JP4104007B2 - Orbiting charged particle accelerator and acceleration method thereof - Google Patents

Orbiting charged particle accelerator and acceleration method thereof Download PDF

Info

Publication number
JP4104007B2
JP4104007B2 JP2004213128A JP2004213128A JP4104007B2 JP 4104007 B2 JP4104007 B2 JP 4104007B2 JP 2004213128 A JP2004213128 A JP 2004213128A JP 2004213128 A JP2004213128 A JP 2004213128A JP 4104007 B2 JP4104007 B2 JP 4104007B2
Authority
JP
Japan
Prior art keywords
acceleration
frequency
voltage
amplitude
frequency voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004213128A
Other languages
Japanese (ja)
Other versions
JP2006032281A (en
Inventor
高志 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Radiological Sciences
Original Assignee
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences filed Critical National Institute of Radiological Sciences
Priority to JP2004213128A priority Critical patent/JP4104007B2/en
Priority to PCT/JP2004/015988 priority patent/WO2006008838A1/en
Publication of JP2006032281A publication Critical patent/JP2006032281A/en
Application granted granted Critical
Publication of JP4104007B2 publication Critical patent/JP4104007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons

Description

本発明は、荷電粒子加速器に関し、特に、周回軌道型荷電粒子加速器及びその加速方法に関する。   The present invention relates to a charged particle accelerator, and more particularly to an orbiting charged particle accelerator and an acceleration method thereof.

現在世界で稼働している荷電粒子加速器をその加速方式によって分類すると、高周波加速器と直流高圧加速器に大きく分けられる。またその形状で分類すると、直線型加速器と円形加速器に分けられる。円形加速器はさらに粒子の軌道によって周回軌道型と螺旋軌道型に分類できる。さらに加速周波数を変調するかしないかによってもその構造は異なる。本発明は、周回軌道型荷電粒子加速器すなわちイオンシンクロトロンに関するものである。   The charged particle accelerators currently operating in the world can be broadly classified into high-frequency accelerators and direct-current high-pressure accelerators according to their acceleration methods. Moreover, if classified according to the shape, it can be divided into a linear accelerator and a circular accelerator. Circular accelerators can be further classified into circular orbit type and spiral orbit type according to the orbit of particles. Further, the structure differs depending on whether or not the acceleration frequency is modulated. The present invention relates to an orbiting charged particle accelerator, that is, an ion synchrotron.

イオンシンクロトロンでは、図1に示されるように一定の軌道11を荷電粒子が周回する。図1において、12は荷電粒子を一定の周回軌道上に維持するための偏向磁石、13は荷電粒子に高周波電界を加えて加速する高周波加速空洞である。Oは粒子軌道11の軌道中心で、Rは粒子軌道11の平均半径すなわち平均軌道半径である。   In the ion synchrotron, charged particles orbit around a fixed trajectory 11 as shown in FIG. In FIG. 1, 12 is a deflection magnet for maintaining charged particles on a fixed orbit, and 13 is a high-frequency acceleration cavity that accelerates charged particles by applying a high-frequency electric field. O is the orbit center of the particle orbit 11, and R is the average radius of the particle orbit 11, that is, the average orbit radius.

荷電粒子が粒子軌道11上を周回する時、粒子の運動エネルギーEp(ジュール)と粒子軌道上の平均磁束密度Bには(1)式の関係が成り立っている。

ecBR=(Ep(Ep+2m02))1/2 (1)

ここで、eはイオンの電荷(クーロン)、cは光の速度(約3×108m/秒)、Bは軌道上の平均磁束密度(テスラ)、m0はイオンの静止質量(kg)である。
When charged particles orbit around the particle trajectory 11, the relationship of equation (1) is established between the kinetic energy E p (joule) of the particle and the average magnetic flux density B on the particle orbit.

ecBR = (E p (E p + 2m 0 c 2 )) 1/2 (1)

Here, e is the charge of the ion (Coulomb), c is the speed of light (about 3 × 10 8 m / sec), B is the average magnetic flux density (Tesla) on the orbit, and m 0 is the static mass of the ion (kg) It is.

そして、Rは平均軌道半径(m)であり、粒子軌道の1回転の長さをLとした場合、

L=2πR (2)

で与えられる。従って軌道を一定に保つためにはエネルギーの増加につれて軌道上の平均磁場を増加させる必要がある。
R is an average orbit radius (m), and when the length of one rotation of the particle orbit is L,

L = 2πR (2)

Given in. Therefore, in order to keep the orbit constant, it is necessary to increase the average magnetic field on the orbit as the energy increases.

そしてこの時の粒子の回転周期Tp(秒)は(3)式で与えられる。

p=L/v=2πR/v=2πm/eB (3)

ここで、πは円周率、mはイオンの質量(kg)、vはイオンの速度(m/秒)である。
The particle rotation period T p (seconds) at this time is given by equation (3).

T p = L / v = 2πR / v = 2πm / eB (3)

Here, π is the circular ratio, m is the mass of the ion (kg), and v is the velocity of the ion (m / sec).

相対論によれば、質量mは、静止質量m0と異なり、速度とともに、(4)式のように変化する。

m=m0/(1−(v/c)21/2 (4)
According to the relativity, the mass m is different from the static mass m 0 and changes with the velocity as shown in the equation (4).

m = m 0 / (1- (v / c) 2 ) 1/2 (4)

従って、(3)式は、次のように書き表される。

p=2πm0/eB(1−(v/c)21/2 (5)
Therefore, the expression (3) is expressed as follows.

T p = 2πm 0 / eB (1- (v / c) 2 ) 1/2 (5)

従って、粒子のエネルギーが増加するにつれてすなわち速度が速くなるのにつれて、粒子の周回周期が短くなるので、粒子を加速する高周波の周期も図2に示すように徐々に短くしなければならない。図2は、電圧を縦軸にし時間を横軸とした加速高周波電圧の波形図である。加速高周波の周期(Trf)と粒子回転周期(Tp)の比は、ハーモニック数Nと呼ばれ次式で与えられる。

N=Tp/Trf (6)
Therefore, as the energy of the particles increases, that is, as the speed increases, the cycle of particles becomes shorter. Therefore, the cycle of the high frequency for accelerating the particles must be gradually shortened as shown in FIG. FIG. 2 is a waveform diagram of the acceleration high-frequency voltage with the voltage on the vertical axis and the time on the horizontal axis. The ratio between the acceleration high-frequency period (T rf ) and the particle rotation period (T p ) is called the harmonic number N and is given by the following equation.

N = T p / T rf (6)

図2の加速高周波電圧では、常にN=2であり、加速高周波の周期(Trf)と粒子回転周期(Tp)とが、この関係を維持するように、加速高周波の周波数が変調される。そこで、加速粒子の位相は、加速高周波電圧の位相と一定の関係に維持される。 In the acceleration high frequency voltage of FIG. 2, N = 2 is always set, and the frequency of the acceleration high frequency is modulated so that the acceleration high frequency period (T rf ) and the particle rotation period (T p ) maintain this relationship. . Therefore, the phase of the accelerated particles is maintained in a fixed relationship with the phase of the accelerated high-frequency voltage.

しかしながら、粒子を加速する加速空洞は図3に示すように高周波の共振回路の一部になっている。図3の(a)は、加速空洞の断面を示したもので、図3の(b)は、(a)に示す加速空洞の集中定数回路表示である。図3の(a)に示されるように、加速空洞は、内導体31と外導体32で構成される一対の導体部分を、加速ギャップ33を隔てて配置することにより形成されている。図3の(b)に示されるように、内外導体31、32は、抵抗rとインダクタンスLを与え、加速ギャップ33は静電容量Cを与える。すなわち、加速空洞は、抵抗r、インダクタンスL、静電容量Cを有する共振回路を構成する。   However, the acceleration cavity for accelerating the particles is part of a high-frequency resonance circuit as shown in FIG. FIG. 3A shows a cross section of the acceleration cavity, and FIG. 3B shows a lumped constant circuit representation of the acceleration cavity shown in FIG. As shown in FIG. 3A, the acceleration cavity is formed by arranging a pair of conductor portions formed of an inner conductor 31 and an outer conductor 32 with an acceleration gap 33 therebetween. As shown in FIG. 3B, the inner and outer conductors 31 and 32 provide a resistance r and an inductance L, and the acceleration gap 33 provides a capacitance C. That is, the acceleration cavity forms a resonance circuit having a resistance r, an inductance L, and a capacitance C.

この共振回路の共振周波数を変えないで、電源の周波数のみを変えても図4の実線で示すように加速空洞に十分な電圧を発生することはできない。図4は、共振回路(加速空洞)の電圧利得の周波数特性を示したものである。ここでQはクオリティーファクターと呼ばれ共振回路の特性を示す量であり、Q=10の場合を実腺で示し、Q=2の場合を点線で示している。   Even if only the frequency of the power supply is changed without changing the resonance frequency of this resonance circuit, a sufficient voltage cannot be generated in the acceleration cavity as shown by the solid line in FIG. FIG. 4 shows frequency characteristics of voltage gain of the resonance circuit (acceleration cavity). Here, Q is a quantity called a quality factor and indicating the characteristic of the resonance circuit. The case where Q = 10 is indicated by a real gland, and the case where Q = 2 is indicated by a dotted line.

上述した共振回路の問題を解決するために、図5に示すように共振回路(加速空洞)内にフェライト等の磁性体(リング状フェライト51)を入れこの磁性体の透磁率を変えることにより共振周波数そのものを変える方法が採られている。なお磁性体の透磁率を変化させる方法は、磁性体にコイルを巻きこれに流す電流(バイアス電源52からのバイアス電流53)を変えることによりなされる。これは磁性体の透磁率が外部磁場によって変化することを利用したものである(非特許文献1参照)。   In order to solve the above-described problem of the resonance circuit, as shown in FIG. 5, a magnetic material such as ferrite (ring-shaped ferrite 51) is inserted in the resonance circuit (acceleration cavity) and the magnetic permeability of this magnetic material is changed to resonate. A method of changing the frequency itself is employed. A method of changing the magnetic permeability of the magnetic material is performed by winding a coil around the magnetic material and changing a current (bias current 53 from the bias power source 52) flowing through the coil. This utilizes the fact that the magnetic permeability of the magnetic material is changed by an external magnetic field (see Non-Patent Document 1).

上述した方法はシンクロトロン開発当初から採用された方法であるが大変複雑である。そこで損失の大きい磁性体を使用することにより共振回路の共振幅を広くする方法も考えられる(図4の点線)。すなわち共振幅を広くすることにより、共振回路の同調をとることをしない方法である。ただしこの方法は共振幅を広くしたことに反比例し、必要電圧を発生するための電力損失が大きくなる欠点がある。   The method described above has been adopted from the beginning of synchrotron development, but is very complicated. Therefore, a method of widening the resonance width of the resonance circuit by using a magnetic material having a large loss can be considered (dotted line in FIG. 4). That is, the resonance circuit is not tuned by increasing the resonance width. However, this method is inversely proportional to increasing the resonance width, and has a disadvantage that power loss for generating a necessary voltage increases.

亀井亨、木原元央共著、「パリティ物理学コース 加速器科学」丸善株式会社、平成5年9月20日 P.62Kakei Kaoru and Motoki Kihara, “Parity Physics Course Accelerator Science” Maruzen Co., Ltd., September 20, 1993 62

本発明は、加速高周波電圧の周波数を変えるための複雑な構造を廃止し、かつ大きな電力損失を軽減するための新規な周回型荷電粒子加速器及びその加速方法を提供することを目的とする。   It is an object of the present invention to provide a novel orbiting charged particle accelerator and an acceleration method for eliminating a complicated structure for changing the frequency of the acceleration high-frequency voltage and reducing a large power loss.

本発明によれば、加速高周波電圧の周波数を固定し、加速高周波周期に対する荷電粒子の回転周期の比であるハーモニック数が整数で変化するように加速高周波電圧の振幅を変調する振幅変調回路を備えた周回型荷電粒子加速器が提供される。   According to the present invention, there is provided an amplitude modulation circuit that fixes the frequency of the acceleration high-frequency voltage and modulates the amplitude of the acceleration high-frequency voltage so that the harmonic number, which is the ratio of the rotation period of the charged particles to the acceleration high-frequency cycle, changes as an integer. An orbiting charged particle accelerator is provided.

本発明によれば、前記振幅変調回路は、前記ハーモニック数が整数で変化するような加速条件を満たす電圧変調波形を生成する任意波形発生器と、高周波電圧信号の振幅を変調する振幅変調器と、変調された高周波電圧信号を増幅して加速器の加速空洞に供給する増幅器と、前記加速空洞に発生した高周波電圧を検出する電圧検出器と、前記検出された高周波電圧の波形と前記電圧変調波形とを比較して両波形が等しくなるように前記振幅変調器を制御する作動増幅器を備えることが好ましい。   According to the present invention, the amplitude modulation circuit includes an arbitrary waveform generator that generates a voltage modulation waveform that satisfies an acceleration condition such that the harmonic number changes as an integer, an amplitude modulator that modulates the amplitude of a high-frequency voltage signal, An amplifier that amplifies the modulated high frequency voltage signal and supplies it to the acceleration cavity of the accelerator, a voltage detector that detects the high frequency voltage generated in the acceleration cavity, the waveform of the detected high frequency voltage, and the voltage modulation waveform And an operational amplifier for controlling the amplitude modulator so that both waveforms are equal.

本発明によれば、周回型荷電粒子加速器における荷電粒子の加速方法において、加速高周波電圧の周波数を固定し、加速高周波周期に対する荷電粒子の回転周期の比であるハーモニック数が整数で変化するように加速高周波電圧の振幅を変調する加速方法が提供される。   According to the present invention, in the acceleration method for charged particles in a revolving charged particle accelerator, the frequency of the acceleration high-frequency voltage is fixed, and the harmonic number that is the ratio of the rotation period of the charged particles to the acceleration high-frequency period changes as an integer. An acceleration method is provided for modulating the amplitude of an accelerating radio frequency voltage.

本発明によれば、荷電粒子の回転周期が短くなるにつれて前記ハーモニック数が整数単位で減少するように加速高周波電圧の振幅を変調するようにするのが好ましい。   According to the present invention, it is preferable to modulate the amplitude of the acceleration high-frequency voltage so that the harmonic number decreases in integer units as the rotation period of the charged particles becomes shorter.

本発明によれば、加速空胴の共振周波数を変えるための複雑な構造や磁性体を必要としない。その結果、加速空胴のQ値すなわちクオリティーファクターが高くなり加速のための電力損失を大幅に減らすことができる。さらに損失が減った分加速電圧を上げることができ、加速ビーム取り出しの周期を大幅に短くできる。   According to the present invention, a complicated structure or magnetic material for changing the resonance frequency of the acceleration cavity is not required. As a result, the Q value of the acceleration cavity, that is, the quality factor increases, and the power loss for acceleration can be greatly reduced. Further, the acceleration voltage can be increased by reducing the loss, and the acceleration beam extraction period can be greatly shortened.

本発明の基本原理は、加速粒子が一回転するごとに、加速高周波の周波数を変調する代わりに、ハーモニック数Nを整数単位で減少させる方法であり、式で書けば

ΔTp=kTrf (7)

となるよう加速電圧の振幅を変調する方法である。ここでΔTpは一回転ごとの加速粒子の周期の減少量、kは任意の整数である。
The basic principle of the present invention is a method of reducing the harmonic number N by an integer unit instead of modulating the frequency of the accelerating high frequency every time the accelerating particle makes one revolution.

ΔT p = kT rf (7)

This is a method of modulating the amplitude of the acceleration voltage so that Here, ΔT p is the amount of decrease in the period of the accelerated particles per rotation, and k is an arbitrary integer.

例えば、k=1の場合には、図6に示されるように、加速高周波の周波数を固定して、加速粒子の位相が高周波の位相を2πずつ飛び越えて行くように加速電圧を変調している。言い換えれば、加速粒子が一回転するごとに、すなわち、一回転周期ごとに、ハーモニック数Nが7から4へと1つづつ減少している。なお、図6は、本発明の基本原理を簡単に示すもので、実際のハーモニック数Nは、後述する実施例の説明にあるようにはるかに大きい数である。   For example, in the case of k = 1, as shown in FIG. 6, the acceleration high frequency is fixed, and the acceleration voltage is modulated so that the phase of the acceleration particles jumps by 2π from the high frequency. . In other words, the harmonic number N decreases from 7 to 4 one by one every time the accelerating particle makes one revolution, that is, every revolution period. FIG. 6 simply shows the basic principle of the present invention, and the actual harmonic number N is a much larger number as described in the embodiments described later.

図7は、k=1の場合における粒子回転数と粒子回転周期Tpの関係を示している。図7に示されているように、本発明では、式(7)の関係を満たすように加速電圧の振幅を変調するので、粒子回転周期Tpは粒子回転数の増加に伴って直線的に減少する。すなわち、k=1の場合には、ΔTp=Trfとなり、一回転ごとの粒子回転周期の減少量ΔTpが高周波周期Trfに等しくなり、粒子回転数が1回づつ増すごとに、粒子回転周期Tpが一高周波周期Trfづつ短くなっている。これに対して、従来の加速方法では、粒子の回転周期は、本発明のように直線的に減少せず、イオンシンクロトロンの磁場に依存して緩やかな曲線を描く。 FIG. 7 shows the relationship between the particle rotation speed and the particle rotation period T p when k = 1. As shown in FIG. 7, in the present invention, the amplitude of the acceleration voltage is modulated so as to satisfy the relationship of Expression (7), so that the particle rotation period T p linearly increases as the particle rotation speed increases. Decrease. That is, in the case of k = 1, ΔT p = T rf , the decrease amount ΔT p of the particle rotation period per rotation becomes equal to the high frequency period T rf , and the particle rotation number increases by one every time. The rotation period T p is shortened by one high-frequency period T rf . On the other hand, in the conventional acceleration method, the rotation period of the particles does not decrease linearly as in the present invention, but draws a gentle curve depending on the magnetic field of the ion synchrotron.

実際の加速器の設計に於いては、加速電圧を時間と共にどのように変調するかは式(1)、(5)を用いて式(7)を満たす加速条件を計算する必要がある。その一例として図1のイオンシンクロトロンの例を図8に示す。ここで各パラメータは以下の通りである。
平均軌道半径:13.5m
加速イオン:炭素12の+6荷イオン
入射エネルギー:40MeV/核子
取り出しエネルギー:388MeV/核子
入射時粒子回転周期:1μs
加速高周波周期:0.5ns
In the actual accelerator design, it is necessary to calculate the acceleration condition satisfying the equation (7) using the equations (1) and (5) in order to modulate the acceleration voltage with time. As an example, FIG. 8 shows an example of the ion synchrotron of FIG. Here, each parameter is as follows.
Average orbit radius: 13.5m
Accelerating ion: +6 charge ion of carbon 12 Incident energy: 40 MeV / nucleon Extraction energy: 388 MeV / nucleon Particle rotation period at incidence: 1 μs
Accelerated high frequency period: 0.5 ns

この例では、入射時粒子回転周期が1μsであり、加速高周波周期が0.5nsであるので、入射時のハーモニック数Nは、2000となる。粒子回転周期Tpは粒子回転数の増加に伴って、式(7)の加速条件を満たしながら、図7に示すように直線的に減少する。従って、加速電圧Vは、加速が進むにつれて、磁場Bの増加の割合に比べて急峻に増大する。それに伴って、エネルギーEも大きく増大する。 In this example, since the particle rotation period at the time of incidence is 1 μs and the acceleration high frequency period is 0.5 ns, the harmonic number N at the time of incidence is 2000. The particle rotation period T p decreases linearly as shown in FIG. 7 while satisfying the acceleration condition of Equation (7) as the particle rotation speed increases. Therefore, the acceleration voltage V increases steeply as the acceleration progresses compared to the rate of increase of the magnetic field B. Along with this, the energy E also greatly increases.

なおこれは一例を示したものであり、様々なイオン及び加速エネルギーに対し、本発明の方法を適用できる。   This is only an example, and the method of the present invention can be applied to various ions and acceleration energy.

以上述べた振幅変調を実現する一つの方法として、図9に示すような振幅変調回路がある。この振幅変調回路では、信号発生器91より生成された高周波信号は振幅変調器92で変調され、そして前段増幅器93と終段増幅器94で必要な電力まで増幅され、インピーダンス変換器95を通して加速空胴96に供給される。一方任意波形発生器97は先に述べた加速条件を満たす電圧変調波形を生成する。また加速空胴96に発生した高周波加速電圧は電圧ピックアップ97で検出され整流器98で直流電圧に変換される。任意波形生成器97の任意波形と、整流された加速電圧波形とが差動増幅器99に送られ、比較される。そして差動増幅器99は加速電圧波形が任意波形と等しくなるよう振幅変調器92を制御する。また電圧ピックアップ97からの高周波信号は信号分割器100によりオッシロスコープ101にも分割電送され直接観測される。なお、電圧ピックアップ97は、本発明の電圧検出器を構成する。   As one method for realizing the amplitude modulation described above, there is an amplitude modulation circuit as shown in FIG. In this amplitude modulation circuit, the high frequency signal generated by the signal generator 91 is modulated by the amplitude modulator 92, amplified to the necessary power by the front stage amplifier 93 and the last stage amplifier 94, and accelerated through the impedance converter 95. 96. On the other hand, the arbitrary waveform generator 97 generates a voltage modulation waveform that satisfies the acceleration condition described above. The high frequency acceleration voltage generated in the acceleration cavity 96 is detected by a voltage pickup 97 and converted into a DC voltage by a rectifier 98. The arbitrary waveform of the arbitrary waveform generator 97 and the rectified acceleration voltage waveform are sent to the differential amplifier 99 for comparison. The differential amplifier 99 controls the amplitude modulator 92 so that the acceleration voltage waveform becomes equal to the arbitrary waveform. The high-frequency signal from the voltage pickup 97 is also divided and transmitted to the oscilloscope 101 by the signal divider 100 and directly observed. The voltage pickup 97 constitutes the voltage detector of the present invention.

イオンシンクロトロンの簡単な平面図と加速粒子軌道を示す図である。It is a figure which shows the simple top view of an ion synchrotron, and an acceleration particle orbit. イオンシンクロトロンの加速高周波周期と粒子回転周期との関係を示す図である。It is a figure which shows the relationship between the acceleration high frequency period of an ion synchrotron, and a particle | grain rotation period. (a)は加速空胴の断面図、(b)は(a)の加速空胴の集中定数回路表示を示す図である。(A) is sectional drawing of an acceleration cavity, (b) is a figure which shows the lumped constant circuit display of the acceleration cavity of (a). 共振回路の電圧利得の周波数特性を示す図ある。It is a figure which shows the frequency characteristic of the voltage gain of a resonance circuit. 従来のイオンシンクロトロンの加速空胴共振周波数可変方法の例を示す図である。It is a figure which shows the example of the acceleration cavity resonance frequency variable method of the conventional ion synchrotron. 本発明の加速原理を示す図である。It is a figure which shows the acceleration principle of this invention. 粒子回転数と粒子回転周期の関係を示す図である。It is a figure which shows the relationship between a particle rotation speed and a particle rotation period. イオンシンクロトロン用磁場を使った場合の本発明に於ける磁場(ガウス)、加速電圧(kV)、粒子エネルギー(MeV/核子)の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the magnetic field (Gauss), acceleration voltage (kV), and particle energy (MeV / nucleon) in this invention at the time of using the magnetic field for ion synchrotrons. 本発明の加速空胴振幅変調回路の一例を示す図である。It is a figure which shows an example of the acceleration cavity amplitude modulation circuit of this invention.

符号の説明Explanation of symbols

11 粒子加速軌道
12 偏向磁石
13 高周波加速空洞
31 内導体
32 外導体
33 加速ギャップ
51 リング状フェライト
52 バイアス電源
53 バイアス電流
91 信号発生器
92 振幅変調器
93 前段増幅器
94 終段増幅器
95 インピーダンス変換器
96 加速空洞
97 電圧ピックアップ
98 整流器
100 信号分割器
101 オシロスコープ
R 平均軌道半径
O 軌道中心
P 粒子回転周期
rf 加速高周波周期
DESCRIPTION OF SYMBOLS 11 Particle acceleration orbit 12 Deflection magnet 13 High frequency acceleration cavity 31 Inner conductor 32 Outer conductor 33 Acceleration gap 51 Ring-shaped ferrite 52 Bias power supply 53 Bias current 91 Signal generator 92 Amplitude modulator 93 Preamplifier 94 Final stage amplifier 95 Impedance converter 96 accelerating cavity 97 voltage pickup 98 rectifier 100 the signal splitter 101 oscilloscope R mean orbital radius O raceway center T P particle rotation period T rf accelerating RF cycle

Claims (4)

加速高周波電圧の周波数を固定し、加速高周波周期に対する荷電粒子の回転周期の比であるハーモニック数が整数で変化するように加速高周波電圧の振幅を変調する振幅変調回路を備えた周回型荷電粒子加速器。   An orbiting charged particle accelerator equipped with an amplitude modulation circuit that modulates the amplitude of the acceleration high-frequency voltage so that the frequency of the acceleration high-frequency voltage is fixed and the harmonic number, which is the ratio of the rotation period of the charged particle to the acceleration high-frequency cycle, varies as an integer. . 前記振幅変調回路は、前記ハーモニック数が整数で変化するような加速条件を満たす電圧変調波形を生成する任意波形発生器と、高周波電圧信号の振幅を変調する振幅変調器と、変調された高周波電圧信号を増幅して加速器の加速空洞に供給する増幅器と、前記加速空洞に発生した高周波電圧を検出する電圧検出器と、前記検出された高周波電圧の波形と前記電圧変調波形とを比較して両波形が等しくなるように前記振幅変調器を制御する作動増幅器を備えた請求項1に記載の周回型荷電粒子加速器。   The amplitude modulation circuit includes: an arbitrary waveform generator that generates a voltage modulation waveform that satisfies an acceleration condition such that the harmonic number changes as an integer; an amplitude modulator that modulates the amplitude of a high-frequency voltage signal; and a modulated high-frequency voltage An amplifier that amplifies the signal and supplies it to the acceleration cavity of the accelerator, a voltage detector that detects the high-frequency voltage generated in the acceleration cavity, and compares the waveform of the detected high-frequency voltage with the voltage modulation waveform. The orbiting charged particle accelerator according to claim 1, further comprising an operational amplifier that controls the amplitude modulator so that the waveforms are equal. 周回型荷電粒子加速器における荷電粒子の加速方法において、加速高周波電圧の周波数を固定し、加速高周波周期に対する荷電粒子の回転周期の比であるハーモニック数が整数で変化するように加速高周波電圧の振幅を変調する加速方法。   In the acceleration method of charged particles in a revolving charged particle accelerator, the frequency of the acceleration high-frequency voltage is fixed, and the amplitude of the acceleration high-frequency voltage is changed so that the harmonic number, which is the ratio of the rotation frequency of the charged particle to the acceleration high-frequency cycle, changes as an integer. Acceleration method to modulate. 荷電粒子の回転周期が短くなるにつれて前記ハーモニック数が整数単位で減少するように加速高周波電圧の振幅を変調する請求項3に記載の加速方法。   The acceleration method according to claim 3, wherein the amplitude of the acceleration high-frequency voltage is modulated such that the harmonic number decreases in integer units as the rotation period of the charged particles becomes shorter.
JP2004213128A 2004-07-21 2004-07-21 Orbiting charged particle accelerator and acceleration method thereof Expired - Fee Related JP4104007B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004213128A JP4104007B2 (en) 2004-07-21 2004-07-21 Orbiting charged particle accelerator and acceleration method thereof
PCT/JP2004/015988 WO2006008838A1 (en) 2004-07-21 2004-10-28 Circulation orbit type charged particle accelerator and accelerating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004213128A JP4104007B2 (en) 2004-07-21 2004-07-21 Orbiting charged particle accelerator and acceleration method thereof

Publications (2)

Publication Number Publication Date
JP2006032281A JP2006032281A (en) 2006-02-02
JP4104007B2 true JP4104007B2 (en) 2008-06-18

Family

ID=35784973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213128A Expired - Fee Related JP4104007B2 (en) 2004-07-21 2004-07-21 Orbiting charged particle accelerator and acceleration method thereof

Country Status (2)

Country Link
JP (1) JP4104007B2 (en)
WO (1) WO2006008838A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176597A (en) * 1997-12-11 1999-07-02 Hitachi Ltd Controller of high-frequency acceleration cavity
JP2001267099A (en) * 2000-03-24 2001-09-28 Sumitomo Heavy Ind Ltd Betatron oscillation frequency measurement equipment and measuring method

Also Published As

Publication number Publication date
WO2006008838A1 (en) 2006-01-26
JP2006032281A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP4104008B2 (en) Spiral orbit type charged particle accelerator and acceleration method thereof
Lee Accelerator physics
US11849533B2 (en) Circular accelerator, particle therapy system with circular accelerator, and method of operating circular accelerator
JP5665721B2 (en) Circular accelerator and operation method of circular accelerator
JP4257741B2 (en) Charged particle beam accelerator, particle beam irradiation medical system using charged particle beam accelerator, and method of operating particle beam irradiation medical system
WO2020049755A1 (en) Accelerator, and particle beam therapy system equipped with same
US8207656B2 (en) B-K electrode for fixed-frequency particle accelerators
WO2018173240A1 (en) Circular accelerator
Balal et al. New varieties of helical undulators
JP4104007B2 (en) Orbiting charged particle accelerator and acceleration method thereof
JP4399604B2 (en) Charged particle beam trajectory control apparatus and control method therefor
Yoshimoto et al. Heavy ion beam acceleration in the KEK digital accelerator: induction acceleration from 200 keV to a few tens of MeV
Zhao et al. Simulation of ion beam cooling with a pulsed electron beam
WO2019093110A1 (en) Circular accelerator and particle beam treatment system
JP4110253B2 (en) Induction voltage control apparatus and control method thereof
Beaudoin et al. Long path-length experimental studies of longitudinal phenomena in intense beams
Jha et al. Harmonic generation in free-electron laser with circularly polarized wiggler and ion-channel guiding
Anashin et al. Project of the compact superconducting storage ring Siberia-SM
WO2023112383A1 (en) Accelerator, particle beam therapy system, and control method
Wiedemann et al. Circular accelerators
WO2024004238A1 (en) Accelerator and particle beam therapy device
Sommer The stabilizing influence of radiofrequency phase modulation counteracting coupled-bunch instabilities
Bruning LHC challenges and upgrade options
Bassalat et al. High Field Hybrid Permanent Magnet Wiggler Optimized for Tunable Synchrotron Radiation Spectrum
Mohite Beam loading effect and adiabatic capture in SIS-18 at GSI

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees