JP4107550B2 - Toner adhesion amount detection method, program, apparatus, and image forming apparatus - Google Patents

Toner adhesion amount detection method, program, apparatus, and image forming apparatus Download PDF

Info

Publication number
JP4107550B2
JP4107550B2 JP2001022656A JP2001022656A JP4107550B2 JP 4107550 B2 JP4107550 B2 JP 4107550B2 JP 2001022656 A JP2001022656 A JP 2001022656A JP 2001022656 A JP2001022656 A JP 2001022656A JP 4107550 B2 JP4107550 B2 JP 4107550B2
Authority
JP
Japan
Prior art keywords
light
level
amount
receiving element
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001022656A
Other languages
Japanese (ja)
Other versions
JP2002229279A (en
Inventor
下 義 明 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001022656A priority Critical patent/JP4107550B2/en
Publication of JP2002229279A publication Critical patent/JP2002229279A/en
Application granted granted Critical
Publication of JP4107550B2 publication Critical patent/JP4107550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光反射型の光量センサを用いるトナー付着量の検出とそれを実施する画像形成装置に関し、例えば、電子写真方式の複写機,ファクシミリ,プリンタ等に実施する。
【0002】
【従来技術】
この種の画像形成装置で、転写紙上の画像濃度を常に一定で良好な状態に保つためには、像担持体の表面のトナー付着量を安定させる必要が有り、そのため像担持体表面のトナー付着量を反射型光センサであるトナー濃度センサにより検知し、検出値に応じて、現像剤のトナー濃度(トナー補充),現像バイアス,荷電量,露光レベル等の作像条件を調整する。特開2000−131900号公報には、基準条件で感光体上にトナーを付与して、その付着量をトナー濃度センサにより検出して、検出値に応じて現像バイアスを調整する濃度制御装置および方法が開示されている。
【0003】
また最近ではカラートナーの付着量をより正確に検知するため、拡散反射光光量を測定するトナー濃度センサが提案されている(例えば特開平5−249787号公報)。カラートナーに赤外光を当てると拡散反射光を生じる。また拡散反射光光量はトナー付着量に応じて増加す特性を示すため、低付着量から高付着量まで感度よく測定することができる。
【0004】
また、フルカラー画像形成装置の中には、感光体上ではなく中間転写体上でトナー付着量検知を行うものも提案されている。
【0005】
トナー濃度センサ出力は、対向反射物すなわち検出対象面である感光体や中間転写体の経時劣化による反射率変化や、センサの経時汚れ、それぞれのロットバラツキ等により変化する。この為トナー付着量検知を行う前に、センサを校正するのが一般的である。ここで校正とは、センサ発光素子(LED等)の発光光量を調整しトナー付着量センサ出力を一定の値に調整することである。例えば前記特開2000−131900号公報に、その一形態が開示されている。
【0006】
例えばトナー付着量センサ出力をVs,像担持体表面トナー無しでのトナー付着量センサ出力をVsg,トナー付着量センサ出力が最低レベルであるLEDオフの時のトナー濃度センサ出力をVsoとすると、Bk(黒)トナー付着量が増えるに従いVsは低下し、やがて変化が無くなる。つまり低レベルに飽和する。この特性を図5に示す。Bk濃度検出でトナー濃度センサ出力が飽和した時ほぼVs=Vsoとなる。この特性を利用しトナー付着量センサでは、Vsg−Vso=一定、と成るように発光素子であるLEDの光量を調整し、前記誤差要因に対しセンサの出力レベルを常に一定になる様に保っている。カラートナーでは、図5に示すように、トナー付着量が増えるに従い反射光量が増えるので、センサ出力レベルが上昇する。カラートナーの付着量も、センサー出力Vsで把握できる。
【0007】
【発明が解決しようとする課題】
しかしながら、検出対象面が像担持体である為、像担持体表面の経時劣化や、LED発光強度制御の分解能限界および許容誤差により、正確にはVsg−Vso=一定にする事は困難であった。そのためトナー付着量センサ出力Vsから計算されるトナー付着量に誤差が生じてしまう。LED発光強度制御の分解能を高くしすなわちセンサ出力のA/D変換の量子化誤差を小さくし、しかもセンサ出力が狙い値になったと判定する時の許容誤差を小さくすることにより論理的にはLED発光強度制御の精度が向上する。しかし、細かくする分、発光光量をステップバイステップで狙い値に集束させる延べ時間が長くなる。しかも実際には、像担持体の周方向各点で、反射率にばらつきがあるので、センサ出力Vs読取分解能を高くする事や、許容誤差を小さくすることが、かえって狙い値への収束をみだし、LED発光強度制御を不安定にしてしまうことも考えられる。
【0008】
本発明は、光反射型の光センサであるトナー濃度センサによるトナー付着量計測の精度を高くすることを第1の目的とし、センサの発光光量を狙い値とする光量調整を比較的に短時間でしかも安定して実行できるようにすることを第2の目的とし、トナー付着量を常に最適な状態に安定的に制御することを第3の目的とする。
【0009】
【課題を解決するための手段】
(1)検出対象面に発光素子の光を照射して受光素子の光量信号のレベル(Vsg)を読取り、該レベルと光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vsg-Vso) 狙い値範囲(A±3%)内とするように発光素子の照射光量(B)を調整する光量調整、及び、その後、トナー付着量を検出するために基準条件で検出対象面にトナーを付与し、該調整した照射光量(B)で検出対象面に光を照射して受光素子の光量信号のレベル(Vs)を読取る付着量検出、を含むトナー付着量検出方法において、
前記付着量検出においては、読取った光量信号のレベル(Vs)と光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vs Vso)に、前記光量調整において狙い値範囲内となった照射光量 (B) の光を検出対象面に照射したときの受光素子の光量信号のレベル (Vsg,Vsgf) と光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vsg,Vsgf Vso) に対する前記狙い値範囲内の狙い値 (A) の比 (K A/(Vsg,Vsgf Vso)) を乗算したレベル (k (Vs Vso)) を、トナー付着量検出レベルとする、ことを特徴とするトナー付着量検出方法。
【0010】
なお、理解を容易にするためにカッコ内には、図面に示し後述する実施例の対応要素又は対応事項の記号を、参考までに付記した。以下も同様である。
【0011】
これによれば、発光素子の光量を狙い値(A)とする光量調整での、許容誤差(±3%)による光量調整誤差分(A−(Vsg,Vsgf−Vso))の補正をしたトナー付着量検出値が得られる。従って、許容誤差(±3%)を各段に小さくすること無く、精度が高いトナー付着量検出値を得ることが出来、しかも発光素子の光量を狙い範囲(A±3%)に収束させる光量調整の所要時間の増大を回避できる。
【0012】
【発明の実施の形態】
(2)検出対象面に発光素子の光を照射して受光素子の光量信号のレベル(Vsg)を読取り、該レベルと光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vsgf-Vso) 狙い値範囲(A±3%)内とするように発光素子の照射光量(B)を調整する光量調整、及び、その後、トナー付着量を検出するために基準条件で検出対象面にトナーを付与し、該調整した照射光量(B)で検出対象面に光を照射して受光素子の光量信号のレベル(Vs)を読取る付着量検出、を含むトナー付着量検出方法において、
前記光量調整においては、検出対象面の複数b点に発光素子の光を照射して受光素子の光量信号のレベルを読取って第1平均レベル (Vsg) を求め、第1平均レベルと光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vsg-Vso) を狙い値範囲 (A ± 3 ) 内とするように発光素子の照射光量 (B) を調整してから、検出対象面の複数d点、d>b、に発光素子の光を照射して受光素子の光量信号のレベルを読取って第2平均レベル (Vsgf) を求め、
前記付着量検出においては、読取った反射光量信号のレベル(Vs)と光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vs Vso)に、第2平均レベル (Vsgf) と光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vsgf Vso) に対する前記狙い値範囲内の狙い値 (A) の比 (K A/(Vsgf Vso)) を乗算したレベル (k (Vs Vso)) を、トナー付着量検出レベルとする、ことを特徴とするトナー付着量検出方法。
【0013】
これによれば、発光素子の光量を狙い値(A)とする光量調整での、許容誤差(±3%)による光量調整誤差分(A−(Vsg,Vsgf−Vso))の補正をしたトナー付着量検出値が得られる。従って、許容誤差(±3%)を各段に小さくすること無く、精度が高いトナー付着量検出値を得ることが出来、しかも発光素子の光量を狙い範囲(A±3%)に収束させる光量調整の所要時間の増大を回避できる。
【0014】
加えて、前記光量調整において調整を終えた時更に、受光素子の反射光量信号の調整後レベル(Vsgf)を読取ってこれを、後のトナー付着量検出値の補正(K=A/(Vsgf−Vso))に用いるので、例えば、許容誤差を大きくして光量調整時の反射光量信号の、狙い値への収束を早くしおよび又はサンプル数(計測値=平均値を得るためのサンプリング回数)を少なくして光量調整に要する時間を短縮し、そして高密度及び又は広面積(d)に渡る反射光量検出をしてそれらの平均値に基づいて補正値を精確に定める。これによれば、比較的に粗い光量調整でも、精確な補正値を得て、精度が高いトナー付着量検出値を得ることが出来る。
【0015】
(3)前記検出対象面は、周回運動する顕像担持体であり、前記比に用いる、前記光量調整において狙い値範囲内となった照射光量 (B) の光を検出対象面に照射したときの受光素子の光量信号のレベル(Vsg,Vsgf)は、該顕像担持体の1周長以上の範囲にわたる読取レベルの平均値である、上記(1)又は(2)記載のトナー付着量検出方法。
【0016】
上記(1)または(2)に記述の作用,効果に加えて、像担持体周方向の反射率変化を測定し平均化して使用する事で、像担持体の周方向の位置による反射率バラツキによる補正の誤差を最小限に抑える事ができ、より精度の高い安定したトナー付着量検出を行う事ができる。
【0017】
(4)上記(1),(2)又は(3)の光量調整および付着量検出を含むトナー付着量検出を行う、コンピュータが実行するプログラム。これによれば、コンピュータ制御による画像形成装置において、上記(1),(2)又は(3)のトナー付着量検出を行って、(1),(2)又は(3)に記載の作用,効果を得ることが出来る。
【0018】
(5)検出対象面に光を照射する発光素子、及び、検出対象面方向からの反射光を受光し、レベルが受光光量をあらわす光量信号を発生する受光素子を含むセンサ(8);
光量調整モードの時に前記光量信号(Vsg)を読取り、光量信号のレベルと光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vsg-Vso) を狙い値範囲 (A ± 3 ) 内とするように発光素子の照射光量(B)を調整する光量調整手段(30,33);及び、
トナー付着量を検出するために基準条件で検出対象面にトナーを付与し、該調整した照射光量(B)で検出対象面に光を照射して受光素子の光量信号を読取り、読取った光量信号のレベル(Vs)と光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vs Vso)に、前記光量調整において狙い値範囲内となった照射光量 (B) の光を検出対象面に照射したときの受光素子の光量信号のレベル (Vsg,Vsgf) と光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vsg,Vsgf Vso) に対する前記狙い値範囲内の狙い値 (A) の比 (K A/(Vsg,Vsgf Vso)) を乗算したレベル (k (Vs Vso)) を、トナー付着量検出レベルとする付着量検出手段 (30,33)
を備えるトナー付着量検出装置。
【0019】
このトナー付着量検出装置を用いて、上記(1)又は(2)に記載のトナー付着量検出を行うことが出来、上記(1)又は(2)に記載の作用,効果を得ることが出来る。
【0020】
(6)感光体(1),これを荷電する手段(4),感光体の荷電面に画像を表すための光を照射する露光手段(5),これによって形成された静電潜像をトナーで顕像化する現像手段(6a〜6d),顕像化したトナー像を、直接に又は中間転写媒体(9)を介して間接に転写紙に転写する手段,感光体又は中間転写媒体に発光素子の光を照射して受光素子の光量信号のレベル(Vsg)を読取り、該レベルと光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vsg-Vso) 狙い値範囲(A±3%)内とするように発光素子の照射光量(B)を調整するセンサ光量調整手段(30,33)、及び、その後トナー付着量を検出するために基準条件で感光体又は中間転写媒体にトナーを付与し、該調整した照射光量(B)で感光体又は中間転写媒体に光を照射して受光素子の光量信号のレベル(Vs)を読取り読取値に対応して作像条件を調整する画像濃度調整手段(30,33)、を備える画像形成装置において、
前記画像濃度調整手段(30,33)は、前記付着量検出においては、読取った光量信号のレベル(Vs)と光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vs Vso)に、前記光量調整において狙い値範囲内となった照射光量 (b) の光を感光体又は中間転写媒体に照射したときの受光素子の光量信号のレベル (Vsg,Vsgf) と光を照射しない受光素子の光量信号のレベル (Vso) との差 (Vsg,Vsgf Vso) に対する前記狙い値範囲内の狙い値 (A) の比 (K A/(Vsg,Vsgf Vso)) を乗算したレベル (k (Vs Vso))に基づいて作像条件を調整することを特徴とする画像形成装置。
【0021】
これによれば、トナー濃度計測の精度が向上し、トナー付着量を常に最適な状態に安定的に制御して画像品質の低下や異常画像を防止することができ、経時的にも画像形成品質を安定にすることができる。
【0022】
本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。
【0023】
【実施例】
図1に、本発明の一実施例であるカラープリンタ40を示す。図1に於いて、1はベルト状像担持体たる可撓性の感光体ベルトであり、感光体ベルト1は、回動ローラ2,3間に架設され、回動ローラ2の回転駆動により図中矢印A方向(時計方向)に搬送される。図中4は、感光体ベルト1表面を均一に帯電する帯電チャージャ、図中5は、像書込みユニットであるレーザ露光装置である。また、図中6はカラー現像装置であり、6aはマゼンタ、6bはシアン、6cはイエロー、6dは黒現像ユニットである。
【0024】
更に、図中9は、像担持体かつ中間転写媒体たる中間転写ベルトであり、中間転写ベルト9は回動ローラ10−12に架設され、回動ローラ10の回転駆動により図中矢印B方向(反時計方向)に搬送される。感光体ベルト1と、中間転写ベルト9は、感光体ベルト1の無記号の回動ローラ部で接触している。該接触部の中間転写ベルト9側には、導電性を有するバイアスローラ13が、中間転写ベルト10裏面に所定の条件で接触している。
【0025】
感光体ベルト1は帯電チャージャ4により一様に帯電された後、レーザ露光装置5による、画像記録信号で変調されたレーザ光の走査により、露光される。これにより感光体ベルト1上に静電潜像が形成される。ここで、レーザ光を変調する画像記録信号は、所望のフルカラー画像をマゼンタ,シアン,イエロー、及び黒(Bk)の色情報に分解した、各色(単色)宛てのものであり、1色宛ての静電潜像の形成と、現像装置6a−6dの中の該色宛のものによる現像が、色数分(例えばマゼンタ,シアン,イエロー、及び黒、計4回)繰返される。現像により現われた顕像(トナー像)は、それぞれ中間転写ベルト9に重ね合わせ転写される。
【0026】
即ち、図中矢印A方向に回転する感光体ベルト1上に形成される各単色画像(トナー像)は、感光体ベルト1と同期して図中矢印B方向に回転する中間転写ベルト9上に、マゼンタ,シアン,イエロー、及び黒の単色毎に、バイアスローラ13に印加された所定の転写バイアスにより順次重ね転写される。中間転写ベルト9上に重ね合わされたマゼンタ,シアン,イエロー、及び黒の画像は、給紙台16の給紙カセット16aから給紙ローラ17,搬送ローラ対18a,18b、レジストローラ対19a,19bを経て転写ローラ14へ搬送された転写紙上に一括転写される。転写終了後、転写紙上のトナー像は定着装置20により転写紙に定着(加熱圧着)される。これによりフルカラー画像が完成し、転写紙は、排紙ローラ対21a,21bを経て排紙スタック部22に排出される。
【0027】
なお、図中7は、感光体ベルト1に常時当接し、感光体ベルト1上のトナーを拭い取るクリーニングブレード、図中15は、中間転写ベルト9のクリーニング装置で、該クリーニング装置15のクリーニングブラシ15aは、画像形成動作中には中間転写ベルト10表面から離間した位置に保持され、形成像が上述の転写紙上に転写された後に中間転写ベルト10表面に当接される。
【0028】
また、感光体ベルト1,帯電チャージャ4,中間転写ベルト9,クリーニング装置7,15は、プロセスカートリッジに一体的に組付けられてユニット化されている。
【0029】
8が、感光体ベルト1上のトナー付着量を検出するためのトナー付着量センサである。今回使用したトナー付着量センサ8は、発光部が赤外発光ダイオード、拡散反射光受光部がフォトダイオードの、フォトダイオードの受光量に応じたレベルの電圧Vs即ち検出信号を発生し出力するもの、即ち、拡散反射光光量を測定するトナー濃度センサ、である。
【0030】
図2に、図1に示すフルカラープリンタの電気システムの概要を示す。図2はメインコントローラ30を中心に、制御装置を図示したものである。メインコントローラ30は、プリンタ40の全体を制御する。メインコントローラ30には、オペレータに対する表示と、オペレータからの機能設定入力制御を行う操作/表示ボードOPBが接続され、増設用のスキャナ60および増設用の自動原稿供給装置ADFの制御,原稿画像を画像メモリに書き込む制御、および、画像メモリからの作像を行う制御等を行う、スキャナコントローラ32,プリンタコントローラ36および画像処理ユニット(IPU)50も接続されている。また、カラープリンタ40内にあって荷電、露光、現像、給紙、転写、定着ならびに転写紙搬送を行う作像エンジンの制御を行うエンジンコントローラ33、等の分散制御装置が接続されている。各分散制御装置とメインコントローラ30は、必要に応じて機械の状態、動作指令のやりとりを行っている。また、紙搬送等に必要なメインモータ、各種クラッチも、メインコントローラ30内の図示しないドライバに接続されている。エンジンコントローラ33には、トナー濃度センサ8を駆動し、その検出信号をメインコントローラ30のA/D変換ポートに与えるセンサドライバがある。
【0031】
プリンタコントローラ36は、パソコンなど外部からの画像及びプリント指示するコマンドを解析し、画像データとして、印刷できる状態にビットマップ展開し、メインコントローラ30を介して、プリンタ40を駆動して画像データをプリントアウトする。画像及びコマンドをLAN及びパラレルI/Fを通じて受信し動作するために、LANコントロール39とパラレルI/F38がある。
【0032】
FAXコントローラ37は、フアクシミリ送信指示があるときには、メインコントローラ30を介してスキャナ60およびIPU50を駆動して原稿の画像を読んで、画像データを、通信コントロール40およびPBXを介して、ファクシミリ通信回線に送出する。通信回線からファクシミリの呼びを受け画像データを受信すると、メインコントローラ30を介して、プリンタ40を駆動して画像データをプリントアウトする。
【0033】
図3に、メインコントローラ30の、画像形成制御のメインフローを示す。まず、電源が投入されるとイニシャライズ(IL)を行う(ステップ1:以下カッコ内ではステップと言う語を省略する)。イニシャライズ(IL)では各種ポートの設定,レジスタ等のクリア,出力ポートリセットおよびドアオープンやジャム発生等の異常発生時の処理をする異常チェック(EM)、および、光量調整のインターバルを監視するためのプリント枚数nをクリアする等を行う。その後、待機モード処理(WT)を行う(2)。待機モード処理(WT)では、操作部からのキー入力の読み込み,定着温度(立ち上げ)処理および異常チェック(EM)等を行う。次に、コピー可の状態となり(3)、スタート指示があると(4)像形成前モード処理(FT)を行う(5)。前モード処理(FT)では、駆動モータ,ベルト1,9周りの機器への出力の決定等の準備処理,プリントのセット枚数(NK)のレジスタNsetへの設定および異常チェック(EM)等を行う。次に、光量調整のインターバルを監視するためのプリント枚数nが0(電源投入直後)か、あるいは設定値Nsh以上(光量調整タイミング)かをチェックして(6)、いずれにも該当しないとプリントモード処理(CP)(9)に進むが、いずれかに該当すると後述する「センサ校正」(7)を実施しそしてプリント枚数nをクリアしてから(8)、プリントモード処理(CP)(9)に進み、そしてトナー補給処理(10)を行う。
【0034】
プリントモード処理(CP)(9)では、プリントサイクルに応じた像形成プロセス処理,紙搬送処理および異常チェック(EM)等を行う。
【0035】
プリントモード処理(9)およびトナー補給処理(10)がともに終了すると(11)、レジスタnおよびコピー枚数を示すレジスタCCOPYを1インクリメントし(12,13)、プリント枚数(CCOPY)がセット枚数(Nset)に達したかをチェックして(14)、達しないとまたプリントモード処理(9)に進んでステップ9〜14の処理を繰り返す。
【0036】
プリント枚数(CCOPY)がセット枚数(Nset)になると(14)、レジスタCCOPYを0にセットして(15)、後モード処理(LT)を行う(16)。後モード処理(LT)では、ベルト1,9周りの機器への出力のオフ等の後処理,排紙処理および異常チェック(EM)等を行う。そして待機モード処理(WT)(2)にもどる。従って、本実施例では、「センサ校正」(7)は実質上、電源投入時ならびに電源投入後設定枚数Nsh以上の枚数のプリントをして、しかも、新たにプリントスタート指示があつたとき、に実施する。
【0037】
