份有限公司 Welding process for side sealing plate of manifold nozzle of vanadium flow battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102630193A (en) * 2010-01-20 2012-08-08 三菱重工业株式会社 Method for repairing wall member with passage
CN102630193B (en) * 2010-01-20 2015-02-04 三菱重工业株式会社 Method for repairing wall member with passage
US9199342B2 (en) 2010-01-20 2015-12-01 Mitsubishi Hitachi Power Systems, Ltd. Repairing method for wall member with flow passages
EP2587568A2 (en) 2011-10-26 2013-05-01 GS Yuasa International Ltd. Sealing plug and energy storage element
KR20130045810A (en) 2011-10-26 2013-05-06 가부시키가이샤 지에스 유아사 Plug and electric storage device therewith
USD772163S1 (en) 2011-10-26 2016-11-22 Gs Yuasa International Ltd. Sealing plug for energy storage element

Also Published As

Publication number Publication date
JP2000106156A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP4110632B2 (en) Sealed battery
KR100449763B1 (en) Cap assembly and secondary battery applying the same
JP5213030B2 (en) Sealed battery manufacturing method and sealed battery
JP4493623B2 (en) Secondary battery
CN106887536B (en) Square secondary battery
KR101867374B1 (en) Battery cover with attached electrode terminal, method for producing battery cover with attached electrode terminal, and airtight battery
CN101821874B (en) Sealed battery
CN102386368A (en) Terminal for sealed battery and manufacturing method therefor
JP2007018915A (en) Sealed battery
JP2007066600A (en) Sealed battery
JP2008010264A (en) Sealed battery
JP2008147069A (en) Sealed battery
KR100865404B1 (en) Secondary battery
JP5856929B2 (en) Rectangular secondary battery and method for manufacturing the same
JP2005190776A (en) Sealed type battery
JP4168491B2 (en) Manufacturing method of sealed battery
JP2007035343A (en) Sealed battery
JP2013171801A (en) Sealing method of liquid injection port of battery
JP2010135242A (en) Cleaning method of battery case and battery
JP5412919B2 (en) Sealed battery and method for manufacturing sealed battery
KR100659886B1 (en) Lithium Ion Secondary Battery
KR20070005338A (en) Cap assembly and lithium ion secondary battery with the same
JPH11339737A (en) Rectangular battery
JP3550953B2 (en) Non-aqueous electrolyte battery
JP2001202933A (en) Sealing plate for square battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees