JP4105972B2 - Method for producing effervescent liquid food - Google Patents

Method for producing effervescent liquid food Download PDF

Info

Publication number
JP4105972B2
JP4105972B2 JP2003090265A JP2003090265A JP4105972B2 JP 4105972 B2 JP4105972 B2 JP 4105972B2 JP 2003090265 A JP2003090265 A JP 2003090265A JP 2003090265 A JP2003090265 A JP 2003090265A JP 4105972 B2 JP4105972 B2 JP 4105972B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
liquid food
pressure
temperature
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003090265A
Other languages
Japanese (ja)
Other versions
JP2004290145A (en
Inventor
豊 筬島
正起 三宅
聡 太田垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAICAN CO.,LTD.
Original Assignee
HOKKAICAN CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAICAN CO.,LTD. filed Critical HOKKAICAN CO.,LTD.
Priority to JP2003090265A priority Critical patent/JP4105972B2/en
Publication of JP2004290145A publication Critical patent/JP2004290145A/en
Application granted granted Critical
Publication of JP4105972B2 publication Critical patent/JP4105972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サイダーやビール等の発泡性液状食品の殺菌及び発泡工程を効率的に行う、発泡性液状食品の製造方法に関する。
【0002】
【従来の技術】
発泡性液状食品の製造工程においては、原料である液状食品に二酸化炭素(炭酸ガス)を溶解させる工程と殺菌を行う工程とが別個の工程で行われている。
液状食品に二酸化炭素を含有させる方法には、およそ5kg/cm2までのガス内圧で二酸化炭素を吹き込む方法、炭酸水を添加・混合する方法、液状食品自体の発酵によって生成する二酸化炭素を利用する方法などが知られている。例えば炭酸飲料の製造では最初の方法、ビールや発泡性日本酒の場合は最初と最後の方法を組み合わせた方法が用いられる。
【0003】
一方、液状食品の殺菌処理は、通常、加熱により行われている。しかし、食品によっては加熱処理により風味の低下等の品質の劣化が生じる場合がある。例えば、生ビールの場合は加熱を行うことができない。このような場合には、フィルター濾過による除菌処理等が行われる。しかし、フィルター濾過では、フィルターにより液状食品に含まれる有効成分が捕捉されてしまい、同様に品質が低下する場合がある。このことから、加熱処理やフィルター濾過によらずに、二酸化炭素を利用して殺菌を行う方法が提案されている(特許文献1参照)。
【0004】
【特許文献1】
特開平7-170965号公報
【0005】
【発明が解決しようとする課題】
上記の通り、従来の発泡性液状食品の製造においては、いずれの場合であっても、二酸化炭素溶解(生成)工程と殺菌(除菌)工程とは別個に行われていた。しかし、これらを一つの装置を用いて連続的に行うことができれば、生産性を向上させることが可能となる。
【0006】
本発明はこのような課題を解決するために成されたものであり、その目的とするところは、二酸化炭素含有工程と殺菌工程とを一つの装置を用いて連続的に行うことが可能であって、かつ、食品の品質を損なうことのない発泡性液状食品の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係る発泡性液状食品製造方法は、二酸化炭素を超臨界又は亜臨界状態で液状食品に溶解させる第1工程と、該液状食品を所定の温度で所定の時間保持することにより該液状食品を殺菌する第2工程と、該液状食品の圧力を所定の値まで急速に低下させることにより、殺菌を行うと共に所期の量の二酸化炭素を該液状食品に溶存させる第3工程と、を含むことを特徴としている。
【0008】
【発明の実施の形態】
第1工程においては、二酸化炭素を液状食品に吹き込んで溶解させ、二酸化炭素を超臨界状態又は亜臨界状態とする。なお、この際、二酸化炭素は十分な量を液状食品に吹き込み、液状食品中で飽和させることが望ましい。
【0009】
第2工程では、こうして超臨界又は亜臨界状態となった二酸化炭素を含有する液状食品を所定温度で所定時間だけ保持することにより、液状食品の殺菌を行う。この際の温度及び時間は、液状食品の加熱殺菌処理工程で従来より一般に知られている条件に比べて、品質に有利な設定(低温、短時間処理)を行うことができる。例えば、上記温度を20〜60℃、上記時間を30分以内で適宜設定して、殺菌処理を行うことができる。
【0010】
第3工程では、前述のように加圧されている液状食品の圧力を、所定の圧力まで急速に低下させる。この工程の目的は2つあり、一つは殺菌、もう一つは液状食品への所定量の二酸化炭素の溶存である。このような目的を達成するため、圧力値は大気圧〜1.0MPaの範囲内に設定することが好ましい。
殺菌は、液状食品の圧力を急速に低下させる際に、細菌の中に溶解している二酸化炭素の体積が急速に膨張し、細菌が物理的に破壊されるというメカニズムで行われる。
また、二酸化炭素の溶存は、減圧後の最終圧力を適切に設定することにより、所望の量の二酸化炭素を液状食品中に溶存させることが可能となる。
【0011】
発泡性液状食品にはサイダー、コーラ、ビール等様々な種類があるが、二酸化炭素含有量はこれらの種類によって異なる。例えば発泡性飲料の場合、一般的には、温度20℃で、製品によって定められた5.0kg/cm2程度までの所定のガス内圧で二酸化炭素を圧入する。
【0012】
本発明に係る方法では、第3工程における減圧後の最終圧力を調整することにより、この溶存二酸化炭素量を任意の値に調整することが可能である。
【0013】
なお、この最終圧力を調整することに加え、その際の液状食品の温度を調整することにより、二酸化炭素溶存量を更に細かく設定することが可能となる。
【0014】
【発明の効果】
本発明に係る方法によれば、二酸化炭素を含有させる工程と殺菌工程とを一つの装置を用いて連続的に行うことが可能であって、かつ、食品の品質も損なわれない。また、二酸化炭素含有量の微調整が可能となるため、酒、ジュース等様々な発泡性液状食品の製造を行うことができる。
【0015】
【実施例】
図1に示した装置を用いて、本発明に係る方法を用いた発泡性食品の殺菌・二酸化炭素溶存処理を説明する。
本実施例の処理装置は、二酸化炭素供給部10、原料供給部20、二酸化炭素溶解部30、加熱部40、回収部50、二酸化炭素リサイクル部60及び装置全体の動作を制御する制御部70を備える。
【0016】
二酸化炭素供給部10は、液体二酸化炭素が封入された二酸化炭素ボンベ11、ラインフィルタ12、ボンベ11から放出される液体二酸化炭素を冷却するための冷却ユニット13、二酸化炭素を二酸化炭素溶解部30に送るためのポンプ14、及び各所に設けられたバルブ15等を備える。
【0017】
原料供給部20は、液状食品を貯留しておくタンク21、液状食品を二酸化炭素溶解部30の溶解槽31に送液するためのポンプ22等を備える。
【0018】
二酸化炭素溶解部30は、液状食品に二酸化炭素を溶解させるための溶解槽31、二酸化炭素を微小泡化して溶解槽31に導入するためのミクロフィルタ32、溶解槽31内の液位を略一定に維持するための液位センサ33、開閉バルブを有するドレイン34、圧力センサ35等を備える。また、溶解槽31の蓋部には、二酸化炭素排出口36が設けられている。
【0019】
加熱部40は、二酸化炭素が溶解した液状食品が所定の時間をかけて通過する加温配管41、その間に液状食品を所定の殺菌温度に加熱する加熱コイル42、液状食品の温度を検出する温度センサ43等を備える。
【0020】
回収部50は、液状食品を所定の圧力まで減圧するための圧力調整弁51,56、液状食品と二酸化炭素を分離する分離槽52、圧力センサ53,57等を備える。減圧時の圧力は、液状食品に溶存させる二酸化炭素量に応じて、大気圧〜1.0MPaの範囲で設定され、制御部70によりそのように制御される。分離された気体二酸化炭素は、バルブ54を介してリサイクル流路63に戻される。
【0021】
二酸化炭素排出口36は、二酸化炭素回収流路37により、圧力調節弁61を介してリサイクルタンク62に接続される。
【0022】
制御部70には、操作者が操業パラメータや指令を入力するための操作部71(キーボード、マウス等)と、操作部71からの指令信号や液位センサ33、温度センサ43、圧力センサ35,53,57からの出力信号に応じてポンプ14,22、加熱コイル42、圧力調整弁51,56,61等の動作を制御する制御装置72が備えられている。
【0023】
上記のように構成された装置により、液状食品の殺菌処理及び二酸化炭素溶解処理が以下のように連続的に行われる。
【0024】
まず、処理を行う液状食品をタンク21内に貯留しておく。操作者は、操作部71より、液状食品の圧力、温度、処理時間等の操業パラメータを入力する。これに応じて制御装置72は、予め定められたプログラムに従い、以下の制御を行う。
【0025】
まず、ポンプ22を駆動し、タンク21に貯留されている液状食品を所定の圧力で溶解槽31に送り込む。一方、ポンプ14を駆動することにより、ボンベ11内の液体二酸化炭素を所定の圧力で溶解槽31に送出する。その間、ポンプ14の作動効率を高めるために、液体二酸化炭素はポンプ14の前で冷却ユニット13により一旦冷却される。溶解槽31への導入口に設けられたミクロフィルタ32により、二酸化炭素は細かい泡状で溶解槽31に投入される。細かい泡状で二酸化炭素を投入するのは、液状食品中への二酸化炭素の溶解効率を高めるためである。
【0026】
溶解槽31内において、液状食品及び二酸化炭素は溶解槽31の中を上向きに流れるが、その間に二酸化炭素は液状食品に溶解する。液状食品に溶解しきれなかった二酸化炭素は、溶解槽31頂部の二酸化炭素排出口36から二酸化炭素回収流路37に排出される。二酸化炭素を過度に導入しても不溶二酸化炭素はこのように無駄に放出されるだけであるため、溶解槽31における二酸化炭素導入量は、液状食品の重量に対して20%程度とするのが望ましい。
【0027】
二酸化炭素を溶解した液状食品は、溶解槽31から加温配管41に送出される。液状食品はここでヒータ42により所定の温度まで加熱され、加温配管41を流れる間に殺菌が行われる。
【0028】
ポンプ22から圧力調整弁51までの間の液状食品の圧力、加温配管41における加熱温度、及び流通時間(保持時間)は、液状食品の種類や殺菌の目的等に応じて適宜設定する。例えば二酸化炭素を超臨界状態にして殺菌する場合には、圧力を20MPaとし、温度を40℃とする。ここで、加熱温度や保持時間に関しては、被処理物の風味の低下や有効成分の分解等への影響を考慮しなければならない。それらを考慮すると、例えば発泡性飲料の場合は、処理温度は常温、処理時間は数分の範囲内で設定するのが妥当である。なお、上記の通り、本発明に係る方法では、二酸化炭素は必ずしも超臨界又は亜臨界状態にする必要はなく、高圧の二酸化炭素の状態であっても殺菌効果及び二酸化炭素溶解効果を得ることができる。この場合には、処理時間を長くする必要はあるものの、処理温度は30℃程度あるいはそれ以下の低温であってもよい。
【0029】
所定の時間で加温配管41を通過した後、液状食品は圧力調整弁51により大気圧〜1.0MPaの間に減圧され、分離槽52に導入される。大気圧〜1.0MPaの圧力に戻された液状食品はここで気液分離し、多くの二酸化炭素はバルブ54を介してリサイクル流路63に戻される。気液分離した液状食品には、所定量の二酸化炭素が溶存しているが、液状食品中の二酸化炭素量は圧力調整弁56により更に圧力調整され、こうして目標量の二酸化炭素を溶存した液状食品が製品タンク55に移される。製品タンク55には圧力センサ57が備えられ、タンク55中に放出された二酸化炭素は、適宜、バルブ58を介してリサイクル流路に戻される。
【0030】
なお、この減圧の際に、菌の細胞中に溶解している二酸化炭素が急激に膨張し、細胞膜を破壊することによっても殺菌が行われる。従って、この減圧の速度は十分に大きいことが望ましい。例えば、溶解槽31における圧力を20MPaとしていた場合、それを上記圧力に戻すのに数秒程度の時間内に行う速度とする。
【0031】
なお、溶解槽31の頂部の二酸化炭素排出口36から排出された余剰の二酸化炭素は圧力調節弁61で減圧され、リサイクルタンク62に回収される。この二酸化炭素は、前述の分離槽52で分離された二酸化炭素とともに、逆止弁64、バルブ65を介して二酸化炭素供給流路に戻され、再度溶解槽31に投入される。
【0032】
以上の方法により製造した発泡液状食品の各種特性を次に説明する。
糖度:Brix10、酸度:0.5% pH3.5、ビタミンC:30mg/100mLになるように調整したシロップ液に、酵母を103/mLとなるように植菌した試料液を作成した。図1に示した装置を使用して、本発明に係る方法によりこの試料液の殺菌処理及び二酸化炭素溶解処理を行い、発泡性飲料とした。処理条件は、処理圧力:10MPa、二酸化炭素供給量:試料液重量に対して20%、保持温度:50℃、保持時間:5分、減圧後圧力:0.2MPaであった。これにより得られた発泡性液状飲料は、菌数ゼロ、含有二酸化炭素濃度2.000ppmであった。
【0033】
次に、図2に示す装置を使用して、本発明に係る方法により、微炭酸オレンジ果汁の製造を行った。図2の装置は図1のような独立した溶解槽を有さず、原料たる液状食品が加熱部40に送られる配管中で二酸化炭素が液状食品に投入される構成となっている。処理条件は、処理圧力:10MPa、二酸化炭素供給量:果汁重量に対して20%、保持温度:55℃、保持時間:5分とした。また、減圧後の圧力は大気圧状態とし、更に、製品温度が30℃になるようにした。これにより得られた微炭酸果汁飲料からは、カビ及び酵母は検出されず、含有二酸化炭素濃度は500ppmであった。
【0034】
更に、溶解部30及び加熱部40が図3に示すような概略構成を有する装置を使用して、通常の方法により製造された生酒に対して本発明による殺菌処理及び二酸化炭素溶解処理を行い、発泡性生酒とした。図3の装置では、多量の液体を一度に処理できるように、溶解部30及び加熱部40が複数設けられた構造となっている。また、それぞれの溶解部30a,30bの直前にはバルブ23a及び23bが設けられ、処理の目的に応じてバルブを適宜開閉することにより、いずれか一方又は両方の溶解・処理ユニットを稼動ユニットとして選択することができる。図3の装置においても、図1及び図2の装置と同様、余剰の二酸化炭素はリサイクル流路(図示せず)に戻され、再利用されるようになっている。図3の装置を用いて、圧力:15MPa、二酸化炭素供給量:生酒重量に対して20%、保持温度:50℃、保持時間:5分、減圧後の圧力:大気圧状態、減圧後の製品温度:10℃、になるような処理条件で得られた発泡性生酒においては、火落菌及び風味を損なわせる原因となる酵素がいずれも失活し、含有二酸化炭素濃度は700ppmであった。
【図面の簡単な説明】
【図1】 本発明に係る方法を用いて液状食品の殺菌及び二酸化炭素溶解処理を行う装置の概略構成図。
【図2】 本発明の別の実施例で用いた、独立した溶解槽を持たない殺菌・二酸化炭素溶解処理装置の概略構成図。
【図3】 本発明の更に別の実施例で用いた、溶解部及び加熱部を複数有する殺菌・二酸化炭素溶解処理装置の概略構成図。
【符号の説明】
10…二酸化炭素供給部
11…二酸化炭素ボンベ
12…ラインフィルタ
13…冷却ユニット
14,22…ポンプ
20…原料供給部
21…原料タンク
30…二酸化炭素溶解部
31…溶解槽
32…ミクロフィルタ
40…加熱部
41…加温配管
42…加熱コイル
50…回収部
51,56,61…圧力調整弁
52…分離槽
60…二酸化炭素リサイクル部
62…リサイクルタンク
63…リサイクル流路
70…制御部
71…操作部
72…制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an effervescent liquid food that efficiently performs sterilization and effervescence processes of effervescent liquid foods such as cider and beer.
[0002]
[Prior art]
In the production process of effervescent liquid food, a process of dissolving carbon dioxide (carbon dioxide gas) in a liquid food as a raw material and a process of sterilization are performed in separate processes.
The method of the liquid food contained carbon dioxide, a method of blowing carbon dioxide gas pressure of up to approximately 5 kg / cm 2, a method of adding and mixing the carbonated water, utilizing a carbon dioxide produced by fermentation of liquid food itself Methods are known. For example, the first method is used in the production of carbonated beverages, and the method of combining the first and last methods is used in the case of beer and sparkling sake.
[0003]
On the other hand, sterilization treatment of liquid food is usually performed by heating. However, depending on the food, quality deterioration such as a decrease in flavor may occur due to heat treatment. For example, in the case of draft beer, heating cannot be performed. In such a case, sterilization processing by filter filtration or the like is performed. However, in filter filtration, the active ingredient contained in the liquid food is captured by the filter, and the quality may be similarly reduced. For this reason, a method of sterilizing using carbon dioxide without using heat treatment or filter filtration has been proposed (see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-7-170965 [0005]
[Problems to be solved by the invention]
As described above, in the production of the conventional foamable liquid food, in any case, the carbon dioxide dissolution (generation) step and the sterilization (sterilization) step are performed separately. However, if these can be performed continuously using one apparatus, productivity can be improved.
[0006]
The present invention has been made to solve such a problem, and the object of the present invention is to be able to continuously perform the carbon dioxide-containing step and the sterilization step using one apparatus. Another object of the present invention is to provide a method for producing effervescent liquid food that does not impair the quality of the food.
[0007]
[Means for Solving the Problems]
The effervescent liquid food manufacturing method according to the present invention, which has been made to solve the above problems, includes a first step of dissolving carbon dioxide in a liquid food in a supercritical or subcritical state, and the liquid food at a predetermined temperature. A second step of sterilizing the liquid food by holding it for a predetermined time; and by rapidly lowering the pressure of the liquid food to a predetermined value, the liquid food is sterilized and a desired amount of carbon dioxide is removed. And a third step of dissolving in the solution.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the first step, carbon dioxide is blown into a liquid food and dissolved to bring the carbon dioxide into a supercritical state or a subcritical state. At this time, it is desirable that a sufficient amount of carbon dioxide be blown into the liquid food and saturated in the liquid food.
[0009]
In the second step, the liquid food containing carbon dioxide in a supercritical or subcritical state is held at a predetermined temperature for a predetermined time to sterilize the liquid food. The temperature and time at this time can be set to be advantageous in terms of quality (low temperature and short time treatment) as compared with conditions generally known in the past in the heat sterilization treatment process of liquid food. For example, the sterilization treatment can be performed by appropriately setting the temperature to 20 to 60 ° C. and the time within 30 minutes.
[0010]
In the third step, the pressure of the liquid food being pressurized as described above is rapidly reduced to a predetermined pressure. This process has two purposes, one is sterilization and the other is the dissolution of a certain amount of carbon dioxide in a liquid food. In order to achieve such an object, the pressure value is preferably set in the range of atmospheric pressure to 1.0 MPa.
Sterilization is performed by a mechanism in which when the pressure of the liquid food is rapidly reduced, the volume of carbon dioxide dissolved in the bacteria rapidly expands and the bacteria are physically destroyed.
Moreover, the dissolution of carbon dioxide makes it possible to dissolve a desired amount of carbon dioxide in the liquid food by appropriately setting the final pressure after decompression.
[0011]
There are various types of effervescent liquid food such as cider, cola, and beer, but the carbon dioxide content varies depending on these types. For example, in the case of an effervescent beverage, carbon dioxide is generally injected at a temperature of 20 ° C. at a predetermined gas internal pressure up to about 5.0 kg / cm 2 determined by the product.
[0012]
In the method according to the present invention, the amount of dissolved carbon dioxide can be adjusted to an arbitrary value by adjusting the final pressure after the pressure reduction in the third step.
[0013]
In addition to adjusting the final pressure, the amount of dissolved carbon dioxide can be set more finely by adjusting the temperature of the liquid food at that time.
[0014]
【The invention's effect】
According to the method of the present invention, the step of containing carbon dioxide and the sterilization step can be performed continuously using one apparatus, and the quality of food is not impaired. Further, since the carbon dioxide content can be finely adjusted, various effervescent liquid foods such as liquor and juice can be produced.
[0015]
【Example】
The sterilization / carbon dioxide dissolution treatment of effervescent food using the method according to the present invention will be described using the apparatus shown in FIG.
The processing apparatus of the present embodiment includes a carbon dioxide supply unit 10, a raw material supply unit 20, a carbon dioxide dissolution unit 30, a heating unit 40, a recovery unit 50, a carbon dioxide recycling unit 60, and a control unit 70 that controls the operation of the entire apparatus. Prepare.
[0016]
The carbon dioxide supply unit 10 includes a carbon dioxide cylinder 11 in which liquid carbon dioxide is sealed, a line filter 12, a cooling unit 13 for cooling the liquid carbon dioxide emitted from the cylinder 11, and carbon dioxide in the carbon dioxide dissolving unit 30. The pump 14 for sending, the valve | bulb 15 provided in each place, etc. are provided.
[0017]
The raw material supply unit 20 includes a tank 21 for storing liquid food, a pump 22 for feeding the liquid food to the dissolution tank 31 of the carbon dioxide dissolution unit 30, and the like.
[0018]
The carbon dioxide dissolution unit 30 is a dissolution tank 31 for dissolving carbon dioxide in a liquid food, a microfilter 32 for making carbon dioxide into microbubbles and introducing it into the dissolution tank 31, and a liquid level in the dissolution tank 31 is substantially constant. A liquid level sensor 33, a drain 34 having an on-off valve, a pressure sensor 35, and the like. Further, a carbon dioxide discharge port 36 is provided in the lid portion of the dissolution tank 31.
[0019]
The heating unit 40 includes a heating pipe 41 through which liquid food in which carbon dioxide is dissolved passes over a predetermined time, a heating coil 42 that heats the liquid food to a predetermined sterilization temperature, and a temperature at which the temperature of the liquid food is detected. The sensor 43 etc. are provided.
[0020]
The recovery unit 50 includes pressure regulating valves 51 and 56 for reducing the liquid food to a predetermined pressure, a separation tank 52 for separating the liquid food and carbon dioxide, pressure sensors 53 and 57, and the like. The pressure at the time of depressurization is set in the range of atmospheric pressure to 1.0 MPa according to the amount of carbon dioxide dissolved in the liquid food, and is controlled by the controller 70 as such. The separated gaseous carbon dioxide is returned to the recycling flow path 63 via the valve 54.
[0021]
The carbon dioxide discharge port 36 is connected to the recycle tank 62 via the pressure control valve 61 by the carbon dioxide recovery channel 37.
[0022]
The control unit 70 includes an operation unit 71 (keyboard, mouse, etc.) for an operator to input operation parameters and commands, a command signal from the operation unit 71, a liquid level sensor 33, a temperature sensor 43, a pressure sensor 35, A control device 72 is provided for controlling operations of the pumps 14 and 22, the heating coil 42, the pressure regulating valves 51, 56, and 61 in accordance with output signals from 53 and 57.
[0023]
By the apparatus comprised as mentioned above, the sterilization process of a liquid food and a carbon dioxide dissolution process are performed continuously as follows.
[0024]
First, the liquid food to be processed is stored in the tank 21. The operator inputs operation parameters such as the pressure, temperature, and processing time of the liquid food from the operation unit 71. In response to this, the control device 72 performs the following control according to a predetermined program.
[0025]
First, the pump 22 is driven, and the liquid food stored in the tank 21 is fed into the dissolution tank 31 at a predetermined pressure. On the other hand, by driving the pump 14, the liquid carbon dioxide in the cylinder 11 is sent to the dissolution tank 31 at a predetermined pressure. Meanwhile, in order to increase the operating efficiency of the pump 14, the liquid carbon dioxide is once cooled by the cooling unit 13 in front of the pump 14. Carbon dioxide is introduced into the dissolution tank 31 in the form of fine bubbles by the microfilter 32 provided at the inlet to the dissolution tank 31. The reason why carbon dioxide is introduced in the form of fine bubbles is to increase the dissolution efficiency of carbon dioxide in liquid food.
[0026]
In the dissolution tank 31, liquid food and carbon dioxide flow upward in the dissolution tank 31, while carbon dioxide dissolves in the liquid food. The carbon dioxide that could not be dissolved in the liquid food is discharged from the carbon dioxide discharge port 36 at the top of the dissolution tank 31 to the carbon dioxide recovery channel 37. Even if carbon dioxide is introduced excessively, insoluble carbon dioxide is merely discharged in this way, so the amount of carbon dioxide introduced into the dissolution tank 31 should be about 20% of the weight of the liquid food. desirable.
[0027]
The liquid food in which carbon dioxide is dissolved is sent from the dissolution tank 31 to the heating pipe 41. Here, the liquid food is heated to a predetermined temperature by the heater 42 and sterilized while flowing through the heating pipe 41.
[0028]
The pressure of the liquid food between the pump 22 and the pressure regulating valve 51, the heating temperature in the heating pipe 41, and the circulation time (holding time) are appropriately set according to the type of liquid food, the purpose of sterilization, and the like. For example, when sterilizing carbon dioxide in a supercritical state, the pressure is 20 MPa and the temperature is 40 ° C. Here, regarding the heating temperature and holding time, it is necessary to consider the influence on the degradation of the flavor of the object to be processed and the decomposition of the active ingredients. Considering them, for example, in the case of sparkling beverages, it is appropriate to set the processing temperature at room temperature and the processing time within a few minutes. As described above, in the method according to the present invention, carbon dioxide is not necessarily in a supercritical or subcritical state, and a sterilizing effect and a carbon dioxide dissolving effect can be obtained even in a high-pressure carbon dioxide state. it can. In this case, although it is necessary to lengthen the processing time, the processing temperature may be as low as about 30 ° C. or lower.
[0029]
After passing through the heating pipe 41 for a predetermined time, the liquid food is depressurized between atmospheric pressure and 1.0 MPa by the pressure regulating valve 51 and introduced into the separation tank 52. The liquid food returned to the pressure of atmospheric pressure to 1.0 MPa is gas-liquid separated here, and a large amount of carbon dioxide is returned to the recycle channel 63 via the valve 54. A predetermined amount of carbon dioxide is dissolved in the gas-liquid separated liquid food, but the amount of carbon dioxide in the liquid food is further adjusted by the pressure regulating valve 56, and thus the liquid food in which the target amount of carbon dioxide is dissolved. Is transferred to the product tank 55. The product tank 55 is provided with a pressure sensor 57, and the carbon dioxide released into the tank 55 is appropriately returned to the recycle channel via the valve 58.
[0030]
At the time of this decompression, sterilization is also performed by carbon dioxide dissolved in the cells of the fungus rapidly expanding and destroying the cell membrane. Therefore, it is desirable that the speed of this decompression is sufficiently high. For example, when the pressure in the dissolution tank 31 is 20 MPa, the speed is set within a time of about several seconds to return it to the above pressure.
[0031]
The excess carbon dioxide discharged from the carbon dioxide discharge port 36 at the top of the dissolution tank 31 is decompressed by the pressure control valve 61 and collected in the recycle tank 62. The carbon dioxide is returned to the carbon dioxide supply flow path through the check valve 64 and the valve 65 together with the carbon dioxide separated in the separation tank 52, and is charged into the dissolution tank 31 again.
[0032]
Next, various characteristics of the foamed liquid food produced by the above method will be described.
A sample solution was prepared by inoculating yeast to 10 3 / mL in a syrup solution adjusted to have a sugar content: Brix 10, acidity: 0.5% pH 3.5, vitamin C: 30 mg / 100 mL. Using the apparatus shown in FIG. 1, the sample liquid was sterilized and carbon dioxide dissolved by the method according to the present invention to obtain a sparkling beverage. The processing conditions were: processing pressure: 10 MPa, carbon dioxide supply amount: 20% with respect to the weight of the sample solution, holding temperature: 50 ° C., holding time: 5 minutes, and pressure after decompression: 0.2 MPa. The sparkling liquid beverage thus obtained had zero bacterial count and a carbon dioxide concentration of 2.000 ppm.
[0033]
Next, using the apparatus shown in FIG. 2, a fine carbonated orange juice was produced by the method according to the present invention. The apparatus of FIG. 2 does not have an independent dissolution tank as shown in FIG. 1, and is configured such that carbon dioxide is introduced into the liquid food in a pipe through which the liquid food as a raw material is sent to the heating unit 40. The processing conditions were as follows: processing pressure: 10 MPa, carbon dioxide supply amount: 20% with respect to the weight of the juice, holding temperature: 55 ° C., holding time: 5 minutes. Further, the pressure after depressurization was set to atmospheric pressure, and the product temperature was set to 30 ° C. Molds and yeast were not detected from the fine carbonated fruit juice drink thus obtained, and the concentration of carbon dioxide contained was 500 ppm.
[0034]
Furthermore, the sterilization treatment and the carbon dioxide dissolution treatment according to the present invention are performed on the raw liquor produced by the usual method using the apparatus having the schematic configuration as shown in FIG. Effervescent sake was used. The apparatus shown in FIG. 3 has a structure in which a plurality of dissolving units 30 and heating units 40 are provided so that a large amount of liquid can be processed at a time. In addition, valves 23a and 23b are provided immediately before the respective melting portions 30a and 30b, and one or both of the melting / processing units are selected as operating units by opening and closing the valves appropriately according to the purpose of processing. can do. In the apparatus of FIG. 3 as well, as in the apparatus of FIGS. 1 and 2, surplus carbon dioxide is returned to the recycle channel (not shown) and reused. Using the apparatus in FIG. 3, pressure: 15 MPa, carbon dioxide supply amount: 20% of the weight of fresh liquor, holding temperature: 50 ° C., holding time: 5 minutes, pressure after decompression: atmospheric pressure, product after decompression In the sparkling fresh liquor obtained under the treatment conditions such that the temperature was 10 ° C., all the enzymes that caused the loss of fire-fung bacteria and flavor were deactivated, and the concentration of carbon dioxide contained was 700 ppm.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an apparatus for sterilizing liquid food and dissolving carbon dioxide using a method according to the present invention.
FIG. 2 is a schematic configuration diagram of a sterilization / carbon dioxide dissolution treatment apparatus that does not have an independent dissolution tank, which is used in another embodiment of the present invention.
FIG. 3 is a schematic configuration diagram of a sterilization / carbon dioxide dissolution treatment apparatus having a plurality of dissolving portions and heating portions used in still another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Carbon dioxide supply part 11 ... Carbon dioxide cylinder 12 ... Line filter 13 ... Cooling units 14, 22 ... Pump 20 ... Raw material supply part 21 ... Raw material tank 30 ... Carbon dioxide dissolution part 31 ... Dissolution tank 32 ... Micro filter 40 ... Heating Part 41 ... Heating pipe 42 ... Heating coil 50 ... Recovery part 51, 56, 61 ... Pressure regulating valve 52 ... Separation tank 60 ... Carbon dioxide recycling part 62 ... Recycling tank 63 ... Recycling flow path 70 ... Control part 71 ... Operation part 72. Control device

Claims (4)

二酸化炭素を超臨界又は亜臨界状態で液状食品に溶解させる第1工程と、該液状食品を所定の温度で所定の時間保持することにより該液状食品を殺菌する第2工程と、該液状食品の圧力を所定の値まで急速に低下させることにより、殺菌を行うと共に所期の量の二酸化炭素を該液状食品に溶存させる第3工程と、を含むことを特徴とする発泡性液状食品の製造方法。A first step of dissolving carbon dioxide in a liquid food in a supercritical or subcritical state; a second step of sterilizing the liquid food by holding the liquid food at a predetermined temperature for a predetermined time; and A third step of sterilizing by rapidly lowering the pressure to a predetermined value and dissolving a predetermined amount of carbon dioxide in the liquid food, and a method for producing an effervescent liquid food . 第2工程における上記温度が20〜60℃、上記時間が30分以内であることを特徴とする請求項1に記載の発泡性液状食品の製造方法。The said temperature in a 2nd process is 20-60 degreeC, and the said time is less than 30 minutes, The manufacturing method of the foamable liquid food of Claim 1 characterized by the above-mentioned. 第3工程における上記圧力値が大気圧〜1.0MPaの範囲内であることを特徴とする請求項1又は2に記載の発泡性液状食品の製造方法。The method for producing a foamable liquid food according to claim 1 or 2, wherein the pressure value in the third step is in the range of atmospheric pressure to 1.0 MPa. 第3工程において、液状食品の温度を調整することにより液状食品への二酸化炭素の溶存量を調整することを特徴とする請求項1〜3のいずれかに記載の発泡性液状食品の製造方法。The method for producing an effervescent liquid food according to any one of claims 1 to 3, wherein in the third step, the dissolved amount of carbon dioxide in the liquid food is adjusted by adjusting the temperature of the liquid food.
JP2003090265A 2003-03-28 2003-03-28 Method for producing effervescent liquid food Expired - Lifetime JP4105972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090265A JP4105972B2 (en) 2003-03-28 2003-03-28 Method for producing effervescent liquid food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090265A JP4105972B2 (en) 2003-03-28 2003-03-28 Method for producing effervescent liquid food

Publications (2)

Publication Number Publication Date
JP2004290145A JP2004290145A (en) 2004-10-21
JP4105972B2 true JP4105972B2 (en) 2008-06-25

Family

ID=33403935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090265A Expired - Lifetime JP4105972B2 (en) 2003-03-28 2003-03-28 Method for producing effervescent liquid food

Country Status (1)

Country Link
JP (1) JP4105972B2 (en)

Also Published As

Publication number Publication date
JP2004290145A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US5704276A (en) System for processing liquid foodstuff or liquid medicine with a supercritical fluid of carbon dioxide
EP2181612B1 (en) Food processing method and food processing apparatus
US6821481B1 (en) Continuous processing method and continuous processing apparatus for liquid-form substance, and liquid-form substance processed thereby
EP1841335B1 (en) Liquid product pressure and temperature treatment method and device
US6616849B1 (en) Method of and system for continuously processing liquid materials, and the product processed thereby
Milani et al. Pasteurization of beer by non-thermal technologies
JP4105972B2 (en) Method for producing effervescent liquid food
JPH1133087A (en) Continuous processing method using subcritical fluid
US6723365B2 (en) Method and apparatus for continuous flow reduction of microbial and/or enzymatic activity in a liquid product using carbon dioxide
JP2006333835A (en) Method for treating liquid state fluid by utilizing high pressure carbon dioxide
KR101411785B1 (en) Method for preparing fermented alcoholic beverages sterilized with high pressing Homogenizer
JP3397148B2 (en) Liquid substance continuous processing method, continuous processing apparatus and liquid food and drink treated by them
US11576406B2 (en) Method for the inactivation of microorganisms in foods
Kosseva Chemical engineering aspects of fruit wine production
JP2001128652A (en) Continuous treating device of liquid state material and liquid material treated with the same
US6994878B2 (en) Method and apparatus for continuous flow reduction of microbial and/or enzymatic activity in a liquid beer product using carbon dioxide
US2223501A (en) Yeast treating method
JP2005131139A (en) Method for continuously treating liquid substance
US11384323B2 (en) Method of making sparkling beverage with reduced carbon footprint
JP2005130777A (en) Method for sterilizing liquid food comprising aroma recovery process
JP6979556B1 (en) Residual and deterioration control system for naturally effervescent carbon dioxide in alcoholic beverages
JP4290251B2 (en) Method and apparatus for producing liquefied liquid for sake raw material
JP2005160364A (en) Method for producing seasoning liquid
US20040131739A1 (en) Method and apparatus for continuous flow reduction of microbial and/or enzymatic activity in a liquid product using carbon dioxide
JP2004313304A (en) Disinfection method and apparatus for liquid and solid object to be treated

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R150 Certificate of patent or registration of utility model

Ref document number: 4105972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term