図4に、「センサ校正」(7)の内容を示す。「センサ校正」(7)に進むとメインコントローラ30は、まずトナー濃度センサ8のLEDをオフ(通電なし:発光なし)にした状態でのトナー付着量センサ8の出力Vsoを測定しNVRAMすなわち不揮発メモリに記憶する。この時感光体ベルト1は定速回転状態であり、センサ8の出力の、A/D変換による読み込みは、a(数十)回以上行い、それらの平均値をVsoとしてNVRAMに書込む(21)。これは測定時の検知ノイズやベルト上の検出位置によるばらつきの影響をなるべく無くす為である。以下の検知時にも同様の目的で多数回の検出値読込みと平均値算出をする。
【0038】
次にコントローラ30は、感光体ベルト1は定速回転状態にしたまま、計測動作回数cを0に初期化して(22)、センサ8のLEDをオンにする(23)。このときセンサ8への通電レベル指示値Bは、NVRAMに記憶している光量値Vsgf(前回のセンサ校正で調整した結果値)を得たときのものであり、光量値VsgfとともにNVRAMに記憶しているものである。なお、本書において、コントローラ30が前記センサ8の光量(ベルト1による反射光量)を狙い値に調整するために操作するものは、センサ8へのLED通電レベル指示値Bである。検出対象面の状態とセンサ周りの環境が同一であり、センサに経時変化がない場合、通電レベル指示値Bが同一であると検出光量が同一となり、光量値とLED通電レベル指示値Bとは、実質上1対1の対応関係がある。
【0039】
さらにコントローラ30は、センサ8の出力を、b(数十)回以上、A/D変換によって読込み、それらの平均値Vsgを算出し、計測動作回数cを1インクレメントする(23)。VsgからVsoを引いた値が実質の感光体反射光量であり、この値をより精度良く校正する事でトナー付着量検出精度が向上する。この感光体反射光量の狙い値Aは一般的に1〜5V程度である。
【0040】
次にコントローラ30は、まずVsg−Vsoを狙い値Aに大まかに近づける為、Vsg−VsoがA±20%に入るか判断し(24)、入らない場合はセンサ8へのLED通電レベル指示値Bを変更する(25)。今回の場合Bは、8ビットで表される0〜255値まで設定できる分解能であり、例えばB=150でVsg−Vso>Aだった時、Bは140に設定され、もう一度計測を行ってVsgを算出し(23)、Vsg−VsoがA±20%になるまで繰り返えす(23−24−25−26−23)。この繰り返しによりn=25回以上になった場合、LED通電レベル指示値Bは0か255に達していると考えられ、校正NG(校正不可)と判断しエラーとして、センサ校正(7)を終了する(26−27−36−リターン)。
【0041】
A±20%に入った場合、Vsg−Vsoを高精度にAに近づける為、LED通電レベル指示値Bを1ずつ変化させ(30)、今度はVsg−VsoがA±3%になったかをチエックする(28−29)。この繰り返しによりn=35回以上になった場合、LED通電レベル指示値Bは0か255に達していると考えられ、校正NG(校正不可)と判断しエラーとして、センサ校正(7)を終了する(31−32−36−リターン)。n=35回未満でVsg−VsoがA±3%以内になると、LED通電レベル指示値Bの検索を終える。この高精度調整において、狙い値の範囲をA±3%とした。これを更に狭い範囲とし通電レベル指示値およびA/D変換の分解能を8ビット(256値)より大きくすれば、光量調整精度はより向上しさせる事ができるが、その分センサ8とその出力を読み取るA/D変換器のコストUPと校正時間の増加につながる。
【0042】
Vsg−Vsoが狙い値A±3%に入った場合、これでLED光量設定値およびLED通電レベル指示値Bは決定される。しかしこの光量設定値は±3%の誤差を持っており、校正の度に6%以内の変動が予想される。
【0043】
そこでこの6%以内の変動を補正する為、LED光量設定値(LED通電レベル指示値B)での感光体反射光量Vsg−Vsoと狙い値Aから補正係数K、
K=A/(Vsg−Vso)
を求めておく。
【0044】
この時(Vsg−Vso)は、感光体ベルトの周方向の反射光量ムラや測定時の検知ノイズの影響を無くす為、感光体ベルト1の一周長以上測定し平均化する事が望ましい。
【0045】
そこでこの実施例ではコントローラ30は、感光体ベルト1の定速駆動を継続し、且つVsg−Vsoが狙い値A±3%に入った時のLED通電レベル指示値Bでのセンサ8の発光を継続して、感光体ベルト1の一周長以上に渡るd(数十)回以上、センサ8の出力を、A/D変換によって読込み、それらの平均値Vsgfを算出し、補正係数K、
K=A/(Vsgf−Vso)
を求めて(33,34)、NVRAMに、このときのLED通電レベル指示値B,光量設定値Vsgfおよび補正係数K=A/(Vsgf−Vso)を書込む(35)。d>a,bである。センサ校正の所要時間を短くするためには、a,bを小さい値にし、センサ校正の精度を高くするためには、dを大きい値にするのが好ましい。
【0046】
図5は、トナー付着量センサ8の出力特性を示したものである。図3に示すトナー補給処理(10)でコントローラ30は、各色宛ての基準作像条件で、プリントモード処理(CP)で像形成をした各色のトナーマークを感光体ベルト1上に順次に形成して、センサ8の光量を「センサ校正」(7)で調整した値に設定して、すなわち、NVRAMにステップ21で書きこんだVsoならびにステップ35(図4)で書込んだLED通電レベル指令値Bおよび補正値Kを読出してLED通電レベル指令値Bをセンサ8に与えてLEDをオンにして、各色トナーマークのセンサ8の検出レベルをA/D変換して読込み、読込み値VsからVsoを減算して、差値(Vs−Vso)に、補正値Kを乗算してから、各色宛ての読取り信号/トナー付着量変換特性(変換用ROM:図5の変換特性)に基づいて、K・(Vs−Vso)を、トナー付着量に変換する。そして、トナー付着量が下限設定値以下であると、該当の現像器にトナーを補給する。下限設定値を超え上限設定値未満のときにはその現像色に関してはなにもしない。上限設定値以上であると、上限設定値を超える分該当の色の現像バイアス値を、低濃度現像側に変更する。
【0047】
このときVsには、最大6%予想される光量調整誤差バラツキがあり得るが、K・(Vs−Vso)では、誤差バラツキがほぼ0%になり、トナー付着量計測値K・(Vs−Vso)の精度が高い。
【0048】
なお、上記実施例ではVsg−Vsoが狙い値A±3%に入ってから、更に、感光体ベルト1の一周長以上に渡るd(数十)回以上、センサ8の出力を、A/D変換によって読込み、それらの平均値Vsgfを算出し、補正係数Kを求めるが、上記実施例の1変形例では、Vsg−Vsoが狙い値A±3%に入ったときの該Vsgを算出して、これに基づいて補正値K=A/(Vsg−Vso)を算出する。この場合も、感光体ベルト1の周方向の反射光量ムラや測定時の検知ノイズの影響を無くす為、感光体ベルト1の一周長以上測定し平均化する。即ち、ステツプ28のセンサ検出値の読み込みを、ステップ33と同様にする。
【0049】
これにより上記実施例のステップ33の多点のセンサ検出値読込み(サンプリング)は省略となるが、上記変形例では、ステツプ28を何回も繰返す可能性があるので、ステップ28のサンプリング回数は少ないほど好ましい。この観点から、上記実施例の方が、センサ校正の全体としての、校正精度を高くしかつ所要時間は短くする上で、好ましいと考える。
【図面の簡単な説明】
【図1】 本発明を一態様で実施するフルカラープリンタ40の機構概要を示す縦断面図である。
【図2】 図1に示すプリンタ40の電気系システムの概要を示すブロック図である。
【図3】 図1に示すメインコントローラ30の像形成プロセス制御の概要を示すフローチャートである。
【図4】 図3に示す「センサ校正」(7)の内容を示すフローチャートである。
【図5】 図1に示すトナー濃度センサ8のトナー付着量検出特性を示すグラフである。
【符号の説明】
1:感光体ベルト 2,3:回動ローラ
4:帯電チャージャ 5:レーザ露光装置
6a−6d:現像ユニット 7:クリーニングブレード
8:トナー付着量センサ 9:中間転写ベルト
10−12:回動ローラ 13:バイアスローラ
14:転写ローラ 15:クリーニング装置
15a:クリーニングブラシ
16:クリーニング装置 17:給紙ローラ
18a,18b:搬送ローラ対
19a,19b:レジストローラ対
20:定着装置 21a,21b:排紙ローラ対
22:排紙スタック部
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to detection of toner adhesion using a light-reflective light quantity sensor and an image forming apparatus that performs the detection, and is applied to, for example, an electrophotographic copying machine, a facsimile, a printer, and the like.
[0002]
[Prior art]
  In this type of image forming apparatus, in order to keep the image density on the transfer paper constant and good, it is necessary to stabilize the toner adhesion amount on the surface of the image carrier. The amount of toner is detected by a toner density sensor, which is a reflection type optical sensor, and image forming conditions such as developer toner density (toner replenishment), development bias, charge amount, exposure level and the like are adjusted according to the detected value. Japanese Patent Application Laid-Open No. 2000-131900 discloses a density control apparatus and method for applying toner on a photoconductor under reference conditions, detecting the amount of adhesion with a toner density sensor, and adjusting a developing bias according to the detected value. Is disclosed.
[0003]
  Recently, a toner density sensor that measures the amount of diffuse reflected light has been proposed in order to more accurately detect the amount of color toner adhering (for example, JP-A-5-249787). When infrared light is applied to the color toner, diffuse reflected light is generated. The amount of diffusely reflected light increases with the amount of toner attached.RuSince it shows characteristics, it can be measured with high sensitivity from a low adhesion amount to a high adhesion amount.
[0004]
  Also, some full-color image forming apparatuses have been proposed that detect the toner adhesion amount on an intermediate transfer member rather than on a photosensitive member.
[0005]
  The output of the toner density sensor changes due to a change in reflectance due to deterioration over time of the opposing reflection object, that is, the photosensitive member or intermediate transfer member that is the detection target surface, contamination with time of the sensor, variation in each lot, and the like. Therefore, it is common to calibrate the sensor before detecting the toner adhesion amount. Here, calibration means adjusting the amount of light emitted from the sensor light emitting element (LED or the like) to adjust the toner adhesion amount sensor output to a constant value. For example, Japanese Patent Laid-Open No. 2000-131900 discloses one form thereof.
[0006]
  For example, assuming that the toner adhesion amount sensor output is Vs, the toner adhesion amount sensor output without toner on the surface of the image carrier is Vsg, and the toner concentration sensor output when the LED is off with the toner adhesion amount sensor output being the lowest level is Vso. (Black) As the toner adhesion amount increases, Vs decreases and eventually changes. That is, it saturates to a low level. This characteristic is shown in FIG. When the toner density sensor output is saturated in the Bk density detection, Vs = Vso. Using this characteristic, in the toner adhesion amount sensor, the light amount of the LED as the light emitting element is adjusted so that Vsg−Vso = constant, and the output level of the sensor is always kept constant with respect to the error factor. Yes. In the color toner, as shown in FIG. 5, the amount of reflected light increases as the toner adhesion amount increases, so that the sensor output level increases. The amount of color toner attached can also be grasped by the sensor output Vs.
[0007]
[Problems to be solved by the invention]
  However, since the detection target surface is an image carrier, it is difficult to accurately set Vsg−Vso = constant due to deterioration of the surface of the image carrier over time, resolution limit and tolerance of LED emission intensity control. . Therefore, an error occurs in the toner adhesion amount calculated from the toner adhesion amount sensor output Vs. Logically, by increasing the resolution of the LED emission intensity control, that is, reducing the A / D conversion quantization error of the sensor output, and reducing the allowable error when determining that the sensor output has reached the target value. The accuracy of emission intensity control is improved. However, the total time for focusing the light emission amount to the target value step by step becomes longer as the amount is reduced. Moreover, in practice, since the reflectance varies at each point in the circumferential direction of the image carrier, increasing the sensor output Vs reading resolution and reducing the allowable error will actually lead to convergence to the target value. It is also conceivable that the LED emission intensity control becomes unstable.
[0008]
  The first object of the present invention is to increase the accuracy of toner adhesion amount measurement by a toner density sensor, which is a light reflection type optical sensor, and to adjust the amount of light with the target amount of light emitted from the sensor in a relatively short time. In addition, a second object is to enable stable execution, and a third object is to stably control the toner adhesion amount to an optimum state at all times.
[0009]
[Means for Solving the Problems]
  (1) A light receiving element by irradiating the detection target surface with light from a light emitting elementLight ofRead the level signal level (Vsg)The level and the level of the light amount signal of the light receiving element that does not emit light (Vso) Difference from (Vsg-Vso) TheLight intensity adjustment to adjust the irradiation light quantity (B) of the light emitting element so that it is within the target value range (A ± 3%), and thenInIn order to detect the toner adhesion amount, the toner is applied to the detection target surface under the reference condition, and the detection target surface is irradiated with light with the adjusted irradiation light quantity (B) to receive the light.Light ofIn the toner adhesion amount detection method including the adhesion amount detection that reads the level (Vs) of the quantity signal,
  In the adhesion amount detection, reading is performed.LightQuantity signal level (Vs)And the light level signal level of the light receiving element that does not emit light (Vso) Difference from (Vs Vso)And saidIrradiation light quantity within the target value range during light intensity adjustment (B) Level of the light amount signal of the light receiving element when the detection target surface is irradiated with (Vsg, Vsgf) And the light level signal level of the light receiving element that does not emit light (Vso) Difference from (Vsg, Vsgf Vso) Target value within the target value range for (A) Ratio of (K = A / (Vsg, Vsgf Vso)) Level multiplied by (k (Vs Vso)) Is the toner adhesion level detection level.And a toner adhesion amount detection method.
[0010]
  In addition, in order to make an understanding easy, the code | symbol of the corresponding element or the corresponding matter of the Example shown in drawing and mentioned later in parentheses is added for reference. The same applies to the following.
[0011]
  According to this, the toner in which the light amount adjustment error (A− (Vsg, Vsgf−Vso)) due to the allowable error (± 3%) is corrected in the light amount adjustment with the light amount of the light emitting element as the target value (A). An adhesion amount detection value is obtained. Therefore, it is possible to obtain a highly accurate toner adhesion amount detection value without reducing the tolerance (± 3%) in each step, and to converge the light amount of the light emitting element to the target range (A ± 3%). An increase in the time required for adjustment can be avoided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
  (2) A light receiving element by irradiating the detection target surface with light from the light emitting elementLight ofRead the level signal level (Vsg)The level and the level of the light amount signal of the light receiving element that does not emit light (Vso) Difference from (Vsgf-Vso) TheLight intensity adjustment to adjust the irradiation light quantity (B) of the light emitting element so that it is within the target value range (A ± 3%), and thenInIn order to detect the toner adhesion amount, the toner is applied to the detection target surface under the reference condition, and the detection target surface is irradiated with light with the adjusted irradiation light quantity (B) to receive the light.Light ofIn the toner adhesion amount detection method including the adhesion amount detection that reads the level (Vs) of the quantity signal,
  In the light amount adjustmentIs a first average level obtained by irradiating a plurality of points b on the detection target surface with light of the light emitting element and reading a light amount signal level of the light receiving element. (Vsg) The first average level and the light level signal level of the light receiving element that does not emit light (Vso) Difference from (Vsg-Vso) Target value range (A ± Three % ) The amount of light emitted from the light emitting element (B) And adjusting the second average level by irradiating the light of the light emitting element to a plurality of d points, d> b, on the detection target surface and reading the level of the light quantity signal of the light receiving element. (Vsgf) Seeking
  In the adhesion amount detection, the level (Vs) of the read reflected light amount signalAnd the light level signal level of the light receiving element that does not emit light (Vso) Difference from (Vs Vso)In addition,Second average level (Vsgf) And the light level signal level of the light receiving element that does not emit light (Vso) Difference from (Vsgf Vso) Target value within the target value range for (A) Ratio of (K = A / (Vsgf Vso)) Level multiplied by (k (Vs Vso)) Is the toner adhesion level detection level.And a toner adhesion amount detection method.
[0013]
  According to this, the toner in which the light amount adjustment error (A− (Vsg, Vsgf−Vso)) due to the allowable error (± 3%) in the light amount adjustment with the light amount of the light emitting element as the target value (A) is corrected. An adhesion amount detection value is obtained. Therefore, it is possible to obtain a highly accurate toner adhesion amount detection value without reducing the tolerance (± 3%) in each step, and to converge the light amount of the light emitting element to the target range (A ± 3%). An increase in the time required for adjustment can be avoided.
[0014]
  In addition, when the adjustment in the light amount adjustment is finished, the adjusted level (Vsgf) of the reflected light amount signal of the light receiving element is read and this is corrected to the subsequent toner adhesion amount detection value correction (K = A / (Vsgf− Vso)), for example, the tolerance is increased, and the reflected light amount signal at the time of light amount adjustment is quickly converged to the target value and / or the number of samples (measured value = the number of samplings for obtaining the average value)b) To reduce the time required for light intensity adjustment, and high density and / or large area(D)Then, the amount of reflected light is detected, and the correction value is accurately determined based on the average value thereof. According to this, an accurate correction value can be obtained even with a relatively rough light amount adjustment, and a highly accurate toner adhesion amount detection value can be obtained.
[0015]
  (3) The detection target surface is a visible image carrier that orbits,Used for the ratio,SaidIrradiation light quantity within the target value range during light intensity adjustment (B) Of the light intensity signal of the light receiving element when the target surface is irradiated withThe toner adhesion amount detection method according to (1) or (2), wherein the levels (Vsg, Vsgf) are average values of reading levels over a range of one circumference or more of the visible image carrier.
[0016]
  In addition to the functions and effects described in (1) or (2) above, the variation in reflectance in the circumferential direction of the image carrier is measured by measuring and averaging the change in reflectance in the circumferential direction of the image carrier. The correction error due to the toner can be suppressed to the minimum, and more accurate and stable toner adhesion amount detection can be performed.
[0017]
  (4) The above (1), (2) or (3)Includes light intensity adjustment and adhesion detectionA computer-executed program for detecting the toner adhesion amount. According to this, in the computer-controlled image forming apparatus, the toner adhesion amount detection of (1), (2) or (3) is performed, and the operation described in (1), (2) or (3), An effect can be obtained.
[0018]
  (5) A sensor (8) including a light emitting element that irradiates light on a detection target surface, and a light receiving element that receives reflected light from the direction of the detection target surface and generates a light amount signal whose level indicates a received light amount;
  Read the light intensity signal (Vsg) in the light intensity adjustment mode,TheLight intensity signalLevel and level of light quantity signal of light receiving element that does not irradiate light (Vso) Difference from (Vsg-Vso) Target value range (A ± Three % ) InsideA light amount adjusting means (30, 33) for adjusting the irradiation light amount (B) of the light emitting element so that;
  In order to detect the toner adhesion amount, toner is applied to the detection target surface under the reference conditions, and the light amount signal of the light receiving element is read by irradiating the detection target surface with the adjusted irradiation light amount (B).TheLevel of read light signal (Vs)And the light level signal level of the light receiving element that does not emit light (Vso) Difference from (Vs Vso)And saidIrradiation light quantity within the target value range during light intensity adjustment (B) Level of the light amount signal of the light receiving element when the detection target surface is irradiated with (Vsg, Vsgf) And the light level signal level of the light receiving element that does not emit light (Vso) Difference from (Vsg, Vsgf Vso) Target value within the target value range for (A) Ratio of (K = A / (Vsg, Vsgf Vso)) Level multiplied by (k (Vs Vso)) Is a toner adhesion amount detection level. (30,33);
A toner adhesion amount detection device.
[0019]
  Using this toner adhesion amount detection device, the toner adhesion amount detection described in (1) or (2) can be performed, and the operation and effect described in (1) or (2) can be obtained. .
[0020]
  (6) Photoconductor (1), means for charging the photoconductor (4), exposure means for irradiating light on the charged surface of the photoconductor to display an image (5), and the electrostatic latent image formed thereby is converted into toner. Development means (6a to 6d) for visualizing the toner, means for transferring the visualized toner image directly or indirectly to the transfer paper via the intermediate transfer medium (9), light emitted to the photoreceptor or intermediate transfer medium Light receiving element by irradiating the light of the elementLight ofRead the level signal level (Vsg)The level and the level of the light amount signal of the light receiving element that does not emit light (Vso) Difference from (Vsg-Vso) TheSensor light intensity adjustment means (30, 33) that adjusts the light intensity (B) of the light emitting element so that it is within the target value range (A ± 3%), and then the photosensitivity is performed under reference conditions to detect the toner adhesion amount. The toner is applied to the body or intermediate transfer medium, and the light intensity level (Vs) of the light receiving element is read corresponding to the read value by irradiating the photoreceptor or intermediate transfer medium with the adjusted irradiation light quantity (B). In an image forming apparatus comprising an image density adjusting means (30, 33) for adjusting image forming conditions,
  The image density adjusting means (30, 33) is a level (Vs) of the read light amount signal in the adhesion amount detection.And the light level signal level of the light receiving element that does not emit light (Vso) Difference from (Vs Vso)And saidIrradiation light quantity within the target value range during light intensity adjustment (b) Level of light quantity signal of light receiving element when irradiating photoconductor or intermediate transfer medium (Vsg, Vsgf) And the light level signal level of the light receiving element that does not emit light (Vso) Difference from (Vsg, Vsgf Vso) Target value within the target value range for (A) Ratio of (K = A / (Vsg, Vsgf Vso)) Level multiplied by (k (Vs Vso))On the basis of the,An image forming apparatus that adjusts image forming conditions.
[0021]
  According to this, the accuracy of toner density measurement is improved, and the toner adhesion amount can always be stably controlled to an optimal state to prevent image quality deterioration and abnormal images. Can be stabilized.
[0022]
  Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.
[0023]
【Example】
  FIG. 1 shows a color printer 40 according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a flexible photosensitive belt as a belt-like image carrier. The photosensitive belt 1 is installed between the rotating rollers 2 and 3, and is rotated by the rotating roller 2. It is conveyed in the middle arrow A direction (clockwise). In the figure, reference numeral 4 denotes a charging charger for uniformly charging the surface of the photosensitive belt 1, and reference numeral 5 denotes a laser exposure apparatus which is an image writing unit. In the figure, 6 is a color developing device, 6a is magenta, 6b is cyan, 6c is yellow, and 6d is a black developing unit.
[0024]
  Further, 9 in the figure is an intermediate transfer belt as an image carrier and an intermediate transfer medium. The intermediate transfer belt 9 is installed on a rotating roller 10-12, and is rotated in the direction of arrow B ( (Counterclockwise) The photosensitive belt 1 and the intermediate transfer belt 9 are in contact with each other by a blank rotation roller portion of the photosensitive belt 1. On the intermediate transfer belt 9 side of the contact portion, a conductive bias roller 13 is in contact with the back surface of the intermediate transfer belt 10 under predetermined conditions.
[0025]
  The photosensitive belt 1 is uniformly charged by the charging charger 4 and then exposed by scanning with laser light modulated by the image recording signal by the laser exposure device 5. As a result, an electrostatic latent image is formed on the photosensitive belt 1. Here, the image recording signal for modulating the laser beam is for each color (single color) obtained by decomposing a desired full color image into magenta, cyan, yellow, and black (Bk) color information. The formation of the electrostatic latent image and the development by the one addressed to the color in the developing devices 6a-6d are repeated by the number of colors (for example, magenta, cyan, yellow, and black, a total of four times). The developed images (toner images) appearing by development are transferred onto the intermediate transfer belt 9 in a superimposed manner.
[0026]
  That is, each single-color image (toner image) formed on the photosensitive belt 1 rotating in the direction of arrow A in the drawing is synchronized with the photosensitive belt 1 on the intermediate transfer belt 9 rotating in the direction of arrow B in the drawing. , Magenta, cyan, yellow, and black are sequentially superimposed and transferred by a predetermined transfer bias applied to the bias roller 13. Magenta, cyan, yellow, and overlaid on the intermediate transfer belt 9The blackThe image is collectively transferred from the paper feed cassette 16a of the paper feed tray 16 onto the transfer paper transported to the transfer roller 14 through the paper feed roller 17, the transport roller pairs 18a and 18b, and the registration roller pairs 19a and 19b. After the transfer is completed, the toner image on the transfer paper is fixed (heat-pressed) to the transfer paper by the fixing device 20. As a result, a full-color image is completed, and the transfer paper is discharged to the paper discharge stack unit 22 through the paper discharge roller pair 21a and 21b.
[0027]
  In the figure, reference numeral 7 denotes a cleaning blade that is always in contact with the photosensitive belt 1 and wipes off the toner on the photosensitive belt 1, and reference numeral 15 denotes a cleaning device for the intermediate transfer belt 9, which is a cleaning brush of the cleaning device 15. 15a is held at a position separated from the surface of the intermediate transfer belt 10 during the image forming operation, and a formed image is transferred onto the above-described transfer paper and then brought into contact with the surface of the intermediate transfer belt 10.
[0028]
  Further, the photosensitive belt 1, the charger 4, the intermediate transfer belt 9, and the cleaning devices 7 and 15 are integrally assembled into a process cartridge to form a unit.
[0029]
  Reference numeral 8 denotes a toner adhesion amount sensor for detecting the toner adhesion amount on the photosensitive belt 1. The toner adhesion amount sensor 8 used this time generates and outputs a voltage Vs, that is, a detection signal of a level corresponding to the amount of light received by the photodiode, in which the light emitting portion is an infrared light emitting diode and the diffuse reflection light receiving portion is a photodiode. That is, a toner density sensor that measures the amount of diffusely reflected light.
[0030]
  FIG. 2 shows an outline of the electrical system of the full-color printer shown in FIG. FIG. 2 illustrates the control device with the main controller 30 as the center. The main controller 30 controls the entire printer 40. The main controller 30 is connected to an operation / display board OPB that performs display for the operator and function setting input control from the operator, controls the additional scanner 60 and the additional automatic document feeder ADF, and displays the original image. A scanner controller 32, a printer controller 36, and an image processing unit (IPU) 50 are also connected to perform control for writing to the memory and control for image formation from the image memory. Further, a dispersion control device such as an engine controller 33 for controlling an image forming engine in the color printer 40 that performs charging, exposure, development, paper feeding, transfer, fixing, and transfer paper transfer is connected. Each distributed control device and the main controller 30 exchange machine states and operation commands as necessary. A main motor and various clutches necessary for paper conveyance and the like are also connected to a driver (not shown) in the main controller 30. The engine controller 33 includes a sensor driver that drives the toner concentration sensor 8 and supplies the detection signal to the A / D conversion port of the main controller 30.
[0031]
  The printer controller 36 analyzes an image from the outside such as a personal computer and a command for instructing printing, develops a bitmap as image data into a printable state, and drives the printer 40 via the main controller 30 to print the image data. Out. In order to receive and operate images and commands through the LAN and parallel I / F, there is a LAN control 39 and a parallel I / F 38.
[0032]
  When there is a facsimile transmission instruction, the FAX controller 37 drives the scanner 60 and the IPU 50 via the main controller 30 to read the image of the original, and sends the image data to the facsimile communication line via the communication control 40 and the PBX. Send it out. When a facsimile call is received from the communication line and image data is received, the printer 40 is driven via the main controller 30 to print out the image data.
[0033]
  FIG. 3 shows a main flow of image formation control of the main controller 30. First, when power is turned on, initialization (IL) is performed (step 1: hereinafter, the word “step” is omitted in parentheses). Initialization (IL) is used to monitor various port settings, register clearing, output port resetting, abnormality check (EM) for processing when an abnormality such as door open or jam occurs, and monitoring the light intensity adjustment interval. Clear the number n of prints. Thereafter, standby mode processing (WT) is performed (2). In standby mode processing (WT), key input reading from the operation unit, fixing temperature (start-up) processing, abnormality check (EM), and the like are performed. Next, the copy is ready (3). When a start instruction is given, (4) pre-image formation mode processing (FT) is performed (5). In the pre-mode processing (FT), preparation processing such as determination of output to devices around the drive motor and belts 1 and 9 is performed, setting of the set number of prints (NK) in the register Nset, abnormality check (EM), and the like are performed. . Next, it is checked whether the number n of prints for monitoring the light quantity adjustment interval is 0 (immediately after the power is turned on) or more than the set value Nsh (light quantity adjustment timing) (6). The process proceeds to the mode process (CP) (9). If any of the conditions is satisfied, a “sensor calibration” (7) described later is performed and the print number n is cleared (8), and then the print mode process (CP) (9) ) And toner replenishment processing (10) is performed.
[0034]
  In print mode processing (CP) (9), image forming process processing, paper transport processing, abnormality check (EM), and the like corresponding to the print cycle are performed.
[0035]
  When both the print mode process (9) and the toner supply process (10) are completed (11), the register n and the register C indicating the number of copies are stored.COPYIs incremented by 1 (12, 13) and the number of prints (CCOPY) Has reached the set number of sheets (Nset) (14). If not, the process proceeds to the print mode process (9) and the processes of steps 9 to 14 are repeated.
[0036]
  Number of prints (CCOPY) Reaches the set number (Nset) (14), the register CCOPYIs set to 0 (15), and post-mode processing (LT) is performed (16). In the post-mode processing (LT), post-processing such as turning off the output to the devices around the belts 1 and 9, paper discharge processing, abnormality check (EM), and the like are performed. Then, the process returns to the standby mode process (WT) (2). Therefore, in this embodiment, the “sensor calibration” (7) is practically performed when the number of prints equal to or greater than the set number Nsh is printed at power-on and after power-on, and when a new print start instruction is issued. carry out.
[0037]
  FIG. 4 shows the contents of “sensor calibration” (7). When the process proceeds to “Sensor calibration” (7), the main controller 30 first measures the output Vso of the toner adhesion amount sensor 8 with the LED of the toner density sensor 8 turned off (no power supply: no light emission) to measure NVRAM, that is, a nonvolatile memory. Store in memory. At this time, the photosensitive belt 1 is in a constant speed rotation state, and reading of the output of the sensor 8 by A / D conversion is performed a (several tens) times or more, and the average value thereof is written in NVRAM as Vso (21 ). This is to eliminate as much as possible the influence of detection noise during measurement and variations due to the detection position on the belt. In the following detection, the detection value is read many times and the average value is calculated for the same purpose.
[0038]
  Next, the controller 30 initializes the measurement operation count c to 0 while keeping the photosensitive belt 1 rotating at a constant speed (22), and turns on the LED of the sensor 8 (23). At this time, the energization level instruction value B to the sensor 8 is obtained when the light amount value Vsgf (the result value adjusted by the previous sensor calibration) stored in the NVRAM is obtained, and the light amount value Vsg.f andBoth are stored in NVRAM. In this document, what the controller 30 operates to adjust the light amount of the sensor 8 (the amount of light reflected by the belt 1) to a target value is the LED energization level instruction value B to the sensor 8. When the state of the detection target surface and the environment around the sensor are the same and the sensor does not change with time, if the energization level instruction value B is the same, the detected light amount is the same, and the light amount value and the LED energization level instruction value B are There is substantially a one-to-one correspondence.
[0039]
  Further, the controller 30 reads the output of the sensor 8 b (several tens) times or more by A / D conversion, calculates an average value Vsg thereof, and increments the number of measurement operations c by 1 (23). A value obtained by subtracting Vso from Vsg is a substantial amount of reflected light from the photoconductor, and the accuracy of toner adhesion detection is improved by calibrating this value with higher accuracy. The target value A of the reflected light amount of the photosensitive member is generally about 1 to 5V.
[0040]
  Next, the controller 30 first determines whether or not Vsg−Vso falls within A ± 20% in order to bring Vsg−Vso closer to the target value A (24). If not, the LED energization level instruction value to the sensor 8 is determined. B is changed (25). In this case, B is a resolution that can be set from 0 to 255 represented by 8 bits. For example, when B = 150 and Vsg−Vso> A, B is set to 140, and measurement is performed once again to obtain Vsg (23) and repeated until Vsg-Vso reaches A ± 20% (23-24-25-25-23). If n = 25 times or more due to this repetition, it is considered that the LED energization level instruction value B has reached 0 or 255, and it is determined that the calibration is NG (calibration is impossible), and the sensor calibration (7) is terminated as an error. (26-27-36-return).
[0041]
  When A ± 20% is entered, in order to bring Vsg-Vso close to A with high accuracy, the LED energization level instruction value B is changed by 1 (30), and this time whether Vsg-Vso has become A ± 3% Check (28-29). If n = 35 times or more due to this repetition, it is considered that the LED energization level instruction value B has reached 0 or 255, and it is determined that the calibration is NG (calibration is impossible), and the sensor calibration (7) is terminated as an error. (31-32-36-return). When Vsg−Vso falls within A ± 3% within n = 35 times, the search for the LED energization level instruction value B is finished. In this high-precision adjustment, the target value range was set to A ± 3%. If the energization level instruction value and A / D conversion resolution are made larger than 8 bits (256 values) by making this a narrower range, the light quantity adjustment accuracy can be further improved. This leads to an increase in the cost of the A / D converter to be read and an increase in calibration time.
[0042]
  When Vsg−Vso falls within the target value A ± 3%, the LED light amount setting value and the LED energization level instruction value B are determined. However, this light quantity set value has an error of ± 3%, and a fluctuation within 6% is expected at every calibration.
[0043]
  Therefore, in order to correct the fluctuation within 6%, the correction coefficient K is calculated from the photoreceptor reflected light amount Vsg−Vso and the target value A at the LED light amount setting value (LED energization level instruction value B).
            K = A / (Vsg−Vso)
Ask for.
[0044]
  At this time (Vsg−Vso), it is desirable to measure and average the circumference of the photosensitive belt 1 for at least one circumference in order to eliminate the influence of the reflected light unevenness in the circumferential direction of the photosensitive belt and the detection noise at the time of measurement.
[0045]
  Therefore, in this embodiment, the controller 30 continues to drive the photosensitive belt 1 at a constant speed and causes the sensor 8 to emit light at the LED energization level instruction value B when Vsg−Vso falls within the target value A ± 3%. Continuously, the output of the sensor 8 is read by A / D conversion for d (several tens) times or more over the circumference of the photosensitive belt 1, and an average value Vsgf thereof is calculated, and the correction coefficient K,
            K = A / (Vsgf-Vso)
(33, 34), and the LED energization level instruction value B, the light amount setting value Vsgf and the correction coefficient K = A / (Vsgf-Vso) at this time are written in the NVRAM (35). d> a, b. In order to shorten the time required for sensor calibration, it is preferable to set a and b to small values, and in order to increase the accuracy of sensor calibration, it is preferable to set d to a large value.
[0046]
  FIG. 5 shows output characteristics of the toner adhesion amount sensor 8. In the toner replenishing process (10) shown in FIG. 3, the controller 30 sequentially forms toner marks of the respective colors on which the image is formed by the print mode process (CP) on the photosensitive belt 1 under the standard image forming conditions for the respective colors. Then, the light quantity of the sensor 8 is set to the value adjusted in “sensor calibration” (7), that is, the Vso written in NVRAM in step 21 and the LED conduction level command value written in step 35 (FIG. 4). B and the correction value K are read, the LED energization level command value B is given to the sensor 8, the LED is turned on, and the detection level of the sensor 8 of each color toner mark is A / D converted and read. After subtracting and multiplying the difference value (Vs−Vso) by the correction value K, K is determined based on the read signal / toner adhesion amount conversion characteristics (conversion ROM: conversion characteristics in FIG. 5) for each color. The (Vs-Vso), into a toner attached amount. When the toner adhesion amount is equal to or lower than the lower limit setting value, the toner is supplied to the corresponding developing device. When the lower limit set value is exceeded and less than the upper limit set value, nothing is done with respect to the developed color. If it is equal to or greater than the upper limit setting value, the development bias value of the corresponding color is changed to the low density development side by the amount exceeding the upper limit setting value.
[0047]
  At this time, there may be a variation in the light amount adjustment error that is expected to be 6% at the maximum, but in K · (Vs−Vso), the error variation is almost 0%, and the toner adhesion amount measurement value K · (Vs−Vso). ) Is highly accurate.
[0048]
  In the above embodiment, after Vsg−Vso reaches the target value A ± 3%, the output of the sensor 8 is A / D more than d (several tens) times over the circumference of the photosensitive belt 1. Reading by conversion, calculating an average value Vsgf thereof, and obtaining a correction coefficient K, in one modification of the above embodiment, Vsg when Vsg−Vso falls within the target value A ± 3% is calculated. Based on this, a correction value K = A / (Vsg−Vso) is calculated. Also in this case, in order to eliminate the influence of the reflected light amount unevenness in the circumferential direction of the photoreceptor belt 1 and the detection noise at the time of measurement, the circumference of the photoreceptor belt 1 is measured and averaged. That is, reading of the sensor detection value at step 28 is performed in the same manner as at step 33.
[0049]
  As a result, the multipoint sensor detection value reading (sampling) in step 33 of the above embodiment is omitted, but in the above modification, the step 28 may be repeated many times, so that the number of times of sampling in step 28 is small. The more preferable. From this point of view, the above-described embodiment is considered preferable in terms of increasing the calibration accuracy and shortening the time required for the entire sensor calibration.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an outline of the mechanism of a full-color printer 40 embodying the present invention in one aspect.
FIG. 2 is a block diagram showing an outline of an electrical system of the printer 40 shown in FIG.
FIG. 3 is a flowchart showing an outline of image formation process control of the main controller 30 shown in FIG. 1;
FIG. 4 is a flowchart showing the contents of “sensor calibration” (7) shown in FIG. 3;
FIG. 5 is a graph showing toner adhesion amount detection characteristics of the toner density sensor 8 shown in FIG. 1;
[Explanation of symbols]
1: Photoconductor belt 2, 3: Rotating roller
4: Charging charger 5: Laser exposure device
6a-6d: Development unit 7: Cleaning blade
8: Toner adhesion sensor 9: Intermediate transfer belt
10-12: Rotating roller 13: Bias roller
14: Transfer roller 15: Cleaning device
15a: Cleaning brush
16: Cleaning device 17: Paper feed roller
18a, 18b: pair of transport rollers
19a, 19b: Registration roller pair
20: Fixing device 21a, 21b: Paper discharge roller pair
22: Paper discharge stack

Claims (6)

検出対象面に発光素子の光を照射して受光素子の光量信号のレベルを読取り、該レベルと光を照射しない受光素子の光量信号のレベルとの差を狙い値範囲内とするように発光素子の照射光量を調整する光量調整、及び、その後、トナー付着量を検出するために基準条件で検出対象面にトナーを付与し、該調整した照射光量で検出対象面に光を照射して受光素子の光量信号のレベルを読取る付着量検出、を含むトナー付着量検出方法において、
前記付着量検出においては、読取った光量信号のレベルと光を照射しない受光素子の光量信号のレベルとの差に、前記光量調整において狙い値範囲内となった照射光量の光を検出対象面に照射したときの受光素子の光量信号のレベルと光を照射しない受光素子の光量信号のレベルとの差に対する前記狙い値範囲内の狙い値の比を乗算したレベルを、トナー付着量検出レベルとする、ことを特徴とするトナー付着量検出方法。
Is irradiated with light of light emitting elements to the detection target surface reads the level of the optical amount signal of the light receiving element, light emission difference between the level of the intensity signal of the light receiving element is not irradiated with the level and the light to be within the target value range light amount adjustment for adjusting the light quantity of the element, and, thereafter, the toner is applied to the detection target surface at the reference conditions in order to detect the toner adhesion amount, by irradiating light to the detection target surface at the irradiation amount of light the adjusted in the toner adhesion amount detection method comprising the adhesion amount detection, to read the level of light amount signal of the light receiving element,
In the adhesion amount detection, the difference between the level of the intensity signal of the light receiving element is not irradiated with the level and the light of the light amount signal Tsu read, the detection target surface with light of the irradiation light amount falls within the target value ranges in the light amount adjustment A level obtained by multiplying the ratio of the target value within the target value range to the difference between the level of the light amount signal of the light receiving element when the light is irradiated and the level of the light amount signal of the light receiving element that does not irradiate the light is a toner adhesion amount detection level. to that, the toner adhesion amount detection method characterized by.
検出対象面に発光素子の光を照射して受光素子の光量信号のレベルを読取り、該レベルと光を照射しない受光素子の光量信号のレベルとの差を狙い値範囲内とするように発光素子の照射光量を調整する光量調整、及び、その後、トナー付着量を検出するために基準条件で検出対象面にトナーを付与し、該調整した照射光量で検出対象面に光を照射して受光素子の光量信号のレベルを読取る付着量検出、を含むトナー付着量検出方法において、
前記光量調整においては、検出対象面の複数b点に発光素子の光を照射して受光素子の光量信号のレベルを読取って第1平均レベルを求め、第1平均レベルと光を照射しない受光素子の光量信号のレベルとの差を狙い値範囲内とするように発光素子の照射光量を調整してから、検出対象面の複数d点、d>b、に発光素子の光を照射して受光素子の光量信号のレベルを読取って第2平均レベルを求め、
前記付着量検出においては、読取った反射光量信号のレベルと光を照射しない受光素子の光量信号のレベルとの差に、第2平均レベルと光を照射しない受光素子の光量信号のレベルとの差に対する前記狙い値範囲内の狙い値の比を乗算したレベルを、トナー付着量検出レベルとする、ことを特徴とするトナー付着量検出方法。
Is irradiated with light of light emitting elements to the detection target surface reads the level of the optical amount signal of the light receiving element, light emission difference between the level of the intensity signal of the light receiving element is not irradiated with the level and the light to be within the target value range light amount adjustment for adjusting the light quantity of the element, and, thereafter, the toner is applied to the detection target surface at the reference conditions in order to detect the toner adhesion amount, by irradiating light to the detection target surface at the irradiation amount of light the adjusted in the toner adhesion amount detection method comprising the adhesion amount detection, to read the level of light amount signal of the light receiving element,
Wherein the light amount adjustment obtains a first mean level by reading the level of irradiating light of the light emitting element into a plurality point b of the detection target surface intensity signal of the light receiving element, the light receiving element is not irradiated with the first mean level and the light The light quantity of the light emitting element is adjusted so that the difference from the level of the light quantity signal falls within the target value range, and then the light of the light emitting element is irradiated to a plurality of d points, d> b, on the detection target surface. Read the level of the light amount signal of the element to obtain the second average level,
In the adhesion amount detection, the difference between the read reflected light amount signal level and the light amount signal level of the light receiving element that does not emit light is the difference between the second average level and the light amount signal level of the light receiving element that does not emit light. wherein the level obtained by multiplying the ratio of the target value in the target value range, shall be the toner adhesion amount detection level, the toner adhesion amount detection method characterized in that for.
前記検出対象面は、周回運動する顕像担持体であり、前記比に用いる、前記光量調整において狙い値範囲内となった照射光量の光を検出対象面に照射したときの受光素子の光量信号のレベルは、該顕像担持体の1周長以上の範囲にわたる読取レベルの平均値である、請求項1又は請求項2記載のトナー付着量検出方法。The detection target surface is a visible image carrier that orbits and is used for the ratio, and a light amount signal of a light receiving element when the detection target surface is irradiated with light having an irradiation light amount that falls within a target value range in the light amount adjustment. The toner adhesion amount detection method according to claim 1, wherein the level is an average value of a reading level over a range of one circumference or more of the visible image carrier. 請求項1,請求項2又は請求項3の光量調整および付着量検出を含むトナー付着量検出を行う、コンピュータが実行するプログラム。A program executed by a computer for performing toner adhesion amount detection including light amount adjustment and adhesion amount detection according to claim 1, 2 or 3. 検出対象面に光を照射する発光素子、及び、検出対象面方向からの反射光を受光し、レベルが受光光量をあらわす光量信号を発生する受光素子を含むセンサ;
光量調整モードの時に前記光量信号を読取り、光量信号のレベルと光を照射しない受光素子の光量信号のレベルとの差を狙い値範囲内とするように発光素子の照射光量を調整する光量調整手段;及び、
トナー付着量を検出するために基準条件で検出対象面にトナーを付与し、該調整した照射光量で検出対象面に光を照射して受光素子の光量信号を読取り、読取った光量信号のレベルと光を照射しない受光素子の光量信号のレベルとの差に、前記光量調整において狙い値範囲内となった照射光量の光を検出対象面に照射したときの受光素子の光量信号のレベルと光を照射しない受光素子の光量信号のレベルとの差に対する前記狙い値範囲内の狙い値の比を乗算したレベルを、トナー付着量検出レベルとする付着量検出手段;
を備えるトナー付着量検出装置。
A sensor including a light emitting element that irradiates light to the detection target surface, and a light receiving element that receives reflected light from the direction of the detection target surface and generates a light amount signal whose level indicates the amount of received light;
Reading the light quantity signal when the light intensity adjustment mode to adjust the irradiation light amount difference emitting element so that to the in the target value range between the level of the intensity signal of the light receiving element is not irradiated with the level and the light of the light quantity signal quantity Adjusting means; and
The toner was applied to the detection target surface at the reference conditions in order to detect the toner adhesion amount, the Ri adjusted to the detection target surface by irradiation light amount is irradiated with reading light of intensity signal of the light receiving element, the level of the light quantity signals read And the light amount signal level of the light receiving element when the detection target surface is irradiated with light of the light amount within the target value range in the light amount adjustment. wherein the level obtained by multiplying the ratio of the target value in the target value range, the adhesion amount detection unit shall be the toner adhesion amount detection level for the difference between the level of the intensity signal of light receiving elements not irradiated;
A toner adhesion amount detection device.
感光体,これを荷電する手段,感光体の荷電面に画像を表すための光を照射する露光手段,これによって形成された静電潜像をトナーで顕像化する現像手段,顕像化したトナー像を、直接に又は中間転写媒体を介して間接に転写紙に転写する手段,感光体又は中間転写媒体に発光素子の光を照射して受光素子の光量信号のレベルを読取り、該レベルと光を照射しない受光素子の光量信号のレベルとの差を狙い値範囲内とするように発光素子の照射光量を調整するセンサ光量調整手段、及び、その後トナー付着量を検出するために基準条件で感光体又は中間転写媒体にトナーを付与し、該調整した照射光量で感光体又は中間転写媒体に光を照射して受光素子の光量信号のレベルを読取り読取値に対応して作像条件を調整する画像濃度調整手段、を備える画像形成装置において、
前記画像濃度調整手段は、前記付着量検出においては、読取った光量信号のレベルと光を照射しない受光素子の光量信号のレベルとの差に、前記光量調整において狙い値範囲内となった照射光量の光を感光体又は中間転写媒体に照射したときの受光素子の光量信号のレベルと光を照射しない受光素子の光量信号のレベルとの差に対する前記狙い値範囲内の狙い値の比を乗算したレベルに基づいて作像条件を調整することを特徴とするトナー付着量検出方法。
Photoconductor, means for charging it, exposure means for irradiating light on the charged surface of the photoconductor to express an image, developing means for developing the electrostatic latent image formed thereby with toner, and developing the image a toner image, means for transferring the transfer sheet indirectly directly or via an intermediate transfer medium, reads the level of the optical amount signal of the light receiving element is irradiated with light from the light emitting element to the photoreceptor or intermediate transfer medium, the level Sensor light amount adjusting means for adjusting the amount of light emitted from the light emitting element so that the difference between the level of the light amount signal of the light receiving element and the light receiving element that does not emit light is within the target value range, and then a reference condition for detecting the toner adhesion amount The toner is applied to the photosensitive member or the intermediate transfer medium, and the photosensitive member or the intermediate transfer medium is irradiated with light with the adjusted irradiation light amount, and the light amount signal level of the light receiving element is read and the image forming condition is set corresponding to the read value. Image density adjusting means to be adjusted; An image forming apparatus comprising,
The image density adjusting means detects an amount of irradiation light that falls within a target value range in the light amount adjustment due to a difference between a read light amount signal level and a light amount signal level of a light receiving element that does not emit light. Multiplied by the ratio of the target value within the target value range to the difference between the level of the light amount signal of the light receiving element when the light of the photosensor or the intermediate transfer medium is irradiated and the level of the light amount signal of the light receiving element not irradiated with the light. based on the level, the toner adhesion amount detection method characterized by adjusting the image forming condition.
JP2001022656A 2001-01-31 2001-01-31 Toner adhesion amount detection method, program, apparatus, and image forming apparatus Expired - Fee Related JP4107550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022656A JP4107550B2 (en) 2001-01-31 2001-01-31 Toner adhesion amount detection method, program, apparatus, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022656A JP4107550B2 (en) 2001-01-31 2001-01-31 Toner adhesion amount detection method, program, apparatus, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2002229279A JP2002229279A (en) 2002-08-14
JP4107550B2 true JP4107550B2 (en) 2008-06-25

Family

ID=18888039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022656A Expired - Fee Related JP4107550B2 (en) 2001-01-31 2001-01-31 Toner adhesion amount detection method, program, apparatus, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4107550B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4594115B2 (en) * 2005-01-20 2010-12-08 京セラミタ株式会社 Image forming apparatus
JP5219475B2 (en) 2007-11-30 2013-06-26 キヤノン株式会社 Color image forming apparatus and control method thereof
JP5549370B2 (en) * 2010-05-14 2014-07-16 コニカミノルタ株式会社 Image forming apparatus

Also Published As

Publication number Publication date
JP2002229279A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
US7894101B2 (en) Color image forming apparatus and method of controlling the same
US7403727B2 (en) Image forming apparatus and density adjusting method thereof
JP3589270B2 (en) Image forming method
US8532511B2 (en) Image forming apparatus and image forming apparatus control method
US6526235B2 (en) Toner replenishment control method for image forming apparatus, and the image forming apparatus
US9594337B2 (en) Image forming apparatus for detecting misregistration amount and density
JP4933176B2 (en) Image forming apparatus
US8264755B2 (en) Image forming apparatus and image forming method
US7538918B2 (en) Toner image forming apparatus including gradation control
JP2008083252A (en) Image forming apparatus and control method thereof
JP2007274438A (en) Image forming apparatus and control method
US7471908B2 (en) Image forming apparatus that forms adjustment images having different densities and image forming method of controlling the image forming apparatus
US7865095B2 (en) Image forming apparatus including distance detection unit
JP4107638B2 (en) Image forming apparatus
US11977349B2 (en) Image forming apparatus
JP4107550B2 (en) Toner adhesion amount detection method, program, apparatus, and image forming apparatus
US11513461B2 (en) Image forming apparatus and image quality adjustment method
JP5262671B2 (en) Image forming apparatus and image forming method
US20090297189A1 (en) Image forming apparatus
US7899348B2 (en) Image forming apparatus with developing bias correcting portion that changes a developing density adjustment pattern
JP2008233369A (en) Density detecting device and image forming apparatus
JP3742446B2 (en) Method for controlling image forming apparatus
JP4625348B2 (en) Image forming apparatus
JP2010026190A (en) Image forming apparatus
JP2003195582A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees