JP4105549B2 - 直接変換ディジタル領域制御 - Google Patents

直接変換ディジタル領域制御 Download PDF

Info

Publication number
JP4105549B2
JP4105549B2 JP2002557032A JP2002557032A JP4105549B2 JP 4105549 B2 JP4105549 B2 JP 4105549B2 JP 2002557032 A JP2002557032 A JP 2002557032A JP 2002557032 A JP2002557032 A JP 2002557032A JP 4105549 B2 JP4105549 B2 JP 4105549B2
Authority
JP
Japan
Prior art keywords
signal
receiver
baseband
power
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002557032A
Other languages
English (en)
Other versions
JP2004521534A (ja
JP2004521534A5 (ja
Inventor
ピーターゼル、ポール・イー
サホタ、カマル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/797,746 external-priority patent/US20020123319A1/en
Priority claimed from US10/015,988 external-priority patent/US6694129B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2004521534A publication Critical patent/JP2004521534A/ja
Publication of JP2004521534A5 publication Critical patent/JP2004521534A5/ja
Application granted granted Critical
Publication of JP4105549B2 publication Critical patent/JP4105549B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/109Means associated with receiver for limiting or suppressing noise or interference by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Noise Elimination (AREA)
  • Superheterodyne Receivers (AREA)
  • Transceivers (AREA)

Description

背景
関連出願
本出願は、2001年1月12日に出願された審査中の仮出願第60,261,714号、および2001年3月1日に出願された審査中の米国特許出願第09/797,746号に対して優先権を主張している。
分野
本発明は、概ね、ワイヤレス通信に関する。とくに、本発明は、直接変換トランシーバのためのシステムおよび方法に関する。
全般的な背景および関連技術
通信の分野は、ワイヤレス装置の能力が向上したことが大きな要因となって、著しく成長した。ワイヤレス装置は、無線波を用いることにより、配線形システムの物理的制約を受けることなく、遠距離の通信を可能にしている。音声、データ、またはページング情報のような情報は、所定の周波数バンド上で送られる無線波によって伝達される。有効周波数スペクトルの割当てを調整し、多数のユーザが過度の干渉を受けることなく通信することを保証する。
源から宛先へ送られる情報が、無線伝送の準備が整った形で収集されることは、めったにない。一般に、送信機は、入力信号を用いて、それを所定の周波数バンド内で伝送するためにフォーマットする。入力信号、すなわちベースバンド信号は、搬送波を目的の周波数バンドに変調する。例えば、無線送信機は、音声入力信号を受信すると、その入力信号を使って、搬送波周波数を変調する。
送信機と同じ搬送波周波数に同調した対応する遠隔の受信機は、送信信号を受信して、復調しなければならない。したがって、遠隔の受信機は、被変調搬送波からベースバンド信号を回復しなければならない。ベースバンド信号は、ユーザへ直接に与えられるか、またはユーザへ供給される前に、さらに処理される。ラジオ受信機、テレビ受像機、およびページャのような多くの消費者用ワイヤレス装置は、単なる受信機である。
トランシーバは、送信機および受信機を単一のパッケージ(package)にまとめたワイヤレス装置である。トランシーバは、ほぼ瞬時の双方向通信を可能にしている。トランシーバには、例えば、双方向無線機、ウォーキートーキー、双方向ページャ、およびワイヤレス電話が含まれる。
受信機設計の有効性を評価するのに、幾つかの良度指数が重要である。感度は、受信機が微弱信号を検出する能力を判断するものである。受信機の感度は、受信機が背景雑音から検出できる最小認識信号(minimal discernible signal, MDS)で示される。雑音は、電圧および電流のランダムな変動を表わす。MDSは、受信機専用の感度の尺度であり、所与のシステムのバンド幅が用いられる。他方で、受信機の選択度は、チャンネル外の干渉からの受信機の保護を示す。選択度が高くなると、受信機は望ましくない信号をより適切に拒絶できる。
感度低下(desense)は、人工または自然の無線周波数干渉(radio frequency interference, RFI)による、受信機の全体的な感度の低下を示す。感度低下は、非常に強力な干渉信号が受信機に過負荷をかけるときに発生し、より弱い信号の検出が、より困難になる。受信機の感度低下の特徴により、妨害波(jammer)のような強力な干渉源(interferor)のもとで適切に動作する能力を判断する。
雑音値は、受信機の性能の別の重要な尺度である。雑音値は、受信経路内の各連続段において劣化する、すなわち増加する。受信機内において、増幅または減衰技術を適用し、許容雑音値を達成する。雑音は、歪みと共に、信号対雑音および歪み(signal to noise and distortion, SINAD)、すなわち雑音があるときの受信機の性能をデシベルで示した比を判断するのに用いられる。
歪みとは、受信機のRF経路内の装置の出力に、望ましくない信号が存在することである。歪みには、高調波歪み、相互変調歪み、および混変調歪みが含まれる。高調波歪みは、目的の入力信号が受信機を圧縮するのに十分大きいときに発生し、一般に、目的の信号からの周波数オフセットの関数として、および目的の信号電力の関数として、ベースバンドの出力において測定される。混変調歪みは、送信機(例えば、CDMA方式のワイヤレス電話)からの振幅変調された成分を、装置の出力(例えば、LNAの出力)において、別の搬送波(妨害波)へ転送するときに発生する。歪みの最も一般的な形は、相互変調歪み(intermodulation distortion, IMD)である。
相互変調歪みは、2以上の信号を一緒に混合した結果、信号バンド幅内に追加される望ましくない歪みである。相互変調積は、2つの入力があるときに、元の周波数の整数倍の和および差において発生する。したがって、2つの入力信号の周波数をfおよびfとし、mおよびnを1以上の整数とすると、出力周波数成分を、mf±nfとして表現することができる。相互変調積の次数は、mとnとの和である。“2つのトーン”の三次成分(2f−fおよび2f−f)は、目的の信号か、または干渉信号の近くの周波数において現われ、したがって容易にフィルタすることができない。相互変調積の次数がより高くなると、振幅はより小さくなり、したがって、問題は小さくなる。トーンのスぺーシングが信号のバンド幅の2分の1以下であるときは、ベースバンド周波数において、二次相互変調妨害積が生成される。
図1は、入力信号に対する、基本IMD成分、二次IMD成分、および三次IMD成分のレベルを示したグラフである。二次レベルが、基本レベルをインターセプトする論理上の点は、二次インターセプト点(second order intercept point, IP2またはSOI)、三次レベルが、基本レベルをインターセプトする論理上の点は、三次インターセプト点(third order intercept point, IP3またはTOI)として知られている。受信機のIIP2(input level second order intercept point)は、入力レベルの二次インターセプト点である。IIP3(input level third order intercept point)は、入力レベルの三次インターセプト点である。
受信機の三次インターセプト点および雑音値は、受信機のダイナミックレンジに直接的に関係している。ダイナミックレンジとは、受信機が、受信機の特定の性能の範囲内で処理できる信号の範囲、すなわち受信機が、許容SINADで、正確な出力を生成できる範囲を定めたものである。とくに、ベースバンド受信機、例えばアナログ−対−ディジタルコンバータにおいて、ダイナミックレンジは、スプリアスのないダイナミックレンジ(spurious free dynamic range, SFDR)、すなわちクリッピングを行う前の、装置の雑音の底値から最大の信号への範囲として表現される。
局部発振器(local oscillator, LO)の信号が受信機の入力へ漏れるとき、LOの漏れ(leakage)が発生する。このような漏れは、トランシーバのアンテナによってスプリアス放射として送られ、他の装置を干渉することがある。さらに加えて、LOの漏れが、復調前に取り除かれないときは、受信機自体へ反映され、受信機の感度を低下する。
受信機内で、妨害波信号が、装置のLO入力または出力へ漏れるとき、妨害波の漏れが発生する。このような漏れは、妨害波信号と混合し、望ましくない信号を生成し、DC信号レベルは、妨害波信号の振幅変調(amplitude modulation, AM)成分に比例する。AM妨害波信号は、受信周波数バンド内の周波数に位置する。
低周波数のフリッカ雑音(l/f)は、バイポーラ接合トランジスタのエミッタベース接合の不具合によって生じる。フリッカ雑音および他のこのような雑音は、通常は小さいが、ベースバンドにおける信号の保全性を維持するために、受信機から取り除く必要がある。
アイソレーションは、同じ周波数における、装置の一方のポートに加えられる電力レベルと、他方のポートに現れる生成電力レベルとの比(単位は、デシベル)である。逆アイソレーション、すなわちアイソレーションの反転(相反)は、受信機の構成要素の良度指数である。逆アイソレーションは、出力ポートへ注入されたエネルギーのどのくらい多くが、入力源へ戻されるかの尺度である。LOおよび妨害波の漏れを少なくするために、高い逆アイソレーションが望ましい。
増幅器の1デシベルの圧縮点は、増幅器の利得が小さい信号の利得よりも1デシベル低いときの、出力電力レベルの尺度である。増幅器の飽和点は、増幅器が出力できる最大電力の尺度である。これらの良度指数は、図1に示されている。
ワイヤレス通信装置を設計するときは、上述の良度指数および信号現象を検討すべきである。より一般的に、ワイヤレス通信の分野は、符号分割多重アクセス(Code Division Multiple Access, CDMA)が支配的である。CDMAは、スペクトラム拡散通信、すなわちブロードバンド通信の1形態であり、非常に広いバンド幅上に無線信号を拡散する方式である。CDMA技術は、CDMA(IS−95およびCDMA2000)およびWCDMA(IMT2000)のような、多くの変調規格の基礎である。これらの変調またはエアーインターフェイス規格の各々は、多くの無線周波数バンドで実行されている。変調またはエアーインターフェイス規格には、例えば、セルラ(日本のセルラおよび米国のセルラ)、パーソナル通信システム(Personal Communication System, PCS)(米国および韓国のバンドにおけるPCS)、およびIMT(国際遠隔通信ユニオン(International Telecommunication Union))が含まれる。他の変調規格には、周波数変調(frequency modulation, FM, IS-19)、GSM(Global System for Mobile Communications)、US−TDMA(IS−136)、GPS(Global Positioning System)、ワイヤレスLAN(802.11)、およびブルートゥースが含まれる。
周波数バンドは、種々の通信モードに割り当てられている。ワイヤレストランシーバでは、米国のPCSの受信(RX)周波数バンドは1930ないし1990メガヘルツであり、対応する送信(TX)周波数バンドは1850ないし1910メガヘルツである。米国のセルラの無線周波数バンドは869ないし894メガヘルツであり、対応する送信周波数バンドは824ないし849メガヘルツである。同様に、受信および送信の周波数バンドは、日本のセルラ、IMT、および韓国のPCSへ割り当てられている。
通信規格には、ワイヤレス通信装置が満たさなければならない基準が示されている。例えば、スプリアス放射、感度、妨害(2つのトーンの相互変調および単一のトーンの感度低下)、および残留側波帯の基準を満たさなければならない。
ワイヤレス通信は、国際的に、または国内的にさえも、まだ標準化されていない。既存の技術において、2以上のバンド、すなわち2以上のモードで動作するトランシーバは、可搬性が向上していることが分かっている。とくに、デュアルバンドのハンドセットは、2つの周波数バンド上で動作する。例えば、デュアルバンドのCDMAのハンドセットは、800メガヘルツ(米国のセルラ)および1.9ギガヘルツ(米国のPCS)の両者の周波数バンドで動作することができる。これらの2つのバンド上で動作する基地局がCDMAの規格を使用しているとき、デュアルバンドのCDMAのハンドセットを備えた移動ユニットは、これらの基地局の一方または両方からサービスを得ることができる。さらに加えて、デュアルモードのCDMA/FMのハンドセットは、CDMAとFMの両者のモードで動作することができる。しかしながら、現在、非常に多数の変調規格および対応する周波数バンドが与えられているが、デュアルモードおよびデュアルバンドの電話は、世界の通信システムとの互換性を、大抵は制限されて、加入者に提供されている。
図2は、従来のデュアルダウンコンバージョン受信機の高レベルのブロック図である。受信機101は、スーパーヘテロダイン構造を採用している。とくに、受信したRF信号11はRF信号経路に沿って変換されて、処理される(第1段)。処理されたRF信号13は、最初に、中間周波数(intermediate frequency, IF)の信号15へ変換、すなわちダウンコンバートされる(第2段)。次に、IF信号15は、ベースバンド信号17へ再びダウンコンバートされ、ベースバンド信号17には、“同相”(in-phase, I)成分と“直角”(quadrature, Q)位相成分が含まれている(第3段)。IおよびQのベースバンドの信号成分は、位相が90°ずれている。次に、IおよびQ成分は、受信機101の他の部分、すなわちベースバンドプロセッサへ送られ(第4段)、さらに処理される。同様に、デュアルアップコンバージョン送信機では、最初に、アナログのIおよびQのベースバンド信号をIF信号へアップコンバートし、次に、IF信号を、送信されるRF信号へアップコンバートする。
図3は、受信機101をより詳しく示している。受信機101は、多数の固有の長所を有する。例えば、この設計では、優れた感度および選択度、拡張信号のダイナミックレンジ、柔軟な周波数計画が得られ、IFフィルタ70の後の受信機101内の素子のダイナミックレンジおよび電流消費量が低減する。さらに加えて、IF信号は、より低い周波数範囲であるので、Iチャンネル106とQチャンネル107との間の位相および振幅の整合をより容易に実現することができる。これらの長所を考慮すると、多数のモードで変調され、かつ多数の周波数バンドで伝達された受信RF信号が処理されるので、受信機101は、マルチモードおよびマルチバンドの応用によく適している。
多数の動作バンドおよびモードを支援するために、受信機101には、モード別の構成要素が構成されなければならない。例えば、マルチバンドの受信機では、一般に、各周波数バンドごとに、個別のRF信号経路が必要である。マルチモードの受信機では、妨害波のダイナミックレンジの要件に依存して、個別のベースバンド経路が必要である。
受信機101のような従来の受信機では、IF信号経路には、一般に、増幅器、フィルタ、および自動利得制御(automatic gain control, AGC)回路が構成されている。したがって、受信機101は、信号バンド外の雑音および妨害波を除去し、可変の信号電力および受信機の利得変化を補償することができる。マルチモードの受信機では、IF信号のフィルタリングは、モード別である。したがって、受信機101には、モードごとに1つのIFフィルタ70が構成されている。例えば、デュアルモード電話の受信機には、2つのIF表面弾性波フィルタ(surface acoustic wave filter, SAW)が構成される。CDMA 1X、CDMA 3x、WCDMA、GSM、FM、ブルートゥース、およびGPSのモードを支援する受信機では、IF信号経路に、4ないし6つのSAWと1つのディスクリートなLCフィルタとが必要である。
各モードごとにIFフィルタが必要なことは、受信機101の大きな欠点である。各IFフィルタにより、受信機のコスト、重要な部品の数、および受信機の基板領域が増加する。各IFフィルタの損失は大きいので、IFの前置増幅器またはAGCも必要となる。IFの電圧制御発振器(voltage controlled oscillator, VCO)および位相ロックループ(phase-locked loop, PLL)65も、局部発振器(local oscillator, LO)の周波数を発生するのに必要であり、LOの周波数はIFミクサー60へ入力される。受信機101のその他の欠点には、スイッチマトリックスまたは多数のIF増幅器およびAGCモジュール;望ましくない側波帯雑音を低減するための低損失のRFバンドパスフィルタ(bandpass filter, BPF);および追加のIFミクサーが必要なことがある。したがって、デュアルダウンコンバージョン受信機のIF段は、このような受信機のコスト、設計上の複雑性、および回路基板領域を増加させる。
図4は、直接ダウンコンバージョン、すなわちIFのない受信機200のブロック図である。直接ダウンコンバージョン受信機では、受信したRF信号201は、ベースバンド信号225へ直接にダウンコンバートされる。同様に、直接アップコンバージョン、すなわちIFのない送信機では、ベースバンド信号は、送信されたRF信号へ直接にアップコンバートされる。受信機200では、受信したRF信号を、局部発振器(local oscillator, LO)の周波数と混合して、ベースバンド信号を生成する。受信機200には、IF信号経路が構成されていないので、IFの構成要素に関係するコスト、基板領域、および電力消費量が無くなる。IFの構成要素には、IF SAW、LC整合およびディスクリートなフィルタ、前置増幅器、AGC、IFミクサー、並びにIF VCOおよびPLLが含まれる。さらに加えて、部品間の、および温度の変化が小さくなる。
受信機200の設計では、集積回路を介して、ベースバンドのアナログまたはディジタル領域においてより多くの信号処理、例えばチャンネル選択のフィルタリングを行って、より一般的な性質にすることができる。AGCはディジタルであるので、較正を簡潔にするか、または、さらに、較正を無くすことが求められる。ある特定の動作モード、例えばGPS、ブルートゥース、およびGSMにおいて、RFフィルタの主要な目的は、CDMAのセルラおよびPCSモードにおける相互変調を低減することであるので、受信機200ではRFフィルタは必要ない。しかしながら、GPSの変調信号を他の変調信号と同時に受信するときに、GPSモードでは、RFフィルタが必要となる。
上述の長所にも関わらず、直接ダウンコンバージョンは、ワイヤレス電話に、一般に取入れられていない。その理由は、受信機の適切なダイナミックレンジは実現するが、主要な受信機の設計上の目的を実現することが非常に困難であるからである。受信機200のような受信機の設計上の目的には、高利得低雑音値、高IIP3およびIIP2値、および低電力消費の実現が含まれる。マルチモードおよびマルチバンドの受信機には、非常に幅広いダイナミックレンジが必要である。したがって、このような受信機の、これらの設計上の目的を実現することは、さらに一層困難である。
とくに、IおよびQのミクサーの局部発振器(local oscillator, LO)のポートへのLOの漏れおよび妨害波の漏れにより、直接ダウンコンバージョン受信機に重大な問題が生じる。セルラおよびPCSにおいて、スプリアス放射の要件は、とくに厳しい。したがって、より高い逆アイソレーションが必要である。さらに加えて、直接ダウンコンバージョン受信機では、受信機自体へ反映されるLOの漏れと、IおよびQのミクサーのLOポートへの妨害波の漏れは、直接ダウンコンバージョン回路によって処理される。したがって、目的のベースバンド信号(ベースバンドのスペクトル成分を含む)と共に、望ましくないDCのオフセット電圧が、ミクサーの出力に現れる。したがって、相当に高い信号対雑音比を保証するために、DCのオフセットを取り除かなければならない。
CDMAでは、一定のフレーム誤り率(frame error rate, FER)を満たすレベルまで、1組の信号を使用して、感度を試験する。IS−98では、被験装置は、0.5パーセント未満のFERで、−104ミリワットデシベル(の信号電力)の感度レベルを満たさなければならない。相互変調試験は、1パーセント未満のFERで、−101ミリワットデシベル(感度試験よりも3デシベル高い)へ設定された信号レベルで、RF信号に対してオフセットした2つのトーン(バンド内の歪み積を発生する−43ミリワットデシベル/トーンのオフセット、または一般に±900および±1700キロヘルツ)を使用して行われる。周波数バンドに依存して、妨害波ごとに、試験される電力レベルおよび周波数オフセットに差がある。信号−トーンの感度低下試験において、IおよびQミクサーのRFポートにおける妨害波のレベルは、900キロヘルツ以上のオフセットで71デシベル分、信号レベルよりも大きい。
妨害波の電力は、各ミクサーのLOポートへ漏れ、ミクサーのRFポートにおいて妨害波のレベルと混合し、RFの妨害波の振幅に比例するDCレベルを生成する。一般に、妨害波は、競合しているワイヤレスシステム内の基地局の順方向リンクによって生成される。妨害波の電力は、使用された変調またはフェージングの関数として変化する。最悪の妨害波は、目的の信号のバンド幅に似た振幅変調を有する。したがって、AM成分は、ベースバンドにおいてダウンコンバージョン後に信号エネルギーと共に、低下し、ベースバンドフィルタリングで、取り除くことができない。この問題は、妨害RF信号が増加するのにしたがって悪化する。例えば、妨害RF信号が10デシベル増加するとき、ベースバンドの歪みは20デシベル増加する。妨害波の自己混合に影響を与えるRFミクサーのRFとLOとのアイソレーションと、2次歪みの影響を表わすRFミクサーのIIP2のアイソレーションとが、不良であるときは、このベースバンドの歪みは、実際には2対1のスロープよりも大きい。
さらに加えて、直接ダウンコンバージョン受信機のミクサーにおける妨害波およびLOの漏れの要件は、非常に厳しい。このような受信機にはIFのフィルタリングがないので、ベースバンドのアナログフィルタリングと、部品間、周波数、および温度の利得変化とに依存して、受信機のベースバンド素子のダイナミックレンジを30デシベル以上増加する必要がある。種々の変調基準における残留側波帯の基準も満たさなければならない。このような受信機では、ベースバンド段の前に、利得が低減するので、ベースバンドのフリッカ雑音は、受信機がFM変調された信号を処理する能力により大きい影響を与える。
したがって、最小電流で強力な干渉体が存在するときに、多数のバンドおよび多数のモードにおいて、RF信号を復調することができる直接変換受信機と、処理技術の向上とが求められている。
概要
開示されている実施形態では、マルチバンドの直接変換ワイヤレス通信受信機のための新規で向上したシステムおよび方法を示している。第1の実施形態において、システムには、受信したRF信号を増幅するように構成された低雑音増幅器(low noise amplifier, LNA)、周波数を出力するように構成された局部発振器(local oscillator, LO)、およびIおよびQチャンネルのミクサーとが構成されている。各ミクサーには、LNAに動作的に接続された第1の入力、LO出力に動作的に接続された第2の入力、および出力が備えられている。さらに加えて、システムには、受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節するように構成された調節機構が構成されている。調節機構には、受信したRF信号の合計電力を測定するように構成された第1の測定機構、ベースバンド信号の信号電力を測定するように構成された第2の測定機構、受信したRF信号の合計電力とベースバンド信号の信号電力とを比較するように構成された比較機構、および比較に基づいてLOの設定点を調節するように構成された調節器とが構成されている。
別の実施形態では、受信したRF信号を増幅するように構成されたLNA,周波数を出力するように構成されたLO、IおよびQチャンネルのミクサー、およびベースバンド部とが構成されている。各ミクサーには、LNAに動作的に接続された第1の入力、LO出力に動作的に接続された第2の入力、および出力が備えられている。システムには、受信したRF信号のレベルに依存して、LNAの利得および各ミクサーを調節し、かつ受信機によって検出された妨害波のレベルに依存して、LOのレベルを駆動するように構成された調節機構がさらに構成されている。
別の実施形態では、システムは、受信したRF信号を増幅するように構成されたLNA、周波数を出力するように構成されたLO、IおよびQチャンネルミクサー、および調節機構を取入れている。各ミクサーは、LNAに動作的に接続された第1の入力と、LOの出力に動作的に接続された第2の入力とが備えられている。受信したRF信号の信号レベルが増加するのにしたがって、調節機構は、LNAの利得および各ミクサーを調節するように構成されている。利得調節によって、受信機のRF経路の能動成分の逆アイソレーションと、望ましいダイナミックレンジとの平衡をとって、妨害波があるときの信号を復調する。利得は、連続的に調節されるか、またはステップダウンされる。
開示されている実施形態の特徴、目的、および長所は、次に記載されている詳細な説明を図面と共に参照することにより、一致する参照符号が全体的に対応して同定され、より明らかになるであろう。
詳細な説明
図4は、本発明の1つの実施形態にしたがう、直接ダウンコンバージョン受信機200の高レベルのブロック図である。受信機200には、RF信号経路210、直接ダウンコンバータ220、およびベースバンドプロセッサ230が構成されている。
RFの信号経路210では、RF信号201を受信する。RF信号201には、多数のモードで変調され、かつ多数の周波数バンドで送られる信号が構成されている。RF信号経路210には、種々のモードおよび種々のバンドから選択するための選択機構が構成されている。さらに加えて、RF信号経路210には、増幅器またはフィルタが構成されていて、RF信号201をさらに処理するための準備をする。図4では、このような準備の整った信号は、前処理済みのRF信号215として示している。直接ダウンコンバータ220は、RF信号経路210から、前処理済みのRF信号215を受信し、この信号をベースバンド信号225へダウンコンバートする。
ベースバンドプロセッサ230は、ベースバンド信号225に対する次の処理、例えば、DC消去、整合と妨害波のフィルタリング、サンプルのデシメーション、自動利得制御、信号電力測定(受信信号の強度指標(received signal strength indicator, RSSI))、逆拡散、デインターリービング、誤り訂正、およびディジタルデータまたはオーディオストリームへの復号化を行う。次に処理された情報は、ワイヤレス装置の出力機構のような適切な宛先へルート設定される。出力機構には、表示部、スピーカ、またはデータポートが構成されている。ベースバンドプロセッサ230は、受信機200と相補関係の送信機によっても使用されることに注意すべきである。
図5は、受信機200をより詳しく示している。アンテナ301は、到来RF信号に対する受信機200のインターフェイスである。さらに加えて、アンテナ301は、アンテナ301に接続された送信機からのRF信号を同報通信する。多数のアンテナを別々の動作バンドに使用するか、または同時処理モードを互いに分離する。インターフェイス305は、送信されたRF信号から受信するRF信号を分離し、受信機200および送信機の両者はアンテナ301を使用する。
インターフェイス305には、デュープレクサ312が構成されている。デュープレクサ312は、到来受信バンド内の信号にフィルタをかける。さらに加えて、デュープレクサ312は、出力送信バンド内の信号から、到来受信バンド内の信号を分ける。特定の受信機またはトランシーバの応用において、多数の動作バンドが必要とされるときは、多数のデュープレクサ312が用いられる。図5に示されているように、関係付けられた動作バンドの全てが、デュープレクサ312のバンド内で適合すると仮定すると、1つのデュープレクサ312は、CDMA、FM、およびIMTのモードで変調された信号を処理できる。
インターフェイス305には、スイッチ314およびバンドパスフィルタ316も構成されている。スイッチ314は、受信処理か、または送信処理を選択する。例えば、スイッチ314はGSMまたはブルートゥースモードに対応し、信号は同時に受信および送信されない。バンドパスフィルタ316は、到来受信バンド内のGPS信号にフィルタをかける。GPS信号は受信されるが、送信されないので、デュープレクサを用いる必要はない。他のアナログの受信専用モードで、受信機200内に他のバンドパスフィルタ316が構成されることもある。
インターフェイス305には、低雑音増幅器(low noise amplifier, LNA)320が接続され、LNA320は受信したRF信号を増幅する。受信バンド内で、利得は十分に高いが、雑音値は最小となるように、LNA320を選択し、受信機200内の次段からの雑音値の寄与を最小にする。LNA320の利得は、LNA利得制御324を介して制御される。送信電力は、インターフェイス305から受信機200へ漏れる。例えば、デュープレクサ312は、送信電力を全てフィルタしない。したがって、LNA320には、高圧縮と三次インターセプト点とが必要である。
LNA320は、RXバンドパスフィルタ(bandpass filter, BPF)330へ接続される。さらに加えて、BPF330は、受信バンド外の送信機信号を拒絶する。本発明のいくつかの実施形態では、BPF330は不要であることに注意すべきである。例えば、既に記載したように、汎用パケット無線サービス(General Packet Radio Service, GPRS)の最大データレートが支援されていないときは、GSMモードで変調された信号は、同時に受信および送信されない。
図5には、1つのデュープレクサ312、1つのLNA320、および1つのBPF330が構成されている1つのRF信号経路が示されている。しかしながら、受信機200には、多数のRF信号経路を構成されていてもよい。各信号経路は、受信機200の個々の動作周波数バンドに対応する。例えば、受信機200には、セルラ、PCS、IMT、およびGSMのの各々の信号経路が構成される。各RF経路には、必要に応じて、デュープレクサ、スイッチ、および/またはバンドパスフィルタ、LNA、BPF、並びにIおよびQミクサーが構成されてもよい。さらに加えて、GPSが他のモードと共に動作する同時処理の受信には、別々のLO生成、ベースバンド増幅器、アナログローパスフィルタ、アナログ−対−ディジタルコンバータ、I/Qディジタル処理、および復調が必要である。
選択機構310は、所与の時間に活動状態の動作周波数バンドに依存して、異なるRF信号経路間で切り換わる。選択機構310には、例えば、種々のデュープレクサおよびBPFに接続されたバンド選択装置が構成される。選択機構310は、IおよびQチャンネルのミクサー340Aおよび340Bへも接続される。例えば、米国のセルラバンドの受信信号の場合は、選択機構310は、デュープレクサ312、LNA320、およびBPF330に切り換わり、これらは一緒に、受信信号を適切にフィルタして、増幅する。
BPF330の出力は、IおよびQチャンネルのミクサー340A、340Bの入力へ接続される。例示的な構成では、BPF330は、ミクサー340A、340Bの差動入力(図示されていない)へ接続するための差動出力(図示されていない)を備えている。したがって、BPF330の正および負の出力端末は、ミクサー340Aの正および負の入力端末と、ミクサー340Bの正および負の入力端末とへ接続される。このような差動信号経路構成により、RF信号経路へのLOおよびTXの結合は低減し、振幅変調された妨害波の共通モードの拒絶は増加する(ミクサー入力における二次入力インターセプトレベルはより高くなる)。したがって、受信機200におけるアイソレーションおよび妨害波の拒絶は向上する。
その代りに、変換器は、BPF330の単一端出力へ接続されてもよい。変換器は、単一端信号を差分信号へ変換し、ミクサー340A、340Bの差動入力へ接続する。
図5に示されているように、局部発振器(local oscillator, LO)350は、バッファ増幅器351A、351Bへ接続される。バッファ増幅器351A、351Bは、ミクサー340Aの第2の入力342A、およびミクサー340Bの第2の入力342Bへ、それぞれ接続される。IおよびQミクサー340A、340Bは差動入力を有するときは、バッファ増幅器351A、351Bは差動出力を有する。いくつかの実施形態では、受信機200の設計では、バッファ増幅器が構成される必要はない。
LO350には、周波数生成器が構成されていて、周波数生成器は、異なる周波数の出力信号を生成する。例えば、LO350は、第1の信号と、第1の信号と位相が90°ずれた第2の信号とを出力する。LO350には、位相ロックループ(phase-locked loop, PLL)、電圧制御発振器(voltage controlled oscillator, VCO)、周波数混合機構、移相機構とが構成されている。LO350には、受信したRF信号の動作周波数に依存して、LO350を制御するバンド選択354が構成されている。例示的な実施形態では、LO350は、差動経路を使用して、IおよびQミクサーのRFポートの信号経路への、またはそこからのLOの漏れおよび雑音の結合を緩和する。
各ミクサー340A、340Bは、BPF330から受信したRF信号を、LO350から受信した信号と、ミクサー340A、340Bの第2の入力342A、342Bにおいて混合する。混合処理において、信号を乗算する。次に、ミクサー340A、340Bは、受信したRF信号を、IおよびQのベースバンド信号へ直接にダウンコンバートする。例示的な構成では、ミクサー340A、340Bは、ミクサー利得制御341A、341Bを介して調節される利得と関係付けられる。
ダウンコンバージョンの後で、IおよびQ信号は、各信号経路365A、365Bに沿って処理される。両方の信号経路を代表して、I信号経路365Aは、増幅器360A、エイリアス除去フィルタ370A、およびIチャンネルのアナログ−対−ディジタルコンバータ(analog-to-digital converter, ADC)380Aが構成される。増幅器360Aは、ミクサー340Aの出力へ接続される。各信号経路に沿って処理およびアナログ対ディジタル変換をした後に、ディジタルのIチャンネルデータ382およびQチャンネルデータ384はさらに処理される。いくつかの実施形態では、IおよびQ信号は、動作モード別の経路に沿って処理される。別の実施形態では、IおよびQの信号経路は、モード間で共用される。
受信機200には、ブルートゥース専用のモジュールが含まれる。図5に示されているように、ブルートゥース直接ダウンコンバータ390およびブルートゥースベースバンドプロセッサ395は、上述の構造に機能上および構造上、類似している。しかしながら、ブルートゥースは、CDMAのような他の動作モードと同時に動作できるので、ブルートゥース直接ダウンコンバータ390およびベースバンドプロセッサ395は、ブルートゥース専用モジュールとして構成される。同様に、GPSも同時に動作でき、別々のベースバンド信号経路およびLO生成回路が必要である。
図6は、AM妨害波の抑制量を見積もるためのモデルであり、受信機200のような直接変換受信機に必要とされる。CDMAでは、必要な妨害波抑制量は、ベースバンド信号対ベースバンド妨害波の比として見積もられる。モデル600において、RFのRX部601は、受信機のRF部の利得を、受信機のアンテナから、受信機のミクサーの出力へモデル化する。RF部601は、利得Gデシベルを有する。RF部601の入力におけるRFの信号レベルは、S RF(単位:デシベル)である。RF部601の入力における妨害波のレベルは、J RF(単位:デシベル)である。RF部601は、これらの入力信号をそれぞれ増幅して、S RF+GおよびJ RF+Gの出力を生成する。
モデル600には、ミクサー610、すなわち受信機内のIおよびQのLOミクサーも構成されている。ミクサー610のRF対LOのアイソレーションは、S31で示されている。ミクサー610が、RFからベースバンドへ変換するときの利得または損失は、S21である。LOの駆動レベルは、LOである。LOポートへの妨害波の電力の漏れは、J RF LEAK、またはJ RF+G+S31である。AM変調された妨害波におけるRFからベースバンドへの変換の損失は、S21(AM)、すなわちS21+(J RF LEAK−LO)である。S21(AM)は、受信機がAM変調された妨害波を拒絶できる基準であり、(妨害波によって生成される)二次歪みと、ミクサーのベースバンド出力への妨害波の漏れとの復号の作用を表わす。
ベースバンドへダウンコンバートした後で、ミクサーの出力におけるベースバンド信号のレベルはS BB、すなわちS RF+G+S21である。ベースバンドの妨害波のレベルは、J BB、すなわちJ RF+G+S21(AM)である。ベースバンドのオフセットの妨害波は、J BB OFFSET、すなわちJ RF+G+S21である。ベースバンド信号対妨害波の比(S BB/J BB)は、こうして判断される。例えば、CDMAモードでは、特定のミクサーにおいて、G=6デシベル、S RF=−101ミリワットデシベル、(99.9パーセントのAM変調で2メガヘルツのオフセットで)J RF=−30ミリワットデシベル、LO=+5ミリワットデシベル、S31=−60デシベル、およびS21=12デシベルであるときは、J RF LEAK=−84ミリワットデシベル、およびS21(AM)=−77デシベルである。したがって、J BB=−101ミリワットデシベル、およびS BB=−83ミリワットデシベルになる。このため、ベースバンド信号対妨害波の比は、−83ミリワットデシベル−(−101ミリワットデシベル)、すなわち+18デシベルに等しい。CDMAモードでは、信号を復調するための通常のSINADは、−1デシベルである。したがって、上述の例に示したAM妨害波レベルは、受信機の雑音値に対して重要ではない。
図7は、受信機におけるミクサーのRFとLOのアイソレーション対LOの駆動レベルのグラフである。示されているように、ミクサーのRFとLOとのアイソレーションは非線形であり、LOの駆動レベルに依存する。例示的な構成では、受信機のLOの駆動レベルは、変化するか、またはより高いレベルで一定になり、アイソレーションを向上する。したがって、受信機のLOポートにおける妨害波の漏れのレベルが抑制される。妨害波が存在しないときは、LOの駆動レベルは下がる。調節可能なLOの駆動レベルに関係して、LOの駆動レベルが、より高いレベル(>+10ミリワットデシベル)において一定であることにより、電流消費量はより高くなり、LOの漏れが発生することに注意すべきである。しかしながら、LOのIおよびQのチャンネルのミクサーのDCの出力は、LOの漏れに関連しているので、LOの駆動レベルが変化すると、DCのオフセットが変化する。したがって、ベースバンド信号を復調する前に、DCのオフセットを取り除く必要がある。他のミクサーの性能パラメータも、LOの駆動レベルの関数として変化し、調節の範囲を制限する。LOの駆動レベルが広い範囲で変化するとき、ミクサーの雑音値およびそのIIP2およびIIP3の基準は劣化する。
図8には、IFのない受信機800が示されており、妨害波およびLOの漏れを抑制するための回路が構成されている。受信機800は、ワイヤレストランシーバへ取入れることができる。図8には、Iチャンネルのための直接ダウンコンバージョンおよびベースバンド回路が示されている。Qチャンネルのための並列の回路が構成されていてもよい。図8には、1つのRF信号経路と1つのベースバンド経路とが示されている。上述の教示と整合して、受信機800には、応用可能な動作周波数バンドおよびモードに依存して、多数の経路が構成されていてもよい。さらに加えて、受信機800には、信号経路間で切換えを行うための、図5の選択機構310のような回路が含まれていてもよい。
例示的な構成では、受信機800には、差動のRFおよびLO信号経路が構成されていてもよい。このような経路により、受信機800内のRFとLOとのアイソレーションは向上し、妨害波およびLOの漏れを抑制する。差動信号経路の配置は、単独で構成されていても、または別途記載するように、受信機におけるアイソレーションを向上する他の方法と組合せて構成されていてもよい。
アンテナ801は、到来RF信号への受信機800のインターフェイスである。さらに加えて、アンテナ801は、アンテナ801に接続された送信機からのRF信号を同報通信する。デュプレクサ812は、到来受信バンド内の信号にフィルタをかけ、これらの信号を、出力送信バンド内の信号と分ける。デュープレクサ812は、米国のセルラまたはPCSのような特定の動作バンドと関係付けられる。デュプレクサ812には、低雑音増幅器(low noise amplifier, LNA)820が接続されていて、LNA820は、受信したRF信号を増幅する。LNA820の利得は、LNA利得制御信号905(RF ADJUST)を介して制御される。LNA利得制御信号905には、目的の信号のダイナミックレンジにおいて受信機800の要件を満たすのに、連続的な利得制御か、または一連の利得ステップかに依存する信号が含まれる。
LNA820の利得は、受信したRF信号の電力に依存して調節される。信号電力が増加すると、LNA820の利得は、連続的に、または段階的に低減する。例示的な実施形態では、LNA820は、3つの状態、すなわち高利得状態、バイパス状態、および中利得状態を有する。信号電力が増加して、受信機800の感度を劣化することなく、種々のモードの干渉要件を満たすので、LNA820の利得は、一定の信号レベルでステップダウンする。さらに加えて、利得のステッピングにより、有効ダイナミックレンジを大きくし、受信機800のIIP3を向上する。LNA820の出力における信号電力が、熱雑音より高くなることを保証するように、利得の段階を十分に小さくすることができる。さらに加えて、受信機800内のLNA820後の利得を十分にして、ベースバンドの信号レベルが、復調に対して十分に強いことを保証する。
図9は、セルラ受信機の1つの実施形態を示しており、このセルラ受信機では、LNA820の利得は段階的に変化する。セルラおよびPCSモードでは、放射されて伝わる漏れは、−80ミリワットデシベル未満でなければならない。この実施形態では、受信経路内の能動の構成要素の逆アイソレーションの平衡をとることによって、アンテナ801において伝わった漏れを制御する。結合したIおよびQの信号経路からの伝わったLOの漏れは、−83ミリワットデシベルであり、3デシベルの基準マージンに変わる。
(平均ホワイトガウス雑音(average white gaussian noise, AWGN)および受信機の性能についてのフェージング試験中に、−74ミリワットデシベルより多く、−50ミリワットデシベルまでの信号レベルの)感度を越える信号レベルにおいて、SINAD要件を満たすには、LNA820の利得のみを変化させるだけでは不十分である。したがって、図9の受信機では、信号レベルが上がるとき、LNA820および二重平衡ミクサー840A、840Bの利得はステップダウンし、受信機の有効ダイナミックレンジを増加する。アンテナ801におけるLOのレベルが、信号よりも約20デシベル低いとき、これらのより低い利得状態において、LOの漏れは、−80ミリワットデシベルの要件よりも高くなる。ミクサーの利得ステップに代わって、ベースバンド利得ステップを構成してもよいことが分かるであろう。
図9の実施形態では、ミクサー840A、840Bでは、ベースバンドの信号ポートのRFのロードは50オームとみるとが分かるであろう。RFの終端の値は、特定のミクサーの設計に適合するように変化する。RFの終端は、ベースバンドポートからRFポートへ漏れるLOの反映を低減する。
放射されたLOの基準を低減するために、周波数合成器およびRF VCO(第1のモジュール857)は、受信周波数の2倍で実行される。第2のモジュール855は、周波数合成器の出力を2で除算する。他の構成では、合成器は受信周波数で実行され、除算は削除される。しかしながら、追加の遮蔽が必要である。別の実施形態では、RF VCOは、受信周波数の分数倍で実行され、受信バンド内における潜在的に放散されるLOの漏れを避ける。図9に示されている設計上の技術は、受信機800のような直接変換受信機に、全体的に、または部分的に取入れられることが分かるであろう。
図8の受信機800を再び参照すると、LNA820は、RXのバンドパスフィルタ(bandpass filter, BPF)830に接続される。さらに加えて、BPF830は、受信バンド外の信号を拒絶する。BPF830の出力は、方向性結合器915に接続される。方向性結合器915は、BPF830によって出力された電力の一部分をRF電力検出器955へ迂回させ、残りの部分を、IチャンネルのLOミクサー840の第1の入力と、QチャンネルのLOミクサー(図示されていない)の第1の入力とへの入力用に保持する。
局部発振器850には、周波数生成器が構成されていて、周波数生成器は、種々の周波数で出力信号を生成する。例えば、LO850は、第1の信号と、第1の信号から位相が90°ずれた第2の信号とを出力する。各信号は、差分信号である。一般に、LO850には、位相ロックループ(phase-locked loop, PLL)、電圧制御発振器(voltage controlled oscillator, VCO)、周波数混合機構、および移相機構が構成される。LO850には、バンド選択(図示されていない)が構成されていて、バンド選択では、受信したRF信号の動作周波数に依存して、LO850を制御する。
図8では、LO850には、第1のモジュール857が構成されている。第1のモジュール857では、受信したRF信号の周波数の倍数(MおよびNを正の整数として、M/N)である信号を出力する。第2のモジュール855では、この倍数の逆数(すなわち、N/M)によって出力信号を乗算する。このようにして、LO850は目的の受信周波数の信号を出力し、これを用いて、受信したRF信号をベースバンド信号にダウンコンバートする。
LO850は、バッファ増幅器851へ接続される。バッファ増幅器851は、ミクサー840の第2の入力へ接続され、LO850とミクサー840とのインピーダンスを整合する。LO信号の駆動レベルは、LO駆動調節制御信号921(LO PWR)を介してバッファ増幅器851の利得を変化させることによって調節される。バッファ増幅器851は、差分入力および出力を有するように示されているが、同様に、単一端入力および出力を用いてもよい。
Iチャンネルミクサー840と、これに対応するQチャンネルミクサーとは、二重平衡ミクサーである。ミクサー840のアイソレーションは、多数の要素、例えば基板のアイソレーション、レイアウト、ミクサーのトポロジ、ボンドワイヤ結合(bond wire coupling)、およびLOの駆動レベルに依存する。ミクサー840は、方向性結合器915から受信したRF信号と、バッファ増幅器851から受信した信号と混合する。混合処理では、信号を一緒に乗算する。したがって、ミクサー840は、受信したRF信号を、I成分のベースバンド信号へ直接にダウンコンバートする。いくつかの実施形態では、ミクサー840は、ミクサー利得制御信号(ミクサー利得調節)923を介して調節される利得と関係付けられる。したがって、受信機800の有効ダイナミックレンジは増加する。
Iチャンネルのベースバンド信号は、ダウンコンバージョンの後で、信号経路に沿って処理される。信号経路には、ベースバンド信号からのDCのオフセットを取り除く回路が構成されている。DCのオフセットが取り除かれないときは、DCのオフセットにより、IIP2、ベースバンドアナログ増幅器のダイナミックレンジ、および受信機のローパスフィルタが劣化する。受信機800では、アナログDC消去ループ935は、ベースバンド信号におけるDCのオフセットを測定し、ベースバンドの入力信号からオフセットを取り去る。DCのオフセットは、アナログのベースバンド信号において測定される。ベースバンド信号内のDCのオフセットは、ディジタル形式に変換された後に測定され、その後で、ディジタル対アナログコンバータ(digital-to-analog converter, DAC)を介してアナログのオフセットに再び変換してもよい。その代りに、ディジタルのDC消去機構が、ディジタルのベースバンド信号からDCのオフセットを取去ってもよい。例示的な実施形態では、図8に示されている構成では、アナログとディジタルの両者のDC消去回路が含まれていて、DCのオフセットをより効果的に取り除くことができる。
Iチャンネルのベースバンド信号は、ベースバンド増幅器860へ入力される。ベースバンド増幅器860には、差分入力が構成されている。ベースバンド増幅器860は、ベースバンド信号を基準化して、受信機800のダイナミックレンジを増加する。ベースバンド増幅器860のDCの入力インピーダンスは、ミクサー840のDCの出力インピーダンスよりも、相当により高くなるように選択される。例えば、信号電圧を、一定のベースバンド回路の雑音底値の2倍にし、ベースバンドの信号対雑音比をより高くする。ミクサーの構成、例えば電流出力構成に依存して、他の組合せも可能である。しかしながら、RFの入力からベースバンドの出力への電圧の利得は、雑音値、IIP2、IIP3、および信号と妨害波のダイナミックレンジに対して最適化される必要がある。
ベースバンド増幅器860は、ベースバンドアナログフィルタ870へ接続される。アナログフィルタ870は、アナログ対ディジタルコンバータ(analog-to-digital converter, ADC)880へ接続され、ADC880は、アナログのIチャンネルのベースバンド信号をディジタル信号(I ADC)へ変換する。例示的な実施形態では、ADC880の出力は、少なくとも13ビットの幅である。ナイキストの定理に定められているように、ADC880のサンプルレートは、アナログ入力信号の最高周波数成分の少なくとも2倍である。Iチャンネルへの、妨害波のような干渉のエイリアシングを防ぐために、アナログフィルタ870は、サンプルレートで干渉を拒絶するように選択される。例えば、妨害波は、10メガヘルツのオフセットで、入力信号よりも80デシベル高くなり、かつADC880のサンプルレートが10メガヘルツである場合は、サンプリングするときに、妨害波の電力が入力信号の電力よりも小さいことを保証するには、少なくとも80デシベルの減衰が必要である。さらに加えて、バンド外の妨害波を拒絶するように、アナログフィルタ870の周波数応答を選択して、ADC880の有効ダイナミックレンジを低減しないことを保証する。
ADC880は、DC消去モジュール901へ接続される。DC消去モジュール901では、ディジタルベースバンド信号内のDCのオフセットを測定する。DC消去モジュール901では、ディジタルベースバンド信号をサンプリングして、積分器、例えば一次積分器を用いて、DCのオフセットを測定する。DC消去ループ935内のフィードバック構成を介して、ディジタル対アナログコンバータ(digital-to-analogue converter, DAC)925は、ディジタルのDCのオフセットを、アナログのオフセットに変換する。次に、ベースバンド回路の入力から、アナログのオフセットを減算する。とくに、アナログのオフセットは、ベーズバンド増幅器860へ入力され、ベーズバンド増幅器860では、ミクサー840からの入力信号からのオフセットを差し引き、生成された信号を増幅する。DC消去モジュール901も、ディジタルのベースバンド信号からディジタルのDCのオフセットを減算して、修正したディジタルのベースバンド信号(I BB=I ADC−DCオフセット)を出力する。
DC消去モジュール901は、高速/低速制御信号945によって制御される。高速/低速制御信号945は、DC消去モジュール901内で用いられる積分速度に影響を与える。高速モードでは、精度の低い電力測定を採用し、DCのオフセットを迅速に取り除く。例えば、チャンネルが変化する間(すなわち、受信したRF信号の周波数が変化するとき)、またはLOの駆動レベルまたはミクサーの利得がステップアップまたはステップダウンするときは、高速モードが適切である。対照的に、低速モードでは、より正確な電力測定が採用される。より遅い積分では、受信機200の構成要素の温度および部品間の変化を追跡し、DC消去回路のジッタを低減し、モジュールの出力における雑音のより低い平均値を得ることができる。したがって、低速モードを使用すると、受信機200のベースバンド部分へ雑音が取り込まれるのを防ぎ、信号品質および望ましい信号対雑音比を維持することができる。さらに加えて、低速のモードを使用すると、高速モードよりも、ベースバンド信号から取り除くエネルギーが、より少なくなる。
DC消去モジュール901は、無限インパルス応答(infinite impulse response, IIR)フィルタ910に接続される。IIRフィルタ910は、5次の楕円ディジタルフィルタであり、ディジタルのベースバンド信号内の妨害波を拒絶し、ベースバンド信号の適切なバンド幅に整合するように設計されている。例示的な構成では、IIRフィルタ910は、妨害波のオフセットの70デシベルを拒絶する。IIRフィルタ910は、フィルタにかけられた信号(I FILT=I BB×IIR)を出力する。他の実施形態では、IIRフィルタ910を、有限インパルス応答(finite impulse response, FIR)フィルタに代えてもよい。IIRフィルタとは異なり、FIRフィルタは、完全に線形の位相を有し、信号バンド幅全体において、振幅が最大に平坦である。しかしながら、FIRフィルタは、IIRフィルタよりも、より大きく、かつより複雑である。別の実施形態では、IIRフィルタの後に、FIRフィルタが位置し、IIRフィルタの出力を等価する。IIRフィルタおよびFIRフィルタの設計技術は、この技術においてよく知られており、本明細書には記載されていない。
IIRフィルタ910には、デシメーション機構が構成されている。デシメーション機構は、ディジタル信号経路の一部分のサンプルレートを低減し、電力消費および処理ハードウエアを低減する。さらに加えて、デシメーション機構は、チャンネル外の干渉源の可能なエイリアシングを考慮に入れる。図8に示した実施形態では、デシメーション機構は、アナログまたはディジタルのフィルタリングによって、妨害波を取り除いた後で、IIRフィルタ910の出力において動作することができる。
IIRフィルタ910の出力、すなわちI FILTは、Qの対応するもの、すなわちQ FILT(図示されていない)と共に、乗算器970へ入力される。乗算器970は、各サンプルごとに、I FILT信号を二乗することによって、Iチャンネルの瞬間受信電力961を検出し、Q FILT信号を二乗することによって、Qチャンネルの瞬間受信電力を検出する。二乗された信号は、信号の電力に比例する。乗算の代わりに、I FILT信号およびQ FILT信号を、ルックアップテーブルが構成されているメモリへ入力してもよい。ルックアップテーブルには、ベースバンドのIおよびQのサンプルの大きさの関数として示されている対数の冪が含まれる。別の実施形態では、各チャンネルごとに、別々の乗算器970またはルックアップテーブルが用意される。
乗算器970によって計算された瞬間電力961は、積分器960へ入力される。信号963も積分器960へ入力される。信号963には、固定設定点およびIチャンネルのオフセット(Offset I)が構成されており、復調器の前の乗算器の出力における目的の電力レベルを表わす。電力レベルは、復調器がベースバンド信号を受信し、かつそれを劣化することなく復調するのに必要なビット数に基づく。
積分器960は、入力された瞬間電力961から平均信号電力を判断し、平均信号電力を信号963と比較し、自動利得制御(automatic gain control, AGC)修正信号965を出力する。AGC信号965は、モジュール940によって線形からデシベル単位へ変換され、加算器950によってRF OFFSET信号(単位:デシベル)と加算される。加算器950は、フィルタリング(BB PWR)の後で、合計推定ベースバンド電力967を出力する。RF OFFSET信号は、デシベルのプログラム可能なオフセットであり、LNA820に対する利得調節か、または受信機800内のディジタルAGCループ941の前に行われる利得調節を補償する。例えば、LNA820が、利得を10デシベル分ステップダウンするときは、乗算器970は低減された瞬間電力を検出するので、AGC信号965は増加する。したがって、RF OFFSETは、10でデシベル分低減しなければならず、その結果BB PWR信号967は、合計受信ベースバンド電力を正確に反映する。AGCループ941の応答時間は、積分器960の時間定数を調節することによって変更されることに注意すべきである。
IIRフィルタ910は、乗算器930へ接続される。乗算器930は、線形または浮動小数点乗算を支援するものであって、IIRフィルタ910からのI FILT信号を、積分器960からのAGC修正信号965によって乗算する。乗算器930は、Iチャンネルのベースバンド信号999を出力し、信号999は、復調器のような追加の処理ブロック(図示されていない)によって処理される。
RF電力検出器995は、方向性結合器915によって迂回させられた合計RF受信電力の一部分を表わすアナログ信号(単位:デシベル)を出力する。ADC990は、このアナログ信号をディジタル信号953へ変換する。オフセット955は、ディジタル信号953を基準化したディジタル信号(単位:デシベル)である。加算器980は、ディジタル信号953とオフセット955とを加算し、合計RF受信電力(妨害波+信号電力)を表わす信号957(RF PWR)を生成する。
制御機構920は、BB PWR信号967とRF PWR信号957とを入力として受信する。制御機構920は、これらの信号を比較し、比較に基づいて、受信機800内の種々のモジュールの設定点を制御する。比較には、RF PWR957からBB PWR信号967を減算することが含まれる。例示的な構成では、制御機構920は、(RF ADJUST制御信号905を介して)LNA820の利得ステッピング、(ミクサー利得調節制御信号923を介して)ミクサー840の利得、および(LO PWRの制御信号921を介して)LOの駆動レベルを制御して、受信機800が、信号の適用可能なダイナミックレンジ全体において所与の変調基準の妨害要件を満たすことができるようにする。受信機800のII2およびIIP3の基準は、LOの駆動レベルを調節することによって、必要なときに向上する。多数の利得ステップが使用されるときは、制御信号は、シリアルバスインターフェイス(serial bus interface, SBI)によって送られ、LNA820およびミクサー840の入力を制御する。このような実施形態では、SBIは、必要な利得更新を迅速に書込むために、ハードウエアの割込みによって制御される。
さらに加えて、制御機構920は、受信機800内の他の装置のダイナミックレンジおよびバイアスを調節する。制御機構920は、(ADC RANGE制御信号924を介して)ADC880の分解能、(Filter Range制御信号928を介して)IIRフィルタ910、および(MULTI RANGE制御信号929を介して)乗算器930を、信号レベルに依存して調節する。例えば、受信信号が強いときは、ディジタルベースバンド信号から、ビットが切り捨てられる。LOの駆動レベルも調節されるので、受信機800の電流消費は最適化される。したがって、ポータブルのワイヤレス構成において、バッテリ寿命を延ばすことができる。既に記載したように、制御機構920は、高速/低速制御信号945を介して、DC消去モジュール901も制御する。
合計受信電力対ベースバンド電力の比(単位:デシベル)、すなわちJ RF/S RFは、RF PWR(デシベル)−BB PWR(デシベル)に等しい。本発明の例示的な実施形態では、J RF/S RFが、閾値、例えば60デシベルよりも少ないとき、LOの駆動レベルの設定点は低く、ADC880およびIIRフィルタ910のダイナミックレンジは、非ターボモードである。逆に、J RF/S RFが閾値よりも大きいときは、LOの駆動レベルは、連続的に増加するか、またはステップアップし、ADC880およびIIRフィルタ910のダイナミックレンジはターボモードである。このようなターボモードでは、妨害波が存在し、必要ダイナミックレンジおよびLOレベルは最大である。さらに加えて、CDMA、WCDMA、およびGSMのような特定の無線通信規格、並びに適用可能であるときは、妨害の要件に基づいて、閾値が選択される。
さらに加えて、制御機構920は、受信信号の強度指標(received signal strength indicator, RSSI)927を出力する。RSSIは、測定された信号電力(単位:デシベル)を示し、RSSIを使用して、受信機800が構成されているトランシーバによって基地局への送信電力を設定する。CDMAのワイヤレスシステムでは、送信電力レベルの制御は、RSSIの測定値と連続の基地局の電力制御とに基づいている。
大きい信号において、LNA820およびミクサー840の上述のRFの利得ステッピング、並びにベースバンドフィルタリング(ベースバンドアナログフィルタ870およびIIRフィルタ910)により、受信機800におけるベースバンド回路に必要なダイナミックレンジを低減する。しかしながら、ADC880には、受信機800の熱雑音を量子化するために、追加のヘッドルームが必要である。このようなヘッドルーム、すなわちNs/Nadcは、Rx入力の基準雑音対ADC雑音の比である。さらに加えて、受信機800の利得の周波数、温度、および部品間の変化を説明するために、追加のヘッドルームが必要である。
受信機800内には、LNA820またはミクサー840のようなRFの信号経路に沿って、あるいはアナログのベースバンドの信号経路に沿って、追加の利得ステップが構成されていてもよい。このようなステップは、受信機800の信号のダイナミックレンジの要件を低減する。しかしながら、妨害波のダイナミックレンジも低減しなければならない。受信機800内にベースバンドの妨害波のフィルタを構成して、妨害波のダイナミックレンジを低減してもよい。例示的な構成では、受信機800内のRFの利得ステッピングおよび妨害波のフィルタ減衰を整合させて、ベースバンドのダイナミックレンジを低減してもよい。妨害波の周波数オフセットにおける最小のベースバンドフィルタの拒絶は、所与のサンプルレートにおけるアリアス除去の要件によって要求される。ADC880のサンプルレートが増加したときに、ADC880の電流を犠牲にして、ベースバンドのアナログフィルタの拒絶要件との平衡をとるように、ADC880のサンプルレートを選択する。
例えば、CDMAの被変調のRF信号では、RFのRX信号のダイナミックレンジは、−25ミリワットデシベルないし−108ミリワットデシベル(雑音底値)、すなわち83デシベルである。ADC880のクリッピングを避けるために、異なる変調基準のピークから二乗平均根(root mean square, rms)までの係数には、受信機800のような受信機のダイナミックレンジの計算が含まれる。定包絡線のGSM信号およびFM信号では、ピークからrmsへの電力は、たった3デシベルである。CDMA信号では、ピーク電力(時間の1パーセントより多い)は、rmsの電力レベルよりも、約9.5デシベル高い。Ns/Nadcのヘッドルームが10デシベルであるとすると、雑音のヘッドルームを含むダイナミックレンジは、83デシベル+10デシベル+9.5デシベル、すなわち102.5デシベルである。LNA820の30デシベルのRFの利得ステップにおいて、ダイナミックレンジは、102.5デシベル−30デシベル、すなわち72.5デシベルに低減する。この利得ステップを多数のステップへ分割し、目的のダイナミックレンジにおいてSINADが満たされるのを保証することに注意すべきである。
ベースバンドのフィルタリングを行わないときの瞬間妨害波の範囲は、連続波(continuous wave, CW)のような妨害波変調、CDMA、およびFM、並びに妨害波レベルに依存している。ピーク電力が−25ミリワットデシベルデシベルであるとすると、ベースバンドのフィルタリングを行わないときの瞬間妨害波の範囲は、−25ミリワットデシベル−(−108ミリワットデシベルの雑音底値)+10デシベルのNs/Nadc、すなわち93デシベルである。17デシベルの妨害波のフィルタリングが構成されているときは、瞬間妨害波の範囲は、93デシベル−17デシベル、すなわち76デシベルに低減される。追加のフィルタリングは、最大の妨害波がADCのダイナミックレンジ内であることを保証するためにアナログ領域に含まれ、別のフィルタリングはディジタル領域に含まれる。このようなアプローチにより、受信機800のハードウエアの複雑さは低減し、受信機800が、構成可能なディジタル信号処理を使用して、種々のモードおよび妨害要件に適応するための融通性は高まる。
ベースバンド増幅器860の利得は、DACの電圧または電流の調節を使用して、受信機800の各動作バンドおよび部品ごと変化に対する周波数の関数として、調節される。受信機800に何れのバンドが構成されているか、またはチャンネルのスぺーシングまでに、幾つのセグメントが較正されるかに依存して、調節が行われる。例示的な実施形態では、6デシベルの調節範囲が含まれる。受信機800のような受信機では、RXバンド全体に、装置ごとに6デシベルの変化量がみられる。このような変化量は、温度により引き起こされる利得の変化と共に、ADC880を含むベースバンド回路のダイナミックレンジ要件を高める。ベースバンド増幅器860における6デシベルの調節範囲は、受信機の雑音値およびインターセプト点を向上し、ベースバンドのダイナミックレンジを、3デシベルよりも多く低減する。したがって、ベースバンド処理部において、50パーセントの電流の節約を実現することができる。
図8に示されているように、乗算器930によって出力されたIチャンネルのベースバンド信号999は、受信機800の復調ブロック(図示されていない)へ送られる。FM信号のような狭帯域信号では、LO850へ周波数オフセットを取入れることにより、DC消去ループ回路は、FMモードにおいて、被変調のベースバンド信号をゼロにしないことを保証する。この技術は、米国特許第5,617,060号に記載されており、米国特許第5,617,060号はQUALCOMM Incorporatedへ譲渡されている。1つの実施形態では、復調ブロックは制御信号をLO850へ供給し、一定の周波数オフセットを取入れる。復調ブロックは、相回転器(phase rotator)を使用してオフセットを計数で取り除く。このような周波数追跡/オフセットループは、ベースバンドの波形をDCから十分にずらして、DCのオフセットループが、ベースバンドの1/fの雑音を取り除くことができるようにする。
例えば、FM信号のバンド幅は、30キロヘルツ(Iに15キロヘルツ、Qに15キロヘルツ)である。DCのオフセットループのバンド幅が、約1キロヘルツ増加するとき、周波数ループは、信号のDCを約15キロヘルツをプッシュする。したがって、信号は、受信器800内のディジタルのDC消去経路を通過した後で、循環する。
上述の詳細な説明は、本発明の例示的な実施形態を示す添付の図面を参照している。他の実施形態も可能であり、本発明の意図および技術的範囲から逸脱することなく、実施形態を変更してもよい。例えば、上述の装置の多くを間接的に相互に接続し、これらの装置を、フィルタまたは増幅器のような中間装置から切り離してもよい。さらに加えて、上述のディジタル装置の実施形態のいくつかを、アナログ機器に代えてもよい。さらに加えて、本発明の教示を、将来発展する変調規格および動作バンドに適用してもよい。したがって、詳細な説明は、本発明を制限することを意図していない。むしろ、本発明の技術的範囲は、特許請求項によって規定される。
飽和点、圧縮点、二次インターセプト点、および三次インターセプト点のグラフ。 従来のデュアル変換受信機の高レベルのブロック図。 従来のデュアル変換受信機のブロック図。 直接変換受信機の高レベルのブロック図。 直接変換受信機のブロック図。 直接変換受信機のAM妨害波抑制を見積もるためのモデルを示す図。 ミクサーのRF対LOのアイソレーションと、LOの駆動レベルとを示すグラフ。 IFのない受信機のブロック図。 IFのない受信機の利得ステップを示すブロック図。
符号の説明
10、301、801 アンテナ、
30、320、820、999 LNA、
40、320、830 RX BPF
70、870、910 フィルタ、
60、340、370、610、840 ミクサー、
101、200、800 受信機、
305 インターフェイス、
312、812 デュープレクサ、
351、360、851、860 増幅器。

Claims (45)

  1. マルチバンド直接変換ワイヤレス通信装置において、妨害波の漏れを抑制するための方法であって、方法が、
    RF信号を受信するように構成された受信機であって、低雑音増幅器(low noise amplifier, LNA)、入力および出力を備えたミクサー、および局部発振器(local oscillator, LO)を含む受信機を用意することと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節することとを含み、
    LOの駆動レベルを調節することが、
    ベースバンド信号の信号電力を測定することと、
    受信したRF信号の電力を測定することと、
    ベースバンド信号の信号電力と、受信したRF信号の電力とを比較することと、
    比較に基づいて、LOの設定点を調節することとを含む方法。
  2. 駆動レベルを調節することが、妨害波のレベルが上がるときに、LOの駆動レベルを上げることを含む請求項1記載の方法。
  3. LOの駆動レベルをステップアップする請求項2記載の方法。
  4. ダウンコンバートされたベースバンド信号からDCのオフセットを取り除くことをさらに含む請求項1記載の方法。
  5. DCのオフセットを取り除くことが、アナログDC消去ループを用意することを含む請求項4記載の方法。
  6. DCのオフセットを取り除くことが、ディジタルDC消去モジュールを用意することを含む請求項4記載の方法。
  7. ディジタル自動利得制御(automatic gain control, AGC)機構を介して、受信機の復調器へ入力されたベースバンド信号の電力を制御することをさらに含む請求項1記載の方法。
  8. マルチバンド直接変換ワイヤレス通信装置において、妨害波の漏れを抑制するための方法であって、方法が、
    RF信号を受信するように構成された受信機であって、低雑音増幅器(LNA)、入力および出力を備えたミクサー、および局部発振器(LO)を含む受信機を用意することと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節することとを含み、
    LOの駆動レベルを調節することが、
    ベースバンド信号の信号電力を測定することと、
    受信したRF信号の電力を測定することと、
    ベースバンド信号の信号電力と、受信したRF信号の電力とを比較することと、
    比較に基づいて、LOの設定点を調節することとを含み、
    ベースバンド信号の測定された信号電力に基づいて、LNAおよびミクサーの利得を調節することをさらに含む方法。
  9. マルチバンド直接変換ワイヤレス通信装置において、妨害波の漏れを抑制するための方法であって、方法が、
    RF信号を受信するように構成された受信機であって、低雑音増幅器(LNA)、入力および出力を備えたミクサー、および局部発振器(LO)を含む受信機を用意することと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節することとを含み、
    LOの駆動レベルを調節することが、
    ベースバンド信号の信号電力を測定することと、
    受信したRF信号の電力を測定することと、
    ベースバンド信号の信号電力と、受信したRF信号の電力とを比較することと、
    比較に基づいて、LOの設定点を調節することとを含み、
    ベースバンド信号の測定された信号電力に基づいて、LNAおよびミクサーの利得を調節することをさらに含み、
    LNAおよびミクサーの利得を調節することが、受信したRF信号の信号電力が増加するときに、利得を低減することを含む方法。
  10. マルチバンド直接変換ワイヤレス通信受信機において、妨害波の漏れを抑制するためのシステムであって、システムが、
    受信したRF信号を増幅するように構成された低雑音増幅器(LNA)と、
    周波数を出力するように構成された局部発振器(LO)と、
    LNAに動作的に接続された第1の入力、LOの出力に動作的に接続された第2の入力、および出力を備えたミクサーと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節するように構成された調節機構とを含み、
    調節機構が、
    受信したRF信号の合計電力を測定するように構成された第1の測定機構と、
    ベースバンド信号の信号電力を測定するように構成された第2の測定機構と、
    受信したRF信号の合計電力と、ベースバンド信号の信号電力とを比較するように構成された比較機構と、
    比較に基づいて、LOの設定点を調節するように構成された調節器とを含むシステム。
  11. 調節機構が制御信号をLOへ送り、制御信号がLOの設定点を調節する請求項10記載のシステム。
  12. LOおよび第2のミクサーの入力に接続されたバッファ増幅器をさらに含み、調節機構が、バッファ増幅器の利得を調節して、LOの駆動レベルを調節する請求項10記載のシステム。
  13. 調節機構が、受信したRF信号の信号レベルが上がるときに、LNAおよびミクサーの利得を調節するようにも構成されている請求項10記載のシステム。
  14. 受信機が、差動RFおよびLOの信号経路を取入れる請求項10記載のシステム。
  15. ダウンコンバートされたベースバンド信号からDCのオフセットを取り除くように構成されたDC消去機構をさらに含む請求項10記載のシステム。
  16. DC消去機構が、アナログDC消去ループを含む請求項15記載のシステム。
  17. DC消去機構が、ダウンコンバートされたベースバンド信号からDCのオフセットを減算するように構成されたディジタルDC消去モジュールを含む請求項15記載のシステム。
  18. FM変調されたディジタルベースバンド信号から、周波数のオフセットを取り除くように構成された復調器をさらに含む請求項10記載のシステム。
  19. マルチバンド直接変換ワイヤレス通信受信機において、妨害波の漏れを抑制するためのシステムであって、システムが、
    受信したRF信号を増幅するように構成された低雑音増幅器(LNA)と、
    周波数を出力するように構成された局部発振器(LO)と、
    LNAに動作的に接続された第1の入力、LOの出力に動作的に接続された第2の入力、および出力を備えたミクサーと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節するように構成された調節機構とを含み、
    調節機構が、
    受信したRF信号の合計電力を測定するように構成された第1の測定機構と、
    ベースバンド信号の信号電力を測定するように構成された第2の測定機構と、
    受信したRF信号の合計電力と、ベースバンド信号の信号電力とを比較するように構成された比較機構と、
    比較に基づいて、LOの設定点を調節するように構成された調節器とを含み、
    第1の測定機構が、
    受信したRF信号の電力を表わすアナログ信号を出力するように構成されたRF電力検出器と、
    出力と、RF電力検出器の出力に接続された入力とを備えたアナログ−対−ディジタルコンバータ(analog-to-digital converter, ADC)と、
    ADCの出力に接続された第1の入力と、オフセット信号に接続された第2の入力とを備えた加算器であって、受信したRF信号の合計電力を表わす出力信号を生成するように構成された加算器とを含むシステム。
  20. マルチバンド直接変換ワイヤレス通信受信機において、妨害波の漏れを抑制するためのシステムであって、システムが、
    受信したRF信号を増幅するように構成された低雑音増幅器(LNA)と、
    周波数を出力するように構成された局部発振器(LO)と、
    LNAに動作的に接続された第1の入力、LOの出力に動作的に接続された第2の入力、および出力を備えたミクサーと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節するように構成された調節機構とを含み、
    調節機構が、
    受信したRF信号の合計電力を測定するように構成された第1の測定機構と、
    ベースバンド信号の信号電力を測定するように構成された第2の測定機構と、
    受信したRF信号の合計電力と、ベースバンド信号の信号電力とを比較するように構成された比較機構と、
    比較に基づいて、LOの設定点を調節するように構成された調節器とを含み、
    第2の測定機構が、
    ベースバンド信号の瞬間電力を判断するように構成された計算器と、
    計算器に接続された入力を備えた積分器であって、ベースバンド信号の平均信号電力を判断して、自動利得制御(AGC)信号を出力する積分器と、
    AGC信号の対数の冪の表現と、LNAおよびミクサーの利得に対する調節を明らかにするRFのオフセットとを加算するように構成され、かつベースバンド信号の信号電力を出力するように構成された加算器とを含むシステム。
  21. マルチバンド直接変換ワイヤレス通信受信機において、妨害波の漏れを抑制するためのシステムであって、システムが、
    受信したRF信号を増幅するように構成された低雑音増幅器(LNA)と、
    周波数を出力するように構成された局部発振器(LO)と、
    LNAに動作的に接続された第1の入力、LOの出力に動作的に接続された第2の入力、および出力を備えたミクサーと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節するように構成された調節機構とを含み、
    調節機構が、
    受信したRF信号の合計電力を測定するように構成された第1の測定機構と、
    ベースバンド信号の信号電力を測定するように構成された第2の測定機構と、
    受信したRF信号の合計電力と、ベースバンド信号の信号電力とを比較するように構成された比較機構と、
    比較に基づいて、LOの設定点を調節するように構成された調節器とを含み、
    第2の測定機構が、
    ベースバンド信号の瞬間電力を判断するように構成された計算器と、
    計算器に接続された入力を備えた積分器であって、ベースバンド信号の平均信号電力を判断して、自動利得制御(AGC)信号を出力する積分器と、
    AGC信号の対数の冪の表現と、LNAおよびミクサーの利得に対する調節を明らかにするRFのオフセットとを加算するように構成され、かつベースバンド信号の信号電力を出力するように構成された加算器とを含み、
    計算器が、受信機のIチャンネルの信号レベルを二乗するように構成された乗算器を含むシステム。
  22. マルチバンド直接変換ワイヤレス通信受信機において、妨害波の漏れを抑制するためのシステムであって、システムが、
    受信したRF信号を増幅するように構成された低雑音増幅器(LNA)と、
    周波数を出力するように構成された局部発振器(LO)と、
    LNAに動作的に接続された第1の入力、LOの出力に動作的に接続された第2の入力、および出力を備えたミクサーと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節するように構成された調節機構とを含み、
    調節機構が、
    受信したRF信号の合計電力を測定するように構成された第1の測定機構と、
    ベースバンド信号の信号電力を測定するように構成された第2の測定機構と、
    受信したRF信号の合計電力と、ベースバンド信号の信号電力とを比較するように構成された比較機構と、
    比較に基づいて、LOの設定点を調節するように構成された調節器とを含み、
    第2の測定機構が、
    ベースバンド信号の瞬間電力を判断するように構成された計算器と、
    計算器に接続された入力を備えた積分器であって、ベースバンド信号の平均信号電力を判断して、自動利得制御(AGC)信号を出力する積分器と、
    AGC信号の対数の冪の表現と、LNAおよびミクサーの利得に対する調節を明らかにするRFのオフセットとを加算するように構成され、かつベースバンド信号の信号電力を出力するように構成された加算器とを含み、
    計算器が、受信機のIチャンネルの信号レベルと関係付けられた瞬間電力値を含んでいるルックアップテーブルを含むシステム。
  23. マルチバンド直接変換ワイヤレス通信受信機において、妨害波の漏れを抑制するためのシステムであって、システムが、
    受信したRF信号を増幅するように構成された低雑音増幅器(LNA)と、
    周波数を出力するように構成された局部発振器(LO)と、
    LNAに動作的に接続された第1の入力、LOの出力に動作的に接続された第2の入力、および出力を備えたミクサーと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節するように構成された調節機構とを含み、
    調節機構が、
    受信したRF信号の合計電力を測定するように構成された第1の測定機構と、
    ベースバンド信号の信号電力を測定するように構成された第2の測定機構と、
    受信したRF信号の合計電力と、ベースバンド信号の信号電力とを比較するように構成された比較機構と、
    比較に基づいて、LOの設定点を調節するように構成された調節器とを含み、
    比較機構が、ベースバンド信号の信号電力から、受信したRF信号の合計電力を減算するシステム。
  24. マルチバンド直接変換ワイヤレス通信受信機において、妨害波の漏れを抑制するためのシステムであって、システムが、
    受信したRF信号を増幅するように構成された低雑音増幅器(LNA)と、
    周波数を出力するように構成された局部発振器(LO)と、
    LNAに動作的に接続された第1の入力、LOの出力に動作的に接続された第2の入力、および出力を備えたミクサーと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節するように構成された調節機構とを含み、
    ダウンコンバートされたベースバンド信号からDCのオフセットを取り除くように構成されたDC消去機構をさらに含み、
    DC消去機構が、ダウンコンバートされたベースバンド信号からDCのオフセットを減算するように構成されたディジタルDC消去モジュールを含み、
    ディジタルDC消去モジュールが、積分率の異なる高速および低速モードで動作するように構成されたシステム。
  25. マルチバンド直接変換ワイヤレス通信装置のダイナミックレンジを最適化するための方法であって、
    RF信号を受信するように構成された受信機であって、低雑音増幅器(LNA)、入力および出力を備えたミクサー、局部発振器(LO)、およびベースバンド部を含む受信機を用意することと、
    受信したRF信号のレベルに依存して、LNAおよびミクサーの利得を調節することと、
    受信機によって検出された妨害波のレベルに依存して、LOの駆動レベルを調節することとを含む方法。
  26. 受信機のベースバンド部において、ディジタル信号のビットを調節することをさらに含む請求項25記載の方法。
  27. ビットを調節することが、受信したRF信号の信号電力が強いときに、ディジタルのベースバンド信号のビットを切り捨てることを含む請求項26記載の方法。
  28. ビットを調節することが、受信機のベースバンド部において、アナログ−対−ディジタルコンバータ(ADC)の分解能を調節することを含む請求項26記載の方法。
  29. ビットを調節することが、受信機のベースバンド部において、ディジタルフィルタの分解能を調節することを含む請求項26記載の方法。
  30. 受信機のベースバンド部において、ADCのサンプルレートを調節することをさらに含む請求項25記載の方法。
  31. 用意するステップが、ベースバンド増幅器を含むベースバンド部を用意することを含む請求項25記載の方法。
  32. 受信機の部品間の変化および動作バンドの周波数の一方に基づいて、ベースバンド増幅器の利得を調節することをさらに含む請求項31記載の方法。
  33. ベースバンド増幅器の利得が、6デシベルの範囲で調節される請求項32記載の方法。
  34. 用意するステップが、ベースバンドアナログフィルタを含むベースバンド部を用意することを含む請求項25記載の方法。
  35. マルチバンド直接変換ワイヤレス通信受信機において、ダイナミックレンジを最適化するためのシステムであって、
    受信したRF信号を増幅するように構成された低雑音増幅器(LNA)と、
    周波数を出力するように構成された局部発振器(LO)と、
    LNAに動作的に接続された第1の入力、LOの出力に動作的に接続された第2の入力、および出力を備えたミクサーと、
    ミクサーの出力に接続されたベースバンド部と、
    受信したRF信号のレベルに依存してLNAおよびミクサーの利得を調節し、受信機によって検出された妨害波のレベルに依存してLOの駆動レベルを調節するように構成された調節機構とを含むシステム。
  36. 調節機構が、受信機のベースバンド部において、ディジタル信号のビットを調節するようにも構成されている請求項35記載のシステム。
  37. 調節機構が、受信したRF信号の信号電力が強いときに、ディジタルのベースバンド信号のビットを切り捨てるように構成されている請求項36記載のシステム。
  38. 調節機構が、受信機のベースバンド部において、アナログ−対−ディジタルコンバータ(ADC)の分解能を調節するように構成されている請求項36記載のシステム。
  39. 調節機構には、受信機のベースバンド部において、ディジタルフィルタの分解能を調節するように構成されている請求項36記載のシステム。
  40. 調節機構が、受信機のベースバンド部において、ADCのサンプルレートを調節するように構成されている請求項35記載のシステム。
  41. ベースバンド部が、ベースバンド増幅器を含む請求項35記載のシステム。
  42. 調節機構が、受信機の部品間の変化および動作バンドの周波数の一方に基づいて、ベースバンド増幅器の利得を調節するように構成されている請求項41記載のシステム。
  43. ベースバンド増幅器が、6デシベルの範囲で調節されるように構成されている請求項42記載のシステム。
  44. ベースバンド増幅器が、ディジタル−対−アナログ(digital-to-analog, DAC)の電圧
    または電流の調節で調節されるように構成されている請求項42記載のシステム。
  45. ベースバンド部が、ベースバンドアナログフィルタを含む請求項35記載のシステム。
JP2002557032A 2001-01-12 2002-01-10 直接変換ディジタル領域制御 Expired - Fee Related JP4105549B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US26171401P 2001-01-12 2001-01-12
US09/797,746 US20020123319A1 (en) 2001-03-01 2001-03-01 Direct conversion digital domain control
US10/015,988 US6694129B2 (en) 2001-01-12 2001-12-10 Direct conversion digital domain control
PCT/US2002/000891 WO2002056490A2 (en) 2001-01-12 2002-01-10 Direct conversion digital domain control

Publications (3)

Publication Number Publication Date
JP2004521534A JP2004521534A (ja) 2004-07-15
JP2004521534A5 JP2004521534A5 (ja) 2005-12-22
JP4105549B2 true JP4105549B2 (ja) 2008-06-25

Family

ID=27360463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002557032A Expired - Fee Related JP4105549B2 (ja) 2001-01-12 2002-01-10 直接変換ディジタル領域制御

Country Status (9)

Country Link
EP (1) EP1350332B1 (ja)
JP (1) JP4105549B2 (ja)
CN (1) CN1251415C (ja)
AU (1) AU2002243523A1 (ja)
BR (1) BR0206416A (ja)
CA (1) CA2434423A1 (ja)
HK (1) HK1061316A1 (ja)
IL (2) IL156857A0 (ja)
WO (1) WO2002056490A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210344369A1 (en) * 2018-11-21 2021-11-04 Huizhou Tcl Mobile Communication Co., Ltd. Method for reducing sglte coupling de-sense and mobile terminal

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999537B2 (en) * 2002-10-25 2006-02-14 Qualcomm Incorporated Method of removing DC offset for a ZIF-based GSM radio solution with digital frequency correlation
EP1801985A3 (en) * 2002-10-25 2007-07-18 Qualcomm, Incorporated Method of removing DC offset for a ZIF-based GSM radio receiver with digital frequency offset correction
US7027793B2 (en) 2002-11-15 2006-04-11 Qualcomm Incorporated Direct conversion with variable amplitude LO signals
DE102005027715B4 (de) * 2005-06-15 2020-01-02 Snaptrack, Inc. Elektroakustischer Resonator, Filter, Duplexer und Verfahren zur Bestimmung von Parametern eines Resonators
US7660569B2 (en) * 2006-04-04 2010-02-09 Qualcomm Incorporated Methods and apparatus for digital jammer detection
US7881411B2 (en) 2006-05-05 2011-02-01 Wi-Lan, Inc. Modulation dependent automatic gain control
US8521198B2 (en) * 2006-05-12 2013-08-27 Qualcomm, Incorporated Dynamic LNA switch points based on channel conditions
JP4764409B2 (ja) 2007-11-29 2011-09-07 京セラ株式会社 通信装置
JP4573866B2 (ja) * 2007-12-17 2010-11-04 三菱電機株式会社 侵入検知システム
US7773545B2 (en) * 2008-02-27 2010-08-10 Mediatek Inc. Full division duplex system and a leakage cancellation method
US9312897B2 (en) * 2012-10-31 2016-04-12 Qualcomm Incorporated DC offset filter for wide band beamforming receivers
KR20200079717A (ko) 2018-12-26 2020-07-06 삼성전자주식회사 무선 통신 시스템에서 신호 레벨을 조정하는 장치 및 방법
CN109474288B (zh) * 2019-01-14 2024-03-15 上海创远仪器技术股份有限公司 基于反相抵消机制提高接收机动态范围的电路结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105739B2 (ja) * 1993-06-08 1995-11-13 日本電気株式会社 受信機
US5590411A (en) * 1995-01-10 1996-12-31 Nokia Mobile Phones Ltd. Method and apparatus for suppressing spurious third-order responses in transceivers
SE9601620L (sv) * 1996-04-29 1997-10-30 Radio Design Innovation Tj Ab Anpassningsbar radiomottagarapparat
US5918167A (en) * 1997-03-11 1999-06-29 Northern Telecom Limited Quadrature downconverter local oscillator leakage canceller
DE19829500A1 (de) * 1998-07-02 2000-01-13 Thomson Brandt Gmbh Verfahren zur Verbesserung des Nutzsignals in einer Funkempfangseinheit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210344369A1 (en) * 2018-11-21 2021-11-04 Huizhou Tcl Mobile Communication Co., Ltd. Method for reducing sglte coupling de-sense and mobile terminal
US11522569B2 (en) * 2018-11-21 2022-12-06 Huizhou Tcl Mobile Communication Co., Ltd. Method for reducing SGLTE coupling de-sense and mobile terminal

Also Published As

Publication number Publication date
EP1350332A2 (en) 2003-10-08
CA2434423A1 (en) 2002-07-18
JP2004521534A (ja) 2004-07-15
WO2002056490A2 (en) 2002-07-18
BR0206416A (pt) 2004-06-22
WO2002056490A3 (en) 2003-02-13
AU2002243523A1 (en) 2002-07-24
IL156857A0 (en) 2004-02-08
HK1061316A1 (en) 2004-09-10
EP1350332B1 (en) 2017-11-29
IL156857A (en) 2010-04-29
CN1481617A (zh) 2004-03-10
CN1251415C (zh) 2006-04-12
WO2002056490A9 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US6694129B2 (en) Direct conversion digital domain control
US20020123319A1 (en) Direct conversion digital domain control
CA2434048C (en) Local oscillator leakage control in direct conversion processes
US6646449B2 (en) Intermodulation detector for a radio receiver
US7299021B2 (en) Method and apparatus for scaling the dynamic range of a receiver for continuously optimizing performance versus power consumption
KR101427846B1 (ko) 수신기 간섭을 피하기 위한 아날로그-디지털 컨버터 샘플링 레이트의 동적 스케일링을 위한 방법 및 장치
AU2002245251A1 (en) Local oscillator leakage control in direct conversion processes
JP4105549B2 (ja) 直接変換ディジタル領域制御
WO2006035276A2 (en) Direct conversation receiver radio frequency integrated circuit
JP2007318767A (ja) 受信器の干渉イミュニティを向上させる方法および装置
US20020163391A1 (en) Local oscillator leakage control in direct conversion processes
KR20070046971A (ko) 다중 무선 통신 서비스 처리 방법 및 장치
RU2336626C2 (ru) Способ управления просачиванием сигнала гетеродина в методах прямого преобразования
JP4358890B2 (ja) 直接変換プロセスにおける局部発振器漏洩制御
Yamawaki et al. A dual-band transceiver for GSM and DCS1800 applications
KR100259058B1 (ko) 통신시스템의 혼변조신호 처리장치 및 방법
Gu Radio architectures and design considerations
Gu Applications of System Design
JP2006054547A (ja) 受信装置および受信特性の最適化方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071003

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees