JP4108181B2 - Circuit breaker - Google Patents

Circuit breaker Download PDF

Info

Publication number
JP4108181B2
JP4108181B2 JP11887698A JP11887698A JP4108181B2 JP 4108181 B2 JP4108181 B2 JP 4108181B2 JP 11887698 A JP11887698 A JP 11887698A JP 11887698 A JP11887698 A JP 11887698A JP 4108181 B2 JP4108181 B2 JP 4108181B2
Authority
JP
Japan
Prior art keywords
contact
mover
movable
support shaft
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11887698A
Other languages
Japanese (ja)
Other versions
JPH11312443A (en
Inventor
潤一 桧垣
淳一 川上
広史 岡下
康司 宇治川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11887698A priority Critical patent/JP4108181B2/en
Publication of JPH11312443A publication Critical patent/JPH11312443A/en
Application granted granted Critical
Publication of JP4108181B2 publication Critical patent/JP4108181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Breakers (AREA)
  • Contacts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回路遮断器、詳しくは、第1の端子と、第2の端子と、前記第1の端子に接触可能な可動子と、前記可動子と第2の端子とを接続する導体と、前記可動子の軸穴に貫通し当該可動子を回動自在に支持する支持軸を有し当該軸を変位させて前記可動子の可動接点を前記第1の端子の固定接点に接触可能に揺動させる揺動機構部と、閉路状態において可動接点を固定接点に接触させるための弾発部材とを備えた回路遮断器の可動子の構造に関する。
【0002】
【従来の技術】
従来の配線用の回路遮断器の一例を図14乃至図16に示す。
図14は特開平5−303930号公報に開示された開路状態を示す側面図、図15はその閉路状態を示す側面図、図16は閉路状態での可動子と第1の端子の固定子との接触状態を示す拡大側面図である。
図中の符号50は回路遮断器の本体、51は第1の端子、57は第2の端子、54は第1の端子51に接触可能な可動子、56は可動子54と第2の端子57とを接続する可撓性を備えた導体、58は可動子54の軸穴54Hを貫通してこの可動子54を回動自在に支持する支持軸、59は揺動レバーにして、支持軸58を変位させて可動子54の可動接点53を第1の端子51の固定接点52に接触可能に揺動させる揺動機構部の構成部材、55は閉路状態において可動接点53を固定接点52に接触させるための弾発部材として作用する接圧バネである。尚、図中の符号60は揺動機構部の構成部材としてのレバーアームであり、レバーアームの中心が回路遮断器50の本体に、レバーアームの一部が揺動レバー59にそれぞれ回転結合されている。又、符号62は揺動機構部の構成部材としての可動子アームであり、支持軸58を保持する可動子アームである。
【0003】
図14に示す開路状態において、レバーアーム60に図示の矢印Aの方向への回転変位を与えると、揺動レバー59が支持軸58を押し込んで可動子54を第1の端子51方向(図上、右方向)へと変位させる。この回転変位に応じて、可動子アーム62はその支点62aを中心として時計回り方向へと回転移動して行き、可動子54の可動接点53が第1の端子51の固定接点52と接触して停止する。この停止状態でレバーアーム60は図示しないロック手段、例えばラッチ機構等によりロックされる。
【0004】
図15において、レバーアーム60がロックされると、支持軸58は変位できず、その位置が固定されるが、この支持軸58に回動自在に支持されている可動子54は、弾発部材としての上記接圧バネ55の反発力により、当該支持軸58を中心にして時計回り方向への回転力を受けて、可動接点53と固定接点52との接触静止状態が維持される。
即ち、この弾発部材としての接圧バネ55は、レバーアーム60の矢印A方向への回転変位によって、揺動レバー59の支持軸58が押し込まれて行くに従い、可動子54の可動接点53を第1の端子51の固定接点52へ圧接する方向への弾発力即ち反発力が次第に蓄積されて行いくため、上記の停止状態、即ち、ロックされた閉路状態下では、その反発力によって、可動接点53を固定接点52へ常時圧接することになる。
以上のような一連の動作により、回路遮断器50は図14の開路状態から図15の閉路状態となる。
【0005】
図17は、要部を水平断面で示した図16の平面図であり、回路遮断器50の可動接点53が固定接点52に対して接触して静止した理想的な状態を示したものである。尚、可動子54に穿たれている軸穴54Hの内周面とこれを貫通する支持軸58の外周面との間隙(クリアランス)の実際は0.5〜0.6mm程度であって目視できない程であるが、説明の都合上、誇張して図示してある。
【0006】
図17中の符号54Fは支持軸58に当接する可動子54の対軸接触面、即ち、支持軸58の外周側面に当接する軸穴54Hの内周面の接触部分を示し、符号58Fは可動子54に当接する支持軸58の対穴接触面、即ち、軸穴54Hの内周面に当接する支持軸58の外周面の接触部分を示す。又、符号53Fは固定接点52に当接する可動接点53の可動接点接触面を示し、符号52Fは可動接点53に当接する固定接点52の固定接点接触面を示す。又、符号63と符号64とは可動子54の支持軸58方向への変位を規制するため可動子54の両側に配置されたストッパである。
【0007】
さて、この図17に示す可動接点53と固定接点52とは理想的な接触状態をしており、両者の可動接点接触面53Fと固定接点接触面52Fとの投影面は図17のS1に示すように全面的に面接触している。
しかしながら、このような理想的状態で接触させるためには、可動子54の対軸接触面54Fと可動接点接触面53Fとの平行、及び支持軸58の対穴接触面58Fと固定接点接触面52Fとの平行とが必要となる。
このため、従来では、高精度な部品が必要である上、誤差をなくす緻密な組み立て作業が必要となり、これらが大幅なコストアップの要因となっていた。
【0008】
図18は、従来の回路遮断器の可動子54と第1の端子51との不良接触状態を示す水平断面図であり、精度不良部品での組み立てや、高精度な部品であっても組み立て誤差によって生ずる可動子54の対軸接触面54Fと可動接点53の可動接点接触面53Fとが平行でない場合を示す。尚、図17と同一部分には、それぞれ同一符号を付して説明を省略する。
この状態では、可動接点接触面53Fと固定接点接触面52Fとは片当たり状態となり、両者の可動接点接触面53Fと固定接点接触面52Fの投影面は、図18のS2に示すよう一部が接触するのみで、接触面積は大幅に減少する。
【0009】
図19は、従来の回路遮断器の可動子54と第1の端子51との不良接触状態を示す水平断面図であり、精度不良部品での組み立てや高精度な部品であっても組み立て誤差によって生ずる支持軸58の対穴接触面58Fと固定接点52の固定接点接触面52Fとが平行でない場合を示す。尚、図17と同一部分には、それぞれ同一符号を付して説明を省略する。
この状態でも、可動接点接触面53Fと固定接点接触面52Fとは片当たり状態となり、両者の可動接点接触面53Fと固定接点接触面52Fとの投影面は図19S3に示すように一部が接触するのみで、これも接触面積が大幅に減少する。
【0010】
【発明が解決しようとする課題】
従来の回路遮断器の可動子構造では、可動子54の対軸接触面54Fと可動接点接触面53Fとの平行や、支持軸58の対穴接触面58Fと固定接点接触面52Fとの平行等が失われると、閉路時に、可動接点接触面53Fと固定接点接触面52Fとが片当たり状態となるため、両者の可動接点接触面53Fと固定接点接触面52Fとの接触面積が大幅に減少して、接触抵抗が大きくなる。
従って、ジュール熱の発生により大幅な温度上昇を生じてしまい、大型部品を使わざるを得ず、これが回路遮断器の小形化の妨げとなる、という問題点があった。
【0011】
他方、可動子54の対軸接触面54Fと可動接点接触面53Fとの平行や、支持軸58の対穴接触面58Fと固定接点接触面52Fとの平行等を確保しようとすると、回路遮断器の各構成部品の精度を高くする必要がある上、精密な組付け作業を行わねばならず、これのため、材料費や加工費、組み立て費等が高くなるという問題があった。
【0012】
本発明は、このような問題の解決を目的とし、部品に精度不良があったり、組み立て誤差が生じても、可動子の対軸接触面と可動接点接触面との平行や、支持軸の対穴接触面と固定接点接触面との平行を確保できる回路遮断器の提供を目的とする。
【0013】
【課題を解決するための手段】
請求項1の発明は、第1の端子と、第2の端子と、前記第1の端子に接触可能な可動子と、前記可動子と第2の端子とを接続する導体と、前記可動子の軸穴に貫通し当該可動子を回動自在に支持する支持軸を有し当該支持軸を変位させて前記可動子の可動接点を前記第1の端子の固定接点に接触可能に揺動させる揺動機構部と、閉路状態において可動接点を固定接点に接触させるための弾発部材とを備えた回路遮断器において、閉路作動中、前記可動子の可動接点の可動接点接触面が前記第1の端子の固定接点の固定接点接触面と接触する際、当該固定接点接触面に対面する可動接点接触面が前記支持軸の軸方向に揺動自在となるよう、前記可動子の軸穴の内周面に接触する前記支持軸の中央部分を当該支持軸の両端部軸受部分と一旦分断した上で当該両端部軸受部分と前記中央部分の両端部とを連結し、前記両端部軸受部分と前記中央部分の両端部との連結は回動自在な連結としたことを特徴とする。
【0020】
請求項の発明は、第1の端子と、第2の端子と、前記第1の端子に接触可能な可動子と、前記可動子と第2の端子とを接続する導体と、前記可動子の軸穴に貫通し当該可動子を回動自在に支持する支持軸を有し当該支持軸を変位させて前記可動子の可動接点を前記第1の端子の固定接点に接触可能に揺動させる揺動機構部と、閉路状態において可動接点を固定接点に接触させるための弾発部材とを備えた回路遮断器において、閉路作動中、前記可動子の可動接点の可動接点接触面が前記第1の端子の固定接点の固定接点接触面と接触する際、当該固定接点接触面に対面する可動接点接触面が前記支持軸の軸方向に揺動自在となるよう、前記可動子の軸穴の内周面に接触する前記支持軸の中央部分を当該支持軸の両端部軸受部分と一旦分断した上で当該両端部軸受部分と前記中央部分の両端部とを連結し、前記両端部軸受部分と前記中央部分の両端部との連結は少なくとも相対的に水平方向へ回動自在な連結としたことを特徴とする。
【0022】
請求項の発明は、請求項1又は請求項2に記載の回路遮断器において、可動子の可動接点は支持軸の軸方向に間隔を置いて2個配設したことを特徴とする。
【0023】
【発明の実施の形態】
実施の形態1.
この実施の形態1に示す発明は、例えば図14に示したような、第1の端子51と、第2の端子57と、この第1の端子51に接触可能な可動子54と、この可動子54と第2の端子52とを接続する可撓性を備えた導体56と、可動子54の軸穴54Hに貫通してこの可動子54を回動自在に支持する支持軸58を有しこの支持軸58を変位させて可動子54の可動接点53を第1の端子51の固定接点52に接触可能に揺動させる揺動機構部と、閉路状態において可動接点53を固定接点52に接触させるための弾発部材として作用する接圧バネ55とを備えた回路遮断器に関するものであって、閉路作動中において、可動子54の可動接点53の可動接点接触面53Fが、第1の端子51の固定接点52の固定接点接触面52Fと接触する際に、固定接点接触面52Fに対面する可動接点接触面53Fが支持軸58の軸方向に揺動自在となるよう、支持軸58と接触する可動子54の軸穴54Hの内周面に案内面を形成したものである。
【0024】
図1乃至図5において、この実施の形態1を示す。図1は可動接点53と第1の端子51の固定接点52とが接触した瞬間を示す水平断面図、図2は図1の側面図、図3は可動接点53と第1の端子51の固定接点52とが理想的に接触した静止状態を示す水平断面図、図4は可動接点53と第1の端子51の固定接点52とが接触した瞬間の力の作用方向を示す平面図、図5は可動接点53と第1の端子51の固定接点52とが接触して静止した後の力の釣り合いを示す平面図である。
【0025】
図1乃至図5において、符号54Xは、可動子54の軸穴54Hの内周面に形成された案内面である。この案内面54Xは、軸穴54Hの両端側の穴縁を削って穴を拡げ、支持軸58の軸方向の断面形状即ち水平断面において、当該案内面54Xが、軸穴54Hの長さ方向中央に向かって凸形をなすように形成したものである。図1では弧状に形成されているが、半径Rの円弧を描くようR形状に形成してもよい。
【0026】
このように、支持軸58と接触する可動子54の軸穴54Hの内周面に案内面54Xを形成すると、閉路時に、可動接点53と固定接点52とが片当たり状態になると、接圧バネ55が可動子54に与えている付勢力により、可動子54が揺動して、片当たり状態が解消され、可動接点接触面53Fと固定接点接触面52Fとが面接触して両者の接触面積が最大となる。
【0027】
これを図1乃至図5に基づいて説明する。
先ず図1は、閉路時、対穴接触面58Fと固定接点接触面52Fとが、公差や組み立て誤差などにより平行でないと、可動接点接触面53Fと固定接点接触面52Fとが接触した瞬間は、図1のような片当たりの状態となり、この時の両者が接触した投影面は図1のS4に示す通り極めて小となってしまう。
【0028】
図4は図1の状態における力関係を表したもので、図中のF1は支持軸58が可動子54に対して及ぼす力を、F2は固定接点接触面52Fが可動接点接触面53Fに対して及ぼす力を示している。この時、力F2は、従来と同様に、可動接点接触面53Fと固定接点接触面52Fとが片当たりしている箇所に発生する。
しかしながら、支持軸58と接触する可動子54の軸穴54Hの内周面に凸型形状に形成された案内面54Xにより、従来とは異なって、力F1が、支持軸58の対穴接触面58Fと、可動子54の軸穴54Hの内周面との間に発生する。こうして発生した力F1と力F2との合力は、案内面54Xの作用によって、固定接点接触面52Fと可動接点接触面53Fとの片当たりを解消するような方向、即ち、支持軸58の軸方向への揺動を促す回転力Mとなる。
【0029】
この回転力Mの発生により可動子54は、回転力Mの矢印方向に揺動即ち回転し始める。可動子54は、力F1及び力F2が同一直線上となったところで静止し、図3の状態となる。この時、両者が接触した投影面は図3のS5に示す通り、全面的に面接触したものとなり、図1のS4に比べて大幅に接触面積が増加する。図5はこの時の力のつり合い状態を表し、力F1と力F2は同一直線上となり回転力Mはなくなる。
【0030】
以上のように、軸穴54Hの内周面に凸型形状に形成された案内面54Xによって、可動子54が揺動動作を促され、固定接点52の固定接点接触面52Fと可動接点接触面53Fとが全面的に面接触することで両者の接触面積は最大となり、接触抵抗が低減する。
【0031】
尚、図示の例では、案内面54Xは支持軸58と接触する可動子54の軸穴54Hの内周面に形成してあるが、内周面の全周にわたって当該案内面54Xを形成してもよい(図示せず)。全周にわたって形成する方が加工作業がし易くなる点で有利である。
【0032】
実施の形態2.
図6は、実施の形態2を示したもので、軸穴54Hの内周面に凸型形状に形成される案内面54Xを、水平断面において、多角形形状としたものである。多角形形状としては円弧等の弧に極めて近い無数の辺から成るものから三角形形状(対軸接触面54Fに三角形の2辺が表れる形状)のものまであるが、図は、対軸接触面54Fに3辺が表れる多角形を形成した例である。
この場合も、上記実施の形態1で説明したのと同様に、閉路時に可動接点接触面53Fと固定接点接触面52Fとが片当たり状態になると、ある程度の角度で可動子54が揺動して片当たり状態が解消され、可動接点接触面53Fと固定接点接触面52Fとが全面的に面接触して両者の接触面積は最大となり、接触抵抗が低減する。両者の接触の投影面は図6のS7に示す通りである。
尚、図7の側面図から分かるように、この実施の形態2では、可動子54の軸穴54Hの内周面の両縁の全周にわたって案内面54Xが形成されている。
【0033】
実施の形態3.
図8は、実施の形態3を示したもので、閉路作動中において、可動子54の可動接点53の可動接点接触面53Fが,第1の端子51の固定接点52の固定接点接触面52Fと接触する際に、固定接点接触面52Fに対面する可動接点接触面53Fが支持軸58の軸方向に揺動自在となるよう、可動子54の軸穴54Hの内周面と接触する支持軸58の接触面側、即ち、支持軸58の対穴接触面58Fに案内面58Xを形成したものである。
この案内面58Xは、図8、図9から分かるように、支持軸58の対穴接触面58Fを膨出形成したもので、支持軸58の軸方向の断面即ち水平断面において、当該案内面58Xが軸穴54Hの長さ方向中央に向かって凸形をなすように形成されている。図では弧状に形成されているが、半径Rの円弧を描くようR形状に形成してもよい。
【0034】
このように、可動子54の軸穴54Hの内周面と接触する支持軸58の接触面側に案内面58Xを形成すると、上記実施の形態1で説明したのと同様に、閉路時に、可動接点接触面53Fと固定接点接触面52Fとが片当たり状態になると、接圧バネ55が可動子54に与えている付勢力により、可動子54が支持軸58の軸方向に揺動して、片当たり状態が解消され、可動接点接触面53Fと固定接点接触面52Fとが全面的に面接触して両者の接触面積が最大となり、接触抵抗が低減する。両者の接触の投影面は図8のS9に示す通りである。
支持軸58に形成される凸型形状の案内面58Xは、当該案内面54Xの軸方向の断面形状が、軸穴54Hの長さ方向の中央が可動子54の内周面へ向かって凸形をなすように形成したもので、図では弧状に形成されているが、実施の形態2で説明したような、半径Rの円弧を描くようR形状に形成してもよいし、多角形形状に形成してもよい。
尚、図示の例では、案内面58Xは支持軸58の対穴接触面58Fの領域を膨出形成してあるが、可動子54の軸穴54Hの内周面と接触する支持軸58の外周面の全周にわたって当該案内面558Xを形成してもよい(図示せず)。
【0035】
実施の形態4.
図10は、実施の形態4を示すもので、閉路作動中において、可動子54の可動接点53の可動接点接触面53Fが,第1の端子51の固定接点52の固定接点接触面52Fと接触する際に、固定接点接触面52Fに対面する可動接点接触面53Fが支持軸58の軸方向に揺動自在となるよう、可動子54の軸穴54Hの内周面に接触する支持軸58の中央部分58C、換言すれば、少なくとも軸穴54Hに収まっている軸部分を、軸穴54Hに収まっていない支持軸58の両端側の軸受部分58S,58Tとに一旦3つに分断した上で、当該両端軸受部分58S,58Tと中央部分58Cの両端部とを回動自在に連結して一本の支持軸58として構成したものである。
【0036】
両端部軸受部分58S、58Tと中央部分58Cの両端部との連結は、自在継手のような連結構造にして回動自在としてもよいが、少なくとも、閉路作動中において、可動子54の可動接点53の可動接点接触面53Fが,第1の端子51の固定接点52の固定接点接触面52Fと接触する際に、可動子54が支持軸58の軸方向に揺動できるよう、相対的にほぼ水平方向へ回動自在な連結としておく必要がある。
【0037】
図11は図10の側面図、図12は両端部軸受部分58Sと中央部分58Cとの連結構造の一例を示すもので、図12から分かるように、中央部分58Cは両端部軸受部分58S、58Tに対して、水平方向へ回動自在(図10の矢印A)となるようピン71、74にて枢着されている。尚、図10の矢印Bは、中央部分58Cの回動運動に伴う両端部軸受部分58S、58Tのいずれか一方側の逃げ、即ち軸方向の摺動運動を示したものであるが、実際には、極めて僅かな摺動であるため、通常の組付けや組立において構造上自然に生じる間隙にて十分吸収し得るであろう。
【0038】
尚、本発明における支持軸58は、その両側の軸受に対して、回動自在であっても回動不能であっても差し支えないが、図10、図12に示す例のように、中央部分58Cが両端部軸受部分58S、58Tに対して、水平方向へ回動自在(図10の矢印A)に構成されている場合には、両端部軸受部分58S、58Tの少なくとも一方側は軸受に対して回動不能とする方が、当該支持軸58の作動を円滑にさせる上からは好ましい。
【0039】
このように、閉路作動中、可動子54の可動接点53の可動接点接触面53Fが第1の端子51の固定接点52の固定接点接触面52Fと接触する際、当該固定接点接触面52Fに対面する可動接点接触面53Fが支持軸58の軸方向に揺動自在となるよう、可動子54の軸穴54Hの内周面に接触する支持軸58の中央部分58Cを当該支持軸58の両端軸受部分58S、58Tと一旦分断した上で当該両端軸受部分58S、58Tと中央部分58Cの両端部とを連結した構造にすると、上記実施の形態1で説明したのとほぼ同様に、閉路時に、可動接点接触面53Fと固定接点接触面52Fとが片当たり状態になると、接圧バネ55が可動子54に与えている付勢力により、例えば、可動子54に穿たれた軸穴54Hの内周面の精度不良による軸方向の傾に応じて支持軸58の連結部分が回動して支持軸58の中央部分58Cが両端軸受部分58S,58Tに対し、支持軸58が全体として屈曲することにより、可動子54が揺動して、片当たり状態が解消され、可動接点接触面53Fと固定接点接触面52Fとが面接触して両者の接触面積が最大となり、接触抵抗が低減する。両者の接触の投影面は図10のS10に示す通りである。
【0040】
実施の形態5.
図13は、実施の形態5を示すもので、上記実施の形態1に示す可動子54の構造において、更に、可動子54の可動接点53として2つの可動接点53A,53Bを用意し、この2つの可動接点53A,53Bを、固定接点接触面52Fに面した可動子54の所定の面に、支持軸58の軸方向に適当な間隔を置いて、固定接点接触面52Fと面接触するように配設したものである。
この構成では、可動子54が固定接点接触面52Fに接触した瞬間には、片当たり状態となるが、その瞬間、実施の形態1の場合と同様に、軸穴54Hの内周面に凸型形状に形成された案内面54Xによって、可動子54が揺動動作を促され、固定接点52の固定接点接触面52Fと2つの可動接点53A,53Bの可動接点接触面53Fとが2点、即ち2面にて安定して面接触することで両者の接触面積は最大となり、接触抵抗が低減する。両者の接触する投影面は図13のS8に示す通りである。
尚、この場合、2つの可動接点53A,53Bの可動接点接触面を、1つの場合に比べて比較的大きな面積となるよう形成しておくと、接触面積を大きく、例えば2倍に拡大することができるので、接触抵抗を小さくすることができ、その改善が見込める。
【0041】
図13では、実施の形態1の場合を示したが、実施の形態2乃至4のいずれにおいても、可動子54の可動接点53として、2つの可動接点53A,53Bを用意し、この2つの可動接点53A,53Bを、固定接点接触面52Fに面した可動子54の所定の面に、支持軸58の軸方向に適当な間隔を置いて、固定接点接触面52Fと面接触するように配設しても、同様の作用効果が得られる。
【0042】
【発明の効果】
請求項1及び請求項の発明は、いずれも、可動子の対軸接触面と可動接点接触面との平行や、支持軸の対穴接触面と固定接点接触面との平行等が、部品の精度不良や組立て誤差等によって失われたとしても、閉路作動において、可動接点接触面と固定接点接触面とが接触した瞬間に片当たり状態になっても、瞬時に、両者の接触面が面接触する方向への回転力が可動子に与えられ、片当たり状態が瞬時に解消されて両者は面接触し、その接触面積は最大となる。この結果、ジュール熱の発生が大幅に抑制されるため、従来のものに比べて、法規による規格指定内において、小さな構成部品を使用することができるので、従来のものに比べて、小形で温度上昇が小さい高性能の回路遮断器を提供することができる。
又、従来に比べて、構成部品に高精度の加工や誤差のない緻密な組立て作業を必要としないので、高性能であるにも拘わらず廉価な回路遮断器を提供することができる。
【0043】
請求項の発明は、2つの可動接点を有するので、上記の請求項1及び請求項の発明による作用効果に加え、接触抵抗やジュール熱の発生を大幅に低減することができる。例えば、接触面積を2倍に拡大すると、接触抵抗が1/2となるから、ジュール熱の発生も1/2とすることができ、従来と同様な性能を発揮するにも拘わらず、一段と小形で温度上昇が小さい高性能の回路遮断器を提供できる。
【図面の簡単な説明】
【図1】 可動接点と第1の端子の固定接点とが接触した瞬間を示す水平断面図である。
【図2】 図1の側面図である。
【図3】 可動接点と第1の端子の固定接点とが理想的に接触した静止状態を示す水平断面図である。
【図4】 可動接点と第1の端子の固定接点とが接触した瞬間の力の作用方向を示す平面図である。
【図5】 可動接点と第1の端子の固定接点とが接触して静止した後の力の釣り合いを示す平面図である。
【図6】 実施の形態2を示した水平断面図である。
【図7】 図6の側面図である。
【図8】 実施の形態3を示した水平断面図である。
【図9】 図8の側面図である。
【図10】 実施の形態4を示した水平断面図である。
【図11】 図10の側面図である。
【図12】 両端部軸受部分と中央部分との連結構造の一例を示す図である。
【図13】 実施の形態5を示した水平断面図である。
【図14】 従来の回路遮断器の開路状態を示す側面図である。
【図15】 従来の回路遮断器の閉路状態を示す側面図である。
【図16】 閉路状態での可動子と第1の端子の固定子との接触状態を示す拡大側面図である。
【図17】 図16の要部を一部断面で示した水平断面である。
【図18】 従来の回路遮断器の可動子と第1の端子との不良接触状態を示す水平断面図である。
【図19】 従来の回路遮断器の可動子と第1の端子との不良接触状態を示す水平断面図である。
【符号の説明】
50 回路遮断器、51 第1の端子、52 固定接点、52F 固定接点接触面、53 可動接点、53F 可動接点接触面、54 可動子、54F 対軸接触面、54H 軸穴、54X 案内面、55 弾発部材(接圧バネ)、56 導体、57 第2の端子、58 支持軸、58C 中央部分、58F 対穴接触面、58S,58T 両端部軸受部分、58X 案内面、S1〜S10 投影面。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit breaker, more specifically, a first terminal, a second terminal, a movable element that can contact the first terminal, and a conductor that connects the movable element and the second terminal. A support shaft that passes through the shaft hole of the mover and rotatably supports the mover so that the shaft can be displaced so that the movable contact of the mover can come into contact with the fixed contact of the first terminal. The present invention relates to a structure of a mover of a circuit breaker including a swinging mechanism section that swings and a resilient member for bringing a movable contact into contact with a fixed contact in a closed state.
[0002]
[Prior art]
An example of a conventional circuit breaker for wiring is shown in FIGS.
FIG. 14 is a side view showing an open circuit state disclosed in Japanese Patent Laid-Open No. 5-303930, FIG. 15 is a side view showing the closed circuit state, and FIG. 16 is a diagram showing a movable element and a first terminal stator in the closed state. It is an enlarged side view which shows the contact state.
In the figure, reference numeral 50 denotes a circuit breaker main body, 51 denotes a first terminal, 57 denotes a second terminal, 54 denotes a movable element that can contact the first terminal 51, and 56 denotes a movable element 54 and a second terminal. 57 is a flexible conductor for connecting to 57, 58 is a support shaft for rotatably supporting the mover 54 through the shaft hole 54H of the mover 54, 59 is a swing lever, 58 is a constituent member of a swing mechanism that swings the movable contact 53 of the mover 54 so that the movable contact 53 can come into contact with the fixed contact 52 of the first terminal 51, and 55 is a movable contact 53 in the closed state. It is a contact pressure spring that acts as a resilient member for contact. Reference numeral 60 in the figure denotes a lever arm as a constituent member of the swing mechanism, and the center of the lever arm is rotationally coupled to the body of the circuit breaker 50 and a part of the lever arm is pivotally coupled to the swing lever 59. ing. Reference numeral 62 denotes a mover arm as a constituent member of the swinging mechanism portion, which is a mover arm that holds the support shaft 58.
[0003]
In the open circuit state shown in FIG. 14, when the lever arm 60 is rotationally displaced in the direction of the arrow A shown in the figure, the swing lever 59 pushes the support shaft 58 to move the movable element 54 toward the first terminal 51 (in the drawing). To the right). In response to this rotational displacement, the mover arm 62 rotates clockwise about its fulcrum 62a, and the movable contact 53 of the mover 54 contacts the fixed contact 52 of the first terminal 51. Stop. In this stopped state, the lever arm 60 is locked by a locking means (not shown) such as a latch mechanism.
[0004]
In FIG. 15, when the lever arm 60 is locked, the support shaft 58 cannot be displaced and its position is fixed. However, the movable element 54 that is rotatably supported by the support shaft 58 is a resilient member. By the repulsive force of the contact pressure spring 55 as described above, a rotational force in the clockwise direction about the support shaft 58 is received, and the contact stationary state between the movable contact 53 and the fixed contact 52 is maintained.
That is, the contact pressure spring 55 as the elastic member moves the movable contact 53 of the movable element 54 as the support shaft 58 of the swing lever 59 is pushed by the rotational displacement of the lever arm 60 in the arrow A direction. Since the repulsive force, that is, the repulsive force in the direction in which the first terminal 51 is pressed against the fixed contact 52 is gradually accumulated, the repulsive force in the above-described stop state, that is, in the locked closed circuit state, The movable contact 53 is always in pressure contact with the fixed contact 52.
By the series of operations as described above, the circuit breaker 50 is changed from the open state in FIG. 14 to the closed state in FIG. 15.
[0005]
FIG. 17 is a plan view of FIG. 16 showing the main part in a horizontal cross section, and shows an ideal state where the movable contact 53 of the circuit breaker 50 comes into contact with the fixed contact 52 and is stationary. . Incidentally, the actual clearance (clearance) between the inner peripheral surface of the shaft hole 54H bored in the movable element 54 and the outer peripheral surface of the support shaft 58 passing through the shaft hole 54H is about 0.5 to 0.6 mm and cannot be visually observed. However, it is exaggerated for convenience of explanation.
[0006]
In FIG. 17, reference numeral 54 </ b> F indicates a contact surface portion of the movable element 54 that contacts the support shaft 58, that is, a contact portion of the inner peripheral surface of the shaft hole 54 </ b> H that contacts the outer peripheral surface of the support shaft 58. A contact surface of the support shaft 58 that comes into contact with the child 54, that is, a contact portion of the outer peripheral surface of the support shaft 58 that comes into contact with the inner peripheral surface of the shaft hole 54H is shown. Reference numeral 53F indicates a movable contact contact surface of the movable contact 53 that contacts the fixed contact 52, and reference numeral 52F indicates a fixed contact contact surface of the fixed contact 52 that contacts the movable contact 53. Reference numerals 63 and 64 are stoppers disposed on both sides of the movable element 54 in order to restrict displacement of the movable element 54 in the direction of the support shaft 58.
[0007]
Now, the movable contact 53 and the fixed contact 52 shown in FIG. 17 are in an ideal contact state, and the projection surfaces of both the movable contact contact surface 53F and the fixed contact contact surface 52F are shown in S1 of FIG. So that the entire surface is in contact.
However, in order to make contact in such an ideal state, the counter-axis contact surface 54F of the mover 54 and the movable contact contact surface 53F are parallel to each other, and the counter-hole contact surface 58F of the support shaft 58 and the fixed contact contact surface 52F. It is necessary to be parallel with.
For this reason, conventionally, high-precision parts are required, and precise assembling work that eliminates errors is necessary, which has been a cause of significant cost increase.
[0008]
FIG. 18 is a horizontal sectional view showing a defective contact state between the movable element 54 of the conventional circuit breaker and the first terminal 51, and an assembly error is caused even with an inaccurate part or a highly accurate part. The case where the counter-axis contact surface 54F of the movable element 54 and the movable contact contact surface 53F of the movable contact 53 are not parallel to each other is shown. Note that the same parts as those in FIG.
In this state, the movable contact contact surface 53F and the fixed contact contact surface 52F are in a single contact state, and the projection surfaces of both the movable contact contact surface 53F and the fixed contact contact surface 52F are partially shown as S2 in FIG. Just touching, the contact area is greatly reduced.
[0009]
FIG. 19 is a horizontal sectional view showing a defective contact state between the movable element 54 of the conventional circuit breaker and the first terminal 51, and it is possible to assemble even inaccurate parts or high precision parts due to assembly errors. The case where the contact hole contact surface 58F of the support shaft 58 and the fixed contact contact surface 52F of the fixed contact 52 are not parallel is shown. Note that the same parts as those in FIG.
Even in this state, the movable contact contact surface 53F and the fixed contact contact surface 52F are in a single-contact state, and the projection surfaces of the movable contact contact surface 53F and the fixed contact contact surface 52F are partially in contact as shown in FIG. 19S3. This also greatly reduces the contact area.
[0010]
[Problems to be solved by the invention]
In the conventional mover structure of the circuit breaker, the parallel contact surface 54F and the movable contact contact surface 53F of the mover 54, the parallel contact surface 58F of the support shaft 58 and the fixed contact contact surface 52F, etc. Is lost, the movable contact contact surface 53F and the fixed contact contact surface 52F are in a single-contact state at the time of closing, so that the contact area between the movable contact contact surface 53F and the fixed contact contact surface 52F is greatly reduced. As a result, the contact resistance increases.
Therefore, the generation of Joule heat causes a significant temperature rise, and there is a problem that large parts must be used, which hinders downsizing of the circuit breaker.
[0011]
On the other hand, if the parallel contact surface 54F and the movable contact contact surface 53F of the mover 54 are parallel, the parallel contact surface 58F and the fixed contact contact surface 52F of the support shaft 58 are to be secured, etc. In addition, it is necessary to increase the accuracy of each of the component parts, and it is necessary to perform precise assembly work, which raises a problem that material costs, processing costs, assembly costs, and the like increase.
[0012]
The present invention aims to solve such problems, and even if parts have inaccuracy or an assembly error occurs, the parallel contact surface of the movable element and the contact surface of the movable contact, and the support shaft pair. An object of the present invention is to provide a circuit breaker that can ensure parallelism between the hole contact surface and the fixed contact surface.
[0013]
[Means for Solving the Problems]
The invention according to claim 1 is a first terminal, a second terminal, a mover that can contact the first terminal, a conductor that connects the mover and the second terminal, and the mover. A support shaft that penetrates the shaft hole of the movable member and rotatably supports the mover, and displaces the support shaft to swing the movable contact of the mover so as to be in contact with the fixed contact of the first terminal. In a circuit breaker including a swing mechanism and a resilient member for bringing a movable contact into contact with a fixed contact in a closed state, the movable contact contact surface of the movable contact of the mover is the first during the closing operation. When contacting the fixed contact contact surface of the fixed contact of the terminal, the movable contact contact surface facing the fixed contact contact surface is swingable in the axial direction of the support shaft. The center portion of the support shaft that contacts the inner peripheral surface of the shaft hole of the mover is once divided from both end bearing portions of the support shaft, and then the both end bearing portions and both end portions of the center portion are connected. The connection between the both end bearing portions and the both end portions of the central portion is a rotatable connection. It is characterized by that.
[0020]
Claim 2 The invention includes a first terminal, a second terminal, a mover that can contact the first terminal, a conductor that connects the mover and the second terminal, and a shaft hole of the mover. A swing mechanism that has a support shaft that penetrates through the shaft and rotatably supports the mover, and displaces the support shaft to swing the movable contact of the mover so as to be in contact with the fixed contact of the first terminal. And a resilient member for bringing the movable contact into contact with the fixed contact in a closed state, the movable contact contact surface of the movable contact of the mover is the first terminal during the closing operation. When contacting the fixed contact contact surface of the fixed contact, the movable contact contact surface facing the fixed contact contact surface is swingable in the axial direction of the support shaft on the inner peripheral surface of the shaft hole of the mover. Once the center part of the supporting shaft that comes into contact with the bearing parts at both ends of the supporting shaft is once split, Both end bearing portions and both end portions of the center portion are connected, and the connection between the both end bearing portions and both ends of the center portion is a connection that is at least relatively rotatable in the horizontal direction. To do.
[0022]
Claim 3 The invention of claim 1 Or Claim 2 In the described circuit breaker, two movable contacts of the mover are arranged at intervals in the axial direction of the support shaft.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
The invention shown in the first embodiment includes, for example, a first terminal 51, a second terminal 57, a movable element 54 that can come into contact with the first terminal 51, as shown in FIG. A flexible conductor 56 for connecting the child 54 and the second terminal 52, and a support shaft 58 that passes through the shaft hole 54H of the movable element 54 and rotatably supports the movable element 54. The support mechanism 58 is displaced to swing the movable contact 53 of the mover 54 so that the movable contact 53 can come into contact with the fixed contact 52 of the first terminal 51, and the movable contact 53 contacts the fixed contact 52 in the closed state. The circuit breaker includes a contact pressure spring 55 acting as a resilient member for causing the movable contact point 53F of the movable contact point 53 of the movable element 54 to be the first terminal during the closing operation. Contact with the fixed contact contact surface 52F of the 51 fixed contact 52 When moving, the movable contact contact surface 53F facing the fixed contact contact surface 52F can swing freely in the axial direction of the support shaft 58 on the inner peripheral surface of the shaft hole 54H of the mover 54 in contact with the support shaft 58. A guide surface is formed.
[0024]
1 to 5 show the first embodiment. 1 is a horizontal sectional view showing the moment when the movable contact 53 and the fixed contact 52 of the first terminal 51 come into contact, FIG. 2 is a side view of FIG. 1, and FIG. 3 is a view of fixing the movable contact 53 and the first terminal 51. 4 is a horizontal sectional view showing a stationary state in which the contact 52 is ideally in contact; FIG. 4 is a plan view showing the direction of action of the moment at which the movable contact 53 and the fixed contact 52 of the first terminal 51 are in contact; FIG. 6 is a plan view showing a balance of forces after the movable contact 53 and the fixed contact 52 of the first terminal 51 come into contact with each other and come to rest.
[0025]
1 to 5, reference numeral 54 </ b> X is a guide surface formed on the inner peripheral surface of the shaft hole 54 </ b> H of the mover 54. This guide surface 54X expands the hole by scraping the hole edges on both ends of the shaft hole 54H. In the cross-sectional shape in the axial direction of the support shaft 58, that is, in the horizontal cross section, the guide surface 54X is the center in the length direction of the shaft hole 54H. It is formed so as to form a convex shape. Although it is formed in an arc shape in FIG. 1, it may be formed in an R shape so as to draw an arc having a radius R.
[0026]
As described above, when the guide surface 54X is formed on the inner peripheral surface of the shaft hole 54H of the movable element 54 that comes into contact with the support shaft 58, when the movable contact 53 and the fixed contact 52 are in a single contact state at the time of closing, the contact pressure spring The biasing force applied to the movable element 54 causes the movable element 54 to oscillate, so that the one-sided contact state is eliminated, and the movable contact contact surface 53F and the fixed contact contact surface 52F are brought into surface contact with each other to contact the two. Is the maximum.
[0027]
This will be described with reference to FIGS.
First, FIG. 1 shows that the moment when the movable contact contact surface 53F and the fixed contact contact surface 52F come into contact with each other if the contact surface 58F and the fixed contact contact surface 52F are not parallel due to tolerance or assembly error when the circuit is closed. As shown in FIG. 1, the projection surface where the two pieces come into contact with each other at this time is extremely small as shown in S4 of FIG.
[0028]
FIG. 4 shows the force relationship in the state of FIG. 1. In FIG. 4, F1 indicates the force exerted by the support shaft 58 on the movable element 54, and F2 indicates the fixed contact contact surface 52F with respect to the movable contact contact surface 53F. It shows the force exerted. At this time, the force F2 is generated at a location where the movable contact contact surface 53F and the fixed contact contact surface 52F are in contact with each other as in the conventional case.
However, due to the guide surface 54X formed in a convex shape on the inner peripheral surface of the shaft hole 54H of the movable element 54 that contacts the support shaft 58, the force F1 is different from the conventional case, so that the force F1 is the contact surface of the support shaft 58 with the hole It occurs between 58F and the inner peripheral surface of the shaft hole 54H of the mover 54. The resultant force F1 and force F2 is generated in a direction in which the contact between the fixed contact contact surface 52F and the movable contact contact surface 53F is eliminated by the action of the guide surface 54X, that is, the axial direction of the support shaft 58. Rotational force M that encourages rocking to
[0029]
Due to the generation of the rotational force M, the mover 54 starts to swing or rotate in the direction of the arrow of the rotational force M. The mover 54 stops when the force F1 and the force F2 are on the same straight line, and is in the state shown in FIG. At this time, as shown in S5 of FIG. 3, the projection surface where both of them are in contact is in full surface contact, and the contact area is greatly increased compared to S4 of FIG. FIG. 5 shows a balance state of the force at this time, and the force F1 and the force F2 are on the same straight line, and the rotational force M disappears.
[0030]
As described above, the movable element 54 is urged to swing by the guide surface 54X formed in a convex shape on the inner peripheral surface of the shaft hole 54H, and the fixed contact contact surface 52F and the movable contact contact surface of the fixed contact 52 are urged. When the surface of 53F is in surface contact with each other, the contact area between the two is maximized, and the contact resistance is reduced.
[0031]
In the illustrated example, the guide surface 54X is formed on the inner peripheral surface of the shaft hole 54H of the mover 54 that contacts the support shaft 58. However, the guide surface 54X is formed over the entire circumference of the inner peripheral surface. It is good (not shown). Forming over the entire circumference is advantageous in that the machining operation is facilitated.
[0032]
Embodiment 2. FIG.
FIG. 6 shows the second embodiment, in which the guide surface 54X formed in a convex shape on the inner peripheral surface of the shaft hole 54H has a polygonal shape in a horizontal section. The polygonal shape ranges from an infinite number of sides that are very close to an arc, such as an arc, to a triangular shape (a shape in which two sides of the triangle appear on the opposite-axis contact surface 54F), but the figure shows the opposite-axis contact surface 54F. This is an example in which a polygon having three sides is formed.
In this case as well, as described in the first embodiment, when the movable contact contact surface 53F and the fixed contact contact surface 52F are in a one-sided contact state when the circuit is closed, the mover 54 swings at a certain angle. The one-contact state is eliminated, and the movable contact contact surface 53F and the fixed contact contact surface 52F are brought into full surface contact with each other so that the contact area between them is maximized and the contact resistance is reduced. The projection surface of the contact between them is as shown in S7 of FIG.
As can be seen from the side view of FIG. 7, in the second embodiment, the guide surface 54X is formed over the entire circumference of both edges of the inner peripheral surface of the shaft hole 54H of the mover 54.
[0033]
Embodiment 3 FIG.
FIG. 8 shows the third embodiment, and during the closing operation, the movable contact contact surface 53F of the movable contact 53 of the mover 54 is connected to the fixed contact contact surface 52F of the fixed contact 52 of the first terminal 51. When contacting, the support shaft 58 that comes into contact with the inner peripheral surface of the shaft hole 54H of the mover 54 so that the movable contact contact surface 53F facing the fixed contact contact surface 52F can swing in the axial direction of the support shaft 58. The guide surface 58X is formed on the contact surface side of the support shaft 58, that is, the counter hole contact surface 58F of the support shaft 58.
As shown in FIGS. 8 and 9, the guide surface 58 </ b> X is formed by expanding the contact surface 58 </ b> F of the support shaft 58, and the guide surface 58 </ b> X in the axial cross section of the support shaft 58, that is, the horizontal cross section. Is formed in a convex shape toward the center in the length direction of the shaft hole 54H. Although it is formed in an arc shape in the drawing, it may be formed in an R shape so as to draw an arc having a radius R.
[0034]
As described above, when the guide surface 58X is formed on the contact surface side of the support shaft 58 that is in contact with the inner peripheral surface of the shaft hole 54H of the mover 54, the guide surface 58X is movable when the circuit is closed, as described in the first embodiment. When the contact point contact surface 53F and the fixed contact point contact surface 52F are in a single-contact state, the movable member 54 swings in the axial direction of the support shaft 58 by the biasing force applied to the movable member 54 by the contact pressure spring 55. The one-contact state is eliminated, and the movable contact contact surface 53F and the fixed contact contact surface 52F are brought into full contact with each other to maximize the contact area between them, thereby reducing the contact resistance. The projection surface of the contact between them is as shown in S9 of FIG.
The convex guide surface 58X formed on the support shaft 58 has a cross-sectional shape in the axial direction of the guide surface 54X, and the center in the length direction of the shaft hole 54H is convex toward the inner peripheral surface of the mover 54. In the figure, it is formed in an arc shape. However, as described in the second embodiment, it may be formed in an R shape so as to draw an arc having a radius R, or in a polygonal shape. It may be formed.
In the illustrated example, the guide surface 58X bulges out the region of the contact hole contact surface 58F of the support shaft 58, but the outer periphery of the support shaft 58 that contacts the inner peripheral surface of the shaft hole 54H of the mover 54 is shown. The guide surface 558X may be formed over the entire circumference of the surface (not shown).
[0035]
Embodiment 4 FIG.
FIG. 10 shows the fourth embodiment. During the closing operation, the movable contact contact surface 53F of the movable contact 53 of the mover 54 contacts the fixed contact contact surface 52F of the fixed contact 52 of the first terminal 51. When the support shaft 58 is in contact with the inner peripheral surface of the shaft hole 54H of the mover 54, the movable contact contact surface 53F facing the fixed contact contact surface 52F can swing in the axial direction of the support shaft 58. The central portion 58C, in other words, at least the shaft portion that is accommodated in the shaft hole 54H is once divided into three bearing portions 58S and 58T on both ends of the support shaft 58 that are not accommodated in the shaft hole 54H. Both ends Part The bearing portions 58S and 58T and both end portions of the central portion 58C are rotatably connected to form a single support shaft 58.
[0036]
The connection between the bearing portions 58S and 58T at both ends and the both ends of the central portion 58C may be rotatable by a connecting structure such as a universal joint, but at least during the closing operation, the movable contact 53 of the mover 54 is provided. When the movable contact point contact surface 53F contacts the fixed contact point contact surface 52F of the fixed contact 52 of the first terminal 51, the movable element 54 is relatively substantially horizontal so that it can swing in the axial direction of the support shaft 58. It is necessary to make the connection rotatable in the direction.
[0037]
FIG. 11 is a side view of FIG. 10, and FIG. 12 shows an example of a connection structure between the both end bearing portions 58S and the center portion 58C. As can be seen from FIG. 12, the center portion 58C has both end bearing portions 58S, 58T. On the other hand, it is pivotally attached by pins 71 and 74 so as to be rotatable in the horizontal direction (arrow A in FIG. 10). Note that the arrow B in FIG. 10 shows the relief on one side of the bearing portions 58S and 58T at both ends accompanying the rotational movement of the central portion 58C, that is, the sliding movement in the axial direction. Since it is a very slight sliding, it will be able to absorb well in gaps that occur naturally in structure during normal assembly and assembly.
[0038]
It should be noted that the support shaft 58 in the present invention may be pivotable or non-rotatable with respect to the bearings on both sides thereof. However, as in the examples shown in FIGS. When 58C is configured to be horizontally rotatable with respect to both end bearing portions 58S and 58T (arrow A in FIG. 10), at least one side of both end bearing portions 58S and 58T is in relation to the bearing. In order to make the operation of the support shaft 58 smooth, it is preferable to make the rotation impossible.
[0039]
Thus, during the closing operation, when the movable contact contact surface 53F of the movable contact 53 of the mover 54 contacts the fixed contact contact surface 52F of the fixed contact 52 of the first terminal 51, the fixed contact contact surface 52F is faced. The central portion 58C of the support shaft 58 that contacts the inner peripheral surface of the shaft hole 54H of the mover 54 is positioned at both ends of the support shaft 58 so that the movable contact contact surface 53F to be swingable in the axial direction of the support shaft 58. Part Once separated from the bearing portions 58S and 58T, both ends Part When the bearing portions 58S and 58T are connected to both ends of the central portion 58C, the movable contact contact surface 53F and the fixed contact contact surface 52F are substantially closed during closing, as in the first embodiment. When in the one-sided state, the contact pressure spring 55 is supported by an urging force applied to the movable element 54 according to, for example, an inclination in the axial direction due to poor accuracy of the inner peripheral surface of the shaft hole 54H formed in the movable element 54. The connecting portion of the shaft 58 rotates so that the central portion 58C of the support shaft 58 has both ends. Part When the support shaft 58 is bent as a whole with respect to the bearing portions 58S and 58T, the movable element 54 is swung to cancel the one-side contact state, and the movable contact contact surface 53F and the fixed contact contact surface 52F are in surface contact. As a result, the contact area between the two is maximized, and the contact resistance is reduced. The projection surface of the contact between them is as shown at S10 in FIG.
[0040]
Embodiment 5. FIG.
FIG. 13 shows the fifth embodiment. In the structure of the movable element 54 shown in the first embodiment, two movable contacts 53A and 53B are further prepared as the movable contact 53 of the movable element 54. The two movable contacts 53A and 53B are in surface contact with the fixed contact contact surface 52F at an appropriate interval in the axial direction of the support shaft 58 on a predetermined surface of the movable element 54 facing the fixed contact contact surface 52F. It is arranged.
In this configuration, at the moment when the movable element 54 contacts the fixed contact contact surface 52F, the single contact state occurs. At that moment, as in the case of the first embodiment, a convex shape is formed on the inner peripheral surface of the shaft hole 54H. The moving surface 54 is urged to swing by the guide surface 54X formed in the shape, and there are two points, that is, the fixed contact contact surface 52F of the fixed contact 52 and the movable contact contact surface 53F of the two movable contacts 53A and 53B. A stable surface contact between the two surfaces maximizes the contact area between the two surfaces and reduces the contact resistance. The projection surfaces in contact with each other are as shown in S8 of FIG.
In this case, if the movable contact contact surfaces of the two movable contacts 53A and 53B are formed so as to have a relatively large area as compared with one case, the contact area is increased, for example, twice. Therefore, the contact resistance can be reduced and the improvement can be expected.
[0041]
Although FIG. 13 shows the case of the first embodiment, in any of the second to fourth embodiments, two movable contacts 53A and 53B are prepared as the movable contact 53 of the movable element 54, and these two movable contacts are prepared. The contacts 53A and 53B are arranged on a predetermined surface of the movable element 54 facing the fixed contact contact surface 52F so as to be in surface contact with the fixed contact contact surface 52F at an appropriate interval in the axial direction of the support shaft 58. Even in this case, the same effect can be obtained.
[0042]
【The invention's effect】
Claim 1 as well as Claim 2 In any of the inventions, the parallelism between the contact surface of the movable element and the contact surface of the movable contact, the parallelism of the contact surface of the support shaft with the hole and the fixed contact surface, etc., may result in inaccurate parts, assembly errors, etc. Even if the contact between the movable contact point and the fixed contact point comes into contact at the moment when the movable contact point and the fixed contact point come into contact with each other, the rotational force in the direction in which both contact points come into surface contact is instantaneous. Is given to the mover, the one-contact state is instantly canceled, and both come into surface contact, and the contact area is maximized. As a result, the generation of Joule heat is greatly suppressed, and smaller components can be used within the standard specification by law than the conventional one. A high-performance circuit breaker with a small rise can be provided.
Further, compared to the prior art, since high-precision processing and precise assembly work without error are not required for the component parts, it is possible to provide an inexpensive circuit breaker despite its high performance.
[0043]
Claim 3 Since the present invention has two movable contacts, the above-mentioned claim 1 as well as Claim 2 In addition to the function and effect of the present invention, the generation of contact resistance and Joule heat can be greatly reduced. For example, when the contact area is doubled, the contact resistance is halved, so the generation of Joule heat can also be halved. Can provide a high-performance circuit breaker with a small temperature rise.
[Brief description of the drawings]
FIG. 1 is a horizontal sectional view showing a moment when a movable contact and a fixed contact of a first terminal come into contact with each other.
FIG. 2 is a side view of FIG.
FIG. 3 is a horizontal sectional view showing a stationary state in which a movable contact and a fixed contact of a first terminal are in ideal contact with each other.
FIG. 4 is a plan view showing the action direction of force at the moment when the movable contact and the fixed contact of the first terminal come into contact with each other.
FIG. 5 is a plan view showing a balance of forces after the movable contact and the fixed contact of the first terminal come into contact with each other and come to rest.
FIG. 6 is a horizontal sectional view showing the second embodiment.
7 is a side view of FIG. 6. FIG.
FIG. 8 is a horizontal sectional view showing a third embodiment.
9 is a side view of FIG. 8. FIG.
FIG. 10 is a horizontal sectional view showing a fourth embodiment.
11 is a side view of FIG.
FIG. 12 is a view showing an example of a connection structure between both end bearing portions and a central portion.
13 is a horizontal sectional view showing the fifth embodiment. FIG.
FIG. 14 is a side view showing an open circuit state of a conventional circuit breaker.
FIG. 15 is a side view showing a closed state of a conventional circuit breaker.
FIG. 16 is an enlarged side view showing a contact state between the mover and the first terminal stator in a closed state;
17 is a horizontal cross section showing a main part of FIG. 16 in a partial cross section.
FIG. 18 is a horizontal cross-sectional view showing a poor contact state between the mover of the conventional circuit breaker and the first terminal.
FIG. 19 is a horizontal cross-sectional view showing a poor contact state between a mover and a first terminal of a conventional circuit breaker.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 50 Circuit breaker, 51 1st terminal, 52 Fixed contact, 52F Fixed contact contact surface, 53 Movable contact, 53F Movable contact contact surface, 54 Movable child, 54F Axial contact surface, 54H Shaft hole, 54X Guide surface, 55 Elastic member (contact pressure spring), 56 conductors, 57 second terminal, 58 support shaft, 58C center portion, 58F counter hole contact surface, 58S, 58T both end bearing portions, 58X guide surface, S1 to S10 projection surface.

Claims (3)

第1の端子と、第2の端子と、前記第1の端子に接触可能な可動子と、前記可動子と第2の端子とを接続する導体と、前記可動子の軸穴に貫通し当該可動子を回動自在に支持する支持軸を有し当該支持軸を変位させて前記可動子の可動接点を前記第1の端子の固定接点に接触可能に揺動させる揺動機構部と、閉路状態において可動接点を固定接点に接触させるための弾発部材とを備えた回路遮断器において、
閉路作動中、前記可動子の可動接点の可動接点接触面が前記第1の端子の固定接点の固定接点接触面と接触する際、当該固定接点接触面に対面する可動接点接触面が前記支持軸の軸方向に揺動自在となるよう、前記可動子の軸穴の内周面に接触する前記支持軸の中央部分を当該支持軸の両端部軸受部分と一旦分断した上で当該両端部軸受部分と前記中央部分の両端部とを連結し、前記両端部軸受部分と前記中央部分の両端部との連結は回動自在な連結としたことを特徴とする回路遮断器。
A first terminal, a second terminal, a mover that can contact the first terminal, a conductor that connects the mover and the second terminal, and a shaft hole of the mover, A swing mechanism having a support shaft that rotatably supports the mover, and displacing the support shaft so that the movable contact of the mover can come into contact with the fixed contact of the first terminal; In a circuit breaker comprising a resilient member for bringing a movable contact into contact with a fixed contact in a state,
During the closing operation, when the movable contact surface of the movable contact of the mover contacts the fixed contact surface of the fixed contact of the first terminal, the movable contact surface facing the fixed contact contact surface is the support shaft. The center portion of the support shaft that contacts the inner peripheral surface of the shaft hole of the mover is once divided from both end bearing portions of the support shaft so as to be swingable in the axial direction of the mover, and then the both end bearing portions And the both ends of the center portion are connected, and the connection between the both end bearing portions and the both ends of the center portion is a rotatable connection.
第1の端子と、第2の端子と、前記第1の端子に接触可能な可動子と、前記可動子と第2の端子とを接続する導体と、前記可動子の軸穴に貫通し当該可動子を回動自在に支持する支持軸を有し当該支持軸を変位させて前記可動子の可動接点を前記第1の端子の固定接点に接触可能に揺動させる揺動機構部と、閉路状態において可動接点を固定接点に接触させるための弾発部材とを備えた回路遮断器において、
閉路作動中、前記可動子の可動接点の可動接点接触面が前記第1の端子の固定接点の固定接点接触面と接触する際、当該固定接点接触面に対面する可動接点接触面が前記支持軸の軸方向に揺動自在となるよう、前記可動子の軸穴の内周面に接触する前記支持軸の中央部分を当該支持軸の両端部軸受部分と一旦分断した上で当該両端部軸受部分と前記中央部分の両端部とを連結し、前記両端部軸受部分と前記中央部分の両端部との連結は少なくとも相対的に水平方向へ回動自在な連結としたことを特徴とする回路遮断器。
A first terminal, a second terminal, a mover that can contact the first terminal, a conductor that connects the mover and the second terminal, and a shaft hole of the mover, A swing mechanism having a support shaft that rotatably supports the mover, and displacing the support shaft so that the movable contact of the mover can come into contact with the fixed contact of the first terminal; In a circuit breaker comprising a resilient member for bringing a movable contact into contact with a fixed contact in a state,
During the closing operation, when the movable contact surface of the movable contact of the mover contacts the fixed contact surface of the fixed contact of the first terminal, the movable contact surface facing the fixed contact contact surface is the support shaft. The center portion of the support shaft that contacts the inner peripheral surface of the shaft hole of the mover is once divided from both end bearing portions of the support shaft so as to be swingable in the axial direction of the mover, and then the both end bearing portions And the both ends of the central portion are connected, and the connection between the both end bearing portions and the both ends of the central portion is a connection that is at least relatively rotatable in the horizontal direction. .
可動子の可動接点は支持軸の軸方向に間隔を置いて2個配設したことを特徴とする請求項1又は請求項2に記載の回路遮断器。Circuit breaker according to claim 1 or claim 2 movable contact of the movable element is characterized in that the two arranged at intervals in the axial direction of the support shaft.
JP11887698A 1998-04-28 1998-04-28 Circuit breaker Expired - Lifetime JP4108181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11887698A JP4108181B2 (en) 1998-04-28 1998-04-28 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11887698A JP4108181B2 (en) 1998-04-28 1998-04-28 Circuit breaker

Publications (2)

Publication Number Publication Date
JPH11312443A JPH11312443A (en) 1999-11-09
JP4108181B2 true JP4108181B2 (en) 2008-06-25

Family

ID=14747315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11887698A Expired - Lifetime JP4108181B2 (en) 1998-04-28 1998-04-28 Circuit breaker

Country Status (1)

Country Link
JP (1) JP4108181B2 (en)

Also Published As

Publication number Publication date
JPH11312443A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
JP4772340B2 (en) Improved actuator device for bicycle transmission
JP4108181B2 (en) Circuit breaker
JP2963846B2 (en) Operating angle adjustment structure of wiper device
JP5614800B2 (en) Switch device
JP2002295500A (en) Detent device
KR100259760B1 (en) Two-way lever switch
JP2004212374A (en) Rotary sensor
KR20140096025A (en) Bearing structure for rotary control-type electronic component
JPH04244618A (en) Device for limiting rotating movement in two directions
KR100282151B1 (en) Accelerator moudle
JP3316728B2 (en) Variable resistor
JP2532920B2 (en) Bias application mechanism of developing device
JP3348598B2 (en) Circuit breaker
JPH0991814A (en) Chucking mechanism for magnetic disk driver
CN221304556U (en) Moving contact assembly for circuit breaker and circuit breaker
KR0123819Y1 (en) Relative rotation device with allowance for kinematic error
JP7396907B2 (en) Gears and gear mechanisms
JPH04261792A (en) Oscillating shaft action end detector for industrial robot
JP2002319329A (en) Inhibitor switch
JP4957658B2 (en) Stopper mechanism
JPS60249723A (en) Bearing device
JP2003115237A (en) Rotational electronic part
JP2000027859A (en) Linear driving mechanism and rotary stage driving mechanism
JP2523989Y2 (en) Control shaft mounting structure for inhibitor switch
JPH0310402Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term