JP4109496B2 - Composition for injection molding - Google Patents

Composition for injection molding Download PDF

Info

Publication number
JP4109496B2
JP4109496B2 JP2002144485A JP2002144485A JP4109496B2 JP 4109496 B2 JP4109496 B2 JP 4109496B2 JP 2002144485 A JP2002144485 A JP 2002144485A JP 2002144485 A JP2002144485 A JP 2002144485A JP 4109496 B2 JP4109496 B2 JP 4109496B2
Authority
JP
Japan
Prior art keywords
volume
binder
resin
powder
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002144485A
Other languages
Japanese (ja)
Other versions
JP2003342608A (en
Inventor
純一 松永
隆二 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002144485A priority Critical patent/JP4109496B2/en
Publication of JP2003342608A publication Critical patent/JP2003342608A/en
Application granted granted Critical
Publication of JP4109496B2 publication Critical patent/JP4109496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、その性能を低下させることなく、高密度製品を作製できる射出成形用組成物に関する。
【0002】
【従来の技術】
射出成形用組成物として、一般的に金属粉末又はセラミックス粉末から成る焼結用粉末約55容量%及びバインダー約45容量%の配合物が使用され、このバインダーは、通常焼結用粉末同士を結合させる役目を有する樹脂A約70容量%と流動性を付与する役目を有する樹脂Bの配合物として使用される。
このような配合物及び配合割合を有する射出成形用組成物は、バインダーが全体積当たり約45容量%と多いために焼結後の最終製品の密度が低くなるという欠点がある。この低密度を改善するために特開平11−181501号公報では、窒素を含ませることを提案しているが、窒素を不純物としている場合もあり、全ての材料に適用できる訳ではない。又特開平11−350005号公報では、寒天バインダーで密度向上を意図しているが、水を使用するため蒸発しやすく取り扱いが困難であるという欠点がある。
【0003】
【発明が解決しようとする課題】
この他に、密度向上とは無関係に、30〜70体積%の焼結用粉末と70〜30体積%のバインダーから成る射出成形用組成物が提案されている(特開平4−202703号公報)。この組成物中のバインダーは、低密度ポリエチレンとパラフィン系ワックス以外に界面活性剤を含有している。該界面活性剤の添加は、成形後の金型からの剥離性や前記低密度ポリエチレンとパラフィン系ワックス間の混合を良好にするためであるが、界面活性剤の添加は成分数の増加以外に通常その融点や沸点が高いために焼結後の生成物から除去できず、最終製品に残存する可能性があり、望ましいものではない。
【0004】
更に特開平5−17802号公報記載の発明でも、ポリプロピレンとパラフィン以外に、高級飽和脂肪酸を使用し、特開平5−59402号公報記載の発明でも、ポリエチレンとパラフィン以外に、エチレン−酢酸共重合体を含有している。
本発明は、このような従来技術の欠点に鑑み、界面活性剤や高分子量の有機酸を使用しなくても、該界面活性剤添加の効能である金型からの剥離性やバインダー成分の良好な混合性を達成できる射出成形用組成物を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、焼結用粉末とバインダーを含有する射出成形用組成物において、前記バインダーが組成物全体に対し30〜35容量%配合され、かつ該バインダーが、40〜55容量%の粉末結合用樹脂Aと45〜60容量%の流動性付与用樹脂Bとから成り、これにより高密度化したことを特徴とする射出成形用組成物である。
【0006】
以下本発明を詳細に説明する。
まず金属粉末とバインダーを使用する射出成形体の製造の一例を図1a〜dに基づいて説明する。
図1aに示す粒状バインダー1と金属粉末2を混練後、バインダー1が流動性を有する状態になるように、180〜200℃で加熱し射出成形すると、図1bに示す通り、金属粉末2の周囲に溶融したバインダー1aが隙間なく埋め尽くされた状態になる。その後この溶融バインダー1aを脱脂工程で分解及び除去して金属粉末2の周囲から除去し隙間(ボイド)3を形成し(図1c)、更に高温の焼結工程で緻密化して高密度射出成形体とする(図1d)。
【0007】
より高密度の射出成形体を得るためには、図1dの焼結工程後の隙間3を減らせば良く、そのためには図1cの脱脂後の隙間を減少させれば良く、これは使用するバインダー量を減少させることにより達成できる。しかしながらバインダー量を減少させると流動性が悪くなって、射出成形体が金型から剥離しない等の不都合が生じ、場合によっては成形自体が不能になることがある。
従来は前述した通り、主として界面活性剤や窒素の添加で高密度化に対応していたが、本発明では、添加物によらず、組成物を構成する焼結用粉末とバインダーの割合、及びバインダー中の粉末結合用樹脂と流動性付与用樹脂との配合割合を特定することにより、射出成形体の高密度化を達成する。
【0008】
本発明の射出成形用組成物は、金属粉末やセラミックス粉末等の焼結用粉末と、粉末結合用樹脂Aと流動性付与用樹脂Bとから成るバインダーとを含んで成る。そしてバインダーが前記組成物全体に対し30〜35容量%配合され、かつ該バインダーが、40〜55容量%の粉末結合用樹脂Aと45〜60容量%の流動性付与用樹脂Bとから成り、従来のような界面活性剤や高級有機脂肪酸を含有しない。
バインダー量を前述の通り限定するのは、該バインダー量が30容量%未満になると成形不能になることがあり、35容量%を超えるとバインダー量低減による射出成形体の高密度化が達成できないからである。
【0009】
又バインダー中の樹脂Aと樹脂Bの配合量に関してはバインダー量にも影響されるが、一般に、樹脂Bの下限が45容量%未満であると(樹脂Aの上限が55容量%を超えると)、流動性が不十分になって成形不良になり、樹脂Bの上限が60容量%を超えると(樹脂Aの下限が40容量%未満になると)、射出成形体の高密度化が達成できなくなる。
更に樹脂Aと樹脂Bの配合比を上述の範囲とすることにより、バインダー量を30〜35容量%という高密度化にとって望ましい低い範囲での射出成形体の成形を可能にする。
本発明の粉末結合用樹脂Aとして使用可能な樹脂としては、ポリアセタール、ポリプロピレン、変性ポリオレフィン、ポリエチレン、ポリビニルアルコール等があり、本発明の流動性付与用樹脂Bとして使用可能な樹脂としては、パラフィンワックス、ビーズワックス、カルナバワックス等がある。
本発明の焼結用粉末としては金属粉末とセラミックス粉末があり、金属粉末としては、鉄や銅などの金属単体、ステンレスやFe−Ni−Co等の金属合金、酸化チタン等の金属酸化物を含み、セラミックス粉末としては、アルミナ(Al2O3)、窒化シリコン(Si3N4)及び炭化チタン(TiC)等がある。
【0010】
これらの樹脂原料を使用して射出成形体を製造するためには、1〜3mm程度に粉砕した樹脂Aと樹脂Bの混合物(バインダー)をアトマイズ法などで作製もしくは粉砕した1〜10μm程度の金属粉末やセラミックス粉末等の焼結粉末と十分に加熱混練した後、バインダーが流動性を保持できる温度で射出成形する。その後、真空加熱で脱脂処理してバインダーを除去し、次いで1000〜1700℃で焼結して所定の高密度を有する射出成形体とする。
このようにして製造される射出成形体は、バインダー中の樹脂の配合割合と射出成形体中のバインダーの割合が特定され、この特定に応じた密度値を有することになる。そして前記射出成形体は界面活性剤等の付加成分を有しないため、出発原料の数が減少し、更に前記界面活性剤の除去が不要になるという長所を有している。
【0011】
本発明では、前記射出成形用組成物に、0.1〜0.6重量%の炭素粉末を添加すると更に高密度化が促進される。これは焼結工程において金属粉末等の表面酸化膜が炭素によって還元されて緻密化が進行するからであると推測できる。
炭素量が0.1重量%未満では密度改善効果が不十分で、0.6重量%を超えると密度改善効果がそれ以上進行せず、又金属中に残留する炭素量が顕著になるという欠点が生じる。
【0012】
【発明の実施の形態】
本発明に係わる射出成形用混合物製造の実施例及び比較例を記載するが、本発明はこれらに限定されるものではない。
【0013】
比較例1
金属粉末として粒径約6μmのFe−Ni−Co系粉末を使用し、かつバインダー中の樹脂Aとしてポリアセタールを、又樹脂Bとして融点が約65℃のパラフィンワックスを使用した。金属粉末を57容量%使用し、バインダーを43容量%として射出成形用混合物を構成した。前記バインダーは、樹脂A70容量%と樹脂B30容量%との混合物とした。
この混合物を均一に分散させた後、180から200℃の温度で射出成形し、真空加熱してバインダーを分解除去した。更に1350℃で焼結させたところ、相対密度が95.0%の射出成形体が得られた。このような密度の射出成形体では機械的特性が低く、又表面が滑らかでなく、めっき等が困難であるという欠点を有していた。
【0014】
比較例2
金属粉末とバインダーのそれぞれを60容量%及び40容量%としたこと以外は比較例1と同一条件で射出成形体を製造したところ、その相対密度は95.6%まで上昇した。従ってバインダー量を3容量%分減少させることにより焼結後の相対密度が0.6%増加したことが分かる。
【0015】
比較例3
より以上の相対密度の上昇を意図して、バインダー量を更に5容量%分減少させて35容量%とした(従って金属粉末量は更に5容量%分増加して65容量%とした)こと以外は比較例2と同一条件で射出成形体を製造することを試みたが、射出成形体の流動性が悪く、成形が行えなかった。
比較例1〜3の結果を表1に示した。
【0016】
【表1】

Figure 0004109496
【0017】
比較例4〜8
次いで比較例1〜3の結果から、バインダーの量を減らすためには、樹脂Bの量を若干増やして流動性を改善することが有効であると考え、樹脂Aと樹脂Bの配合量を変えて、次のように射出成形体を製造した。
比較例1の金属粉末の容量%とバインダーの容量%を基準にして、バインダーを構成する樹脂Aの容量%と樹脂Bの容量%を、順に80容量%−20容量%(比較例4)、55容量%−45容量%(比較例5)、45容量%−55容量%(比較例6)、40容量%−60容量%(比較例7)及び30容量%−70容量%(比較例8)と変化させたこと以外は比較例1と同一条件で射出成形体を製造したところ、比較例5〜7で比較例1とほぼ同じそれぞれ94.9%、95.2%及び94.8%の相対密度で射出成形体が得られたが、比較例4及び8では成形体が得られなかった。
比較例4〜8及び比較例1の結果を表2に示した。
表2からバインダー中の流動性付与用樹脂Bの量が30〜60容量%で95%前後の相対密度が得られたことが分かる。
【0018】
【表2】
Figure 0004109496
【0019】
実施例1及び2及び比較例9及び 10
次いで比較例5のバインダー中の樹脂A及び樹脂Bの容量%を基準にして、金属粉末とバインダーの容量%を、順に60容量%−40容量%(比較例9)、65容量%−35容量%(実施例1)、68容量%−32容量%(実施例2)及び72容量%−28容量%(比較例10)と変化させたこと以外は比較例5と同一条件で射出成形体を製造したところ、比較例9及び実施例1及び2でそれぞれ95.8%、97.1%及び98.0%の相対密度で射出成形体が得られたが、比較例10では成形体が得られなかった。
比較例5、9及び10及び実施例1及び2の結果を表3に示した。
表3から、金属粉末量及びバインダー量を調節することにより、界面活性剤を使用しなくても、得られる射出成形体の相対密度が97〜98容量%まで上昇することが分かり、そのときのバインダー量を32容量%まで減少させられることも分かった。
【0020】
【表3】
Figure 0004109496
【0021】
実施例3及び4及び比較例 11
樹脂Bの量が45容量%である実施例1及び2では、バインダー量は32容量%までしか減少させられなかった。本例では、流動性付与用樹脂である樹脂Bの量を60容量%まで上昇させて更にバインダー量を減少させることを試みた。
樹脂Aの量を40容量%、樹脂Bの量を60容量%に固定して、バインダー量を32容量%(実施例3)、30容量%(実施例4)及び28容量%と順に減少させたこと以外は実施例1と同一条件で射出成形体を製造したところ、実施例1及び2でそれぞれ97.9%及び98.0%の相対密度で射出成形体が得られたが、比較例11では成形体が得られなかった。
実施例1及び2及び比較例11の結果を表4に示した。
表4と表3を比較すると、樹脂Bの量を増加させることにより、射出成形体が成形できるバインダー量が減少したことが分かる。
【0022】
【表4】
Figure 0004109496
【0023】
実施例5
実施例1の組成物に対し、0.2重量%の炭素粉末を添加したこと以外は実施例1と同一条件で射出成形体を製造したところ、実施例1で得られた相対密度97.1%が98.0%まで上昇した。
【0024】
実施例6
実施例2の組成物に対し、0.2重量%の炭素粉末を添加したこと以外は実施例2と同一条件で射出成形体を製造したところ、実施例2で得られた相対密度98.0%が99.2%まで上昇した。
【0025】
【発明の効果】
本発明は、焼結用粉末とバインダーを含有する射出成形用組成物において、前記バインダーが組成物全体に対し30〜35容量%配合され、かつ該バインダーが、40〜55容量%の粉末結合用樹脂Aと45〜60容量%の流動性付与用樹脂Bとから成り、これにより高密度化をしたことを特徴とする射出成形用組成物である。
【0026】
本発明では従来の射出成形用組成物で使用される界面活性剤等の付加物を使用することなく、高密度組成物を作製することが可能になる。
又前記射出成形用組成物に炭素粉末を加えると緻密化が進行してより高密度の製品が得られることになる。
【図面の簡単な説明】
【図1】射出成形体製造の工程を示す概略図。
【符号の説明】
1 バインダー
1a 溶融バインダー
2 金属粉末
3 隙間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an injection molding composition capable of producing a high-density product without degrading its performance.
[0002]
[Prior art]
As a composition for injection molding, a composition of approximately 55% by volume of a sintering powder and a binder of approximately 45% by volume, which is generally composed of metal powder or ceramic powder, is used, and this binder usually bonds the sintering powder together. It is used as a blend of about 70% by volume of Resin A having a role of imparting resin B having a role of imparting fluidity.
The composition for injection molding having such a blend and blend ratio has a drawback that the density of the final product after sintering is low because the binder is high at about 45% by volume per total volume. In order to improve this low density, Japanese Patent Application Laid-Open No. 11-181501 proposes to include nitrogen, but nitrogen may be an impurity and may not be applicable to all materials. Japanese Patent Application Laid-Open No. 11-350005 intends to increase the density with an agar binder, but has the disadvantage of being easily evaporated because it uses water.
[0003]
[Problems to be solved by the invention]
In addition, an injection molding composition comprising 30 to 70% by volume of a sintering powder and 70 to 30% by volume of a binder has been proposed regardless of density improvement (Japanese Patent Laid-Open No. Hei 4-202703). . The binder in this composition contains a surfactant in addition to low density polyethylene and paraffin wax. The addition of the surfactant is to improve the releasability from the mold after molding and the mixing between the low density polyethylene and the paraffin wax, but the addition of the surfactant is not only an increase in the number of components. Since the melting point and boiling point are usually high, they cannot be removed from the sintered product and may remain in the final product, which is not desirable.
[0004]
Furthermore, in the invention described in JP-A-5-17802, higher saturated fatty acids are used in addition to polypropylene and paraffin, and in the invention described in JP-A-5-59402, an ethylene-acetic acid copolymer is used in addition to polyethylene and paraffin. Contains.
In view of the drawbacks of the prior art, the present invention has good releasability from the mold and good binder component, which is an effect of addition of the surfactant, without using a surfactant or a high molecular weight organic acid. It is an object of the present invention to provide an injection molding composition that can achieve excellent mixing properties.
[0005]
[Means for Solving the Problems]
The present invention relates to an injection molding composition containing a sintering powder and a binder, wherein the binder is blended in an amount of 30 to 35% by volume relative to the entire composition, and the binder is used for powder binding in an amount of 40 to 55% by volume. Ri consists resin a and 45 to 60 volume percent of the fluidizing resin B, thereby an injection molding composition, characterized in that the densified.
[0006]
The present invention will be described in detail below.
First, an example of production of an injection-molded body using a metal powder and a binder will be described with reference to FIGS.
When the granular binder 1 and metal powder 2 shown in FIG. 1a are kneaded and then heated at 180 to 200 ° C. so that the binder 1 has fluidity, injection molding is performed, as shown in FIG. In this state, the binder 1a that has been melted is filled with no gaps. Thereafter, the molten binder 1a is decomposed and removed in a degreasing process to be removed from the periphery of the metal powder 2 to form a void 3 (FIG. 1c), and further densified in a high-temperature sintering process to obtain a high-density injection molded body. (FIG. 1d).
[0007]
In order to obtain a higher-density injection-molded body, the gap 3 after the sintering step in FIG. 1d may be reduced, and for this purpose, the gap after degreasing in FIG. 1c may be reduced. This can be achieved by reducing the amount. However, when the amount of the binder is decreased, the fluidity is deteriorated, and there arises a disadvantage that the injection molded body does not peel from the mold, and in some cases, the molding itself may be impossible.
Conventionally, as described above, mainly the addition of a surfactant and nitrogen corresponded to densification, but in the present invention, regardless of the additive, the ratio of the sintering powder and the binder constituting the composition, and By specifying the blending ratio of the powder binding resin and the fluidity imparting resin in the binder, the density of the injection molded body is increased.
[0008]
The composition for injection molding of the present invention comprises a sintering powder such as a metal powder or a ceramic powder, and a binder composed of a powder binding resin A and a fluidity imparting resin B. The binder is blended in an amount of 30 to 35% by volume with respect to the entire composition, and the binder comprises 40 to 55% by volume of powder binding resin A and 45 to 60% by volume of fluidity imparting resin B. Does not contain conventional surfactants or higher organic fatty acids.
The amount of the binder is limited as described above, because if the amount of the binder is less than 30% by volume, molding may become impossible, and if it exceeds 35% by volume, the density of the injection molded product cannot be increased by reducing the amount of binder. It is.
[0009]
The amount of resin A and resin B in the binder is also affected by the amount of binder, but generally the lower limit of resin B is less than 45% by volume (if the upper limit of resin A exceeds 55% by volume). When the upper limit of resin B exceeds 60% by volume (when the lower limit of resin A is less than 40% by volume), the density of the injection molded article cannot be increased. .
Furthermore, by setting the blending ratio of the resin A and the resin B within the above range, it is possible to mold the injection molded body in a low range desirable for increasing the density of the binder amount of 30 to 35% by volume.
Resins that can be used as the powder binding resin A of the present invention include polyacetal, polypropylene, modified polyolefin, polyethylene, polyvinyl alcohol and the like, and resins that can be used as the fluidity imparting resin B of the present invention include paraffin wax. , Beeswax and carnauba wax.
The powder for sintering of the present invention includes a metal powder and a ceramic powder. As the metal powder, a metal simple substance such as iron or copper, a metal alloy such as stainless steel or Fe-Ni-Co, or a metal oxide such as titanium oxide is used. In addition, examples of the ceramic powder include alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), titanium carbide (TiC), and the like.
[0010]
In order to produce an injection-molded body using these resin raw materials, a metal of about 1 to 10 μm prepared or pulverized by a method such as atomization of a mixture (binder) of resin A and resin B crushed to about 1 to 3 mm. After sufficiently heat-kneading with a sintered powder such as powder or ceramic powder, injection molding is performed at a temperature at which the binder can maintain fluidity. Thereafter, the binder is removed by degreasing by vacuum heating, and then sintered at 1000 to 1700 ° C. to obtain an injection molded body having a predetermined high density.
The injection molded body produced in this way has a resin blend ratio in the binder and a binder ratio in the injection molded body, and has a density value corresponding to this specification. And since the said injection molded object does not have additional components, such as surfactant, it has the advantage that the number of starting materials reduces and also the removal of the said surfactant becomes unnecessary.
[0011]
In the present invention, when 0.1 to 0.6% by weight of carbon powder is added to the injection molding composition, further densification is promoted. This can be presumed to be because the surface oxide film such as metal powder is reduced by carbon in the sintering process and densification proceeds.
If the amount of carbon is less than 0.1% by weight, the effect of improving the density is insufficient, and if it exceeds 0.6% by weight, the effect of improving the density does not proceed any more and the amount of carbon remaining in the metal becomes remarkable.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Although the Example and comparative example of the mixture for injection molding concerning this invention are described, this invention is not limited to these.
[0013]
Comparative Example 1
Fe-Ni-Co powder having a particle size of about 6 μm was used as the metal powder, polyacetal was used as the resin A in the binder, and paraffin wax having a melting point of about 65 ° C. was used as the resin B. The injection molding mixture was composed of 57% by volume of metal powder and 43% by volume of binder. The binder was a mixture of 70% by volume of resin A and 30% by volume of resin B.
After the mixture was uniformly dispersed, it was injection molded at a temperature of 180 to 200 ° C., and heated under vacuum to decompose and remove the binder. Further, when sintered at 1350 ° C., an injection molded article having a relative density of 95.0% was obtained. The injection molded body having such a density has the disadvantages that mechanical properties are low, the surface is not smooth, and plating is difficult.
[0014]
Comparative Example 2
When an injection-molded article was produced under the same conditions as in Comparative Example 1 except that the metal powder and the binder were respectively 60% by volume and 40% by volume, the relative density increased to 95.6%. Therefore, it can be seen that the relative density after sintering increased by 0.6% by decreasing the binder amount by 3% by volume.
[0015]
Comparative Example 3
Other than increasing the relative density by more than 5% by volume to 35% by volume (thus increasing the metal powder volume by 5% further to 65% by volume). Tried to produce an injection-molded body under the same conditions as in Comparative Example 2, but the fluidity of the injection-molded body was poor and molding could not be performed.
The results of Comparative Examples 1 to 3 are shown in Table 1.
[0016]
[Table 1]
Figure 0004109496
[0017]
Comparative Examples 4-8
Next, from the results of Comparative Examples 1 to 3, in order to reduce the amount of the binder, it is considered effective to improve the fluidity by slightly increasing the amount of the resin B, and the amount of the resin A and the resin B is changed. Thus, an injection molded body was manufactured as follows.
Based on the volume% of the metal powder of Comparative Example 1 and the volume% of the binder, the volume% of the resin A and the volume% of the resin B constituting the binder are sequentially 80 volume% -20 volume% (Comparative Example 4), 55% by volume-45% by volume (Comparative Example 5), 45% by volume-55% by volume (Comparative Example 6), 40% by volume-60% by volume (Comparative Example 7) and 30% by volume-70% by volume (Comparative Example 8) ), Except that the injection molded article was produced under the same conditions as in Comparative Example 1. In Comparative Examples 5-7, injection molding was performed at relative densities of 94.9%, 95.2%, and 94.8%, which were almost the same as Comparative Example 1, respectively. Although a body was obtained, in Comparative Examples 4 and 8, a molded body was not obtained.
The results of Comparative Examples 4 to 8 and Comparative Example 1 are shown in Table 2.
From Table 2, it can be seen that a relative density of about 95% was obtained when the amount of the fluidity-imparting resin B in the binder was 30 to 60% by volume.
[0018]
[Table 2]
Figure 0004109496
[0019]
Examples 1 and 2 and Comparative Examples 9 and 10
Next, based on the volume% of the resin A and the resin B in the binder of Comparative Example 5, the volume percentage of the metal powder and the binder is 60 volume% -40 volume% (Comparative Example 9) and 65 volume% -35 volume in this order. % (Example 1), 68% by volume-32% by volume (Example 2) and 72% by volume-28% by volume (Comparative Example 10). As a result, injection molded articles were obtained in Comparative Example 9 and Examples 1 and 2 at a relative density of 95.8%, 97.1%, and 98.0%, respectively. In Comparative Example 10, no molded article was obtained.
The results of Comparative Examples 5, 9 and 10 and Examples 1 and 2 are shown in Table 3.
From Table 3, it can be seen that by adjusting the amount of metal powder and the amount of binder, the relative density of the obtained injection-molded body is increased to 97 to 98% by volume without using a surfactant. It has also been found that the amount of binder can be reduced to 32% by volume.
[0020]
[Table 3]
Figure 0004109496
[0021]
Examples 3 and 4 and Comparative Example 11
In Examples 1 and 2 where the amount of Resin B was 45% by volume, the amount of binder could only be reduced to 32% by volume. In this example, an attempt was made to increase the amount of the resin B, which is a fluidity imparting resin, to 60% by volume to further reduce the binder amount.
The amount of resin A is fixed at 40% by volume, the amount of resin B is fixed at 60% by volume, and the amount of binder is decreased in order of 32% by volume (Example 3), 30% by volume (Example 4) and 28% by volume. Except for the above, an injection molded article was produced under the same conditions as in Example 1. In Examples 1 and 2, an injection molded article was obtained with a relative density of 97.9% and 98.0%. In Comparative Example 11, a molded article was obtained. Was not obtained.
The results of Examples 1 and 2 and Comparative Example 11 are shown in Table 4.
Comparing Table 4 and Table 3, it can be seen that increasing the amount of resin B decreased the amount of binder that the injection molded article can be molded.
[0022]
[Table 4]
Figure 0004109496
[0023]
Example 5
An injection molded body was produced under the same conditions as in Example 1 except that 0.2% by weight of carbon powder was added to the composition of Example 1. As a result, the relative density of 97.1% obtained in Example 1 was 98.0%. Rose to.
[0024]
Example 6
An injection molded article was produced under the same conditions as in Example 2 except that 0.2% by weight of carbon powder was added to the composition of Example 2. As a result, the relative density of 98.0% obtained in Example 2 was 99.2%. Rose to.
[0025]
【The invention's effect】
The present invention relates to an injection molding composition containing a sintering powder and a binder, wherein the binder is blended in an amount of 30 to 35% by volume relative to the entire composition, and the binder is used for powder binding in an amount of 40 to 55% by volume. Ri consists resin a and 45 to 60 volume percent of the fluidizing resin B, thereby an injection molding composition characterized in that the densification.
[0026]
In the present invention, a high-density composition can be produced without using an additive such as a surfactant used in a conventional injection molding composition.
Further, when carbon powder is added to the composition for injection molding, densification proceeds and a higher density product is obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a process for producing an injection-molded body.
[Explanation of symbols]
1 Binder 1a Molten binder 2 Metal powder 3 Crevice

Claims (4)

焼結用粉末とバインダーを含有する射出成形用組成物において、前記バインダーが組成物全体に対し30〜35容量%配合され、かつ該バインダーが、40〜55容量%の粉末結合用樹脂Aと45〜60容量%の流動性付与用樹脂Bとから成り、これにより高密度化したことを特徴とする射出成形用組成物。In an injection molding composition containing a sintering powder and a binder, the binder is blended in an amount of 30 to 35% by volume with respect to the entire composition, and the binder comprises 40 to 55% by volume of powder binding resins A and 45. Ri consists as to 60% by volume of the fluidizing resin B, the injection molding composition, characterized in that thereby densifying the. 焼結用粉末に対して0.1から0.6重量%の炭素粉末を添加した請求項1に記載の射出成形用組成物。  The composition for injection molding according to claim 1, wherein 0.1 to 0.6% by weight of carbon powder is added to the powder for sintering. 粉末結合用樹脂Aが、ポリアセタール、ポリプロピレン、変性ポリオレフィン、ポリエチレン及びポリビニルアルコールから成る群から選択される1又は2以上である請求項1又は2に記載の射出成形用組成物。  The injection molding composition according to claim 1 or 2, wherein the powder binding resin A is one or more selected from the group consisting of polyacetal, polypropylene, modified polyolefin, polyethylene, and polyvinyl alcohol. 流動性付与用樹脂Bが、パラフィンワックス、ビーズワックス及びカルナバワックスから成る群から選択される1又は2以上である請求項1から3までのいずれかに記載の射出成形用組成物。  The composition for injection molding according to any one of claims 1 to 3, wherein the fluidity imparting resin B is one or more selected from the group consisting of paraffin wax, bead wax and carnauba wax.
JP2002144485A 2002-05-20 2002-05-20 Composition for injection molding Expired - Fee Related JP4109496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144485A JP4109496B2 (en) 2002-05-20 2002-05-20 Composition for injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144485A JP4109496B2 (en) 2002-05-20 2002-05-20 Composition for injection molding

Publications (2)

Publication Number Publication Date
JP2003342608A JP2003342608A (en) 2003-12-03
JP4109496B2 true JP4109496B2 (en) 2008-07-02

Family

ID=29766275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144485A Expired - Fee Related JP4109496B2 (en) 2002-05-20 2002-05-20 Composition for injection molding

Country Status (1)

Country Link
JP (1) JP4109496B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282412A (en) * 2005-03-31 2006-10-19 Tdk Corp Method for manufacturing ferrite core

Also Published As

Publication number Publication date
JP2003342608A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
US5380179A (en) Binder system for use in the injection molding of sinterable powders and molding compound containing the binder system
JP2955754B1 (en) Composition for injection molding of metal powder and injection molding and sintering method using the composition
JPH0647684B2 (en) Degreasing method for injection molded products
JPH02302357A (en) Ceramic injection molding material and injection molding using the same material
US4704242A (en) Method for injection molding and removing binder from large cross section ceramic shapes
US4898902A (en) Binder composition for injection molding
JP4109496B2 (en) Composition for injection molding
JPS59121151A (en) Injection molding material
JPS59121150A (en) Injection molding material
JP2677675B2 (en) Method for producing sintered product consisting of powder molding binder and metal powder or ceramic powder
JPH0134948B2 (en)
JPH0647682B2 (en) Manufacturing method of sintered metal
JPH03290374A (en) Production of sintered article
JPS6311562A (en) Material for injection forming
JPS62241863A (en) Injection forming material
KR20040027788A (en) Binder for High Density Stainless Steel Sintering Material and Method for making High Density Stainless Steel Sintering Material using the same
JPS616172A (en) Ceramic composition for injection molding
JPH0689369B2 (en) Binder composition for injection molding
JPS61122152A (en) Ceramic composition for injection molding
JP2897909B2 (en) Manufacturing method of injection molded products
JPH11278915A (en) Composition for injection molding of ceramic
JPS6110050A (en) Ceramic composition for injection molding
JPS5899171A (en) Non-oxide ceramic composition and manufacture of non-oxide ceramic sintered body therefrom
KR0163805B1 (en) Binder for injection molding
JP2001348602A (en) Composition as powder material for sintering and method for producing the sintered product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees