JP4109758B2 - Engine exhaust gas purification and exhaust gas heat recovery device - Google Patents

Engine exhaust gas purification and exhaust gas heat recovery device Download PDF

Info

Publication number
JP4109758B2
JP4109758B2 JP21681098A JP21681098A JP4109758B2 JP 4109758 B2 JP4109758 B2 JP 4109758B2 JP 21681098 A JP21681098 A JP 21681098A JP 21681098 A JP21681098 A JP 21681098A JP 4109758 B2 JP4109758 B2 JP 4109758B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
heat exchange
engine
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21681098A
Other languages
Japanese (ja)
Other versions
JP2000045764A (en
Inventor
治男 津坂
一宏 戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP21681098A priority Critical patent/JP4109758B2/en
Publication of JP2000045764A publication Critical patent/JP2000045764A/en
Application granted granted Critical
Publication of JP4109758B2 publication Critical patent/JP4109758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの排ガスを浄化すると共にその排ガス熱を回収するようにした、新規なエンジンの排ガス浄化およびその排ガス熱回収装置に関するものである。
【0002】
【従来の技術】
一般に空調システムの空調機器の駆動用の駆動源として電動モータに代えて内燃エンジンを使用したものが知られている。ところでかかるエンジンには、エミッション対策や臭気対策のため、触媒が付設され、さらに排ガス熱を回収してその排熱を再利用するための熱交換器が付設されるのが通常であるが、従来の空調システムでは、前記触媒および熱交換器は、それぞれエンジンとは別の場所に据付けられているのが一般的である。このため空調システム全体が大型化してしまい、広い据付けスペースが必要になるばかりでなく、触媒および熱交換器がエンジンから離れるため、排ガス浄化および熱交換効率が悪くなるという不都合がある。
【0003】
そこでかかる不都合を解消すべく、一つのケース内に触媒および熱交換器を纏めて設けた触媒一体型排ガス熱交換器(特開昭58−144620号公報参照)も提案されている。
【0004】
【発明が解決しようとする課題】
ところがこのものでは触媒および熱交換器がいずれもエンジンの排気管から偏った位置に設けられるので、これも空調システム全体が大型化し、しかも触媒は排気管から離れた位置にあり、触媒性能および熱交換性能を十分に発揮することができないという問題がある。
【0005】
本発明はかかる事情に鑑みてなされたものであり、エンジンのシリンダヘッドに触媒および熱交換器を同心円状に配置できるようにして全体をコンパクトに構成できると共に触媒を早期に十分活性化することができ、さらに熱交換器の熱効率を大幅に高めることができるようにした、新規なエンジンの排ガス浄化およびその排ガス熱回収装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
前記目的達成のため、本請求項1記載の発明によれば、水冷式エンジンの排気ポートから排出される排ガスが直接導入される触媒と、この触媒の外側にこれを囲繞して同心円状に配設される熱交換器とよりなり、前記触媒は一端に排ガスの導入パイプと、その他端に排ガス出口とを有してその軸線方向に排気ガスが導入されるように円筒状に形成され、前記熱交換器は、前記触媒の排ガス出口に対面する底面を有すると共に前記触媒の外側に空隙を存して同心円状に配置される有底円筒状の内筒と、前記内筒に連結されると共に前記内筒の外側に空隙を存して同心円状に配置される円筒状の外筒と、前記内筒の底面との間に二次排ガス室を形成するハウジングと、前記触媒の外側と内筒との間の空隙及び前記二次排ガス室にそれぞれ連通し、前記内筒と前記外筒との間に迷路を形成する熱交換室と、前記ハウジングに前記触媒と同心状に設けられ、前記触媒の排ガス出口から前記熱交換室に導かれた浄化後の排ガスを、前記二次排ガス室の中央部から大気に放出するテールパイプと、前記熱交換室内に間隙を存して前記迷路を貫通するようにして配設され、エンジンの水ジャケットから導かれた冷却水を流通させる複数の熱交換パイプとを備え、前記熱交換室を流れる排ガスと、前記熱交換パイプを流れる冷却水との間で熱の授受が行われ、排ガス熱を冷却水を介して回収できるようにしたことを特徴としており、かかる特徴によれば、エンジンの排ガス浄化およびその排ガス熱回収装置全体を可及的にコンパクトに構成することができ、また触媒を通過する排ガスは、触媒の外側と内筒との間の空隙を流れる高温の排ガスで保温されて高温度に維持されたままになり、触媒を早期に活性化すると共に該触媒の保温性を高めて排ガスの浄化効率を大幅に高めることができる。さらに、記エンジンは水冷式であって、前記熱交換パイプ内を流れる流体は前記エンジンの水ジャケットを流れる冷却水であるので、エンジンの冷却水の温度を排ガス熱により高めて、略一定に保つことができ、エンジン性能の向上に寄与することができる。さらにまた、前記熱交換室は迷路に形成されており、前記熱交換パイプはその迷路を貫通しているので、熱交換器の熱交換効率を高めることができる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0008】
図1は、空調機全体の概略正面図、図2は、エンジンの頭部と、触媒および熱交換器の一部破断拡大図、図3は、触媒および熱交換器の図4の3−3線に沿う縦断面図、図4は、図3の4−4線に沿う横断面図、図5は、図3の5−5線に沿う横断面図、図6は、図3の6−6線に沿う横断面図、図7は、触媒および熱交換器の分解縦断面図である。
【0009】
図1において、室外用空調機の密閉状ケーシングC内には、空調機本体Aと、該空調機本体Aを駆動する、後述の触媒CAおよび熱交換器H付きの内燃エンジンEと、該エンジンEから排出される排ガスを消音するためにその排気系に接続される第1および第2消音器M1 ,M2 が設けられ、排気系の出口はケーシングCの外に開口される。
【0010】
前記内燃エンジンは、水冷式、バーチカル(クランク軸が鉛直方向に配置)型の単気筒四サイクルエンジンであり、その内燃エンジンのシリンダ中心線は略水平に延びており、そのシリンダヘッド1は片持状に略水平に延長されており、このシリンダヘッド1内には、通常のようにシリンダボア2に連通する燃焼室3と、この燃焼室3に連通する吸、排気ポート4,5がユニフロー式に形成されており、吸気ポート4はシリンダヘッド1の上面に開口されて吸気系7に接続され、また排気ポート5はシリンダヘッド1の下面に開口して後述する排気系の触媒CAに接続される。またシリンダヘッド1には前記吸、排気ポート4,5を開閉する吸、排気弁8,9およびそれらを開閉駆動する動弁機構10が設けられる。
【0011】
シリンダヘッド1の下面には、エキゾーストパイプ11がガスケットGを介して一体に接続されており、このエキゾーストパイプ11にエンジンEの排ガス浄化装置としての二元触媒CAおよび熱交換器Hが一体に懸吊支持される。
【0012】
二元触媒CAは、円筒状のケーシング13内に触媒エレメント12を担持させて構成されており、その導入パイプ14には、第1の連結フランジ15および第2の連結フランジ16の、中央部が軸方向に間隔をあけて貫通固着されている。第1の連結フランジ15には、周方向に間隔をあけて複数本のスタッドボルト17が立設されており、これらのスタッドボルト17は、前記エキゾーストパイプ11のフランジ部に穿設したボルト孔18を貫通し、それらの上端にナット19が螺着されてエキゾーストパイプ11のフランジ部には、第1の連結フランジ15を介して前記二元触媒CAが着脱自在に一体に懸吊支持される。そして二元触媒CAの導入パイプ14は、エキゾーストパイプ11の通孔20を介してシリンダヘッド1の排気ポート5に連通され、この排気ポート5の中心軸線は、二元触媒CAの中心軸線と略一致しており、排気ポート5から排出される排ガスは直接二元触媒CAの中央部に直接導入される。
【0013】
また前記熱交換器Hは、円筒状の二元触媒CAを囲繞するように、同じく円筒状に形成されてその二元触媒CAの外側に配設される。
【0014】
次にこの熱交換器Hの構造について説明するに、この熱交換器Hのハウジング22は有底の中空円筒状に形成されていて、その上面に盤状の接続プレート23が一体に設けられ、この接続プレート23には、その周方向に間隔をあけて複数のスタッドボルト24が立設され、これらのスタッドボルト24は、前記第2の連結フランジ16に穿設した複数のボルト孔25を貫通してその上端にナット26が螺着され、これによりこの熱交換器Hは、シリンダヘッド1に着脱自在に懸吊支持され、さらにその一側がブラケットBを介してエンジンEの下部に着脱可能に支持される。
【0015】
前記熱交換器Hのハウジング22内には、前記二元触媒CAを同心円状に囲繞する円筒状の熱交換器本体28が収容されている。この熱交換器本体28は、二元触媒CAの外側に空隙を存してこれと同心円状に配置される有底円筒状の内筒29と、その外側に同じく同心円状に配置される円筒状の外筒30とを有して、それらの間には環状の熱交換室31が形成され、この熱交換室31には、周方向に等間隔を存して複数本(24本)の熱交換パイプ32が縦方向に配設されており、これらの熱交換パイプ32の上端および下端は、熱交換器本体28の上端壁33および下端壁34により支持されている。前記熱交換室31内は、複数枚(3枚)の環状仕切板35により複数の室C1 〜C4 に区画されており、前記熱交換パイプ32の中間部は、それらの環状の仕切板35により支持されている。図4,5に示すように各仕切板35には、中心角が約45°の三角状の切欠孔36がそれぞれ開口されており、互いに隣り合う上下の仕切板35の、前記三角状切欠孔36は相互に略180°位相がずらされており、したがって複数枚の仕切板35は熱交換室31内に迷路を形成して、後に述べるように、熱交換室31を流れる排ガスは、熱交換パイプ32の回りを迂回して流れるようになっている。
【0016】
前記二元触媒CAと内筒29との間には一次排ガス室37が形成されており、二元触媒CAの出口は、この一次排ガス室37の下部に連通されている。内筒29の上部には、周方向に間隔を存して複数の連通孔38が穿設されており、前記一次排ガス室37は、これらの連通孔38を通して排ガス流通路を形成する前記熱交換室31の上部に連通されており、さらにこの熱交換室31(排ガス流通路)は、ハウジング22の底壁221 と内筒29の底部間に形成される二次排ガス室39に連通されている。ハウジング22の底壁221 の中央部には、この二次排ガス室39を大気に開口するテールパイプ40が接続されている。したがって二次触媒CAにより浄化された排ガスは、一次排ガス室37から連通孔38を通って熱交換室31へと流れ、ここで熱交換が行なわれた後、二次排ガス室39へと流れ、そこからテールパイプ40を通り、前記第1、第2消音器M1 、M2 (図1参照)を通って大気に放出される。
【0017】
ハウジング22の外周壁と、外筒30との間には、環状の流体通路すなわち冷却水通路41が画成されており、この冷却水通路41の上部の入口には、エルボ状に湾曲される冷却水導入パイプ42が接続されている。この冷却水導入パイプはエンジンEのシリンダヘッド1の水ジャケットの出口に連通される。また冷却水通路41の下部の出口は、ハウジング22の下部に形成される下部貯留室44を介して前記複数本の熱交換パイプ32下端の入口に連通され、さらにこれらの熱交換パイプ32の上端の出口は、ハウジング22の上部に形成される上部貯留室43に連通されている。この上部貯留室43は、前記第1および第2の連結フランジ15,16に設けられる連絡パイプ45およびエキゾーストパイプ11に形成した連通路46を介して前記エンジンEのシリンダヘッド1に形成される水ジャケットの入口に連通される。したがってエンジンEの水ジャケット内を流れる冷却水の一部は、冷却水導入パイプ42よりハウジング22内の冷却水通路41に入り、下部貯留室44より複数の熱交換パイプ32に分流して流れ、ここで排ガスとの間に熱交換を行なった後、上部貯留室43よりエンジンEの水ジャケット内に還流される。
【0018】
次にこの実施例の作用について説明するに、いま空調機を運転すべく、エンジンを始動すると、その排気ポート5より排出される排ガスは、その排気ポート5直下の二元触媒CAに入り、ここでHC、CO等の有害成分を酸化除去するとともに臭気を消去して浄化する。図3実線矢印に示すように、二元触媒CAにより排出された浄化後の排ガスは、一次排ガス室37に入り、二元触媒CA直下の、内筒29の底壁に当たった後、上向きに流れて一次排ガス室37内を上昇して連通孔38より熱交換室31内に流入する。熱交換室31に入った排ガスは複数の環状の仕切板35に開口した切欠孔36を通って複数の室C1 〜C4 を上から下へと複数の熱交換パイプ32の外周を迂回して流れ、その下部の出口より二次排ガス室39を通ってテールパイプ40より、第1、第2消音器M1 ,M2 を通って大気に放出される。
【0019】
ところで二元触媒CAは、一次排ガス室37により囲繞されているため、該二元触媒CAを通過する排ガスは、その一次排ガス室37内を流れる高温の排ガスで保温されて高温度に維持されたままになり、二元触媒CAの浄化効率を高めることができる。
【0020】
一方、図3二点鎖線で示すように、エンジンEのシリンダヘッド1の水ジャケット内の冷却水の一部は、冷却水導入パイプ43を通ってハウジング22内の環状の冷却水通路41内を下向きに流れて下部貯留室44に達し、そこから複数の熱交換パイプ32内に分流され、それらの熱交換パイプ32内を上昇して上部貯留室43に至り、そこから連絡パイプ45、連通路46を通り、エンジンEのシリンダヘッド1の水ジャケットに還流される。
【0021】
ところで前記熱交換器H内では、熱交換室31内を流れる高温の排ガスと、複数本の熱交換パイプ32内を流れる、エンジンEからの冷却水との間で熱交換が行なわれ、すなわち高温の排ガス熱は、それよりも低温の冷却水へと伝導されて、その冷却水を適温に加熱することができる。
【0022】
而して前述のように排ガスと冷却水との間で熱の授受が行なわれるとき、
(1).高温の排ガスは、冷却水の流れる複数本の熱交換パイプ32の回りを上下方向に迂回して、すなわち、複数の環状仕切板35に順次略180°の位相差を存して開口した三角状切欠孔36を通って流れるので、排ガスは熱交換パイプ32の外周面に万遍なく接触させることができ、しかもその接触時間を長くとることができる。
【0023】
(2).熱交換室31の外周は、外気よりも高温の冷却水が流れる冷却水通路41により囲繞されており、高温の排ガスにさらされる熱交換器Hの壁面が、外気との境界壁であるハウジング22の外壁と直接対面する面積を可及的に低減することができるので、熱交換器Hの熱損失を低減することができる。
【0024】
したがって排ガスと冷却水との間できわめて効率のよい熱交換が行なわれる。
【0025】
なお、前記空調機の駆動用として内燃エンジンが使用される場合、図1に示すように限られたスペース内に第1、第2消音器M1 ,M2 が配設されるが、これらは軽量化のため樹脂製であったり、レイアウトの自由度を高めるため、ゴム製のパイピングを使用したりすることがあり、できるだけエンジンの排ガス温度を下げたい要望があり、それ故排ガス温度を熱交換器により一気に低下させたい狙いがある。
【0026】
また、エンジンの冷却水を排ガス熱により加熱する理由は、エンジンの冷却水の温度を予め一定の高温に保持しておくためであり、エンジン内の冷却水と排ガスとの温度差およびエンジン始動直後から暖機に至るまでの冷却水の温度変化を考慮するとき、排ガス熱で冷却水の水温を上昇させることが望ましい。
【0027】
以上、本発明の一実施例について説明したが、本発明はその実施例に限定されることなく、本発明の範囲内で種々の実施例が可能である。たとえば前記実施例の二元触媒CAに代えて三元触媒を使用してもよい。また前記実施例の熱交換器の外筒を、そのハウジングに兼用してもよく、さらに排ガス熱により加熱される冷却水は、他の用途に使用してもよい。
【0028】
【発明の効果】
以上のように、本請求項1記載の発明によれば、エンジンの排ガス浄化およびその排ガス熱回収装置全体を可及的にコンパクトに構成することができ、また触媒を通過する排ガスは、触媒の外側と内筒との間の空隙を流れる高温の排ガスで保温されて高温度に維持されたままになり、触媒を早期に活性化すると共に該触媒の保温性を高めて排ガスの浄化効率を大幅に高めることができる。また、前記記エンジンは水冷式であって、前記熱交換パイプ内を流れる流体は前記エンジンの水ジャケットを流れる冷却水であるので、エンジンの冷却水の温度を排ガス熱により高めて、略一定に保つことができ、エンジン性能の向上に寄与することができる。さらにまた、前記熱交換室は迷路に形成されており、前記熱交換パイプはその迷路を貫通しているので、熱交換器の熱交換効率を高めることができる。
【図面の簡単な説明】
【図1】 空調機全体の概略正面図
【図2】 エンジンの頭部と、触媒および熱交換器の一部破断拡大図
【図3】 触媒および熱交換器の図4の3−3線に沿う縦断面図
【図4】 図3の4−4線に沿う横断面図
【図5】 図3の5−5線に沿う横断面図
【図6】 図3の6−6線に沿う横断面図
【図7】 触媒および熱交換器の分解縦断面図
【符号の説明】
1・・・・・・・・シリンダヘッド
31・・・・・・・熱交換室
32・・・・・・・熱交換パイプ
CA・・・・・・・触媒
E・・・・・・・・エンジン
H・・・・・・・・熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel engine exhaust gas purification and exhaust gas heat recovery device that purifies engine exhaust gas and recovers exhaust gas heat.
[0002]
[Prior art]
In general, a driving source for driving air conditioning equipment of an air conditioning system using an internal combustion engine instead of an electric motor is known. By the way, such an engine is usually provided with a catalyst as a countermeasure against emissions and odors, and is further provided with a heat exchanger for collecting exhaust gas heat and reusing the exhaust heat. In this air conditioning system, the catalyst and the heat exchanger are generally installed at different locations from the engine. For this reason, the entire air conditioning system is enlarged, and not only a large installation space is required, but also the catalyst and the heat exchanger are separated from the engine, so that the exhaust gas purification and the heat exchange efficiency are deteriorated.
[0003]
In order to eliminate such inconvenience, a catalyst-integrated exhaust gas heat exchanger (see Japanese Patent Laid-Open No. 58-144620) in which a catalyst and a heat exchanger are collectively provided in one case has been proposed.
[0004]
[Problems to be solved by the invention]
However, in this case, since the catalyst and the heat exchanger are both provided at positions offset from the exhaust pipe of the engine, the entire air conditioning system is also enlarged, and the catalyst is located away from the exhaust pipe. There is a problem that the exchange performance cannot be fully exhibited.
[0005]
The present invention has been made in view of such circumstances, and the catalyst and the heat exchanger can be arranged concentrically on the cylinder head of the engine so that the whole can be made compact and the catalyst can be sufficiently activated at an early stage. In addition, it is an object of the present invention to provide a novel engine exhaust gas purification and exhaust gas heat recovery device capable of greatly increasing the thermal efficiency of a heat exchanger.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a catalyst into which exhaust gas discharged from an exhaust port of a water-cooled engine is directly introduced, and a concentric circle surrounding the catalyst are disposed outside the catalyst. The catalyst is formed in a cylindrical shape so that the exhaust gas is introduced at one end thereof and the exhaust gas outlet is introduced at the other end thereof. The heat exchanger has a bottom surface facing the exhaust gas outlet of the catalyst and is connected to the inner cylinder with a bottomed cylindrical inner cylinder disposed concentrically with a gap outside the catalyst. A cylindrical outer cylinder arranged concentrically with a gap outside the inner cylinder, a housing forming a secondary exhaust gas chamber between the bottom surface of the inner cylinder, and an outer cylinder and an inner cylinder of the catalyst Communicating with the gap between the secondary exhaust gas chamber and the secondary exhaust gas chamber, Serial inner cylinder and the heat exchange chamber that form a labyrinth between said outer cylinder, is provided in the catalyst and concentrically to the housing from the exhaust gas outlet of the catalyst after purifying guided to the heat exchange chamber A tail pipe that releases exhaust gas to the atmosphere from the center of the secondary exhaust chamber and a heat pipe that passes through the maze with a gap in the heat exchange chamber and led from a water jacket of the engine and a plurality of heat exchange pipes of the cooling water Ru was circulated, and an exhaust gas flowing through the heat exchange chamber, exchange of heat takes place between the cooling water flowing through the heat exchange pipe, through the cooling water exhaust gas heat According to such characteristics, the exhaust gas purification of the engine and the exhaust gas heat recovery device as a whole can be configured as compactly as possible, and the exhaust gas passing through the catalyst is Outside of catalyst And incubated at a high temperature of exhaust gas flowing through the gap between the inner tube and remains maintained at a high temperature, to greatly increase the efficiency of purifying the exhaust gas by increasing the thermal insulation of the catalyst as well as early activation in the catalyst it is possible. Furthermore, before disappeared engine is a water-cooled, the fluid flowing through the heat exchange pipe is a cooling water flowing through the water jacket of the engine, the temperature of the cooling water of the engine is increased by the exhaust gas heat, a substantially constant Can contribute to the improvement of engine performance. Saranima was, the heat exchange chamber is formed in the maze, the heat exchange pipe so extends through the labyrinth, it is possible to enhance the heat exchange efficiency of the heat exchanger.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0008]
1 is a schematic front view of the entire air conditioner, FIG. 2 is a partially broken enlarged view of an engine head, a catalyst and a heat exchanger, and FIG. 3 is a 3-3 of FIG. 4 of the catalyst and the heat exchanger. 4 is a cross-sectional view taken along line 4-4 of FIG. 3, FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 3, and FIG. FIG. 7 is an exploded longitudinal sectional view of the catalyst and the heat exchanger.
[0009]
In FIG. 1, an air conditioner body A, an internal combustion engine E with a catalyst CA and a heat exchanger H, which will be described later, which drive the air conditioner body A, and the engine are enclosed in a sealed casing C of the outdoor air conditioner. E a first and second silencing Ru is connected to the exhaust system unit M 1, M 2 is provided to mute the exhaust gas discharged from the outlet of the exhaust system is opened to the outside of the casing C.
[0010]
The internal combustion engine is a water-cooled, vertical (crankshaft arranged vertically) type single-cylinder four-cycle engine, the cylinder center line of the internal combustion engine extends substantially horizontally, and the cylinder head 1 is cantilevered. The cylinder head 1 is provided with a combustion chamber 3 communicating with the cylinder bore 2 and suction and exhaust ports 4 and 5 communicating with the combustion chamber 3 in a uniflow manner. The intake port 4 is opened at the upper surface of the cylinder head 1 and connected to the intake system 7, and the exhaust port 5 is opened at the lower surface of the cylinder head 1 and connected to an exhaust system catalyst CA described later. . The cylinder head 1 is provided with suction and exhaust valves 8 and 9 for opening and closing the suction and exhaust ports 4 and 5, and a valve operating mechanism 10 for opening and closing them.
[0011]
An exhaust pipe 11 is integrally connected to the lower surface of the cylinder head 1 via a gasket G, and a two-way catalyst CA and a heat exchanger H as an exhaust gas purification device of the engine E are integrally suspended on the exhaust pipe 11. Suspended and supported.
[0012]
The two-way catalyst CA is configured by supporting the catalyst element 12 in a cylindrical casing 13, and the introduction pipe 14 has a central portion of the first connection flange 15 and the second connection flange 16. It is penetrated and fixed at intervals in the axial direction. A plurality of stud bolts 17 are erected on the first connecting flange 15 at intervals in the circumferential direction. These stud bolts 17 are bolt holes 18 drilled in the flange portion of the exhaust pipe 11. The two-way catalyst CA is detachably and integrally supported by a flange portion of the exhaust pipe 11 through a first connection flange 15 so as to be detachable. The introduction pipe 14 for the two-way catalyst CA is communicated with the exhaust port 5 of the cylinder head 1 through the through hole 20 of the exhaust pipe 11, and the center axis of the exhaust port 5 is substantially the same as the center axis of the two-way catalyst CA. The exhaust gas discharged from the exhaust port 5 is directly introduced directly into the center of the two-way catalyst CA.
[0013]
The heat exchanger H is also formed in a cylindrical shape so as to surround the cylindrical two-way catalyst CA, and is disposed outside the two-way catalyst CA.
[0014]
Next, the structure of the heat exchanger H will be described. The housing 22 of the heat exchanger H is formed in a hollow cylindrical shape with a bottom, and a disk-shaped connection plate 23 is integrally provided on the upper surface thereof. A plurality of stud bolts 24 are erected on the connection plate 23 at intervals in the circumferential direction, and these stud bolts 24 pass through the plurality of bolt holes 25 drilled in the second connecting flange 16. Then, a nut 26 is screwed onto the upper end of the heat exchanger H so that the heat exchanger H is detachably suspended from the cylinder head 1, and one side of the heat exchanger H can be attached to the lower part of the engine E via the bracket B. Supported.
[0015]
In the housing 22 of the heat exchanger H, a cylindrical heat exchanger main body 28 that encloses the two-way catalyst CA concentrically is accommodated. The heat exchanger main body 28 has a bottomed cylindrical inner cylinder 29 arranged concentrically with a gap outside the two-way catalyst CA, and a cylindrical shape similarly arranged concentrically on the outer side thereof. An annular heat exchange chamber 31 is formed between them, and a plurality (24) of heat is provided in the heat exchange chamber 31 at regular intervals in the circumferential direction. The exchange pipes 32 are arranged in the vertical direction, and the upper ends and lower ends of these heat exchange pipes 32 are supported by the upper end wall 33 and the lower end wall 34 of the heat exchanger body 28. The heat exchange chamber 31 is partitioned into a plurality of chambers C 1 to C 4 by a plurality (three) of annular partition plates 35, and an intermediate portion of the heat exchange pipe 32 is an annular partition plate thereof. 35. As shown in FIGS. 4 and 5, each partition plate 35 is provided with a triangular cutout hole 36 having a central angle of about 45 °, and the triangular cutout holes of the upper and lower partition plates 35 adjacent to each other are opened. 36 are substantially 180 ° out of phase with each other, and therefore, the plurality of partition plates 35 form a labyrinth in the heat exchange chamber 31, and the exhaust gas flowing through the heat exchange chamber 31 is heat exchanged as described later. It is designed to flow around the pipe 32.
[0016]
A primary exhaust gas chamber 37 is formed between the two-way catalyst CA and the inner cylinder 29, and an outlet of the two-way catalyst CA is communicated with a lower portion of the primary exhaust gas chamber 37. A plurality of communication holes 38 are formed in the upper portion of the inner cylinder 29 at intervals in the circumferential direction, and the primary exhaust gas chamber 37 forms the exhaust gas flow passage through the communication holes 38. The heat exchange chamber 31 (exhaust gas flow passage) communicates with a secondary exhaust gas chamber 39 formed between the bottom wall 22 1 of the housing 22 and the bottom of the inner cylinder 29. Yes. The central portion of the bottom wall 22 1 of the housing 22, a tail pipe 40 that opens the secondary gas chamber 39 to the atmosphere are connected. Therefore, the exhaust gas purified by the secondary catalyst CA flows from the primary exhaust gas chamber 37 through the communication hole 38 to the heat exchange chamber 31, where heat exchange is performed, and then flows to the secondary exhaust gas chamber 39. From there, it passes through the tail pipe 40 and is released into the atmosphere through the first and second silencers M 1 and M 2 (see FIG. 1).
[0017]
An annular fluid passage, that is, a cooling water passage 41, is defined between the outer peripheral wall of the housing 22 and the outer cylinder 30, and the upper inlet of the cooling water passage 41 is curved in an elbow shape. A cooling water introduction pipe 42 is connected. This cooling water introduction pipe communicates with the outlet of the water jacket of the cylinder head 1 of the engine E. The outlet of the lower portion of the cooling water passage 41 is communicated with the inlets of the lower ends of the plurality of heat exchange pipes 32 through a lower storage chamber 44 formed in the lower portion of the housing 22, and the upper ends of these heat exchange pipes 32 are further communicated. This outlet is in communication with an upper storage chamber 43 formed in the upper part of the housing 22. The upper storage chamber 43 has water formed in the cylinder head 1 of the engine E via a communication pipe 45 formed in the first and second connection flanges 15 and 16 and a communication passage 46 formed in the exhaust pipe 11. It communicates with the jacket entrance. Therefore, a part of the cooling water flowing in the water jacket of the engine E enters the cooling water passage 41 in the housing 22 from the cooling water introduction pipe 42 and flows in a divided manner from the lower storage chamber 44 to the plurality of heat exchange pipes 32. Here, after exchanging heat with the exhaust gas, the exhaust gas is refluxed from the upper storage chamber 43 into the water jacket of the engine E.
[0018]
Next, the operation of this embodiment will be described. When the engine is started to operate the air conditioner now, the exhaust gas discharged from the exhaust port 5 enters the two-way catalyst CA immediately below the exhaust port 5, and here In addition to oxidizing and removing harmful components such as HC and CO, the odor is eliminated and purified. As shown by the solid line arrow in FIG. 3, the exhaust gas after purification discharged by the two-way catalyst CA enters the primary exhaust gas chamber 37, hits the bottom wall of the inner cylinder 29 directly under the two-way catalyst CA, and then upwards. It flows in the primary exhaust gas chamber 37 and flows into the heat exchange chamber 31 through the communication hole 38. The exhaust gas that has entered the heat exchange chamber 31 passes through the plurality of chambers C 1 to C 4 from the top to the bottom through the cutout holes 36 opened in the plurality of annular partition plates 35, and bypasses the outer periphery of the plurality of heat exchange pipes 32. From the lower outlet, through the secondary exhaust chamber 39 and from the tail pipe 40 through the first and second silencers M 1 and M 2 to be discharged to the atmosphere.
[0019]
By the way, since the two-way catalyst CA is surrounded by the primary exhaust gas chamber 37, the exhaust gas passing through the two-way catalyst CA is maintained at a high temperature by being kept warm by the high-temperature exhaust gas flowing in the primary exhaust gas chamber 37. Thus, the purification efficiency of the two-way catalyst CA can be increased.
[0020]
On the other hand, as shown by a two-dot chain line in FIG. 3, a part of the cooling water in the water jacket of the cylinder head 1 of the engine E passes through the cooling water introduction pipe 43 in the annular cooling water passage 41 in the housing 22. It flows downward and reaches the lower storage chamber 44, from which it is divided into a plurality of heat exchange pipes 32, rises in these heat exchange pipes 32, reaches the upper storage chamber 43, from there the communication pipe 45, the communication path 46 passes through the water jacket of the cylinder head 1 of the engine E.
[0021]
By the way, in the heat exchanger H, heat exchange is performed between the high-temperature exhaust gas flowing in the heat exchange chamber 31 and the cooling water from the engine E flowing in the plurality of heat exchange pipes 32, that is, a high temperature. The exhaust gas heat is conducted to cooling water having a temperature lower than that, so that the cooling water can be heated to an appropriate temperature.
[0022]
Thus, as described above, when heat is transferred between the exhaust gas and the cooling water,
(1) . The high-temperature exhaust gas detours around the plurality of heat exchange pipes 32 through which the cooling water flows in the vertical direction, that is, a triangular shape opened in the plurality of annular partition plates 35 sequentially with a phase difference of about 180 °. Since it flows through the cutout hole 36, the exhaust gas can be brought into uniform contact with the outer peripheral surface of the heat exchange pipe 32, and the contact time can be increased.
[0023]
(2) . The outer periphery of the heat exchange chamber 31 is surrounded by a cooling water passage 41 through which cooling water having a temperature higher than that of the outside air flows, and the wall surface of the heat exchanger H exposed to high temperature exhaust gas is a boundary wall with the outside air. Since the area that directly faces the outer wall of the heat exchanger H can be reduced as much as possible, the heat loss of the heat exchanger H can be reduced.
[0024]
Therefore, extremely efficient heat exchange is performed between the exhaust gas and the cooling water.
[0025]
When an internal combustion engine is used for driving the air conditioner, first and second silencers M 1 and M 2 are disposed in a limited space as shown in FIG. There is a demand to lower the exhaust gas temperature of the engine as much as possible because it is made of resin for weight reduction or rubber piping is used to increase the freedom of layout, so heat exchange of the exhaust gas temperature There is an aim to reduce it at once by the vessel.
[0026]
The reason why the engine cooling water is heated by the exhaust gas heat is to keep the temperature of the engine cooling water at a constant high temperature in advance. When considering the temperature change of the cooling water from warming up to warming up, it is desirable to raise the temperature of the cooling water with the exhaust gas heat.
[0027]
As mentioned above, although one Example of this invention was described, this invention is not limited to the Example, A various Example is possible within the scope of the present invention. For example, a three-way catalyst may be used instead of the two-way catalyst CA of the above embodiment. Moreover, the outer cylinder of the heat exchanger of the said Example may be used for the housing, and also the cooling water heated with waste gas heat may be used for another use.
[0028]
【The invention's effect】
As described above, according to the first aspect of the present invention, the exhaust gas purification of the engine and the entire exhaust gas heat recovery device can be made as compact as possible, and the exhaust gas passing through the catalyst is The high temperature exhaust gas flowing through the gap between the outer and inner cylinders is kept warm and maintained at a high temperature , activating the catalyst early and enhancing the heat retention of the catalyst, greatly increasing the exhaust gas purification efficiency. Can be increased. Further, since the engine is water-cooled and the fluid flowing in the heat exchange pipe is cooling water flowing through the water jacket of the engine, the temperature of the engine cooling water is increased by exhaust gas heat to be substantially constant. Can be maintained, and can contribute to improvement of engine performance. Furthermore , since the heat exchange chamber is formed in a maze and the heat exchange pipe passes through the maze , the heat exchange efficiency of the heat exchanger can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic front view of the entire air conditioner. FIG. 2 is a partially broken enlarged view of an engine head and a catalyst and a heat exchanger. FIG. 3 is a line 3-3 in FIG. 4 is a cross-sectional view taken along line 4-4 in FIG. 3. FIG. 5 is a cross-sectional view taken along line 5-5 in FIG. 3. FIG. 6 is a cross-sectional view taken along line 6-6 in FIG. [Figure 7] Exploded longitudinal section of catalyst and heat exchanger [Explanation of symbols]
1 ... Cylinder head 31 ... Heat exchange chamber 32 ... Heat exchange pipe CA ... Catalyst E ...・ Engine H ・ ・ ・ ・ ・ ・ ・ ・ Heat exchanger

Claims (1)

水冷式エンジン(E)の排気ポート(5)から排出される排ガスが直接導入される触媒(CA)と、この触媒(CA)の外側にこれを囲繞して同心円状に配設される熱交換器(H)とよりなり、前記触媒(CA)は一端に排ガスの導入パイプ(14)と、その他端に排ガス出口とを有してその軸線方向に排気ガスが導入されるように円筒状に形成され、前記熱交換器(H)は、前記触媒(CA)の排ガス出口に対面する底面を有すると共に前記触媒(CA)の外側に空隙を存して同心円状に配置される有底円筒状の内筒(29)と、前記内筒(29)に連結されると共に前記内筒(29)の外側に空隙を存して同心円状に配置される円筒状の外筒(30)と、前記内筒(29)の底面との間に二次排ガス室(39)を形成するハウジング(22)と、前記触媒(CA)の外側と内筒(29)との間の空隙及び前記二次排ガス室(39)にそれぞれ連通し、前記内筒(29)と前記外筒(30)との間に迷路を形成する熱交換室(31)と、前記ハウジング(22)に前記触媒(CA)と同心状に設けられ、前記触媒(CA)の排ガス出口から前記熱交換室(31)に導かれた浄化後の排ガスを、前記二次排ガス室(39)の中央部から大気に放出するテールパイプ(40)と、前記熱交換室(31)内に間隙を存して前記迷路を貫通するようにして配設され、エンジン(E)の水ジャケットから導かれた冷却水を流通させる複数の熱交換パイプ(32)とを備え、前記熱交換室(31)を流れる排ガスと、前記熱交換パイプ(32)を流れる冷却水との間で熱の授受が行われ、排ガス熱を冷却水を介して回収できるようにしたことを特徴とする、エンジンの排ガス浄化およびその排ガス熱回収装置。A catalyst (CA) in which exhaust gas is introduced directly discharged from the exhaust port of the water-cooled engine (E) (5), the heat exchanger disposed surrounded to concentrically this outside the catalyst (CA) The catalyst (CA) has an exhaust gas introduction pipe (14) at one end and an exhaust gas outlet at the other end, and is cylindrical so that exhaust gas is introduced in the axial direction thereof. The formed heat exchanger (H) has a bottomed cylindrical shape that has a bottom surface facing the exhaust gas outlet of the catalyst (CA) and is arranged concentrically with a gap outside the catalyst (CA). An inner cylinder (29), a cylindrical outer cylinder (30) connected to the inner cylinder (29) and arranged concentrically with a gap outside the inner cylinder (29), A housing (2) that forms a secondary exhaust gas chamber (39) with the bottom surface of the inner cylinder (29) ) And the outer space of the catalyst (CA) and the inner cylinder (29) and the secondary exhaust gas chamber (39), respectively, and the inner cylinder (29) and the outer cylinder (30) heat exchange chamber that form a labyrinth between the (31), provided in the catalyst (CA) and concentrically to the housing (22), to the heat exchange chamber from the exhaust gas outlet (31) of the catalyst (CA) A tail pipe (40) that discharges the purified exhaust gas that has been guided to the atmosphere from the center of the secondary exhaust gas chamber (39) and a gap in the heat exchange chamber (31) pass through the maze. been to arranged as a exhaust gas an engine plurality of heat exchange pipes which cooling water Ru is circulated derived from the water jacket (E) (32), flowing the heat exchange chamber (31), wherein transfer of heat takes place between the cooling water flowing through the heat exchange pipe (32), waste gas Characterized in that as the heat can be recovered through the cooling water, exhaust gas purification and exhaust gas heat recovery device of the engine.
JP21681098A 1998-07-31 1998-07-31 Engine exhaust gas purification and exhaust gas heat recovery device Expired - Fee Related JP4109758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21681098A JP4109758B2 (en) 1998-07-31 1998-07-31 Engine exhaust gas purification and exhaust gas heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21681098A JP4109758B2 (en) 1998-07-31 1998-07-31 Engine exhaust gas purification and exhaust gas heat recovery device

Publications (2)

Publication Number Publication Date
JP2000045764A JP2000045764A (en) 2000-02-15
JP4109758B2 true JP4109758B2 (en) 2008-07-02

Family

ID=16694254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21681098A Expired - Fee Related JP4109758B2 (en) 1998-07-31 1998-07-31 Engine exhaust gas purification and exhaust gas heat recovery device

Country Status (1)

Country Link
JP (1) JP4109758B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493799B2 (en) * 2000-05-15 2010-06-30 株式会社ティラド Catalyst-integrated heat exchanger for exhaust gas heat recovery
DE60209338T2 (en) 2001-01-26 2006-08-03 Honda Giken Kogyo K.K. Internal combustion engine
JP4484394B2 (en) * 2001-04-27 2010-06-16 株式会社ティラド Catalyst-integrated heat exchanger for exhaust gas heat recovery
JP4896081B2 (en) * 2008-06-03 2012-03-14 本田技研工業株式会社 Cogeneration equipment
DE102011016886A1 (en) * 2011-04-13 2012-10-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Device with a heat exchanger for a thermoelectric generator of a motor vehicle
JP5767927B2 (en) * 2011-09-25 2015-08-26 株式会社ユタカ技研 Heat exchanger

Also Published As

Publication number Publication date
JP2000045764A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
US4450932A (en) Heat recovery muffler
EP1059427A1 (en) Outboard motor with a catalytic system
EP1250559A1 (en) Exhaust gas heat exchanger
JP4659511B2 (en) EGR cooler device
JP3891724B2 (en) Exhaust heat exchanger with integrated catalyst
WO2007060172A1 (en) Three-pass heat exchanger for an egr system
JP4381868B2 (en) Exhaust muffler with engine exhaust purification function
JP2007315370A (en) Exhaust heat recovery exhaust emission control device
JP4109758B2 (en) Engine exhaust gas purification and exhaust gas heat recovery device
KR20000047402A (en) Cylinder head structure in multi-cylinder engine
JP4109759B2 (en) Engine exhaust gas purification and exhaust gas heat recovery device
JPH0122451B2 (en)
JP2009091983A (en) Exhaust emission control device
JPH05179942A (en) Exhaust device for engine
JP2003172136A (en) Exhaust passage structure for internal combustion engine
JP2000097018A (en) Catalyzer device for exhaust emission control for internal combustion engine
SE502068C2 (en) Silencer for two-stroke internal combustion engine
JP4269692B2 (en) EGR cooler
JP3237333B2 (en) Silencer with exhaust gas purification device
JP2003193831A (en) Air conditioner
JPH10196348A (en) Engine exhaust emission control device
US2003500A (en) Muffler
JPH10325315A (en) Exhaust emission control device for internal combustion engine
JP3180118B2 (en) Outboard exhaust purification system
JP2006016977A (en) Exhaust pipe device having inertia exhaust pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees