JP4104372B2 - Aligner accuracy measuring apparatus, method thereof, and storage medium storing program thereof - Google Patents

Aligner accuracy measuring apparatus, method thereof, and storage medium storing program thereof Download PDF

Info

Publication number
JP4104372B2
JP4104372B2 JP2002120978A JP2002120978A JP4104372B2 JP 4104372 B2 JP4104372 B2 JP 4104372B2 JP 2002120978 A JP2002120978 A JP 2002120978A JP 2002120978 A JP2002120978 A JP 2002120978A JP 4104372 B2 JP4104372 B2 JP 4104372B2
Authority
JP
Japan
Prior art keywords
aligner
wafer
pair
marks
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002120978A
Other languages
Japanese (ja)
Other versions
JP2003318249A5 (en
JP2003318249A (en
Inventor
収司 秋山
功 福田
浩樹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Tokyo Electron Ltd
Original Assignee
Murata Machinery Ltd
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd, Tokyo Electron Ltd filed Critical Murata Machinery Ltd
Priority to JP2002120978A priority Critical patent/JP4104372B2/en
Publication of JP2003318249A publication Critical patent/JP2003318249A/en
Publication of JP2003318249A5 publication Critical patent/JP2003318249A5/ja
Application granted granted Critical
Publication of JP4104372B2 publication Critical patent/JP4104372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、旋回台上に載置される半導体等のウエハの姿勢合わせを行うアライナーの精度を測定する精度測定装置の構成に関する。
【0002】
【従来の技術】
従来から、半導体製造工場内で半導体ウエハ等を搬送・移載する無人搬送車は公知となっている。このような無人搬送車はウエハを収納するバッファカセットや、ウエハ移載用のアームや、ウエハの姿勢および方向を揃えるための姿勢合わせ装置(アライナー)や、ウエハに付されたIDを読み取るための読取装置などが搭載されている。
また、アライナーの姿勢合わせ精度は、ウエハのIDの読取や移載時のカセットへの収納、あるいは半導体製造装置へのウエハの載置に影響することから、工程内で定期的にアライナーの精度測定装置を用いてアライナーの精度を測定していた。これはアライナーの載置台の所定位置に、測定面の中心に目印を設けた精度測定用ウエハを載置し、姿勢合わせ作業前後の目印をCCDカメラなどの撮像手段によりそれぞれ画像撮影し、両画像の比較によりそのずれ量およびずれ角度を算出するものであった。
【0003】
【発明が解決しようとする課題】
しかし、従来のアライナーにおいては、ウエハの測定面中心にある一個の目印の画像を姿勢合わせ作業前後で比較していたが、この方法では姿勢合わせ精度が撮像手段の分解能に略一致するため分解能を高くしなければならない。特に、目印の画像は小さいので、ウエハのずれ角度を精度良く測定するのが困難であった。しかし高分解能の撮像手段は高価であり、また撮影範囲が狭くなるなど実用上問題があった。
【0004】
【課題を解決するための手段】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
【0005】
即ち、請求項1においては、ウエハ載置台上に載置されるウエハの姿勢合わせを行うアライナーの精度を測定する精度測定装置であって、前記ウエハ載置台上の基準位置に着脱可能に取り付けられる精度測定用ウエハの測定表面に所定間隔を隔てて設けられた一対の目印を、該ウエハが基準位置に有るときと該ウエハをアライナーによって姿勢合わせしたときとにおいて撮像する撮像手段と、前記それぞれの撮像から得られる画像情報を基にアライナーの精度を測定する画像処理装置とからなるものである。
【0006】
請求項2においては、ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときに該一対の目印を撮像し、この撮像によって得られた画像情報を処理して該一対の目印を結ぶ基準の直線を求め、また該目印を付けたウエハをアライナーにて姿勢合わせを行った後に撮像し、この撮像によって得られた画像情報を処理し該一対の目印を結ぶ姿勢合わせの後の直線を求め、前記基準の直線と姿勢合わせ後の直線との成す角度からアライナーの姿勢合わせのずれ角度を測定するものである。
【0007】
請求項3においては、ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときにこれを撮像して得た画像情報を基準画像とし該基準画像から該一対の目印の中間点を算出し、また該ウエハをアライナーによって姿勢合わせを行ったときの姿勢合わせ後にこれを撮像し得た画像情報を作業後画像とし、該作業後画像から一対の目印の中間点を算出し、これら中間点を比較することによりアライナーの姿勢合わせのずれ量を算出するものである。
請求項4においては、ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときの前記一対の目印の画像情報から該一対の目印を結ぶ基準の直線を求める手順、該目印を付けたウエハをアライナーにて姿勢合わせを行った後の画像情報から該一対の目印を結ぶ姿勢合わせの後の直線を求める手順、前記基準の直線と姿勢合わせ後の直線との成す角度からアライナーの姿勢合わせのずれ角度を算出する手順を実行するためのプログラムを記憶させたアライナーの精度測定装置で読み取り可能な記憶媒体としたものである。
請求項5においては、ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときの画像情報を基準画像とし該基準画像から該一対の目印の中間点を算出する手順、該ウエハをアライナーによって姿勢合わせを行ったときの姿勢合わせ後の画像情報を作業後画像とし、該作業後画像から一対の目印の中間点を算出する手順、これら中間点を比較することによりアライナーの姿勢合わせのずれ量を算出する手順を実行するためのプログラムを記憶させたアライナーの精度測定装置で読み取り可能な記憶媒体としたものである。
【0008】
【発明の実施の形態】
次に、発明の実施の形態を説明する。なお、本実施例では無人搬送車に搭載されたアライナーについて記述するが、半導体製造装置など床面に固定された装置に付属したアライナーなどにも応用が可能であり、限定されない。
図1はクリーンルーム内の無人搬送車の様子を示す斜視図、図2は無人搬送車の側面断面図、図3はアライナー精度測定装置を示す図、図4は画像処理装置における仮想平面での画像情報処理の実施例を示す図である。
【0009】
図1および図2に示すように、無人搬送車1は走行レール2・2上を自動走行する有軌道台車であり、四つの走行輪3・3・・・により支持され、該走行輪3・3・・・をそれぞれの駆動モータ4・4・・・で駆動する。
【0010】
前記走行レール2・2に沿って、半導体製造装置5・5・・・やストッカ6が配設され、該ストッカ6上には複数のカセット7・7・・・が所定間隔を空けて並設されている。各カセット7・7・・・は、その開口部を走行レール2・2側へ向けて配置される。またカセット7の側面内側にはウエハ8の端部を支持する複数の棚9・9・・・が突設され、該棚9・9・・・に両端部を支持される形で複数のウエハ8・8・・・がカセット7内に水平に収納されている。
【0011】
無人搬送車1の中央にはウエハ8・8・・・を移載するロボットアームなどの移載装置10が搭載され、移載装置10の前後にウエハ8・8・・・の方向(結晶方位)および中心位置を揃えるアライナー(姿勢合わせ装置)11と、ウエハ8・8・・・を収納・搬送するためのバッファカセット12とが配設される。
バッファカセット12はその開口部が移載装置10へ向けられており、バッファ台13上に配設される。バッファカセット12の側面内側にはカセット7と同様に、複数の棚14・14・・・が突設され、該棚14・14・・・に両端部を支持される形で複数のウエハ8・8・・・がバッファカセット12内に水平に収納されている。
【0012】
前記ウエハ8はシリコン単結晶からなり、略円盤形状を有する。シリコン単結晶は通常、特定の結晶方位が円盤の盤面に略垂直となるようにCZ(チョクラルスキー)法で製せられる。また、ウエハ8の側面の一部にはオリフラ(オリエンテーションフラット)やノッチが設けられ、ウエハ8を盤面に垂直な軸中心に回転させても結晶方位が特定できるように構成されるとともに、ウエハ8の盤面の下面側には各ウエハ8の製造履歴等を符号化した工程管理用のIDマークが設けられる。このウエハ8の結晶方位は半導体の諸性質に大きな影響をおよぼすことから、半導体製造装置5等に対して、所定位置に所定の結晶方位で精度良く移載する必要がある。
【0013】
次に、アライナー11の構成について説明する。
アライナー11はケーシング16、載置台17、リニア−センサ18・19およびオプティカルキャラクタリーダ(以下「OCR」という)20などからなる。
ケーシング16は移載装置10側が開口部16aとなっており、移載装置10でバッファカセット12内に収納されているウエハ8・8・・・を一枚ずつ取り出し、該開口部16aよりアライナー11内部に移動させる。
リニア−センサ18は投光器18aおよび受光器18b、リニア−センサ19は投光器19aおよび受光器19bからなる。開口部16aに近い方のリニア−センサ18はウエハ8の直径が12インチの場合、開口部16aに遠い方のリニア−センサ19はウエハ8の直径が8インチの場合において、ウエハ8の側面に設けられたオリフラあるいはノッチを検出する。なお、投光器と受光器は上下逆の構成としても同様の効果を奏するので、配置方法は限定されない。
載置台17はその直径がウエハ8よりも小さい円盤形状であり、移載装置10により載置台17上に載置されたウエハ8は、載置台17の上面に設けられた吸着手段(図示せず)により載置台17に固定されて、載置台17の回転中にウエハ8が遠心力により飛ばされたり、載置場所がずれたりしないよう構成されている。なお、前記載置台17の吸着手段は真空チャックなど種々の方法があり、限定されない。
一方、OCR20は載置台17の下方に配置され、ウエハ8の下面に設けられたIDマークを読み取る構成としている。なお、本実施例においてはウエハ8の下面にIDマークが設けられているが、半導体製造装置5の種類によっては上下逆でもよい場合があり、OCR20の配設位置は限定されない。
【0014】
続いて、本発明の要部であるアライナー精度測定装置15について説明する。図2および図3に示すように、アライナー精度測定装置15は、上記アライナー11により姿勢合わせされたウエハ8の所定位置からのずれ量およびずれ角度を測定し、アライナー11の精度を把握するとともに、移載装置10や載置台17の動作を補正するための装置であり、撮像手段21と、精度測定用ウエハ22と、画像処理装置23からなる。
CCDカメラ等からなる撮像手段21は一対のカメラ21a・21bで構成され、載置台17上に載置された精度測定用ウエハ22の測定面(本実施例では上面)に対向するように配設される。カメラ21a・21bはそれぞれ撮像領域25a・25b(図3中の斜線部)の画像情報を画像処理装置23に送信可能に構成されている。
精度測定用ウエハ22は通常のウエハ8と略同じ形状を有し、オリフラ22c(ノッチでもよい)が側面の一部に設けられるとともに、固定孔22a・22bが穿設されている。固定孔22aは精度測定用ウエハ22の中心に穿設され、固定ネジ26aが該固定孔22aを貫通して、載置台17の中心に螺装される。一方、固定ネジ26bは固定孔22bを貫通して載置台17の端部近傍に螺装される。このように構成することにより、精度測定用ウエハ22は載置台17の所定位置に所定の結晶方位で固定される。固定ねじ26a・26bは、精度測定用ウエハ22を載置した載置台17を旋回させた際に、精度測定用ウエハ22が載置台17の基準位置からずれるのを確実に防止するためのものであり、固定孔と嵌合するねじ溝の設けられていないピンでもよい。
また測定面の両端近傍には一対の目印24a・24bが刻印する等の方法で設けられており、目印24aと目印24bとを結ぶ直線の中間点が精度測定用ウエハ22の測定面の中心および固定孔22aの中心に一致するように構成されている。
【0015】
アライナー11の精度測定を行うときは、まず精度測定用ウエハ22の中心と載置台17の中心が一致し、かつオリフラ22cと載置台17が所定の位置関係となるように、固定ネジ26a・26bを締め付けて精度測定用ウエハ22を載置台17に固定する。続いてカメラ21a・21bでそれぞれ撮像領域25a・25b内にある目印24a・24bを撮像し、その画像情報を画像処理装置23に送信する。画像処理装置23では該画像情報を基準画像として記憶する。
次に固定ネジ26a・26bを外して精度測定用ウエハ22をアライナー11から取り出し、これを無人搬送車1のバッファカセット12、あるいはカセット7内に収納し、無人搬送車1の移載装置10でアライナー11内に移載させ、通常のウエハ8と同様の姿勢合わせ作業(アライナー作業)を行う。アライナー作業後にカメラ21a・21bでそれぞれ撮像領域25a・25b内にある目印24a・24bを撮像し、その画像情報を画像処理装置23に送信する。該画像情報を画像処理装置23では作業後画像として記憶する。
【0016】
図4に示すように、画像処理装置23では、前記基準画像に基づいて、画像処理装置23のプログラム上の仮想平面31に基準画像における目印24aの中心点27a、および目印24bの中心点27bがプロットされる。また、前記作業後画像に基づいて、前記仮想平面31に作業後画像における目印24aの中心点28a、および目印24bの中心点28bがプロットされる。
【0017】
前記中心点27aと中心点27bとを結ぶ直線と、中心点28aと中心点28bとを結ぶ直線との成す角(図4中のθ)を求めることにより、アライナー11におけるアライナー作業のずれ角を精度良く測定することが可能である。
【0018】
また、中心点27aと中心点27bとを結ぶ直線の中間点29と、中心点28aと中心点28bとを結ぶ直線の中間点30との距離(図4中のL)を求めることにより、アライナー11におけるアライナー作業のずれ量を精度良く測定することが可能である。
【0019】
画像処理装置23では基準画像および作業後画像の記憶、ずれ角およびずれ量の計算・記憶の他に、ずれ角およびずれ量の計算結果を無人搬送車システム全体を統括する制御機構(図示せず)に送信したり、該計算結果に基づいて無人搬送車1の移載装置10およびアライナー11の動作パターンを自動補正するように構成することも可能である。
【0020】
従来のアライナー精度測定装置は精度測定用ウエハの中心一箇所に目印を設け、一個の撮像手段でアライナー作業前後の画像情報を比較して、ずれ量およびずれ角を測定していた。しかし、この方法は撮像手段の分解能と測定精度が略一致するため、測定精度を向上させるには高価な高分解能の撮像手段を使用する以外になく、コストアップの原因になるとともに、撮像領域が狭くなるため装置構成の制約が大きいなどの問題があった。また、特にずれ角度の精度が低いという問題(小さい目印の回転量を画像情報より算出するため)があった。
本発明のアライナー測定装置は、ウエハの両端近傍に離れて設けられた一対の目印を用いて測定するため、ずれ量・ずれ角が撮像画像上に大きく現れ、ずれ量・ずれ角とも測定精度が向上し、特にずれ角の精度の向上効果が大きい。また、近年ウエハの大径化が進んでいるが、これに伴って一対の目印間の距離を大きくとれるため、測定精度も向上するという利点がある。さらに、本実施の一例では、撮像手段21をより分解能の低いカメラでも撮像できるように、一対の目印24a・24bをそれぞれ別々のカメラで撮像するようにしている。
【0021】
なお、本実施の一例では、撮像手段21は、より分解能の低いカメラでも精度良く測定できるように、一対の目印それぞれにカメラを配置するとともに、それぞれの目印を撮像していたが、従来に比しずれ量およびずれ角が大きく現れ、精度良く判るため、1つのカメラで2つの目印両方を撮像することも可能である。また、精度測定用ウエハ22を載置台17に精度良く固定する方法については、固定孔を三個以上としても、固定孔の形状を四角形などにして、該孔に精度良く貫装される固定ピンと組み合わせるなどとしても良く、限定されない。
さらに、精度測定用ウエハ22の目印24a・24bの形状は本実施例では+印としたが、それ以外の形状でも同様の効果を奏するため、限定されない。また精度測定用ウエハ22の目印24a・24bの盤面上の配置方法も、両者の中間点が精度測定用ウエハ22の中心と一致していなくても画像処理装置23にてプログラム上で補正可能であり、限定されない。
【0022】
【発明の効果】
本発明は、以上のように構成したので、以下に示すような効果を奏する。
【0023】
即ち、請求項1に示す如く、ウエハ載置台上に載置されるウエハの姿勢合わせを行うアライナーの精度を測定する精度測定装置であって、前記ウエハ載置台上の基準位置に着脱可能に取り付けられる精度測定用ウエハの測定表面に所定間隔を隔てて設けられた一対の目印を、該ウエハが基準位置に有るときと該ウエハをアライナーによって姿勢合わせしたときとにおいて撮像する撮像手段と、前記それぞれの撮像から得られる画像情報を基にアライナーの精度を測定する画像処理装置とからなるので、従来の1つの目印による画像処理に比し、処理すべき画像のずれ量やずれ角が大きく現れるため、画像処理手段の分解能を向上させずともアライナーの精度測定装置の精度を向上させることができる。
【0024】
請求項2に示す如く、ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときに該一対の目印を撮像し、この撮像によって得られた画像情報を処理して該一対の目印を結ぶ基準の直線を求め、また該目印を付けたウエハをアライナーにて姿勢合わせを行った後に撮像し、この撮像によって得られた画像情報を処理し該一対の目印を結ぶ姿勢合わせの後の直線を求め、前記基準の直線と姿勢合わせ後の直線との成す角度からアライナーの姿勢合わせのずれ角度を測定するので、従来の1つの目印による画像処理に比し、処理すべき画像のずれ角が大きく現れるため、画像処理手段の分解能を向上させずともアライナーの精度測定装置の精度を向上させることができる。
【0025】
請求項3に示す如く、ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときにこれを撮像して得た画像情報を基準画像とし該基準画像から該一対の目印の中間点を算出し、また該ウエハをアライナーによって姿勢合わせを行ったときの姿勢合わせ後にこれを撮像し得た画像情報を作業後画像とし、該作業後画像から一対の目印の中間点を算出し、これら中間点を比較することによりアライナーの姿勢合わせのずれ量を算出するので、従来の1つの目印による画像処理に比し、処理すべき画像のずれ量が大きく現れるため、画像処理手段の分解能を向上させずともアライナーの精度測定装置の精度を向上させることができる。
請求項4に示す如く、ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときの前記一対の目印の画像情報から該一対の目印を結ぶ基準の直線を求める手順、該目印を付けたウエハをアライナーにて姿勢合わせを行った後の画像情報から該一対の目印を結ぶ姿勢合わせの後の直線を求める手順、前記基準の直線と姿勢合わせ後の直線との成す角度からアライナーの姿勢合わせのずれ角度を算出する手順を実行するためのプログラムを記憶させたアライナーの精度測定装置で読み取り可能な記憶媒体としたので、従来の1つの目印による画像処理に比し、処理すべき画像のずれ角が大きく現れるため、画像処理手段の分解能を向上させずともアライナーの精度測定装置の精度を向上させることができる。
請求項5に示す如く、ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときの画像情報を基準画像とし該基準画像から該一対の目印の中間点を算出する手順、該ウエハをアライナーによって姿勢合わせを行ったときの姿勢合わせ後の画像情報を作業後画像とし、該作業後画像から一対の目印の中間点を算出する手順、これら中間点を比較することによりアライナーの姿勢合わせのずれ量を算出する手順を実行するためのプログラムを記憶させたアライナーの精度測定装置で読み取り可能な記憶媒体としたので、従来の1つの目印による画像処理に比し、処理すべき画像のずれ量が大きく現れるため、画像処理手段の分解能を向上させずともアライナーの精度測定装置の精度を向上させることができる。
【図面の簡単な説明】
【図1】クリーンルーム内の無人搬送車の様子を示す斜視図。
【図2】無人搬送車の側面断面図。
【図3】アライナー精度測定装置を示す図。
【図4】画像処理装置における仮想平面での画像情報処理の実施例を示す図。
【符号の説明】
1 無人搬送車
8 ウエハ
11 アライナー
15 アライナー精度測定装置
17 載置台
21 撮像手段
21a・21b カメラ
22 精度測定用ウエハ
22c オリフラ(オリエンテーションフラット)
23 画像処理装置
24a・24b 目印
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a configuration of an accuracy measuring apparatus that measures the accuracy of an aligner that performs posture alignment of a wafer such as a semiconductor placed on a swivel.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, automatic guided vehicles that transport and transfer semiconductor wafers and the like in a semiconductor manufacturing factory are known. Such an automatic guided vehicle includes a buffer cassette for storing a wafer, a wafer transfer arm, a posture adjusting device (aligner) for aligning the posture and direction of the wafer, and an ID attached to the wafer. A reading device is mounted.
In addition, the alignment accuracy of the aligner affects the reading of the wafer ID, storage in the cassette at the time of transfer, or placement of the wafer on the semiconductor manufacturing apparatus. The accuracy of the aligner was measured using an apparatus. This is done by placing an accuracy measurement wafer with a mark at the center of the measurement surface at a predetermined position on the aligner mounting table, and taking images of the mark before and after the posture alignment work by an imaging means such as a CCD camera. The displacement amount and the displacement angle were calculated by comparing the above.
[0003]
[Problems to be solved by the invention]
However, in the conventional aligner, the image of a single mark at the center of the measurement surface of the wafer was compared before and after the posture alignment work. However, in this method, the alignment accuracy is substantially the same as the resolution of the imaging means. Must be high. In particular, since the mark image is small, it is difficult to accurately measure the wafer misalignment angle. However, high-resolution imaging means is expensive and has practical problems such as a narrow imaging range.
[0004]
[Means for Solving the Problems]
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
[0005]
In other words, according to the first aspect of the present invention, there is provided an accuracy measuring apparatus for measuring the accuracy of an aligner for adjusting the posture of a wafer placed on the wafer mounting table, and is detachably attached to a reference position on the wafer mounting table. Imaging means for imaging a pair of marks provided on the measurement surface of the wafer for accuracy measurement at a predetermined interval when the wafer is at a reference position and when the wafer is aligned by an aligner; The image processing apparatus measures the accuracy of the aligner based on the image information obtained from the imaging.
[0006]
According to a second aspect of the present invention, when a wafer for accuracy measurement provided with a pair of marks spaced apart from each other on a wafer mounting table of an aligner for aligning the wafer is placed at a reference position, the pair of marks is imaged. Image information obtained by imaging is processed to obtain a reference straight line connecting the pair of marks, and the wafer with the marks is imaged after aligning with the aligner, and the image obtained by this imaging The information is processed to obtain a straight line after the posture alignment connecting the pair of marks, and the alignment angle deviation angle of the aligner is measured from the angle formed by the reference straight line and the straight line after the posture alignment.
[0007]
According to a third aspect of the present invention, image information obtained by capturing an image of an accuracy measuring wafer provided with a pair of marks spaced apart from each other on a wafer mounting table of an aligner for aligning the wafer at a reference position. Is used as a reference image, and an intermediate point between the pair of landmarks is calculated from the reference image, and image information obtained by imaging the wafer after alignment with the aligner is used as a post-operation image. An intermediate point between the pair of marks is calculated from the post-work image, and the amount of misalignment of the aligner posture is calculated by comparing the intermediate points.
According to a fourth aspect of the present invention, the image information of the pair of marks when the accuracy measuring wafer provided with a pair of marks spaced apart from each other on a wafer mounting table of an aligner for aligning the wafers is placed at a reference position. A procedure for obtaining a reference straight line connecting a pair of marks, a procedure for obtaining a straight line after posture alignment connecting the pair of marks from image information after aligning the wafer with the mark by an aligner, and the reference This is a storage medium that can be read by an aligner accuracy measurement device that stores a program for executing a procedure for calculating a misalignment angle of the aligner from the angle formed by the straight line and the straight line after the alignment. .
The image information when the wafer for accuracy measurement provided with a pair of marks spaced apart from each other on a wafer mounting table of an aligner for aligning the wafer is placed at a reference position as a reference image. The intermediate point of the pair of marks is calculated from the procedure for calculating the intermediate point of the pair of marks from the post-working image information after post-positioning when the wafer is aligned by the aligner. This is a storage medium that can be read by the aligner accuracy measuring apparatus that stores a program for executing a procedure for calculating a deviation amount of the alignment of the aligner by comparing these intermediate points.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the invention will be described. In this embodiment, an aligner mounted on an automatic guided vehicle is described. However, the present invention can be applied to an aligner attached to an apparatus fixed to a floor surface such as a semiconductor manufacturing apparatus, and is not limited.
1 is a perspective view showing a state of an automatic guided vehicle in a clean room, FIG. 2 is a side sectional view of the automatic guided vehicle, FIG. 3 is a diagram showing an aligner accuracy measuring device, and FIG. 4 is an image on a virtual plane in the image processing device. It is a figure which shows the Example of information processing.
[0009]
As shown in FIGS. 1 and 2, the automatic guided vehicle 1 is a tracked carriage that automatically travels on traveling rails 2 and 2 and is supported by four traveling wheels 3. Are driven by the respective drive motors 4.
[0010]
.. And semiconductor stockers 6 are arranged along the traveling rails 2 and 2, and a plurality of cassettes 7, 7... Are arranged in parallel at predetermined intervals on the stocker 6. Has been. Each of the cassettes 7, 7... Is arranged with its opening directed toward the traveling rails 2 and 2 side. Further, a plurality of shelves 9, 9... That support the end portions of the wafers 8 are projected on the inner side of the cassette 7, and a plurality of wafers are supported so that both ends are supported by the shelves 9. ... Are accommodated horizontally in the cassette 7.
[0011]
In the center of the automatic guided vehicle 1, a transfer device 10 such as a robot arm for transferring the wafers 8, 8... Is mounted, and the directions of the wafers 8, 8. ) And an aligner (attitude alignment device) 11 for aligning the center position, and a buffer cassette 12 for storing and transporting the wafers 8.
The buffer cassette 12 has an opening directed toward the transfer device 10 and is disposed on the buffer table 13. Like the cassette 7, a plurality of shelves 14, 14... Are projected on the inner side of the buffer cassette 12, and a plurality of wafers 8. Are stored horizontally in the buffer cassette 12.
[0012]
The wafer 8 is made of silicon single crystal and has a substantially disk shape. A silicon single crystal is usually manufactured by a CZ (Czochralski) method so that a specific crystal orientation is substantially perpendicular to a disk surface of a disk. Further, an orientation flat or notch is provided on a part of the side surface of the wafer 8 so that the crystal orientation can be specified even when the wafer 8 is rotated about an axis perpendicular to the board surface. An ID mark for process management in which a manufacturing history of each wafer 8 is encoded is provided on the lower surface side of the board surface. Since the crystal orientation of the wafer 8 greatly affects various properties of the semiconductor, it is necessary to accurately transfer the semiconductor 8 to the semiconductor manufacturing apparatus 5 or the like at a predetermined position with a predetermined crystal orientation.
[0013]
Next, the configuration of the aligner 11 will be described.
The aligner 11 includes a casing 16, a mounting table 17, linear sensors 18, 19 and an optical character reader (hereinafter referred to as "OCR") 20.
The casing 16 has an opening 16a on the transfer device 10 side. The transfer device 10 takes out the wafers 8, 8... Stored in the buffer cassette 12 one by one, and the aligner 11 from the opening 16a. Move inside.
The linear sensor 18 includes a projector 18a and a light receiver 18b, and the linear sensor 19 includes a projector 19a and a light receiver 19b. The linear sensor 18 closer to the opening 16a has a diameter of 12 inches on the wafer 8, and the linear sensor 19 farther from the opening 16a has a side surface of the wafer 8 when the diameter of the wafer 8 is 8 inches. The orientation flat or notch provided is detected. In addition, since the same effect is produced even if the projector and the light receiver are configured upside down, the arrangement method is not limited.
The mounting table 17 has a disk shape whose diameter is smaller than that of the wafer 8, and the wafer 8 mounted on the mounting table 17 by the transfer device 10 is provided with suction means (not shown) provided on the upper surface of the mounting table 17. ) Is fixed to the mounting table 17 so that the wafer 8 is not blown off by the centrifugal force during the rotation of the mounting table 17 or the mounting location is not shifted. The suction means of the mounting table 17 includes various methods such as a vacuum chuck, and is not limited.
On the other hand, the OCR 20 is arranged below the mounting table 17 and reads an ID mark provided on the lower surface of the wafer 8. In the present embodiment, an ID mark is provided on the lower surface of the wafer 8, but depending on the type of the semiconductor manufacturing apparatus 5, it may be upside down, and the position of the OCR 20 is not limited.
[0014]
Next, the aligner accuracy measuring device 15 which is a main part of the present invention will be described. As shown in FIGS. 2 and 3, the aligner accuracy measuring device 15 measures the deviation amount and the deviation angle from the predetermined position of the wafer 8 aligned by the aligner 11, grasps the accuracy of the aligner 11, This is a device for correcting the operation of the transfer device 10 and the mounting table 17, and comprises an imaging means 21, an accuracy measuring wafer 22, and an image processing device 23.
The imaging means 21 comprising a CCD camera or the like is composed of a pair of cameras 21a and 21b, and is arranged so as to face the measurement surface (upper surface in this embodiment) of the accuracy measurement wafer 22 placed on the placement table 17. Is done. The cameras 21a and 21b are configured to be able to transmit image information of the imaging areas 25a and 25b (shaded portions in FIG. 3) to the image processing device 23, respectively.
The accuracy measuring wafer 22 has substantially the same shape as the normal wafer 8, and an orientation flat 22c (may be a notch) is provided in a part of the side surface, and fixing holes 22a and 22b are formed. The fixing hole 22a is formed in the center of the accuracy measuring wafer 22, and a fixing screw 26a passes through the fixing hole 22a and is screwed to the center of the mounting table 17. On the other hand, the fixing screw 26b passes through the fixing hole 22b and is screwed near the end of the mounting table 17. With this configuration, the accuracy measurement wafer 22 is fixed to a predetermined position of the mounting table 17 with a predetermined crystal orientation. The fixing screws 26a and 26b are for reliably preventing the accuracy measuring wafer 22 from being displaced from the reference position of the mounting table 17 when the mounting table 17 on which the accuracy measuring wafer 22 is mounted is turned. There may be a pin that is not provided with a thread groove that fits into the fixing hole.
Further, a pair of marks 24a and 24b are provided in the vicinity of both ends of the measurement surface by a method such as marking, and the midpoint of the straight line connecting the marks 24a and 24b is the center of the measurement surface of the accuracy measuring wafer 22 and It is configured to coincide with the center of the fixing hole 22a.
[0015]
When measuring the accuracy of the aligner 11, first, the fixing screws 26a and 26b are set so that the center of the accuracy measuring wafer 22 and the center of the mounting table 17 coincide with each other and the orientation flat 22c and the mounting table 17 are in a predetermined positional relationship. Is tightened to fix the accuracy measuring wafer 22 to the mounting table 17. Subsequently, the cameras 24 a and 24 b in the imaging regions 25 a and 25 b are respectively imaged by the cameras 21 a and 21 b, and the image information is transmitted to the image processing device 23. The image processing device 23 stores the image information as a reference image.
Next, the fixing screws 26a and 26b are removed, the accuracy measuring wafer 22 is taken out from the aligner 11, and stored in the buffer cassette 12 or the cassette 7 of the automatic guided vehicle 1, and is transferred by the transfer device 10 of the automatic guided vehicle 1. The wafer is transferred into the aligner 11 and the same alignment operation (aligner operation) as that of the normal wafer 8 is performed. After the aligner operation, the cameras 21a and 21b capture the marks 24a and 24b in the imaging regions 25a and 25b, respectively, and transmit the image information to the image processing device 23. The image processing apparatus 23 stores the image information as a post-work image.
[0016]
As shown in FIG. 4, in the image processing apparatus 23, based on the reference image, the center point 27a of the mark 24a and the center point 27b of the mark 24b in the reference image are displayed on the virtual plane 31 on the program of the image processing apparatus 23. Plotted. Based on the post-work image, the center point 28a of the mark 24a and the center point 28b of the mark 24b in the post-work image are plotted on the virtual plane 31.
[0017]
By calculating the angle (θ in FIG. 4) formed by the straight line connecting the central point 27a and the central point 27b and the straight line connecting the central point 28a and the central point 28b, the shift angle of the aligner operation in the aligner 11 is obtained. It is possible to measure with high accuracy.
[0018]
Further, by determining the distance (L in FIG. 4) between the intermediate point 29 of the straight line connecting the central point 27a and the central point 27b and the intermediate point 30 of the straight line connecting the central point 28a and the central point 28b. 11 can accurately measure the shift amount of the aligner operation.
[0019]
In the image processing device 23, in addition to storing the reference image and post-work image, calculating and storing the shift angle and shift amount, a control mechanism (not shown) that controls the calculation result of the shift angle and shift amount for the entire automatic guided vehicle system. ), And the operation pattern of the transfer device 10 and the aligner 11 of the automatic guided vehicle 1 can be automatically corrected based on the calculation result.
[0020]
A conventional aligner accuracy measuring apparatus is provided with a mark at one center of the accuracy measuring wafer, and the image information before and after the aligner operation is compared by one imager to measure the shift amount and the shift angle. However, since the resolution of the imaging unit and the measurement accuracy are substantially the same in this method, it is not only possible to use an expensive high-resolution imaging unit to improve the measurement accuracy, but also causes an increase in cost and the imaging area is There are problems such as large restrictions on the device configuration due to narrowing. In addition, there is a problem that the accuracy of the shift angle is particularly low (in order to calculate a rotation amount of a small mark from image information).
Since the aligner measuring apparatus of the present invention performs measurement using a pair of marks provided in the vicinity of both ends of the wafer, a deviation amount and a deviation angle appear on the captured image, and both the deviation amount and the deviation angle have a measurement accuracy. In particular, the effect of improving the accuracy of the deviation angle is great. Further, in recent years, the diameter of wafers has been increasing, but with this, the distance between a pair of marks can be increased, which has the advantage of improving measurement accuracy. Furthermore, in this example, the pair of marks 24a and 24b are respectively imaged by separate cameras so that the imaging means 21 can be imaged by a camera having a lower resolution.
[0021]
In the example of the present embodiment, the imaging means 21 arranges a camera for each pair of landmarks and images each landmark so that even a camera with a lower resolution can be measured with high accuracy. Since the shift amount and the shift angle are large and can be understood with high accuracy, it is possible to image both the two marks with one camera. As for the method of accurately fixing the accuracy measuring wafer 22 to the mounting table 17, even if the number of fixing holes is three or more, the shape of the fixing holes is made to be a square or the like, It may be combined and is not limited.
Furthermore, the shape of the marks 24a and 24b of the accuracy measuring wafer 22 is + in this embodiment. However, other shapes are not limited because the same effect can be obtained. Further, the method of arranging the marks 24a and 24b on the surface of the accuracy measuring wafer 22 on the surface can be corrected by a program in the image processing apparatus 23 even if the intermediate point between them does not coincide with the center of the accuracy measuring wafer 22. Yes, but not limited.
[0022]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0023]
In other words, an accuracy measuring apparatus for measuring the accuracy of an aligner for aligning the posture of a wafer placed on a wafer mounting table, which is detachably attached to a reference position on the wafer mounting table. Imaging means for imaging a pair of marks provided at a predetermined interval on a measurement surface of the accuracy measurement wafer when the wafer is at a reference position and when the wafer is aligned by an aligner, Since the image processing apparatus measures the accuracy of the aligner based on the image information obtained from the imaging of the image, the shift amount and shift angle of the image to be processed appear larger than the conventional image processing with one mark. The accuracy of the aligner accuracy measuring apparatus can be improved without improving the resolution of the image processing means.
[0024]
According to a second aspect of the present invention, when a wafer for accuracy measurement having a pair of marks spaced apart from each other on a wafer mounting table of an aligner for aligning the wafer is placed at a reference position, the pair of marks is imaged. The image information obtained by this imaging is processed to obtain a reference straight line connecting the pair of marks, and the wafer with the marks is imaged after aligning with the aligner and obtained by this imaging. Since the image information is processed to obtain a straight line after the posture alignment connecting the pair of marks, and the alignment angle of the aligner is measured from the angle formed by the reference straight line and the straight line after the posture alignment, Compared to the image processing with one mark, the deviation angle of the image to be processed appears larger, so the accuracy of the aligner accuracy measuring device can be improved without improving the resolution of the image processing means. .
[0025]
An image obtained by capturing an image of an accuracy measuring wafer provided with a pair of marks spaced apart from each other on a wafer mounting table of an aligner for aligning the position of the wafer at a reference position. Using the information as a reference image, the intermediate point of the pair of landmarks is calculated from the reference image, and the image information obtained by imaging the wafer after alignment with the aligner is used as the post-operation image. Since the midpoint between a pair of landmarks is calculated from the post-work image and the midpoint is compared by calculating the midpoint between the midpoints, it should be processed as compared to the conventional image processing with a single landmark. Since a large amount of image shift appears, the accuracy of the aligner accuracy measuring apparatus can be improved without improving the resolution of the image processing means.
According to the fourth aspect of the present invention, the image information of the pair of marks when the accuracy measuring wafer provided with the pair of marks spaced apart from each other on the wafer mounting table of the aligner for aligning the wafer is placed at the reference position. A procedure for obtaining a reference straight line connecting the pair of marks, a procedure for obtaining a straight line after alignment of the pair of marks from image information after aligning the wafer with the marks on an aligner, Because it is a storage medium that can be read by the aligner accuracy measurement device that stores the program for calculating the alignment angle of the aligner posture from the angle formed by the reference straight line and the straight line after the posture adjustment, Compared to conventional image processing with a single mark, the shift angle of the image to be processed appears larger, so the accuracy of the aligner can be measured without improving the resolution of the image processing means. It is possible to improve the accuracy of the location.
According to a fifth aspect of the present invention, image information obtained by placing an accuracy measuring wafer provided with a pair of marks spaced apart from each other on a wafer mounting table of an aligner for aligning a wafer at a reference position is used as a reference image. The procedure for calculating the intermediate point of the pair of landmarks from the image, the post-positioning image information when the wafer is aligned by the aligner as the post-work image, and the intermediate point of the pair of landmarks from the post-work image Since it is a storage medium that can be read by the aligner accuracy measurement device that stores the program for executing the procedure for calculating and the procedure for calculating the deviation amount of the alignment of the aligner by comparing these intermediate points, Compared to image processing with a single mark, the amount of shift in the image to be processed appears larger, so the accuracy of the aligner can be measured without improving the resolution of the image processing means. It is possible to improve the accuracy of the device.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a state of an automatic guided vehicle in a clean room.
FIG. 2 is a side sectional view of the automatic guided vehicle.
FIG. 3 is a diagram showing an aligner accuracy measuring device.
FIG. 4 is a diagram showing an example of image information processing on a virtual plane in the image processing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Automatic guided vehicle 8 Wafer 11 Aligner 15 Aligner accuracy measuring device 17 Mounting table 21 Imaging means 21a and 21b Camera 22 Accuracy measuring wafer 22c Orientation flat (orientation flat)
23 Image processing devices 24a and 24b

Claims (5)

ウエハ載置台上に載置されるウエハの姿勢合わせを行うアライナーの精度を測定する精度測定装置であって、前記ウエハ載置台上の基準位置に着脱可能に取り付けられる精度測定用ウエハの測定表面に所定間隔を隔てて設けられた一対の目印を、該ウエハが基準位置に有るときと該ウエハをアライナーによって姿勢合わせしたときとにおいて撮像する撮像手段と、前記それぞれの撮像から得られる画像情報を基にアライナーの精度を測定する画像処理装置とからなるアライナーの精度測定装置。  An accuracy measuring apparatus for measuring the accuracy of an aligner for aligning the posture of a wafer placed on a wafer mounting table, wherein the accuracy measuring device is detachably attached to a reference position on the wafer mounting table. A pair of marks provided at a predetermined interval are imaged when the wafer is at a reference position and when the wafer is aligned by an aligner, and image information obtained from the respective images is used as a basis. An aligner accuracy measuring device comprising an image processing device for measuring the aligner accuracy. ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときに該一対の目印を撮像し、この撮像によって得られた画像情報を処理して該一対の目印を結ぶ基準の直線を求め、また該目印を付けたウエハをアライナーにて姿勢合わせを行った後に撮像し、この撮像によって得られた画像情報を処理し該一対の目印を結ぶ姿勢合わせの後の直線を求め、前記基準の直線と姿勢合わせ後の直線との成す角度からアライナーの姿勢合わせのずれ角度を測定することを特徴とするアライナーの精度測定方法。  An image obtained by imaging a pair of marks when an accuracy measuring wafer provided with a pair of marks spaced at a predetermined interval is placed at a reference position on a wafer mounting table of an aligner for aligning the position of the wafer. The information is processed to obtain a reference straight line connecting the pair of marks, and the wafer with the marks is imaged after aligning with the aligner, and the image information obtained by the imaging is processed to process the pair of marks. A method for measuring the accuracy of an aligner, comprising: obtaining a straight line after posture alignment connecting the marks and measuring a misalignment angle of the aligner of the aligner from an angle formed by the reference straight line and the straight line after posture alignment. ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときにこれを撮像して得た画像情報を基準画像とし該基準画像から該一対の目印の中間点を算出し、また該ウエハをアライナーによって姿勢合わせを行ったときの姿勢合わせ後にこれを撮像し得た画像情報を作業後画像とし、該作業後画像から一対の目印の中間点を算出し、これら中間点を比較することによりアライナーの姿勢合わせのずれ量を算出することを特徴とするアライナーの精度測定方法。  An image information obtained by imaging an accuracy measuring wafer provided with a pair of marks at a predetermined interval on a wafer mounting table of an aligner for aligning the wafer at a reference position is used as a reference image. An intermediate point between the pair of landmarks is calculated from the image, and image information obtained after posture alignment when the wafer is aligned by the aligner is used as a post-operation image, and a pair of images is obtained from the post-operation image. A method for measuring the accuracy of an aligner, characterized in that an intermediate point of a mark is calculated, and the amount of deviation in alignment of the aligner is calculated by comparing the intermediate points. ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときの前記一対の目印の画像情報から該一対の目印を結ぶ基準の直線を求める手順、該目印を付けたウエハをアライナーにて姿勢合わせを行った後の画像情報から該一対の目印を結ぶ姿勢合わせの後の直線を求める手順、前記基準の直線と姿勢合わせ後の直線との成す角度からアライナーの姿勢合わせのずれ角度を算出する手順を実行するためのプログラムを記憶させたアライナーの精度測定装置で読み取り可能な記憶媒体。A reference for connecting the pair of marks from the image information of the pair of marks when a wafer for accuracy measurement having a pair of marks spaced at a predetermined interval is placed on a reference position on the wafer mounting table of the aligner for aligning the position of the wafer A procedure for obtaining a straight line, a procedure for obtaining a post-position alignment straight line connecting the pair of marks from image information after aligning the wafer with the mark on the aligner, and after aligning the reference straight line with the reference line A storage medium readable by an aligner accuracy measuring apparatus storing a program for executing a procedure for calculating a misalignment angle of the aligner from the angle formed by the straight line. ウエハの姿勢合わせを行うアライナーのウエハ載置台に一対の所定間隔を隔てた目印を設けた精度測定用ウエハを基準位置に置いたときの画像情報を基準画像とし該基準画像から該一対の目印の中間点を算出する手順、該ウエハをアライナーによって姿勢合わせを行ったときの姿勢合わせ後の画像情報を作業後画像とし、該作業後画像から一対の目印の中間点を算出する手順、これら中間点を比較することによりアライナーの姿勢合わせのずれ量を算出する手順を実行するためのプログラムを記憶させたアライナーの精度測定装置で読み取り可能な記憶媒体。Image information when a wafer for accuracy measurement provided with a pair of marks at a predetermined interval is placed on a reference position on a wafer mounting table of an aligner for aligning the position of the wafer is used as a reference image, and the pair of marks is extracted from the reference image. A procedure for calculating an intermediate point, a procedure for calculating an intermediate point of a pair of landmarks from the post-working image using post-working image information after posture alignment when the wafer is aligned by an aligner, these intermediate points A storage medium that can be read by an aligner accuracy measuring apparatus that stores a program for executing a procedure for calculating the amount of alignment deviation of the aligner by comparing.
JP2002120978A 2002-04-23 2002-04-23 Aligner accuracy measuring apparatus, method thereof, and storage medium storing program thereof Expired - Fee Related JP4104372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120978A JP4104372B2 (en) 2002-04-23 2002-04-23 Aligner accuracy measuring apparatus, method thereof, and storage medium storing program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120978A JP4104372B2 (en) 2002-04-23 2002-04-23 Aligner accuracy measuring apparatus, method thereof, and storage medium storing program thereof

Publications (3)

Publication Number Publication Date
JP2003318249A JP2003318249A (en) 2003-11-07
JP2003318249A5 JP2003318249A5 (en) 2005-09-22
JP4104372B2 true JP4104372B2 (en) 2008-06-18

Family

ID=29537055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120978A Expired - Fee Related JP4104372B2 (en) 2002-04-23 2002-04-23 Aligner accuracy measuring apparatus, method thereof, and storage medium storing program thereof

Country Status (1)

Country Link
JP (1) JP4104372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111086906A (en) * 2019-11-26 2020-05-01 矽电半导体设备(深圳)股份有限公司 Position correction method for placing core particles on sorting film and core particle sorting method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186224B2 (en) * 2008-01-29 2013-04-17 東京応化工業株式会社 Substrate treatment device
KR101656130B1 (en) 2010-10-26 2016-09-08 에베 그룹 에. 탈너 게엠베하 Method for determining the position of a rotation axis
JP2023113088A (en) 2022-02-02 2023-08-15 オムロン株式会社 Deviation amount measurement method, measurement device and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111086906A (en) * 2019-11-26 2020-05-01 矽电半导体设备(深圳)股份有限公司 Position correction method for placing core particles on sorting film and core particle sorting method

Also Published As

Publication number Publication date
JP2003318249A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
US6990430B2 (en) System and method for on-the-fly eccentricity recognition
KR101814270B1 (en) Bonding apparatus and bonding method
TWI544538B (en) Liquid processing apparatus and liquid processing method and storage medium
KR100639980B1 (en) Wafer carrying robot teaching method and teaching plate
KR101793366B1 (en) Bonding apparatus and bonding method
US8823791B2 (en) Component recognizing device, surface mounting machine, and component testing machine
JP2003321102A (en) System for automatic guided vehicle
JP4663493B2 (en) Teaching device and teaching method
JP2004288792A (en) Alignment device and alignment method
US11348817B2 (en) Wafer transport system and method for transporting wafers
KR101020396B1 (en) Probe apparatus and probing method
KR100659412B1 (en) System and method of wafer transferring, and automated guided vehicle system
TWI775198B (en) Manufacturing apparatus of semiconductor device and manufacturing method of semiconductor device
JP2000136944A (en) Device for measuring angle of rotation
JP4104372B2 (en) Aligner accuracy measuring apparatus, method thereof, and storage medium storing program thereof
JPS6085536A (en) Wafer positioning device
TWI543294B (en) Method for aligning of semiconductor wafer
JP2002002909A (en) Teaching confirmation method for robot for stocker
US11335578B2 (en) Substrate transfer apparatus and method of measuring positional deviation of substrate
JP3651026B2 (en) Method for teaching robot for stocker
JPH11312726A (en) Substrate carrying device
JPH09246794A (en) Electronic part mounting device and method for detecting nozzle position therein
JP5115363B2 (en) Wafer alignment apparatus, transfer apparatus including the same, semiconductor manufacturing apparatus, and semiconductor wafer alignment method
JP3779118B2 (en) Method for detecting displacement of camera in imaging apparatus, method for detecting tilt of camera in imaging apparatus, and method for correcting movement amount of camera in imaging apparatus
JP2001230596A (en) Method and apparatus for mounting electronic component

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees