JP2006282412A - Method for manufacturing ferrite core - Google Patents
Method for manufacturing ferrite core Download PDFInfo
- Publication number
- JP2006282412A JP2006282412A JP2005100944A JP2005100944A JP2006282412A JP 2006282412 A JP2006282412 A JP 2006282412A JP 2005100944 A JP2005100944 A JP 2005100944A JP 2005100944 A JP2005100944 A JP 2005100944A JP 2006282412 A JP2006282412 A JP 2006282412A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- ferrite powder
- thermoplastic resin
- wax
- initial permeability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Ceramics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、各種磁気回路を構成するフェライトコアの製造方法に関する。更に詳しくは、フェライト粉末、熱可塑性樹脂およびワックスの混練物を用いて射出成形し、更に、焼成してフェライトコアを製造する方法の改良に係る。 The present invention relates to a method for manufacturing a ferrite core constituting various magnetic circuits. More specifically, the present invention relates to an improvement in a method for producing a ferrite core by injection molding using a kneaded product of ferrite powder, thermoplastic resin and wax, and further firing.
チョークコイル、マイクロインダクタ、ロータリートランス等に用いられるフェライトコアの製造に当たり、一般的な粉末成形法に代え、高分子材料とフェライト粉末よりなるフェライト樹脂スラリーを用い、これを射出成形し、脱脂、焼成することによって、フェライトコアを得る方法が知られている(例えば、特許文献1など)。 For the production of ferrite cores used in choke coils, microinductors, rotary transformers, etc., instead of the general powder molding method, a ferrite resin slurry consisting of a polymer material and ferrite powder is used, and this is injection molded, degreased and fired Thus, a method for obtaining a ferrite core is known (for example, Patent Document 1).
この製造方法は、汎用型のものに限らず、一般的な粉末成形で実現の困難な形状が要求されるフェライトコアや、小型のフェライトコアの製造にも適している。 This manufacturing method is not limited to a general-purpose type, and is also suitable for manufacturing a ferrite core that requires a shape difficult to realize by general powder molding, and a small ferrite core.
しかし、フェライト粉末のほかに、磁気特性に寄与せず、専ら、成形性のために選択された高分子材料を含んでおり、これが焼成によって焼却除去されてしまうため、電磁気特性面では、従来の一般的な粉末成形により得られるフェライトコアの電磁気特性と同等の高い電磁気特性を得るには至っていない。 However, in addition to the ferrite powder, it does not contribute to the magnetic properties, and contains a polymer material selected exclusively for moldability, which is burned and removed by firing, so in terms of electromagnetic properties, A high electromagnetic property equivalent to that of a ferrite core obtained by general powder molding has not yet been obtained.
特性改善の最も簡単な方法は、フェライト粉末の含有量を増やすことであるが、フェライト粉末の含有率が高くなると、フェライト樹脂スラリーの流動性が悪くなり、射出成形性が劣化する。また、フェライト樹脂スラリーの流動性が低いと、製品に欠陥が生じやすく、歩留も低下する。 The simplest method for improving the characteristics is to increase the content of the ferrite powder. However, when the content of the ferrite powder is increased, the flowability of the ferrite resin slurry is deteriorated and the injection moldability is deteriorated. Moreover, if the fluidity of the ferrite resin slurry is low, defects are likely to occur in the product and the yield is also reduced.
逆に、流動性を上げるために、単に熱可塑性樹脂等の添加量を増やしたのでは、電磁気特性(透磁率)が低下してしまうばかりか、脱脂に時間がかかるなどの問題も生じる。更に問題なのは、焼成後に変形が生じてしまうことであり、この変形の問題をいかに解消するかが、実用化に向けた重要な課題になる。 Conversely, simply increasing the amount of addition of thermoplastic resin or the like to increase fluidity causes problems such as a decrease in electromagnetic characteristics (permeability) and a long time for degreasing. A further problem is that deformation occurs after firing, and how to solve this deformation problem is an important issue for practical application.
上述した問題は、一方を改善すると他方が悪くなるという、二律背反の関係にあり、これらを同時に満たすことは、本質的に困難であり、現在のところ、この問題解決に成功したものは見当たらない。
本発明の課題は、電磁気特性にも、射出成形性にも優れ、しかも焼成後の変形の問題をも解消し得るフェライトコアの製造方法を提供することである。 The subject of this invention is providing the manufacturing method of the ferrite core which is excellent in an electromagnetic characteristic and injection moldability, and can also eliminate the deformation | transformation problem after baking.
上述した課題を解決するため、本発明に係るフェライトコアの製造方法ででは、まず、フェライト粉末と、熱可塑性樹脂と、ワックスとを準備する。そして、前記フェライト粉末100wt%に対して、前記熱可塑性樹脂5〜10wt%、前記ワックス5〜10wt%の割合で混合し、混合物を、加熱下で、分散度50%以下となるように混練する。こうして得られた混練物を用いて射出成型し、その後、焼成する。 In order to solve the above-described problems, in the method for manufacturing a ferrite core according to the present invention, first, ferrite powder, a thermoplastic resin, and a wax are prepared. And it mixes with the ratio of the said thermoplastic resin 5-10 wt% and the said wax 5-10 wt% with respect to 100 wt% of the said ferrite powder, and knead | mixes a mixture so that it may become a dispersion degree 50% or less under heating. . The kneaded material thus obtained is injection molded and then fired.
本発明者等は、従来、フェライト粉末と熱可塑性樹脂は親和性が低いため、十分にフェライト粉末が樹脂に分散していないことが、原因であるとの知見に基づき、樹脂に対するフェライト粉末のをコントロールすることにより、一般的な粉末成形により得られるフェライトコアの電磁気特性と同等の高い電磁気特性を、射出成形によるフェライトコアで得ることができた。しかも、焼成後の変形も抑えられる。 Based on the knowledge that the ferrite powder and the thermoplastic resin have low affinity, the inventors have previously found that the ferrite powder is not sufficiently dispersed in the resin. By controlling, it was possible to obtain a high electromagnetic property equivalent to that of a ferrite core obtained by general powder molding with a ferrite core obtained by injection molding. Moreover, deformation after firing can be suppressed.
具体的には、フェライト粉末と、熱可塑性樹脂と、ワックスとの混合物を、加熱下で、分散度50%以下になるように混練する。この分散度まで混練すると、本来、熱可塑性樹脂に対する親和性の低いフェライト粉末が、熱可塑性樹脂中に、均一に分散した状態になるので、電磁気特性が、著しく改善されるとともに、焼成後の変形などもおきにくくなる。 Specifically, a mixture of ferrite powder, thermoplastic resin and wax is kneaded under heating so that the degree of dispersion is 50% or less. When kneaded to this degree of dispersion, the ferrite powder, which has a low affinity for thermoplastic resins, is uniformly dispersed in the thermoplastic resin, so that the electromagnetic properties are remarkably improved and deformation after firing is achieved. It becomes difficult to occur.
フェライト粉末と、熱可塑性樹脂と、ワックスとの混合比は、フェライト粉末100wt%に対して、熱可塑性樹脂5〜10wt%、ワックス5〜10wt%の範囲が好適である。 The mixing ratio of the ferrite powder, the thermoplastic resin, and the wax is preferably in the range of 5-10 wt% thermoplastic resin and 5-10 wt% wax with respect to 100 wt% ferrite powder.
フェライト粉末100wt%に対して、熱可塑性樹脂5〜10wt%の範囲に保つと、電磁気特性の劣化を殆ど引き起こさない。フェライト粉末100wt%に対して、ワックス5〜10wt%の範囲に保つと、均一分散に寄与する流動性を確保することができる。熱可塑性樹脂及びワックスの最も好ましい含有量は、実験によれば、7.5wt%である。 When the thermoplastic resin is kept in the range of 5 to 10 wt% with respect to 100 wt% of the ferrite powder, the electromagnetic characteristics are hardly deteriorated. If the wax is kept in the range of 5 to 10 wt% with respect to 100 wt% of the ferrite powder, fluidity contributing to uniform dispersion can be ensured. The most preferable content of the thermoplastic resin and the wax is 7.5 wt% according to experiments.
熱可塑性樹脂としては、変性ポリアセタール樹脂が好適である。変性ポリアセタール樹脂を用いると、製造プロセス及び成形後の使用状態において、熱的な安定性を確保することができる。 A modified polyacetal resin is suitable as the thermoplastic resin. When a modified polyacetal resin is used, thermal stability can be ensured in the manufacturing process and in the usage state after molding.
フェライト粉末は、平均粒径が0.5〜5μmの範囲にあることが好ましい。平均粒径が0.5μmよりも小さくなると、熱可塑性樹脂、ワックスとの濡れ性が悪くなり、本発明の目的とするフェライトコアを得ることができなくなるし、平均粒径が6μm以上になると、必要な電磁気特性を得ることができなくなる。 The ferrite powder preferably has an average particle size in the range of 0.5 to 5 μm. When the average particle size is smaller than 0.5 μm, the wettability with the thermoplastic resin and the wax deteriorates, and the ferrite core targeted by the present invention cannot be obtained, and when the average particle size becomes 6 μm or more, Necessary electromagnetic characteristics cannot be obtained.
以上述べたように、本発明によれば、電磁気特性にも、射出成形性にも優れ、しかも焼成後の変形の問題をも解消し得るフェライトコアの製造方法を提供することができる。 As described above, according to the present invention, it is possible to provide a method for manufacturing a ferrite core which is excellent in both electromagnetic characteristics and injection moldability and which can solve the problem of deformation after firing.
本発明の他の特徴及びそれによる作用効果は、実施例及び比較例によって更に詳しく説明する。 Other features of the present invention and the operational effects thereof will be described in more detail with reference to examples and comparative examples.
実施例1
1.次のフェライト粉末、熱可塑性樹脂及びワックスを準備した。
(1)フェライト粉末
仮焼後粉砕したNi-Zn系フェライト粉末
組成:Fe2O3 47モル%、ZnO 26モル%、NiO 18モル%、
CuO 9モル%
平均粒径:5μm
初透磁率μi:400
(2)熱可塑性樹脂
ペレット状の変性ポリアセタール樹脂
Ni-Zn系フェライト粉末100wt%に対して7.5wt%
(3)ワックス
粉末状のパラフィン系ワックス
Ni-Zn系フェライト粉末100wt%に対して7.5wt%
(4)フェライト粉末、熱可塑性樹脂及びワックスの全重量は10kgである。
Example 1
1. The following ferrite powder, thermoplastic resin and wax were prepared.
(1) ferrite powder calcined after crushed Ni-Zn ferrite powder composition: Fe 2 O 3 47 mol%, ZnO 26 mol%, NiO 18 mol%,
CuO 9 mol%
Average particle size: 5μm
Initial permeability μi: 400
(2) Thermoplastic resin Pellet-like modified polyacetal resin
7.5 wt% with respect to 100 wt% of Ni-Zn ferrite powder
(3) Wax Powdered paraffin wax
7.5 wt% with respect to 100 wt% of Ni-Zn ferrite powder
(4) The total weight of ferrite powder, thermoplastic resin and wax is 10 kg.
2.加熱、混練
上述したフェライト粉末、熱可塑性樹脂及びワックスを、ミキサーで3分間混合した。
次に、混合物を、160℃に加熱されたニーダーで、1〜2時間混練した。
得られた混練物を130℃に加熱されたペレタイザーで処理し、ペレットを成形した。ペレットの外形は、φ2mm×3mmとした。
2. Heating and kneading The above-described ferrite powder, thermoplastic resin and wax were mixed for 3 minutes with a mixer.
Next, the mixture was kneaded with a kneader heated to 160 ° C. for 1-2 hours.
The obtained kneaded material was processed with a pelletizer heated to 130 ° C. to form pellets. The outer shape of the pellet was 2 mm × 3 mm.
3.射出成形
上記工程によって得られた、ペレットを160℃に加熱した成型機に入れ、金型に充填し、成形した。金型は、水冷方式により冷却されている。
3. Injection molding The pellets obtained by the above process were placed in a molding machine heated to 160 ° C, filled in a mold, and molded. The mold is cooled by a water cooling method.
4.分散度の測定
上記工程によって得られた成形品のサンプルにについて、FeのCV値、つまり分散度、及び、初透磁率を、次の手法に従って算出した。
(1)CV値の測定条件
CV値はEPMA(島津製作所製EPMA−1600、分光結晶:LS12L)を用いて、次の条件で算出した。
加速電圧:15kV
照射電流:0.14μA
計測時間:30msec/点
電子線径:spot
測定点数:300×300ポイント(画素数:90000点)
測定間隔:10μm
測定点数と測定間隔からの測定視野は3mm×3mm
測定する特性X線
Fe-Kα線の条件で画像を得て、測定元素を含む粒子のスポット(2)CV値の測定方法
サイズ当たりのカウント数を計測してデータを収集し、
CV値(%)=(σ/Xavg)×100(%)
の式により、CV値を算出した。
4). Measurement of Dispersion The CV value of Fe, that is, the dispersity and the initial permeability, were calculated according to the following method for the sample of the molded product obtained by the above process.
(1) CV value measurement conditions The CV value was calculated using EPMA (EPMA-1600 manufactured by Shimadzu Corporation, spectral crystal: LS12L) under the following conditions.
Accelerating voltage: 15kV
Irradiation current: 0.14 μA
Measurement time: 30msec / point Electron beam diameter: spot
Number of measurement points: 300 x 300 points (number of pixels: 90000 points)
Measurement interval: 10 μm
Measurement field of view from the number of measurement points and measurement interval is 3mm x 3mm
Characteristic X-ray to be measured
Obtain an image under the Fe-Kα ray condition, and measure the spot of the particle containing the measurement element (2) CV value. Collect the data by measuring the number of counts per size,
CV value (%) = (σ / Xavg) x 100 (%)
The CV value was calculated by the following formula.
式中の記号の意味は次の通りである。
Xavg=(Σx)/n
σ=√{Σx2一(Σx)2/n}/n
但し、σは標準偏差、Xavgは試料平均、xは測定値、nは試料数である。
実施例1によって得られた実施例サンプル1のCV値(分散度)は50%以下であった。
The meanings of the symbols in the formula are as follows.
Xavg = (Σx) / n
σ = √ {Σx 2 one (Σx) 2 / n} / n
Where σ is the standard deviation, Xavg is the sample average, x is the measured value, and n is the number of samples.
The sample sample 1 obtained in Example 1 had a CV value (dispersity) of 50% or less.
(2)初透磁率μiの算出
外径×内径×高さ=18×10×5(mm)のトロイダルコアのサンプルで初透磁率μiを測定した。
測定条件:周波数100kHz、磁界強度H=0.4A/m
実施例1によって得られた実施例サンプル1の初透磁率μiは、400であった。
(2) Calculation of initial permeability μi Initial permeability μi was measured with a toroidal core sample of outer diameter × inner diameter × height = 18 × 10 × 5 (mm).
Measurement conditions: Frequency 100kHz, magnetic field strength H = 0.4A / m
The initial permeability μi of Example Sample 1 obtained in Example 1 was 400.
実施例2
フェライト粉末として、平均粒径=2μm、初透磁率μi=400のものを用いた以外は、実施例1と同様の条件及びプロセスによって、実施例サンプル2を得た。そして、実施例1で説明した手法により、実施例サンプル2のCV値及び初透磁率μiを算出したところ、CV値は50%以下、初透磁率μiは400であった。
Example 2
Example Sample 2 was obtained under the same conditions and process as Example 1 except that ferrite powder having an average particle diameter of 2 μm and an initial permeability of μi = 400 was used. The CV value and initial permeability μi of Example Sample 2 were calculated by the method described in Example 1. As a result, the CV value was 50% or less and the initial permeability μi was 400.
実施例3
フェライト粉末として、平均粒径=0.7μm、初透磁率μi=400のものを用いた外は、実施例1と同様の条件及びプロセスにより、実施例サンプル3を得た。そして、実施例1で説明した手法により、実施例サンプル3のCV値及び初透磁率μiを算出したところ、CV値は50%以下、初透磁率μiは400であった。
Example 3
Example Sample 3 was obtained under the same conditions and process as Example 1 except that ferrite powder having an average particle size of 0.7 μm and an initial permeability of μi = 400 was used. The CV value and initial permeability μi of Example Sample 3 were calculated by the method described in Example 1. The CV value was 50% or less and the initial permeability μi was 400.
実施例4
フェライト粉末として、平均粒径=0.5μm、初透磁率μi=400のものを用いた以外は、実施例1と同様にして、成形品のサンプルを得た。そして、実施例1で説明した手法により、実施例4によって得られた実施例サンプル4のCV値及び初透磁率μiを算出したところ、CV値は50%以下、初透磁率μiは400であった。
Example 4
A sample of a molded product was obtained in the same manner as in Example 1 except that a ferrite powder having an average particle size of 0.5 μm and an initial permeability of μi = 400 was used. The CV value and initial permeability μi of Example Sample 4 obtained in Example 4 were calculated using the method described in Example 1. The CV value was 50% or less, and the initial permeability μi was 400. It was.
比較例1
粉末形成法により、実施例1〜4と同一の形状を持つ比較例サンプル1を製造した。初透磁率μiは400であった。
Comparative Example 1
The comparative example sample 1 which has the same shape as Examples 1-4 was manufactured with the powder formation method. The initial permeability μi was 400.
比較例2
フェライト粉末として、平均粒径=2μm、初透磁率μi=400のものを用いたこと、及び、混練時間を実施例1よりも短くしたことを除いて、実施例1と同様のプロセスにより、比較例サンプル2を得た。そして、実施例1で説明した手法により、比較例サンプル2のCV値及び初透磁率μiを算出したところ、CV値は60%、初透磁率μiは350であった。
Comparative Example 2
Comparison was made by the same process as in Example 1 except that a ferrite powder having an average particle size of 2 μm and an initial permeability of μi = 400 was used, and that the kneading time was shorter than that of Example 1. Example sample 2 was obtained. When the CV value and the initial permeability μi of the comparative sample 2 were calculated by the method described in Example 1, the CV value was 60% and the initial permeability μi was 350.
比較例3
フェライト粉末として、平均粒径=2μm、初透磁率μi=400のものを用いたこと、及び、混練時間を比較例3よりも更に短くしたことを除いて、実施例1と同様のプロセスにより、比較例サンプル3を得た。そして、実施例1で説明した手法により、比較例サンプル3のCV値及び初透磁率μiを算出したところ、CV値は65%、初透磁率μiは330であった。
Comparative Example 3
According to the same process as in Example 1, except that a ferrite powder having an average particle size of 2 μm and an initial permeability of μi = 400 was used, and that the kneading time was further shorter than that of Comparative Example 3. Comparative sample 3 was obtained. The CV value and initial permeability μi of Comparative Sample 3 were calculated by the method described in Example 1. The CV value was 65% and the initial permeability μi was 330.
比較例4
フェライト粉末として、平均粒径=6μm、初透磁率μi=400のものを用いた以外は、実施例1と同様の条件及びプロセスにより、比較例サンプル4を得た。そして、実施例1で説明した手法により、比較例サンプルのCV値及び初透磁率μiを算出したところ、CV値は50%以下であるが、初透磁率μiは300であった。
表1に以上の結果をまとめて示してある。
Comparative Example 4
Comparative Example Sample 4 was obtained under the same conditions and process as Example 1 except that ferrite powder having an average particle size of 6 μm and an initial permeability of μi = 400 was used. Then, when the CV value and the initial permeability μi of the comparative example sample were calculated by the method described in Example 1, the CV value was 50% or less, but the initial permeability μi was 300.
Table 1 summarizes the above results.
これに対して、CV値が50%以下である実施例サンプル1〜4の何れも、基準となるフェライト粉末の初透磁率μi=400からの劣化が見られない。データの表示は省略するが、フェライト粉末100wt%に対して、熱可塑性樹脂5〜10wt%、ワックス5〜10wt%の割合で混合し、混合物を、加熱下で、分散度50%以下となるように混練したところ、同様の結果が得られた。また、フェライト粉末としては、Ni-Zn系のほか、Mn-Zn系、Mg-Zn系など、各種のものを用いることができ、同様の効果を得ることができる。 On the other hand, none of the example samples 1 to 4 having a CV value of 50% or less shows deterioration from the initial permeability μi = 400 of the reference ferrite powder. Although the data display is omitted, with respect to 100 wt% of the ferrite powder, the thermoplastic resin is mixed at a ratio of 5 to 10 wt% and the wax is 5 to 10 wt%, and the mixture is heated to a degree of dispersion of 50% or less. When kneaded, the same results were obtained. As the ferrite powder, various types such as Ni-Zn, Mn-Zn and Mg-Zn can be used, and the same effect can be obtained.
以上、好ましい実施例を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。 Although the contents of the present invention have been specifically described above with reference to the preferred embodiments, it is obvious that those skilled in the art can take various modifications based on the basic technical idea and teachings of the present invention. It is.
Claims (3)
フェライト粉末と、熱可塑性樹脂と、ワックスとを準備し、
前記フェライト粉末100wt%に対して、前記熱可塑性樹脂5〜10wt%、前記ワックス5〜10wt%の割合で混合し、
混合物を、加熱下で、分散度50%以下となるように混練し、
混練物を用いて射出成型し、
その後、焼成する
工程を含むフェライトコアの製造方法。 A method of manufacturing a ferrite core,
Prepare ferrite powder, thermoplastic resin, and wax,
With respect to 100 wt% of the ferrite powder, the thermoplastic resin is mixed at a ratio of 5 to 10 wt% and the wax of 5 to 10 wt%,
The mixture is kneaded under heating so that the dispersity is 50% or less,
Injection molding using the kneaded material,
Then, the manufacturing method of the ferrite core including the process of baking.
It is a manufacturing method of the ferrite core described in Claim 1 or 2, Comprising: The said ferrite powder is a manufacturing method in which the average particle diameter exists in the range of 0.5-5 micrometers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005100944A JP2006282412A (en) | 2005-03-31 | 2005-03-31 | Method for manufacturing ferrite core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005100944A JP2006282412A (en) | 2005-03-31 | 2005-03-31 | Method for manufacturing ferrite core |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006282412A true JP2006282412A (en) | 2006-10-19 |
Family
ID=37404714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005100944A Pending JP2006282412A (en) | 2005-03-31 | 2005-03-31 | Method for manufacturing ferrite core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006282412A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013005476A1 (en) * | 2011-07-01 | 2013-01-10 | Tdk株式会社 | Composition for injection molding and method for producing same |
JP2018513624A (en) * | 2015-03-31 | 2018-05-24 | エプコス アクチエンゲゼルシャフトEpcos Ag | Antenna device |
DE102021103280A1 (en) | 2020-02-14 | 2021-08-19 | Tdk Corporation | MANUFACTURING METHOD OF A COMPOSITE MATERIAL AND COMPOSITE MATERIAL MANUFACTURED WITH IT |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05116118A (en) * | 1991-10-28 | 1993-05-14 | Sumitomo Metal Mining Co Ltd | Injection molding processing method |
JPH0620858A (en) * | 1992-05-07 | 1994-01-28 | Sony Corp | Manufacture of ferrite core by injection molding |
JPH07142228A (en) * | 1992-10-31 | 1995-06-02 | Sony Corp | Ferrite resin |
JP2003342608A (en) * | 2002-05-20 | 2003-12-03 | Mitsui Mining & Smelting Co Ltd | Composition for injection molding |
-
2005
- 2005-03-31 JP JP2005100944A patent/JP2006282412A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05116118A (en) * | 1991-10-28 | 1993-05-14 | Sumitomo Metal Mining Co Ltd | Injection molding processing method |
JPH0620858A (en) * | 1992-05-07 | 1994-01-28 | Sony Corp | Manufacture of ferrite core by injection molding |
JPH07142228A (en) * | 1992-10-31 | 1995-06-02 | Sony Corp | Ferrite resin |
JP2003342608A (en) * | 2002-05-20 | 2003-12-03 | Mitsui Mining & Smelting Co Ltd | Composition for injection molding |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013005476A1 (en) * | 2011-07-01 | 2013-01-10 | Tdk株式会社 | Composition for injection molding and method for producing same |
CN104321291A (en) * | 2011-07-01 | 2015-01-28 | Tdk株式会社 | Composition for injection molding and method for producing same |
CN104321291B (en) * | 2011-07-01 | 2016-04-06 | Tdk株式会社 | Use in injection molding composition and manufacture method thereof |
JP2018513624A (en) * | 2015-03-31 | 2018-05-24 | エプコス アクチエンゲゼルシャフトEpcos Ag | Antenna device |
US10333204B2 (en) | 2015-03-31 | 2019-06-25 | Epcos Ag | Antenna component having a magnetic core and a plurality of electrical conductors |
DE102021103280A1 (en) | 2020-02-14 | 2021-08-19 | Tdk Corporation | MANUFACTURING METHOD OF A COMPOSITE MATERIAL AND COMPOSITE MATERIAL MANUFACTURED WITH IT |
JP2021126836A (en) * | 2020-02-14 | 2021-09-02 | Tdk株式会社 | Manufacturing method of composite material |
JP7469901B2 (en) | 2020-02-14 | 2024-04-17 | Tdk株式会社 | Composite manufacturing methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014216495A (en) | Soft magnetic material composition, magnetic core, coil type electronic component, and process of manufacturing compact | |
JP2011192729A (en) | Metallic magnetic material powder, composite magnetic material containing the metallic magnetic material powder, and electronic component using composite magnetic material | |
CN103943296A (en) | Soft magnetic body composition, manufacturing method thereof, magnetic core, and coil-type electronic component | |
JPH10208926A (en) | Ferrite material, production thereof and deflection yoke core employing ferrite material | |
JP2006282412A (en) | Method for manufacturing ferrite core | |
JP2006206415A (en) | Ferrite, electronic component and method of manufacturing the same | |
KR101607758B1 (en) | Soft magnetic material composition and manufacturing method thereof, magnetic core, and, coil type electronic component | |
JP6620643B2 (en) | Compacted magnetic body, magnetic core and coil type electronic parts | |
JP3838749B2 (en) | Soft magnetic resin composition | |
JP2005330161A (en) | Ferrite material | |
JP5734078B2 (en) | Ferrite sintered body and noise filter including the same | |
JP2008251848A (en) | NiMnZn-BASED FERRITE AND ITS MANUFACTURING METHOD | |
JPH11335160A (en) | Production of oxide magnetic substance | |
JP2007269503A (en) | Ni-Cu-Zn BASED FERRITE MATERIAL AND METHOD OF MANUFACTURING THE SAME | |
JP2010215453A (en) | NiCuZn FERRITE | |
JP2015028198A (en) | Soft magnetic material composition, method for producing the same, magnetic core and coil-type electronic component | |
JP2006206420A (en) | Ferritic sintered compact, its production method and coil component | |
WO2022070634A1 (en) | MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME | |
JP3446082B2 (en) | Mn-Zn ferrite and method for producing the same | |
JP2005240138A (en) | Soft magnetic metal powder, composite insulating magnetic composition and electronic component | |
JP2010111545A (en) | Ferrite composition and inductor | |
JP2010215454A (en) | NiCuZn FERRITE | |
JP2006213531A (en) | Manganese-cobalt-zinc-based ferrite | |
JP7117447B1 (en) | Method for producing zirconia setter and MnZn ferrite | |
JP2008184364A (en) | Oxide magnetic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080910 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081107 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100818 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101215 |