JP4103731B2 - Variable compression ratio internal combustion engine - Google Patents

Variable compression ratio internal combustion engine Download PDF

Info

Publication number
JP4103731B2
JP4103731B2 JP2003303205A JP2003303205A JP4103731B2 JP 4103731 B2 JP4103731 B2 JP 4103731B2 JP 2003303205 A JP2003303205 A JP 2003303205A JP 2003303205 A JP2003303205 A JP 2003303205A JP 4103731 B2 JP4103731 B2 JP 4103731B2
Authority
JP
Japan
Prior art keywords
lubricating oil
compression ratio
internal combustion
combustion engine
control shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003303205A
Other languages
Japanese (ja)
Other versions
JP2005069181A (en
Inventor
栄一 神山
大輔 秋久
正明 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003303205A priority Critical patent/JP4103731B2/en
Publication of JP2005069181A publication Critical patent/JP2005069181A/en
Application granted granted Critical
Publication of JP4103731B2 publication Critical patent/JP4103731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、燃焼室容積を変更することにより圧縮比を可変とする可変圧縮比内燃機関に関する。   The present invention relates to a variable compression ratio internal combustion engine in which a compression ratio is variable by changing a combustion chamber volume.

近年、内燃機関の燃費性能や出力性能を向上させることを目的として、内燃機関の圧縮比を変更可能にする技術が提案されている。これらの技術においては、潤滑油の圧力、いわゆる油圧を利用することで、内燃機関の燃焼室を構成する機関要素、もしくは該機関要素に連結される要素(以下、単に「内燃機関の機関要素」という)を駆動し、該内燃機関の圧縮比を変更する。   In recent years, a technique for changing the compression ratio of an internal combustion engine has been proposed for the purpose of improving the fuel efficiency performance and output performance of the internal combustion engine. In these techniques, by utilizing the pressure of lubricating oil, so-called hydraulic pressure, an engine element constituting a combustion chamber of an internal combustion engine, or an element connected to the engine element (hereinafter simply referred to as “engine element of an internal combustion engine”). And the compression ratio of the internal combustion engine is changed.

例えば、油圧を利用して内燃機関の圧縮比を変更するときに、該機構の油圧通路のドレン通路を大気側に開放させる弁を設ける技術が公開されている(例えば、特許文献1を参照。)。更に、コンロッドとクランクピンとの間に偏心ベアリングが設けられ、該偏心ベアリングをクランクピンに対して回転させることで内燃機関の圧縮比を変更する際に、コンロッドと偏心ベアリングとの間の摩擦を制御するために油圧を利用する技術が公開されている(例えば、特許文献2を参照。)。   For example, when changing the compression ratio of an internal combustion engine using oil pressure, a technique for providing a valve that opens a drain passage of a hydraulic passage of the mechanism to the atmosphere side is disclosed (for example, see Patent Document 1). ). In addition, an eccentric bearing is provided between the connecting rod and the crank pin, and the friction between the connecting rod and the eccentric bearing is controlled when the compression ratio of the internal combustion engine is changed by rotating the eccentric bearing with respect to the crank pin. In order to do this, a technique using hydraulic pressure is disclosed (for example, see Patent Document 2).

また、油圧を利用せずに内燃機関の圧縮比を変更する技術として、内燃機関の機関要素と連結される制御軸を電動機で回転駆動することで、それらの機関要素、例えばクランクケースとシリンダブロックとを相対移動させて内燃機関の圧縮比を変更する技術が公開されている(例えば、特許文献3を参照。)。
実開昭63−83440号公報 特開2000−64866号公報 特開2003−206771号公報 実開昭63−164534号公報 特開平11−62648号公報 特開平4−301148号公報
Further, as a technique for changing the compression ratio of an internal combustion engine without using hydraulic pressure, a control shaft coupled to the engine element of the internal combustion engine is rotationally driven by an electric motor so that those engine elements, for example, a crankcase and a cylinder block Has been disclosed to change the compression ratio of the internal combustion engine (see, for example, Patent Document 3).
Japanese Utility Model Publication No. 63-83440 JP 2000-64866 A JP 2003-206871 A Japanese Utility Model Publication No. 63-164534 Japanese Patent Laid-Open No. 11-62648 JP-A-4-301148

ここで、内燃機関の機関要素が、回転駆動する制御軸によって駆動されて内燃機関の圧縮比が変更される場合、該制御軸との接触部、特に該制御軸の軸受部においては、摺動部位が存在する。従って、その摺動部位に、制御軸または軸受部の摩耗を抑制するために潤滑油を供給する必要がある。   Here, when the engine element of the internal combustion engine is driven by the rotationally driven control shaft to change the compression ratio of the internal combustion engine, the sliding portion is brought into contact with the control shaft, particularly the bearing portion of the control shaft. The site exists. Therefore, it is necessary to supply lubricating oil to the sliding portion in order to suppress wear of the control shaft or the bearing portion.

しかし、潤滑油を常時その摺動部位に供給すると、制御軸または軸受部での摩耗は抑制し得るが、潤滑油を供給するための装置、例えばポンプを駆動するために、潤滑油供給による内燃機関の負荷が大きくなる虞がある。また、潤滑油の供給が過少である場合は、制御軸とその接触要素である軸受部の間に介在する潤滑油が十分に確保されないため、これらの摺動部位において制御軸や軸受部等の摩耗が激しくなり、または焼き付きが生じるこ
とによって、内燃機関の圧縮比の変更が良好に行われない虞がある。
However, if lubricating oil is constantly supplied to the sliding portion, wear on the control shaft or the bearing portion can be suppressed, but an internal combustion engine that supplies lubricating oil, for example, an internal combustion engine that supplies a lubricating oil to drive a pump. There is a risk that the load on the engine will increase. In addition, when the supply of lubricating oil is insufficient, the lubricating oil interposed between the control shaft and the bearing portion that is the contact element is not sufficiently secured, so the control shaft, the bearing portion, etc. There is a concern that the compression ratio of the internal combustion engine may not be changed satisfactorily due to intense wear or seizure.

本発明では、上記した問題に鑑み、内燃機関の機関要素が、回転駆動する制御軸によって駆動されて圧縮比が変更される内燃機関において、制御軸やその接触部に潤滑油を適正に供給することで、制御軸やその軸受部等の接触部の摩耗を抑制するとともに、潤滑油供給による内燃機関への負荷を低減することを目的とする。   In the present invention, in view of the above-described problems, in an internal combustion engine in which an engine element of an internal combustion engine is driven by a rotationally driven control shaft and the compression ratio is changed, lubricating oil is appropriately supplied to the control shaft and its contact portion. Accordingly, it is an object of the present invention to suppress wear on the contact portion such as the control shaft and its bearing portion and reduce the load on the internal combustion engine due to the supply of lubricating oil.

本発明は、上記した課題を解決するために、圧縮比制御手段によって内燃機関の圧縮比を変更する直前、もしくはその変更開始時における、内燃機関の機関要素を駆動する制御軸およびその接触部位である軸受部への潤滑油供給に着目した。これにより、制御軸の回転駆動開始時における静摩擦力を低減するとともに、回転駆動後においては制御軸を動圧軸受状態とすることで、制御軸および軸受部への潤滑油の供給を可及的に減量することが可能となるからである。   In order to solve the above-described problems, the present invention provides a control shaft for driving an engine element of an internal combustion engine and a contact portion thereof immediately before or at the start of the change of the compression ratio of the internal combustion engine by the compression ratio control means. We focused on supplying lubricant to a bearing. As a result, the static frictional force at the start of the rotational drive of the control shaft is reduced, and after the rotational drive, the control shaft is brought into a hydrodynamic bearing state so that the lubricating oil can be supplied to the control shaft and the bearing portion as much as possible. This is because it is possible to reduce the weight.

そこで、本発明は、圧縮比が可変とされる可変圧縮比内燃機関において、軸受部で支持され且つ内燃機関の機関要素と連結された制御軸を駆動させることにより、該内燃機関の圧縮比を変更する圧縮比制御手段と、前記制御軸または前記軸受部に潤滑油を供給する潤滑油供給手段と、前記内燃機関の圧縮比の変更を開始する直前又は変更開始時からの所定期間において、前記潤滑油供給手段によって前記制御軸または前記軸受部へ供給される潤滑油量を、前記制御軸の停止時の該潤滑油供給量より増量する潤滑油供給制御手段と、を備える。   Therefore, the present invention provides a variable compression ratio internal combustion engine in which the compression ratio is variable, by driving a control shaft that is supported by a bearing and connected to an engine element of the internal combustion engine, thereby reducing the compression ratio of the internal combustion engine. The compression ratio control means to be changed, the lubricating oil supply means for supplying lubricating oil to the control shaft or the bearing portion, and a predetermined period immediately before starting the change of the compression ratio of the internal combustion engine or at the start of the change, Lubricating oil supply control means for increasing the amount of lubricating oil supplied to the control shaft or the bearing by the lubricating oil supply means from the amount of lubricating oil supplied when the control shaft is stopped.

上記可変圧縮比内燃機関においては、内燃機関の燃焼室を構成する機関要素もしくは該機関要素に連結される要素である内燃機関の機関要素を、制御軸を駆動することで、燃焼室の容積またはピストンによる行程容積を変更し、以て内燃機関の圧縮比が変更される。   In the above variable compression ratio internal combustion engine, the volume of the combustion chamber or the engine element constituting the combustion chamber of the internal combustion engine or the engine element of the internal combustion engine that is connected to the engine element is driven by driving the control shaft. By changing the stroke volume by the piston, the compression ratio of the internal combustion engine is changed.

例えば、軸受部で支持され且つシリンダブロックおよびクランクケースと連結された制御軸を回転駆動させることにより、該シリンダブロックと該クランクケースとを相対移動させて燃焼室の容積を変更し、以て前記内燃機関の圧縮比を変更する。また、クランクピンやピストンピンに連結され、偏心した制御軸を駆動させることにより、ピストンによる行程容積を変更し、以て内燃機関の圧縮比を変更する。   For example, by rotating and driving a control shaft supported by the bearing portion and connected to the cylinder block and the crankcase, the cylinder block and the crankcase are moved relative to each other to change the volume of the combustion chamber, thereby Change the compression ratio of the internal combustion engine. Also, the stroke volume by the piston is changed by driving an eccentric control shaft connected to the crank pin or the piston pin, thereby changing the compression ratio of the internal combustion engine.

そこで、内燃機関の圧縮比の変更、例えばシリンダブロックとクランクケースの相対移動による圧縮比の変更は、制御軸が回転駆動されることで行われ、該制御軸、軸受部やその他の接触部(以下、「制御軸等」という)との間に摺動部位が存在することとなる。そのため、該摺動部位に対して、潤滑油供給手段によって潤滑油を供給することで、該摺動部位における制御軸等の摩耗の抑制が図られる。   Therefore, the change of the compression ratio of the internal combustion engine, for example, the change of the compression ratio by the relative movement of the cylinder block and the crankcase is performed by rotationally driving the control shaft, and the control shaft, the bearing portion and other contact portions ( Hereinafter, there will be a sliding portion between the control shaft and the like. Therefore, by supplying lubricating oil to the sliding portion by the lubricating oil supply means, it is possible to suppress wear of the control shaft and the like at the sliding portion.

ここで、制御軸を回転駆動させて内燃機関の圧縮比を変更する場合には、制御軸等への潤滑油供給を行うが、特に制御軸を回転駆動させる直前、もしくはその回転駆動開始時においては、制御軸等に供給される潤滑油量を、制御軸が回転駆動されないときと比べて増量する。そして、前記所定期間において潤滑油の供給量を増量することで、制御軸等へ十分な潤滑油を供給して、制御軸等における静摩擦力を低下させる。   Here, when the control shaft is rotationally driven to change the compression ratio of the internal combustion engine, lubricating oil is supplied to the control shaft and the like, but particularly immediately before the control shaft is rotationally driven or at the start of the rotational drive. Increases the amount of lubricating oil supplied to the control shaft or the like compared to when the control shaft is not rotationally driven. Then, by increasing the supply amount of the lubricating oil in the predetermined period, sufficient lubricating oil is supplied to the control shaft and the like, and the static friction force on the control shaft and the like is reduced.

更に、該所定期間経過後であって制御軸が回転駆動されているときは、制御軸が動圧軸受状態となるため、制御軸等において潤滑油がその接触部との間に介在し、制御軸等の摩耗がより確実に確保される。尚、潤滑油が増量されて供給される時間を前記所定期間に限定することで、潤滑油供給による内燃機関の負荷を低減することが可能となる。また、内燃機関の負荷を低減するために、制御軸が回転駆動されないとき、即ち内燃機関の圧縮比
が一定であるときは、制御軸等への潤滑油の供給量を可及的に小さくするのが好ましい。
Further, when the control shaft is driven to rotate after the predetermined period has elapsed, since the control shaft is in a hydrodynamic bearing state, lubricating oil is interposed between the contact portion of the control shaft and the like, and the control shaft is controlled. Wear of the shaft and the like is ensured more reliably. In addition, it becomes possible to reduce the load of the internal combustion engine due to the supply of the lubricating oil by limiting the time during which the lubricating oil is supplied in an increased amount to the predetermined period. Further, in order to reduce the load on the internal combustion engine, when the control shaft is not rotationally driven, that is, when the compression ratio of the internal combustion engine is constant, the supply amount of lubricating oil to the control shaft or the like is made as small as possible. Is preferred.

そして、前記所定期間の経過後であって制御軸がまだ回転駆動されているとき、即ち内燃機関の圧縮比の変更が行われているときは、潤滑油供給手段によって供給される潤滑油量を減量するようにしてもよい。先述したように、前記所定期間経過後において制御軸が回転駆動されているときは、制御軸が動圧軸受状態となるため、供給される潤滑油量が減量されても、制御軸等の摩耗が顕著となる虞は少ない。一方で、潤滑油供給手段による潤滑油供給のために可変圧縮比内燃機関に係る負荷をより小さくすることが可能となる。尚、制御軸等に供給される潤滑油量は、制御軸等の摩耗が顕著とならない範囲で、制御軸の停止時における潤滑油供給量に近い量まで減量することが好ましい。尚、供給される潤滑油量の減量については、潤滑油量を徐々に減量し、または段階的に減量するようにしてもよい。   When the control shaft is still rotationally driven after the predetermined period has elapsed, that is, when the compression ratio of the internal combustion engine is being changed, the amount of lubricating oil supplied by the lubricating oil supply means is reduced. You may make it lose weight. As described above, when the control shaft is rotationally driven after the lapse of the predetermined period, the control shaft is in a hydrodynamic bearing state, so even if the amount of supplied lubricating oil is reduced, the control shaft or the like is worn. Is less likely to become noticeable. On the other hand, it is possible to reduce the load on the variable compression ratio internal combustion engine for supplying the lubricating oil by the lubricating oil supply means. It should be noted that the amount of lubricating oil supplied to the control shaft or the like is preferably reduced to an amount close to the amount of lubricating oil supplied when the control shaft is stopped as long as the control shaft or the like is not significantly worn. In addition, about the reduction | decrease in the amount of lubricating oil supplied, you may make it reduce the amount of lubricating oil gradually or in steps.

また、上述の可変圧縮比内燃機関において、前記潤滑油供給手段内の潤滑油の圧力、または該潤滑油供給手段と接続される潤滑油供給通路内の潤滑油の圧力を検出する潤滑油圧力検出手段を、更に備える。そして、前記潤滑油圧力検出手段によって検出される圧力が所定の圧力より低いときは、前記圧縮比制御手段による前記内燃機関の圧縮比の変更を禁止する。   Further, in the above-described variable compression ratio internal combustion engine, a lubricating oil pressure detection for detecting a pressure of the lubricating oil in the lubricating oil supply means or a lubricating oil pressure in a lubricating oil supply passage connected to the lubricating oil supply means. Means are further provided. When the pressure detected by the lubricating oil pressure detecting means is lower than a predetermined pressure, the compression ratio control means prohibits the change of the compression ratio of the internal combustion engine.

上記部位における潤滑油の圧力、即ち油圧が低下する要因は、十分な潤滑油量が確保されていないことである。従って、制御軸等に対する十分な潤滑油の供給、特に、先述した制御軸の回転駆動の直前又は回転駆動開始からの所定期間における供給潤滑油の増量を確実に行うことが困難となる。そのような場合にまで、制御軸を回転駆動させて、内燃機関の圧縮比を変更しようとすると、制御軸等の摩耗が顕著となり、又は焼き付きが生じる虞がある。そこで、このような場合においては、制御軸を回転駆動させて、内燃機関の圧縮比を変更するのを禁止する。   The factor that lowers the pressure of the lubricating oil, that is, the hydraulic pressure in the above-mentioned part is that a sufficient amount of lubricating oil is not ensured. Accordingly, it becomes difficult to reliably supply the lubricating oil to the control shaft and the like, in particular, to increase the amount of the lubricating oil immediately before the rotational driving of the control shaft described above or in a predetermined period from the start of the rotational driving. In such a case, if the control shaft is driven to rotate to change the compression ratio of the internal combustion engine, wear of the control shaft or the like may become remarkable, or seizure may occur. Therefore, in such a case, it is prohibited to rotate the control shaft to change the compression ratio of the internal combustion engine.

ここで、内燃機関には、先述した潤滑油と供給経路の一部を同一とする潤滑油が制御軸等への供給以外の用途に使われる場合がある。しかし、潤滑油の総量には上限があるため、制御軸に潤滑油を供給する際に、十分な量の潤滑油を確保することが困難となる虞もある。そこで、先述した可変圧縮比内燃機関において、前記潤滑油供給手段によって前記制御軸または前記軸受部に供給される潤滑油と供給経路の一部を同一とする潤滑油が供給される前記内燃機関の機関要素を、更に備える場合、前記内燃機関の運転状態に基づいて、前記潤滑油供給手段による前記制御軸または前記軸受部への潤滑油供給と、前記内燃機関の機関要素への潤滑油供給との何れを優先するかを決定する。   Here, in the internal combustion engine, there is a case where the lubricating oil having the same part of the supply path as the above-described lubricating oil is used for purposes other than the supply to the control shaft or the like. However, since there is an upper limit on the total amount of lubricating oil, it may be difficult to secure a sufficient amount of lubricating oil when supplying the lubricating oil to the control shaft. Therefore, in the above-described variable compression ratio internal combustion engine, the lubricating oil supplied to the control shaft or the bearing portion by the lubricating oil supply means is supplied with lubricating oil having the same part of the supply path. When the engine element is further provided, based on the operating state of the internal combustion engine, supply of the lubricant oil to the control shaft or the bearing portion by the lubricant oil supply means, and supply of the lubricant oil to the engine element of the internal combustion engine Which of these is prioritized is determined.

これによって、内燃機関の運転状態に基づいて、内燃機関の圧縮比の変更を優先すべきと判断される場合、例えば、圧縮比を変更することで内燃機関からのエミッション改善を早急に行う必要があると判断される場合は、先ず制御軸等への潤滑油供給が優先的に行われる。一方で、潤滑油が供給される内燃機関の機関要素であって、内燃機関の圧縮比の変更より該機関要素の動作が優先されるべきと判断されるときは、制御軸等への潤滑油の供給は行わず、該機関要素への潤滑油の供給を行う。この場合、制御軸等の摩耗を防止するために、内燃機関の圧縮比の変更は待機状態とし、該機関要素への潤滑油の供給が終了した後に、制御軸等への潤滑油の供給を開始するとともに、内燃機関の圧縮比を変更するのが好ましい。   Accordingly, when it is determined that priority should be given to changing the compression ratio of the internal combustion engine based on the operating state of the internal combustion engine, for example, it is necessary to immediately improve the emission from the internal combustion engine by changing the compression ratio. If it is determined that there is, first, the lubricating oil is preferentially supplied to the control shaft or the like. On the other hand, when it is judged that the engine element of the internal combustion engine to which the lubricating oil is supplied and the operation of the engine element should be prioritized over the change of the compression ratio of the internal combustion engine, the lubricating oil to the control shaft etc. The lubricating oil is supplied to the engine element. In this case, in order to prevent wear of the control shaft or the like, the change of the compression ratio of the internal combustion engine is set in a standby state, and after the supply of the lubricating oil to the engine element is finished, the supply of the lubricating oil to the control shaft or the like is not performed. It is preferable to start and change the compression ratio of the internal combustion engine.

このようにすることで、その時点における内燃機関の運転状態に、制御軸等を含む機関要素の中でより適した要素に対して潤滑油を供給することが可能となり、内燃機関の運転状態を可及的に良好な状態に保つことが可能となる。   By doing in this way, it becomes possible to supply lubricating oil to the elements more suitable among the engine elements including the control shaft etc. in the operating state of the internal combustion engine at that time, and the operating state of the internal combustion engine can be reduced. It becomes possible to keep the state as good as possible.

特に、上記の内燃機関の機関要素が、供給された潤滑油によって、該内燃機関の吸気弁もしくは排気弁の少なくとも何れかの開閉特性を変更する吸排気弁制御手段である場合、即ちいわゆる可変動弁機構である場合、前記内燃機関の運転状態に基づいて、前記吸排気弁制御手段への潤滑油の供給を、前記潤滑油供給手段による前記制御軸または前記軸受部への潤滑油供給より優先して行うのが好ましい。   In particular, when the engine element of the internal combustion engine is intake / exhaust valve control means for changing the opening / closing characteristics of at least one of the intake valve or the exhaust valve of the internal combustion engine by the supplied lubricating oil, that is, so-called variable motion. In the case of the valve mechanism, the supply of the lubricating oil to the intake / exhaust valve control means has priority over the supply of the lubricating oil to the control shaft or the bearing portion by the lubricating oil supply means based on the operating state of the internal combustion engine. It is preferable to do so.

吸排気弁制御手段によって吸気弁もしくは排気弁の開閉特性が変更されると、内燃機関における燃焼状態への影響、とりわけ燃焼の安定性に対する影響が大きい。換言すると、吸排気弁制御手段に潤滑油が供給されて該手段が作動する場合は、内燃機関の燃焼状態を目的の状態とする必要性が高いと言える。そこで、このような場合には、吸排気弁制御手段への潤滑油の供給を、制御軸等への潤滑油供給より優先して行うことで、内燃機関の燃焼の安定性をより確実に確保することが可能となる。   When the opening / closing characteristics of the intake valve or the exhaust valve are changed by the intake / exhaust valve control means, the influence on the combustion state in the internal combustion engine, in particular, on the stability of the combustion is large. In other words, when lubricating oil is supplied to the intake / exhaust valve control means and the means operates, it can be said that there is a high need to bring the combustion state of the internal combustion engine to the target state. Therefore, in such a case, the supply of lubricating oil to the intake / exhaust valve control means is given priority over the supply of lubricating oil to the control shaft, etc., so that the combustion stability of the internal combustion engine can be ensured more reliably. It becomes possible to do.

内燃機関の機関要素が、回転駆動する制御軸によって駆動されて圧縮比が変更される内燃機関において、制御軸やその接触部に潤滑油を適正に供給することで、制御軸やその接触部における摺動部位の摩耗を抑制するとともに、潤滑油供給による内燃機関への負荷を低減することが可能となる。   In an internal combustion engine in which the compression ratio is changed by being driven by a rotationally driven control shaft, the engine element of the internal combustion engine is appropriately supplied with lubricating oil to the control shaft and the contact portion thereof. It is possible to suppress wear on the sliding portion and reduce the load on the internal combustion engine due to the supply of lubricating oil.

ここで、本発明に係る可変圧縮比内燃機関の実施の形態について図面に基づいて説明する。   Here, an embodiment of a variable compression ratio internal combustion engine according to the present invention will be described based on the drawings.

図1は、圧縮比が変更可能である可変圧縮比内燃機関1において、圧縮比を変更可能とする機構の構成を示す図であり、図2は、可変圧縮比内燃機関1において圧縮比が変更される推移を概略的に示す図である。可変圧縮比内燃機関1は、シリンダ2を有するシリンダブロック3を、図3に図示するピストン15が連結されたクランクケース4に対してシリンダ2の軸方向に移動させることによって圧縮比を変更する内燃機関である。   FIG. 1 is a diagram illustrating a configuration of a mechanism that allows a compression ratio to be changed in a variable compression ratio internal combustion engine 1 in which the compression ratio can be changed, and FIG. 2 illustrates a change in the compression ratio in the variable compression ratio internal combustion engine 1. It is a figure which shows roughly the transition performed. The variable compression ratio internal combustion engine 1 changes the compression ratio by moving a cylinder block 3 having a cylinder 2 in the axial direction of the cylinder 2 with respect to a crankcase 4 to which a piston 15 shown in FIG. Is an institution.

図1に示されるように、シリンダブロック3の両側下部に複数の隆起部が形成されており、この各隆起部にカム収納孔5が形成されている。カム収納孔5は、円形をしており、シリンダ2の軸方向に対して直角に、かつ複数のシリンダ2の配列方向に平行になるようにそれぞれ形成されている。片側の複数のカム収納孔5はすべて同一軸線上に位置している。そして、シリンダブロック3の両側のカム収納孔5の一対の軸線は平行である。   As shown in FIG. 1, a plurality of raised portions are formed at lower portions on both sides of the cylinder block 3, and a cam storage hole 5 is formed in each raised portion. The cam storage hole 5 has a circular shape and is formed so as to be perpendicular to the axial direction of the cylinder 2 and parallel to the arrangement direction of the plurality of cylinders 2. The plurality of cam housing holes 5 on one side are all located on the same axis. The pair of axes of the cam storage holes 5 on both sides of the cylinder block 3 are parallel.

クランクケース4には、上述したカム収納孔5が形成された複数の隆起部の間に位置するように、立壁部が形成されている。各立壁部のクランクケース4外側に向けられた表面には、半円形の凹部が形成されている。また、各立壁部には、ボルト6によって取り付けられるキャップ7が用意されており、キャップ7も半円形の凹部を有している。また、各立壁部にキャップ7を取り付けると、円形の軸受収納孔8が形成される。軸受収納孔8の形状は、上述したカム収納孔5と同一である。   The crankcase 4 is formed with a standing wall portion so as to be positioned between the plurality of raised portions in which the cam housing holes 5 described above are formed. A semicircular recess is formed on the surface of each standing wall portion facing the outside of the crankcase 4. Moreover, the cap 7 attached with the volt | bolt 6 is prepared for each standing wall part, and the cap 7 also has a semicircle recessed part. Moreover, when the cap 7 is attached to each standing wall portion, a circular bearing housing hole 8 is formed. The shape of the bearing storage hole 8 is the same as that of the cam storage hole 5 described above.

複数の軸受収納孔8は、カム収納孔5と同様に、シリンダブロック3をクランクケース4に取り付けたときにシリンダ2の軸方向に対して直角に、且つ、複数のシリンダ2の配列方向に平行になるようにそれぞれ形成されている。これらの複数の軸受収納孔8も、シリンダブロック3の両側に形成されることとなり、片側の複数の軸受収納孔8はすべて同一軸線上に位置している。そして、シリンダブロック3の両側の軸受収納孔8の一対の軸線は平行である。また、両側のカム収納孔5の間の距離と、両側の軸受収納孔8との間の距離は同一である。   Similar to the cam housing hole 5, the plurality of bearing housing holes 8 are perpendicular to the axial direction of the cylinder 2 when the cylinder block 3 is attached to the crankcase 4 and parallel to the arrangement direction of the plurality of cylinders 2. Each is formed to be. The plurality of bearing housing holes 8 are also formed on both sides of the cylinder block 3, and the plurality of bearing housing holes 8 on one side are all located on the same axis. The pair of axes of the bearing housing holes 8 on both sides of the cylinder block 3 are parallel. Further, the distance between the cam housing holes 5 on both sides and the distance between the bearing housing holes 8 on both sides are the same.

交互に配置される二列のカム収納孔5と軸受収納孔8には、それぞれ制御軸9が挿通される。制御軸9は、図1に示されるように、軸部9aと、軸部9aの中心軸に対して偏心された状態で軸部9aに固定された正円形のカムプロフィールを有するカム部9bと、カム部9bと同一外形を有し軸部9aに対して回転可能に取り付けられた可動軸受部9cとが交互に配置されている。この可動軸受部9cには、軸収納孔9eが設けられており、その中を制御軸9の軸部9aが挿通される構成をとることにより、可動軸受部9cは軸部9aに対して回動可能となっている。そして、これら一対の制御軸9は鏡像の関係を有している。また、制御軸9の端部には、後述するウォームホイール10の取り付け部9dが形成されている。軸部9aの中心軸と取り付け部9dの中心とは偏心しており、カム部9bの中心と取り付け部9dの中心とは一致している。   Control shafts 9 are inserted through the two rows of cam storage holes 5 and bearing storage holes 8 that are alternately arranged. As shown in FIG. 1, the control shaft 9 includes a shaft portion 9a and a cam portion 9b having a right circular cam profile fixed to the shaft portion 9a while being eccentric with respect to the central axis of the shaft portion 9a. The movable bearing portions 9c having the same outer shape as the cam portions 9b and rotatably attached to the shaft portions 9a are alternately arranged. The movable bearing portion 9c is provided with a shaft housing hole 9e, and the movable bearing portion 9c rotates with respect to the shaft portion 9a by adopting a configuration in which the shaft portion 9a of the control shaft 9 is inserted. It is possible to move. The pair of control shafts 9 have a mirror image relationship. Further, an attachment portion 9d for a worm wheel 10 to be described later is formed at the end of the control shaft 9. The center axis of the shaft portion 9a and the center of the attachment portion 9d are eccentric, and the center of the cam portion 9b and the center of the attachment portion 9d coincide.

可動軸受部9cも、軸部9aに対して偏心されておりその偏心量はカム部9bと同一である。また、各制御軸9において、複数のカム部9bの偏心方向は同一である。また、可動軸受部9cの外形は、カム部9bと同一正円であるので、可動軸受部9cを回転させることで、複数のカム部9bの外表面と複数の可動軸受部9cの外側面とを一致させることができる。   The movable bearing portion 9c is also eccentric with respect to the shaft portion 9a, and the amount of eccentricity is the same as that of the cam portion 9b. In each control shaft 9, the eccentric directions of the plurality of cam portions 9b are the same. Further, since the outer shape of the movable bearing portion 9c is the same circle as the cam portion 9b, the outer surface of the plurality of cam portions 9b and the outer surface of the plurality of movable bearing portions 9c are rotated by rotating the movable bearing portion 9c. Can be matched.

各制御軸9の軸部9aの一端にはウォームホイール10が取り付けられている。一対の制御軸9の端部に固定された一対のウォームホイール10には、それぞれをウォームギア11a、11bがかみ合っている。ウォームギア11a、11bはモータ12の一本の出力軸にとりつけられている。ウォームギア11a、11bは、互いに逆方向に回転する螺旋溝を有している。このため、モータ12を回転させると、一対の制御軸9は、ウォームホイール10を介して逆方向に回転する。モータ12は、シリンダブロック3に固定されており、シリンダブロック3と一体的に移動する。   A worm wheel 10 is attached to one end of the shaft portion 9 a of each control shaft 9. Worm gears 11a and 11b are engaged with the pair of worm wheels 10 fixed to the ends of the pair of control shafts 9, respectively. The worm gears 11 a and 11 b are attached to one output shaft of the motor 12. The worm gears 11a and 11b have spiral grooves that rotate in opposite directions. For this reason, when the motor 12 is rotated, the pair of control shafts 9 rotate in the reverse direction via the worm wheel 10. The motor 12 is fixed to the cylinder block 3 and moves integrally with the cylinder block 3.

次に、上述した構成の可変圧縮比内燃機関1において圧縮比を制御する方法について詳しく説明する。図2(a)から図2(c)にシリンダブロック3と、クランクケース4と、これら両者の間に構築された制御軸9との関係を示した断面図を示す。図2(a)から図2(c)において、軸部9aの中心軸をa、カム部9bの中心をb、可動軸受部9cの中心をcとして示す。図2(a)は、軸部9aの延長線上から見て全てのカム部9b及び可動軸受部9cの外周が一致した状態である。このとき、ここでは一対の軸部9aは、カム収納孔5及び軸受収納孔8の中で外側に位置している。   Next, a method for controlling the compression ratio in the variable compression ratio internal combustion engine 1 having the above-described configuration will be described in detail. 2 (a) to 2 (c) are sectional views showing the relationship between the cylinder block 3, the crankcase 4, and the control shaft 9 constructed between them. 2A to 2C, the central axis of the shaft portion 9a is indicated by a, the center of the cam portion 9b is indicated by b, and the center of the movable bearing portion 9c is indicated by c. FIG. 2A shows a state in which the outer peripheries of all the cam portions 9b and the movable bearing portion 9c coincide with each other when viewed from the extension line of the shaft portion 9a. At this time, the pair of shaft portions 9 a are located outside the cam housing hole 5 and the bearing housing hole 8 here.

図2(a)の状態から、モータ12を駆動して軸部9a矢印方向に回転させると、図2(b)の状態となる。このとき、軸部9aに対して、カム部9bと可動軸受部9cの偏心方向にずれが生じるので、クランクケース4に対してシリンダブロック3を上死点側にスライドさせることができる。そして、そのスライド量は図2(c)のような状態となるまで制御軸9を回転させたときが最大となり、カム部9bや可動軸受部9cの偏心量の2倍となる。カム部9b及び可動軸受部9cは、それぞれカム収納孔5及び軸受収納孔8の内部で回転し、それぞれカム収納孔5及び軸受収納孔8の内部で軸部9aの位置が移動するのを許容している。   When the motor 12 is driven from the state of FIG. 2A and rotated in the direction of the arrow of the shaft portion 9a, the state of FIG. 2B is obtained. At this time, since the cam portion 9b and the movable bearing portion 9c are displaced in the eccentric direction with respect to the shaft portion 9a, the cylinder block 3 can be slid to the top dead center side with respect to the crankcase 4. The sliding amount is maximized when the control shaft 9 is rotated until the state shown in FIG. 2C is reached, and is twice the eccentric amount of the cam portion 9b and the movable bearing portion 9c. The cam portion 9b and the movable bearing portion 9c rotate inside the cam housing hole 5 and the bearing housing hole 8, respectively, and allow the position of the shaft portion 9a to move inside the cam housing hole 5 and the bearing housing hole 8, respectively. is doing.

上述したような機構を用いることによって、シリンダブロック3をクランクケース4に対して、シリンダ2の軸線方向に相対移動させることが可能となり、その結果、シリンダブロック3と図3に示すシリンダヘッド13との相対的な位置が変更され、以て圧縮比を可変制御することができる。   By using the mechanism as described above, the cylinder block 3 can be moved relative to the crankcase 4 in the axial direction of the cylinder 2. As a result, the cylinder block 3 and the cylinder head 13 shown in FIG. The relative position is changed so that the compression ratio can be variably controlled.

ここで、図3に可変圧縮比内燃機関1の、図1に示した圧縮比を変更する機構を含めた概略構成を示す。気筒2には、吸気管18が接続され、吸気ポートを介して、気筒2内に
吸気が送られる。吸気の気筒2への流入は吸気弁16の開閉動作によって行われる。また、可変圧縮比内燃機関1には、排気管19が接続され、排気ポートを介して、気筒2内の排気が排出される。排気の気筒2外への排出は排気弁17の開閉動作によって行われる。更に、吸気ポートには燃料噴射弁38が、気筒2の頂部には、点火プラグ37が設けられている。
FIG. 3 shows a schematic configuration of the variable compression ratio internal combustion engine 1 including the mechanism for changing the compression ratio shown in FIG. An intake pipe 18 is connected to the cylinder 2, and intake air is sent into the cylinder 2 via the intake port. The intake air flows into the cylinder 2 by opening and closing the intake valve 16. An exhaust pipe 19 is connected to the variable compression ratio internal combustion engine 1, and exhaust in the cylinder 2 is discharged via an exhaust port. Exhaust of the exhaust to the outside of the cylinder 2 is performed by opening and closing the exhaust valve 17. Further, a fuel injection valve 38 is provided at the intake port, and a spark plug 37 is provided at the top of the cylinder 2.

また、吸気弁16および排気弁17の開閉特性を変更する可変動弁機構が、それぞれ吸気側可変動弁機構14a、排気側可変動弁機構14bとして、設けられている。各可変動弁機構は、潤滑油が供給されることで、吸気弁16および排気弁17の開閉特性を決定するカムの、可変圧縮比内燃機関1のクランク軸に対する位相が変更され、以て吸気弁16および排気弁17の開閉特性を変更する。   In addition, variable valve mechanisms that change the open / close characteristics of the intake valve 16 and the exhaust valve 17 are provided as an intake side variable valve mechanism 14a and an exhaust side variable valve mechanism 14b, respectively. Each variable valve mechanism is supplied with lubricating oil, so that the phase of the cam that determines the opening / closing characteristics of the intake valve 16 and the exhaust valve 17 with respect to the crankshaft of the variable compression ratio internal combustion engine 1 is changed. The opening / closing characteristics of the valve 16 and the exhaust valve 17 are changed.

ここで、可変圧縮比内燃機関1における潤滑油の供給経路について説明する。クランクケース4の下部に設けられたオイルパン20には、潤滑油21が貯留されている。その貯留された潤滑油21を、ポンプ23によって可変圧縮比内燃機関1の各部位に圧送する。ポンプ23は、可変圧縮比内燃機関1のクランク軸と連結されており、可変圧縮比内燃機関1の機関出力を動力源として潤滑油の圧送を行うポンプである。   Here, the lubricating oil supply path in the variable compression ratio internal combustion engine 1 will be described. Lubricating oil 21 is stored in an oil pan 20 provided at the lower portion of the crankcase 4. The stored lubricating oil 21 is pumped to each part of the variable compression ratio internal combustion engine 1 by a pump 23. The pump 23 is connected to the crankshaft of the variable compression ratio internal combustion engine 1 and is a pump that pumps lubricating oil using the engine output of the variable compression ratio internal combustion engine 1 as a power source.

ポンプ23によって圧送された潤滑油は、潤滑油供給管26を経て、先ずフィルタ24に送られ、潤滑油に含まれる不純物を除去した後に、潤滑油供給本管30に送られる。潤滑油供給本管30には、オイルホール用供給枝管27が連結されており、潤滑油供給本管30に圧送された潤滑油の一部は、オイルホール32に送られ、オイルホール32からクランク軸の軸受部等の摺動部位に供給される。   The lubricating oil pumped by the pump 23 is first sent to the filter 24 through the lubricating oil supply pipe 26, and is then sent to the lubricating oil supply main pipe 30 after removing impurities contained in the lubricating oil. An oil hole supply branch pipe 27 is connected to the lubricating oil supply main pipe 30, and part of the lubricating oil pressure-fed to the lubricating oil supply main pipe 30 is sent to the oil hole 32, from the oil hole 32. It is supplied to a sliding part such as a bearing portion of the crankshaft.

また、潤滑油供給本管30には、先述した制御軸9を構成する軸部9a、カム部9b、可動軸受部9c、およびカム部9bを収納するカム収納孔5と可動軸受部9cを収納する軸受収納孔8(以下、「可変圧縮比機構関連部位」という)に潤滑油を供給する可変圧縮比機構用供給枝管28が連結されており、各部位に潤滑油が供給される。また、可変圧縮比機構用供給枝管28を介した潤滑油の供給量は流量調整弁33の開度によって制御される。更に、流量調整弁33に対して並列に設けられ、流量調整弁33を迂回して潤滑油を供給するバイパス枝管34が設けられている。従って、可変圧縮比機構関連部位へは、流量調整弁33の開度にかかわらず、少なくともバイパス枝管34を経た潤滑油が供給される。尚、図3においては、片側の可変圧縮比機構関連部位への潤滑油の供給経路のみを示し、残りの可変圧縮比機構関連部位(ウォームギア11a側)への潤滑油の供給経路の記載は省略する。

Further, the lubricating oil supply main pipe 30, the shaft portion 9a constituting the control shaft 9 previously described, the cam portion 9b, the movable bearing portions 9c, and the cam housing holes 5 and the movable shaft receiving portion 9c which houses the cam portion 9b A variable compression ratio mechanism supply branch pipe 28 for supplying lubricating oil is connected to the bearing housing hole 8 (hereinafter referred to as “variable compression ratio mechanism related part”) to be stored, and the lubricating oil is supplied to each part. Further, the supply amount of the lubricating oil through the variable compression ratio mechanism supply branch pipe 28 is controlled by the opening degree of the flow rate adjustment valve 33. Further, a bypass branch pipe 34 that is provided in parallel to the flow rate adjustment valve 33 and that bypasses the flow rate adjustment valve 33 and supplies lubricating oil is provided. Therefore, at least the lubricating oil that has passed through the bypass branch pipe 34 is supplied to the variable compression ratio mechanism related part regardless of the opening degree of the flow rate adjustment valve 33. In FIG. 3, only the lubricating oil supply path to the variable compression ratio mechanism-related part on one side is shown, and the description of the lubricating oil supply path to the remaining variable compression ratio mechanism-related part (worm gear 11a side) is omitted. To do.

更に、潤滑油供給本管30には、先述した吸気側可変動弁機構14aおよび排気側可変動弁機構14bに潤滑油を供給する可変動弁機構用供給枝管29が連結されており、各可変動弁機構に潤滑油が供給され、吸気弁16および排気弁17の開閉特性の変更が実行される。尚、可変動弁機構用供給枝管29を介した潤滑油の供給量は流量調整弁35の開度によって制御される。   Further, the supply branch pipe 29 for variable valve mechanism for supplying lubricant to the intake side variable valve mechanism 14a and the exhaust side variable valve mechanism 14b described above is connected to the lubricant supply main pipe 30. Lubricating oil is supplied to the variable valve mechanism, and the opening / closing characteristics of the intake valve 16 and the exhaust valve 17 are changed. The supply amount of the lubricating oil through the variable valve mechanism supply branch pipe 29 is controlled by the opening degree of the flow rate adjustment valve 35.

また、可変圧縮比内燃機関1には、該可変圧縮比内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)31が併設されている。このECU31は、CPUの他、後述する各種のプログラム及びマップを記憶するROM、RAM等を備えており、可変圧縮比内燃機関1の運転条件や運転者の要求に応じて可変圧縮比内燃機関1の運転状態等を制御するユニットである。   The variable compression ratio internal combustion engine 1 is also provided with an electronic control unit (hereinafter referred to as “ECU”) 31 for controlling the variable compression ratio internal combustion engine 1. The ECU 31 includes a CPU, a ROM, a RAM, and the like for storing various programs and maps to be described later, and the variable compression ratio internal combustion engine 1 according to the operating conditions of the variable compression ratio internal combustion engine 1 and the driver's request. It is a unit that controls the operating state of the.

ECU31には、クランクポジションセンサ22、アクセル開度センサ36等、可変圧縮比内燃機関1の運転状態を検出する種々のセンサや、オイルホール用供給枝管27を流
れる潤滑油による油圧を検出する油圧センサ25が電気配線を介して接続され、それらの出力信号がECU31に入力されるようになっている。一方、ECU31には、本実施例に係るモータ12が電気配線を介して接続され、ECU31からの指令によってモータ12が回転し、可変圧縮比内燃機関1の圧縮比を変更するようになっている。また、流量調整弁33および流量調整弁35が電気配線を介して接続され、ECU31からの指令によってその開度が調整され、以て可変圧縮比機構用供給枝管28および可変動弁機構用供給枝管29を流れる潤滑油の油量が調整される。
The ECU 31 includes various sensors for detecting the operating state of the variable compression ratio internal combustion engine 1 such as a crank position sensor 22 and an accelerator opening sensor 36, and a hydraulic pressure for detecting the hydraulic pressure by the lubricating oil flowing through the oil hole supply branch pipe 27. Sensors 25 are connected via electrical wiring, and their output signals are input to the ECU 31. On the other hand, the motor 12 according to the present embodiment is connected to the ECU 31 via an electrical wiring, and the motor 12 is rotated by a command from the ECU 31 to change the compression ratio of the variable compression ratio internal combustion engine 1. . Further, the flow rate adjusting valve 33 and the flow rate adjusting valve 35 are connected via an electric wiring, and the opening degree thereof is adjusted by a command from the ECU 31, so that the variable compression ratio mechanism supply branch pipe 28 and the variable valve mechanism supply The amount of lubricating oil flowing through the branch pipe 29 is adjusted.

このように構成される可変圧縮比内燃機関1においては、制御軸9をモータ12によって回転駆動させて、その圧縮比を変更する際に、可変圧縮比機構関連部位においては要素同士が摺動状態に置かれるため、その要素の摩耗や焼き付けを抑制すべく制御軸9の回転駆動時における潤滑油の供給が不可欠となる。一方で、潤滑油の供給量が増加すると、ポンプ23の仕事量が増え、その結果、可変圧縮比内燃機関1の負荷が増加することになる。そこで、可変圧縮比内燃機関1において、圧縮比を変更する際の可変圧縮比機構関連部位の摩耗や焼き付きの抑制のための適正な潤滑油の供給を図るとともに、可変圧縮比内燃機関1の機関負荷の増加を可及的に抑制するための、潤滑油供給制御について、図4に示すフローチャートに基づいて説明する。   In the variable compression ratio internal combustion engine 1 configured as described above, when the control shaft 9 is rotationally driven by the motor 12 and the compression ratio is changed, the elements are in a sliding state in the variable compression ratio mechanism related part. Therefore, it is indispensable to supply lubricating oil when the control shaft 9 is rotationally driven in order to suppress wear and seizure of the elements. On the other hand, when the supply amount of the lubricating oil increases, the work amount of the pump 23 increases, and as a result, the load of the variable compression ratio internal combustion engine 1 increases. Accordingly, in the variable compression ratio internal combustion engine 1, an appropriate lubricating oil is supplied for suppressing wear and seizure of the variable compression ratio mechanism-related part when changing the compression ratio, and the engine of the variable compression ratio internal combustion engine 1. Lubricating oil supply control for suppressing the increase in load as much as possible will be described based on the flowchart shown in FIG.

先ず、S101では、可変圧縮比内燃機関1の運転状態が、その圧縮比の変更が要求される状態か否かが判断される。具体的には、クランクポジションセンサ22からの検出信号より算出される機関回転速度や、アクセル開度センサ36からの検出信号より算出される機関負荷の変動から、可変圧縮比内燃機関1における燃料の燃焼条件をより適正なものとするために、圧縮比の変更が必要とされるか否かが判断される。S101において、可変圧縮比内燃機関1の運転状態が、その圧縮比の変更が要求される状態であると判断されると、S102へ進む。可変圧縮比内燃機関1の運転状態が、その圧縮比の変更が要求される状態でないと判断されると、本制御を終了する。   First, in S101, it is determined whether or not the operating state of the variable compression ratio internal combustion engine 1 is a state where a change in the compression ratio is required. Specifically, from the fluctuation of the engine speed calculated from the detection signal from the crank position sensor 22 and the engine load calculated from the detection signal from the accelerator opening sensor 36, the fuel in the variable compression ratio internal combustion engine 1 is determined. In order to make the combustion condition more appropriate, it is determined whether or not the compression ratio needs to be changed. If it is determined in S101 that the operating state of the variable compression ratio internal combustion engine 1 is a state in which a change in the compression ratio is required, the process proceeds to S102. When it is determined that the operating state of the variable compression ratio internal combustion engine 1 is not a state where a change in the compression ratio is required, the present control is terminated.

S102では、吸気側可変動弁機構14aおよび排気側可変動弁機構14bが稼動しているか否かが、即ち流量調整弁35が開弁状態となって、それぞれの可変動弁機構へ潤滑油が供給されているか否かが判断される。両可変動弁機構が稼動していないと判断されると、S103へ進み、両可変動弁機構が稼動している場合は、両可変動弁機構の稼動が停止するまで、S102の処理が繰り返される。   In S102, whether or not the intake side variable valve mechanism 14a and the exhaust side variable valve mechanism 14b are operating, that is, the flow rate adjustment valve 35 is opened, and lubricating oil is supplied to each variable valve mechanism. It is determined whether or not it is supplied. If it is determined that both variable valve mechanisms are not operating, the process proceeds to S103, and if both variable valve mechanisms are operating, the process of S102 is repeated until the operations of both variable valve mechanisms are stopped. It is.

S103では、閉弁状態に流量調整弁33の開度を最大開度として、可変圧縮比機構関連部位に供給される潤滑油量を、制御軸9の停止時における供給潤滑油量、即ち流量調整弁33が閉弁状態にあるときの供給潤滑油量より増量する。S103の処理が終了すると、S104へ進む。   In S103, the opening amount of the flow rate adjustment valve 33 is set to the maximum opening amount in the closed state, and the amount of lubricating oil supplied to the variable compression ratio mechanism related part is changed to the amount of lubricating oil supplied when the control shaft 9 is stopped, that is, the flow rate adjustment. Increase the amount of lubricant supplied when the valve 33 is closed. When the process of S103 ends, the process proceeds to S104.

S104では、タイマーTrを始動させる。S104の処理が終了すると、S105へ進む。S105では、タイマーTrが所定時間T0を経過したか否かが判断される。タイマーTrが所定時間T0を経過したと判断されると、S106へ進み、タイマーTrが所定時間T0を経過していない場合は、所定時間T0を経過するまでS105の処理が繰り返される。   In S104, the timer Tr is started. When the process of S104 ends, the process proceeds to S105. In S105, it is determined whether or not the timer Tr has passed a predetermined time T0. If it is determined that the timer Tr has passed the predetermined time T0, the process proceeds to S106. If the timer Tr has not passed the predetermined time T0, the process of S105 is repeated until the predetermined time T0 has passed.

S106では、モータ12を駆動することによって、制御軸9を回転駆動し、可変圧縮比内燃機関1の圧縮比の変更を開始する。S106の処理が終了すると、S107へ進む。   In S106, by driving the motor 12, the control shaft 9 is rotationally driven, and the change of the compression ratio of the variable compression ratio internal combustion engine 1 is started. When the process of S106 ends, the process proceeds to S107.

S107では、S103において最大開度状態となっている流量調整弁33の開度を小さくし、可変圧縮比機構関連部位に供給される潤滑油量を減量する。S107の処理が終
了すると、S108へ進む。
In S107, the opening degree of the flow rate adjustment valve 33 that is in the maximum opening state in S103 is reduced, and the amount of lubricating oil supplied to the variable compression ratio mechanism related part is reduced. When the process of S107 ends, the process proceeds to S108.

S108では、可変圧縮比内燃機関1の圧縮比を目的の圧縮比まで変更させるために、制御軸9が回転移動すべき所定位置までの、制御軸9の回転移動が完了したか否かが判断される。制御軸9の回転移動が完了したと判断されるとS109へ進み、制御軸9の回転移動が完了していないと判断されると、再びS106以降の処理が繰り返される。   In S108, in order to change the compression ratio of the variable compression ratio internal combustion engine 1 to the target compression ratio, it is determined whether or not the rotational movement of the control shaft 9 to the predetermined position where the control shaft 9 should be rotationally moved is completed. Is done. If it is determined that the rotational movement of the control shaft 9 has been completed, the process proceeds to S109. If it is determined that the rotational movement of the control shaft 9 has not been completed, the processing from S106 is repeated again.

S109では、流量調整弁33の開度を閉弁し、本制御を終了する。従って、制御軸9の回転駆動が終了すると、可変圧縮比関連機構部位に供給される潤滑油は、バイパス枝管34を流れる潤滑油のみとなる。   In S109, the opening degree of the flow rate adjustment valve 33 is closed, and this control is finished. Therefore, when the rotational drive of the control shaft 9 is completed, the lubricating oil supplied to the variable compression ratio related mechanism part is only the lubricating oil flowing through the bypass branch pipe 34.

本制御によると、S103からS106の処理によって、可変圧縮比内燃機関1の圧縮比を変更すべく、制御軸9がモータ12によって回転駆動される前に、期間T0の間、流量調整弁33の開度が最大開度となり、可変圧縮比機構関連部位に供給される潤滑油量が最大量となる。そして、制御軸9が回転駆動された後は、S107の処理によって、可変圧縮比機構関連部位に供給される潤滑油量は減量される。   According to this control, in order to change the compression ratio of the variable compression ratio internal combustion engine 1 by the processing from S103 to S106, before the control shaft 9 is rotationally driven by the motor 12, the flow rate adjustment valve 33 is switched during the period T0. The opening degree becomes the maximum opening degree, and the amount of lubricating oil supplied to the variable compression ratio mechanism related part becomes the maximum amount. After the control shaft 9 is driven to rotate, the amount of lubricating oil supplied to the variable compression ratio mechanism-related part is reduced by the process of S107.

従って、制御軸9が回転駆動を開始する時点においては、可変圧縮比機構関連部位には十分な量の潤滑油が供給されているため、静摩擦力も低減され、可変圧縮比機構関連部位の摩耗が抑制される。また、制御軸9の回転駆動が開始されると、制御軸9が動圧軸受されている状態となるため、可変圧縮比機構関連部位に供給される潤滑油量は減量されても、可変圧縮比機構関連部位における摩耗は顕著になりにくい。従って、期間T0は、制御軸9の回転駆動開始時の可変圧縮比機構関連部位における静摩擦を低減させ、更に制御軸9が動圧軸受されている状態となる程度の量の潤滑油を供給し得る期間である。   Therefore, when the control shaft 9 starts to rotate, a sufficient amount of lubricating oil is supplied to the variable compression ratio mechanism-related part, so that the static friction force is reduced and the variable compression ratio mechanism-related part wears. It is suppressed. Further, when the rotation of the control shaft 9 is started, the control shaft 9 is in a hydrodynamic bearing state. Therefore, even if the amount of lubricating oil supplied to the variable compression ratio mechanism related part is reduced, variable compression is performed. Wear in specific mechanism related parts is not likely to be significant. Therefore, during the period T0, the amount of lubricating oil is supplied to such an extent that the static friction at the variable compression ratio mechanism-related part at the start of the rotational drive of the control shaft 9 is reduced, and that the control shaft 9 is in a state of being hydrodynamically bearing. It is a period to get.

その結果、可変圧縮比機構関連部位の摩耗を抑制しながらも、可変圧縮比機構関連部位に供給すべき潤滑油量を可及的に減量することになるため、ポンプ23の仕事量を低減し、以て可変圧縮比内燃機関1の機関負荷を低減することが可能となる。尚、S107において行われる可変圧縮比機構関連部位への供給潤滑油量の減量の態様としては、経過時間とともに徐々に減量したり、段階的に減量したりすることで、動圧軸受状態となっている制御軸9等の摩耗が顕著とならない量まで減量する態様が挙げられる。また、動圧軸受状態となっている制御軸9等の摩耗が顕著とならない範囲において、S109の処理と同様に制御軸9の回転駆動後に流量調整弁33を完全に閉弁し、供給される潤滑油を、バイパス枝管34を流れる潤滑油のみとしてもよい。即ち、可変圧縮比機構関連部位の摩耗等を考慮して、供給潤滑油の減量の態様を決定すればよい。   As a result, the amount of lubricating oil to be supplied to the variable compression ratio mechanism-related part is reduced as much as possible while suppressing the wear of the variable compression ratio mechanism-related part. Thus, the engine load of the variable compression ratio internal combustion engine 1 can be reduced. In addition, as a mode of reducing the amount of lubricating oil supplied to the variable compression ratio mechanism-related part performed in S107, the fluid pressure bearing state is achieved by gradually reducing the amount of lubricating oil with the elapsed time or by gradually reducing the amount. A mode in which the amount of the control shaft 9 or the like that is worn is reduced to an amount that does not become noticeable is given. Further, in the range where the wear of the control shaft 9 and the like in the hydrodynamic bearing state is not significant, the flow rate adjustment valve 33 is completely closed and supplied after the rotation of the control shaft 9 as in the process of S109. The lubricating oil may be only the lubricating oil flowing through the bypass branch pipe 34. In other words, it is only necessary to determine how to reduce the amount of the supplied lubricating oil in consideration of the wear of the variable compression ratio mechanism related part.

また、可変圧縮比内燃機関1の圧縮比を変更する要求がある場合であっても、吸気側可変動弁機構14aおよび排気側可変動弁機構14bが稼動している場合は、その可変動弁機構の稼動が停止するまで、制御軸9の回転駆動は行われない。即ち、可変動弁機構の稼動による吸排気弁の開閉特性の変更は、可変圧縮比内燃機関1の機関出力やエミッションに大きな影響を及ぼすため、可変動弁機構が稼動しているときは、吸排気弁の開閉特性の変更を優先し、可変圧縮比内燃機関1の圧縮比の変更は待機状態となり、可変動弁機構の稼動が停止した後に圧縮比の変更が行われる。このようにすることで、量に限りのある潤滑油を効率的に使用し、可変圧縮比内燃機関1の機関出力やエミッションの悪化を可及的に抑制するとともに、圧縮比の変更をすることが可能となる。つまり、可変圧縮比内燃機関1の運転状態に基づいて、潤滑油を優先的に供給する部位を変更することで、可変圧縮比内燃機関1の運転状態をより良好に保つことが可能となる。   Even when there is a request to change the compression ratio of the variable compression ratio internal combustion engine 1, if the intake side variable valve mechanism 14a and the exhaust side variable valve mechanism 14b are in operation, the variable valve ratio is controlled. The rotation of the control shaft 9 is not performed until the operation of the mechanism is stopped. That is, a change in the opening / closing characteristics of the intake / exhaust valve due to the operation of the variable valve mechanism greatly affects the engine output and emission of the variable compression ratio internal combustion engine 1. Therefore, when the variable valve mechanism is in operation, Prioritizing the change in the open / close characteristics of the exhaust valve, the change in the compression ratio of the variable compression ratio internal combustion engine 1 enters a standby state, and the compression ratio is changed after the operation of the variable valve mechanism is stopped. By doing so, the limited amount of lubricating oil is efficiently used, the deterioration of engine output and emission of the variable compression ratio internal combustion engine 1 is suppressed as much as possible, and the compression ratio is changed. Is possible. That is, it is possible to keep the operating state of the variable compression ratio internal combustion engine 1 better by changing the part that preferentially supplies the lubricating oil based on the operating state of the variable compression ratio internal combustion engine 1.

尚、本制御においては、可変圧縮比機構関連部位への潤滑油の供給量の増量を期間T0行った後に、制御軸9を回転駆動させるが、該潤滑油の増量供給と同時に制御軸9の回転
駆動を行ってもよい。このようにすることで、制御軸9の回転駆動開始時における制御軸9への潤滑油の供給量が、本制御の実行時と比べては少なくなるものの、可変圧縮比内燃機関1の圧縮比の変更を可及的に早急に行うことが可能となる。
In this control, the control shaft 9 is driven to rotate after the period T0 of increase in the amount of lubricating oil supplied to the variable compression ratio mechanism-related part. Rotational driving may be performed. By doing so, the amount of lubricating oil supplied to the control shaft 9 at the start of rotational driving of the control shaft 9 is smaller than that during execution of this control, but the compression ratio of the variable compression ratio internal combustion engine 1 is reduced. Can be changed as soon as possible.

また、本制御は、制御軸9の回転駆動によりシリンダブロック3とクランクケース4とが相対移動を行うことで、圧縮比が変更される可変圧縮比内燃機関1での潤滑油供給に対応しているが、制御軸の駆動によりピストン15と連結されるピストンピンやクランクピンを移動させてピストン15による行程容積を変更させ、以て圧縮比が変更される内燃機関における、該制御軸への潤滑油の供給にも対応させることは可能である。   Further, this control corresponds to supply of lubricating oil in the variable compression ratio internal combustion engine 1 in which the compression ratio is changed by the relative movement of the cylinder block 3 and the crankcase 4 by the rotational drive of the control shaft 9. However, in the internal combustion engine in which the compression volume is changed by moving the piston pin or the crank pin connected to the piston 15 by driving the control shaft to change the stroke volume by the piston 15, lubrication to the control shaft is performed. It is possible to cope with oil supply.

ここで、可変圧縮比内燃機関1における潤滑油の供給経路の設計は、その供給先が必要とする潤滑油の供給量によって、より適切な構造とするのが好ましい。そこで、可変圧縮比機構関連部位への潤滑油を制御する流量調整弁33およびバイパス枝管34の配置の態様について図5、図6および図7に基づいて説明する。図5は、可変圧縮比機構用供給枝管28に流量調整弁33が設けられた場合の、潤滑油の供給経路を概略的に示す図である。図6は、オイルホール用供給枝管27に流量調整弁33が設けられた場合の、潤滑油の供給経路を概略的に示す図である。図7は、潤滑油供給本管30に流量調整弁33が設けられた場合の、潤滑油の供給経路を概略的に示す図である。図5、図6、図7に示す要素は、図3に示す可変圧縮比内燃機関1の構成の一部を抜粋および変更したものであり、同一の要素を示すものについては同一の参照番号を付している。   Here, the design of the lubricating oil supply path in the variable compression ratio internal combustion engine 1 preferably has a more appropriate structure depending on the amount of lubricating oil supplied by the supply destination. An arrangement of the flow rate adjusting valve 33 and the bypass branch pipe 34 for controlling the lubricating oil to the variable compression ratio mechanism related part will be described with reference to FIGS. 5, 6, and 7. FIG. 5 is a diagram schematically showing a lubricating oil supply path in the case where the flow rate adjusting valve 33 is provided in the supply branch pipe 28 for the variable compression ratio mechanism. FIG. 6 is a diagram schematically showing a lubricating oil supply path in the case where the flow adjusting valve 33 is provided in the oil hole supply branch pipe 27. FIG. 7 is a view schematically showing a lubricating oil supply path when the flow rate adjusting valve 33 is provided in the lubricating oil supply main pipe 30. The elements shown in FIGS. 5, 6, and 7 are extracted and changed from a part of the configuration of the variable compression ratio internal combustion engine 1 shown in FIG. 3, and the same reference numerals are used for the same elements. It is attached.

図5(a)に示す潤滑油の供給経路の態様は、図3に示す可変圧縮比内燃機関1の潤滑油の供給経路の態様と同一である。即ち、流量調整弁33およびバイパス枝管34が可変圧縮比機構用供給枝管28に設けられ、且つ可変圧縮比機構用供給枝管28と潤滑油供給本管30との連結部位が、オイルホール用供給枝管27と潤滑油供給本管30との連結部位の下流側に位置する。このような潤滑油の供給経路の態様においては、オイルホール32を経て可変圧縮比内燃機関1のクランク軸等に供給される潤滑油の量をより確実に確保することが可能となる。   The mode of the lubricating oil supply path shown in FIG. 5A is the same as the mode of the lubricating oil supply path of the variable compression ratio internal combustion engine 1 shown in FIG. That is, the flow regulating valve 33 and the bypass branch pipe 34 are provided in the variable compression ratio mechanism supply branch pipe 28, and the connecting portion between the variable compression ratio mechanism supply branch pipe 28 and the lubricating oil supply main pipe 30 is an oil hole. It is located on the downstream side of the connecting portion between the supply branch pipe 27 and the lubricating oil supply main pipe 30. In this aspect of the lubricating oil supply path, the amount of lubricating oil supplied to the crankshaft and the like of the variable compression ratio internal combustion engine 1 via the oil hole 32 can be more reliably ensured.

図5(b)に示す潤滑油の供給経路の態様は、流量調整弁33およびバイパス枝管34が可変圧縮比機構用供給枝管28に設けられ、且つ可変圧縮比機構用供給枝管28と潤滑油供給本管30との連結部位が、オイルホール用供給枝管27と潤滑油供給本管30との連結部位の上流側に位置する。このような潤滑油の供給経路の態様においては、可変圧縮比機構関連部位に供給される潤滑油の量をより確実に確保することが可能となる。尚、図5(a)および(b)に示す潤滑油の供給経路の態様においては、可変圧縮比機構関連部位に供給される潤滑油量を増量する場合は、流量調整弁33の開度をより大きくすればよい。   5B, the flow rate adjustment valve 33 and the bypass branch pipe 34 are provided in the variable compression ratio mechanism supply branch pipe 28, and the variable compression ratio mechanism supply branch pipe 28 The connecting portion with the lubricating oil supply main pipe 30 is located upstream of the connecting portion between the oil hole supply branch pipe 27 and the lubricating oil supply main pipe 30. In this aspect of the lubricating oil supply path, the amount of lubricating oil supplied to the variable compression ratio mechanism-related portion can be more reliably ensured. 5 (a) and 5 (b), when increasing the amount of lubricating oil supplied to the variable compression ratio mechanism-related part, the opening degree of the flow rate adjusting valve 33 is set. Just make it bigger.

図6(a)に示す潤滑油の供給経路の態様は、流量調整弁33およびバイパス枝管34がオイルホール用供給枝管27に設けられ、且つ可変圧縮比機構用供給枝管28と潤滑油供給本管30との連結部位が、オイルホール用供給枝管27と潤滑油供給本管30との連結部位の下流側に位置する。このような潤滑油の供給経路の態様においては、オイルホール32を経て可変圧縮比内燃機関1のクランク軸等に供給される潤滑油の量をより確実に確保することが可能となる。   6A, the flow rate adjusting valve 33 and the bypass branch pipe 34 are provided in the oil hole supply branch pipe 27, and the variable compression ratio mechanism supply branch pipe 28 and the lubricating oil are provided. The connecting portion with the supply main pipe 30 is located downstream of the connecting portion between the oil hole supply branch pipe 27 and the lubricating oil supply main pipe 30. In this aspect of the lubricating oil supply path, the amount of lubricating oil supplied to the crankshaft and the like of the variable compression ratio internal combustion engine 1 via the oil hole 32 can be more reliably ensured.

図6(b)に示す潤滑油の供給経路の態様は、流量調整弁33およびバイパス枝管34がオイルホール用供給枝管27に設けられ、且つ可変圧縮比機構用供給枝管28と潤滑油供給本管30との連結部位が、オイルホール用供給枝管27と潤滑油供給本管30との連結部位の上流側に位置する。このような潤滑油の供給経路の態様においては、可変圧縮比機構関連部位に供給される潤滑油の量をより確実に確保することが可能となる。尚、図6
(a)および(b)に示す潤滑油の供給経路の態様においては、可変圧縮比機構関連部位に供給される潤滑油量を増量する場合は、流量調整弁33の開度をより小さくすればよい。
6 (b), the flow rate adjusting valve 33 and the bypass branch pipe 34 are provided in the oil hole supply branch pipe 27, and the variable compression ratio mechanism supply branch pipe 28 and the lubricant oil. A connecting portion with the supply main pipe 30 is located upstream of a connecting portion between the oil hole supply branch pipe 27 and the lubricating oil supply main pipe 30. In this aspect of the lubricating oil supply path, the amount of lubricating oil supplied to the variable compression ratio mechanism-related portion can be more reliably ensured. Note that FIG.
In the aspect of the lubricating oil supply path shown in (a) and (b), when increasing the amount of lubricating oil supplied to the variable compression ratio mechanism-related part, the opening degree of the flow regulating valve 33 can be made smaller. Good.

図7(a)に示す潤滑油の供給経路の態様は、流量調整弁33およびバイパス枝管34が潤滑油供給本管30に設けられ、且つ可変圧縮比機構用供給枝管28と潤滑油供給本管30との連結部位が、オイルホール用供給枝管27と潤滑油供給本管30との連結部位の下流側に位置するとともに、それぞれの連結部位が流量調整弁33の上流側に位置する。このような潤滑油の供給経路の態様においては、オイルホール32を経て可変圧縮比内燃機関1のクランク軸等に供給される潤滑油の量をより確実に確保することが可能となる。   7A, the flow rate adjusting valve 33 and the bypass branch pipe 34 are provided in the lubricating oil supply main pipe 30, and the variable compression ratio mechanism supply branch pipe 28 and the lubricating oil supply are provided. The connection part with the main pipe 30 is located on the downstream side of the connection part between the oil hole supply branch pipe 27 and the lubricating oil supply main pipe 30, and each connection part is located on the upstream side of the flow rate adjusting valve 33. . In this aspect of the lubricating oil supply path, the amount of lubricating oil supplied to the crankshaft and the like of the variable compression ratio internal combustion engine 1 via the oil hole 32 can be more reliably ensured.

図7(b)に示す潤滑油の供給経路の態様は、流量調整弁33およびバイパス枝管34が潤滑油供給本管30に設けられ、且つ可変圧縮比機構用供給枝管28と潤滑油供給本管30との連結部位が流量調整弁33の上流側に位置するとともに、オイルホール用供給枝管27と潤滑油供給本管30との連結部位が流量調整弁33の下流側に位置する。このような潤滑油の供給経路の態様においては、可変圧縮比機構関連部位に供給される潤滑油の量をより確実に確保することが可能となるとともに、オイルホール用供給枝管27を流れる潤滑油の量が流量調整弁33の開度によって大きく変動する。即ち、流量調整弁33の開度が大きくなるに従い、可変圧縮比機構用供給枝管28を流れる潤滑油量は減少する一方で、オイルホール用供給枝管27を流れる潤滑油量は増量する。

The mode of the lubricating oil supply path shown in FIG. 7B is that the flow regulating valve 33 and the bypass branch pipe 34 are provided in the lubricating oil supply main pipe 30, and the variable compression ratio mechanism supply branch pipe 28 and the lubricating oil supply are provided. The connecting part with the main pipe 30 is located on the upstream side of the flow rate adjusting valve 33, and the connecting part between the oil hole supply branch pipe 27 and the lubricating oil supply main pipe 30 is located on the downstream side of the flow rate adjusting valve 33. In this aspect of the lubricating oil supply path, the amount of lubricating oil supplied to the variable compression ratio mechanism-related part can be more reliably secured, and the lubricating oil flowing through the oil hole supply branch pipe 27 can be secured. The amount of oil greatly varies depending on the opening degree of the flow rate adjustment valve 33. That is, in accordance with the opening degree of the flow rate control valve 33 is increased, the amount of lubricating oil flowing through the variable compression ratio mechanism for subjected Kyuedakan 28 while decreasing, amount of lubricating oil flowing through the oil hole for supplying branch pipe 27 is increased .

図7(c)に示す潤滑油の供給経路の態様は、流量調整弁33およびバイパス枝管34が潤滑油供給本管30に設けられ、且つ可変圧縮比機構用供給枝管28と潤滑油供給本管30との連結部位が、オイルホール用供給枝管27と潤滑油供給本管30との連結部位の上流側に位置するとともに、それぞれの連結部位が流量調整弁33の上流側に位置する。このような潤滑油の供給経路の態様においては、可変圧縮比機構関連部位に供給される潤滑油の量をより確実に確保することが可能となる。尚、図7(a)、(b)および(c)に示す潤滑油の供給経路の態様においては、可変圧縮比機構関連部位に供給される潤滑油量を増量する場合は、流量調整弁33の開度をより小さくすればよい。   7 (c), the flow control valve 33 and the bypass branch pipe 34 are provided in the lubricating oil supply main pipe 30, and the variable compression ratio mechanism supply branch pipe 28 and the lubricating oil supply are provided. The connection part with the main pipe 30 is located upstream of the connection part between the oil hole supply branch pipe 27 and the lubricating oil supply main pipe 30, and each connection part is located upstream of the flow rate adjusting valve 33. . In this aspect of the lubricating oil supply path, the amount of lubricating oil supplied to the variable compression ratio mechanism-related portion can be more reliably ensured. 7A, 7B, and 7C, the flow rate adjusting valve 33 is used to increase the amount of lubricating oil supplied to the variable compression ratio mechanism-related portion. What is necessary is just to make the opening degree of smaller.

可変圧縮比内燃機関1において、可変圧縮比機構関連部位への潤滑油供給を行う潤滑油供給制御の第二の実施例について、図8に示すフローチャートに基づいて説明する。尚、可変圧縮比内燃機関1のハード構成は先述の通りであり、その説明は省略する。また、図8に示す潤滑油供給制御のフローチャートにおいて、図4に示す潤滑油供給制御と同一の処理については、同一の参照番号を付し、その説明を省略する。   In the variable compression ratio internal combustion engine 1, a second embodiment of the lubricating oil supply control for supplying the lubricating oil to the variable compression ratio mechanism related part will be described based on the flowchart shown in FIG. The hardware configuration of the variable compression ratio internal combustion engine 1 is as described above, and the description thereof is omitted. Further, in the flow chart of the lubricating oil supply control shown in FIG. 8, the same processing as that in the lubricating oil supply control shown in FIG.

本制御においては、S101において、可変圧縮比内燃機関1の運転状態が、その圧縮比の変更が要求される状態であると判断されると、S201へ進む。S201では、油圧センサ25によって検出される、オイルホール用供給枝管27を流れる潤滑油の油圧が所定の油圧P0より大きいか否かが判定される。ここで、所定の油圧P0は、オイルホール用供給枝管27や潤滑油供給本管30に、可変圧縮比機構関連部位に供給し得る程度に十分な量の潤滑油が確保されているか否かを判断するための閾値である。

In this control, when it is determined in S101 that the operating state of the variable compression ratio internal combustion engine 1 is a state where a change in the compression ratio is required, the process proceeds to S201. In S201, it is detected by the oil pressure sensor 25, the hydraulic pressure of the lubricating oil flowing through the Oiruho Le for subjected Kyuedakan 27 whether larger than a predetermined hydraulic pressure P0 is determined. Not Here, if a predetermined pressure P0 is a Oiruho Le for subjected Kyuedakan 27 and the lubricating oil supply main pipe 30, a degree sufficient amount of lubricating oil can be supplied to the variable compression ratio mechanism associated sites is ensured This is a threshold value for determining whether or not.

従って、オイルホール用供給枝管27を流れる潤滑油の油圧が所定の油圧P0より大きいと判断されると、十分な量の潤滑油が確保されていることを意味し、S103以降の可変圧縮比機構関連部位への潤滑油の供給が行われる。一方で、オイルホール用供給枝管27を流れる潤滑油の油圧が所定の油圧P0以下であると判断されると、十分な量の潤滑油が確保されていないことを意味し、S103以降の可変圧縮比機構関連部位への潤滑油の供給は行わずに、本制御を終了する。従って、この場合、可変圧縮比内燃機関1の圧縮比の変更は行われない。 Accordingly, means that the oil pressure of the lubricating oil flowing through the Oiruho Le for subjected Kyuedakan 27 when it is determined that greater than a predetermined hydraulic pressure P0, and a sufficient amount of lubricating oil is reserved, subsequent S103 variable compression Lubricating oil is supplied to the specific mechanism-related parts. On the other hand, when the hydraulic pressure of the lubricating oil flowing through the Oiruho Le for subjected Kyuedakan 27 is determined to be a predetermined pressure P0 below, it means that a sufficient amount of lubricating oil is not ensured, S103 subsequent This control is terminated without supplying the lubricating oil to the variable compression ratio mechanism related part. Therefore, in this case, the compression ratio of the variable compression ratio internal combustion engine 1 is not changed.

本制御によると、図4に示す潤滑油供給制御と同様に、可変圧縮比機構関連部位の摩耗を抑制しながらも、可変圧縮比機構関連部位に供給すべき潤滑油量を可及的に減量することになるため、ポンプ23の仕事量を低減し、以て可変圧縮比内燃機関1の機関負荷を低減することが可能となる。そして、更に、可変圧縮比関連部位に供給する潤滑油量が十分に確保されない場合は、可変圧縮比内燃機関1の圧縮比の変更は行われず、以て可変圧縮比関連部位における摩耗や焼き付けをより確実に抑制することが可能となる。   According to this control, as in the case of the lubricant supply control shown in FIG. 4, the amount of lubricant to be supplied to the variable compression ratio mechanism-related part is reduced as much as possible while suppressing wear of the variable compression ratio mechanism-related part. Therefore, the work amount of the pump 23 can be reduced, and the engine load of the variable compression ratio internal combustion engine 1 can be reduced. Further, when the amount of lubricating oil supplied to the variable compression ratio related part is not sufficiently secured, the compression ratio of the variable compression ratio internal combustion engine 1 is not changed, and thus the variable compression ratio related part is worn or seized. It becomes possible to suppress more reliably.

可変圧縮比内燃機関1において、可変圧縮比機構関連部位への潤滑油供給を行う潤滑油供給制御の第三の実施例について、図9に示すフローチャートに基づいて説明する。尚、可変圧縮比内燃機関1のハード構成は先述の通りであり、その説明は省略する。また、図9に示す潤滑油供給制御のフローチャートにおいて、図4に示す潤滑油供給制御と同一の処理については、同一の参照番号を付し、その説明を省略する。   In the variable compression ratio internal combustion engine 1, a third embodiment of the lubricating oil supply control for supplying the lubricating oil to the variable compression ratio mechanism related part will be described based on the flowchart shown in FIG. The hardware configuration of the variable compression ratio internal combustion engine 1 is as described above, and the description thereof is omitted. Further, in the flow chart of the lubricating oil supply control shown in FIG. 9, the same processes as those in the lubricating oil supply control shown in FIG.

本制御において、S101において、可変圧縮比内燃機関1の運転状態が、その圧縮比の変更が要求される状態であると判断されると、S301へ進む。S301では、該圧縮比の変更要求が、可変圧縮比内燃機関1の圧縮比をより低い圧縮比とする要求か否かが判断される。即ち、可変圧縮比内燃機関1の圧縮比をより低い圧縮比とすることで、可変圧縮比内燃機関1においてノッキングを回避する必要があるか否かを判断する。該圧縮比の変更要求が、可変圧縮比内燃機関1の圧縮比をより低い圧縮比とする要求である場合は、S302へ進む。該圧縮比の変更要求が、可変圧縮比内燃機関1の圧縮比をより低い圧縮比とする要求でない場合は、S304へ進む。   In this control, if it is determined in S101 that the operating state of the variable compression ratio internal combustion engine 1 is a state where a change in the compression ratio is required, the process proceeds to S301. In S301, it is determined whether the request for changing the compression ratio is a request for setting the compression ratio of the variable compression ratio internal combustion engine 1 to a lower compression ratio. That is, by setting the compression ratio of the variable compression ratio internal combustion engine 1 to a lower compression ratio, it is determined whether it is necessary to avoid knocking in the variable compression ratio internal combustion engine 1. If the request to change the compression ratio is a request to set the compression ratio of the variable compression ratio internal combustion engine 1 to a lower compression ratio, the process proceeds to S302. When the request to change the compression ratio is not a request to set the compression ratio of the variable compression ratio internal combustion engine 1 to a lower compression ratio, the process proceeds to S304.

S302では、吸気側可変動弁機構14aおよび排気側可変動弁機構14bが稼動しているか否かが、即ち流量調整弁35が開弁状態となって、それぞれの可変動弁機構へ潤滑油が供給されているか否かが判断される。両可変動弁機構が稼動していないと判断されると、S103へ進み、両可変動弁機構が稼動している場合は、S303へ進む。S303では、流量調整弁35を閉弁して両可変動弁機構への潤滑油の供給を一時停止し、両可変動弁機構の動作を一時停止させる。S303の処理が終了すると、S103へ進む。   In S302, whether or not the intake side variable valve mechanism 14a and the exhaust side variable valve mechanism 14b are operating, that is, the flow rate adjustment valve 35 is opened, and the lubricating oil is supplied to each variable valve mechanism. It is determined whether or not it is supplied. If it is determined that both variable valve mechanisms are not operating, the process proceeds to S103, and if both variable valve mechanisms are operated, the process proceeds to S303. In S303, the flow rate adjustment valve 35 is closed to temporarily stop the supply of lubricating oil to both variable valve mechanisms, and the operations of both variable valve mechanisms are temporarily stopped. When the process of S303 ends, the process proceeds to S103.

また、S304では、吸気側可変動弁機構14aおよび排気側可変動弁機構14bが稼動しているか否かが判断される。両可変動弁機構が稼動していないと判断されると、S103へ進み、両可変動弁機構が稼動している場合は、両可変動弁機構の稼動が停止するまで、S304の処理が繰り返される。   In S304, it is determined whether the intake side variable valve mechanism 14a and the exhaust side variable valve mechanism 14b are operating. If it is determined that both variable valve mechanisms are not operating, the process proceeds to S103. If both variable valve mechanisms are operating, the process of S304 is repeated until the operations of both variable valve mechanisms are stopped. It is.

S103からS109までの処理については、図4に示す潤滑油供給制御のフローチャートにおける処理と同一の処理が行われる。S109の処理が終了すると、S304へ進む。S304では、吸気側可変動弁機構14aおよび排気側可変動弁機構14bが一時停止状態であるか否か、即ちS303の処理によって吸気側可変動弁機構14aおよび排気側可変動弁機構14bが一時停止されているか否かが判断される。両可変動弁機構が一時停止状態にあると判断されると、S305に進み、一時停止状態にある両可変動弁機構を再稼働させて、吸気弁16および排気弁17が目標とする開閉特性を示す状態とする。S305の処理が終了すると、本制御を終了する。また、S304において、両可変動弁機構が一時停止状態にないと判断されると、本制御を終了する。   About the process from S103 to S109, the process same as the process in the flowchart of the lubricating oil supply control shown in FIG. 4 is performed. When the process of S109 ends, the process proceeds to S304. In S304, whether or not the intake-side variable valve mechanism 14a and the exhaust-side variable valve mechanism 14b are temporarily stopped, that is, the intake-side variable valve mechanism 14a and the exhaust-side variable valve mechanism 14b are temporarily set by the processing of S303. It is determined whether or not it is stopped. If it is determined that both variable valve mechanisms are in a temporarily stopped state, the process proceeds to S305, in which both variable valve mechanisms in the temporarily stopped state are restarted, and the opening / closing characteristics targeted by the intake valve 16 and the exhaust valve 17 Is in a state indicating. When the process of S305 ends, this control ends. In S304, when it is determined that both variable valve mechanisms are not in the temporarily stopped state, this control is terminated.

本制御によると、図4に示す潤滑油供給制御と同様に、可変圧縮比機構関連部位の摩耗を抑制しながらも、可変圧縮比機構関連部位に供給すべき潤滑油量を可及的に減量することになるため、ポンプ23の仕事量を低減し、以て可変圧縮比内燃機関1の機関負荷を低
減することが可能となる。
According to this control, as in the case of the lubricant supply control shown in FIG. 4, the amount of lubricant to be supplied to the variable compression ratio mechanism-related part is reduced as much as possible while suppressing wear of the variable compression ratio mechanism-related part. Therefore, the work amount of the pump 23 can be reduced, and the engine load of the variable compression ratio internal combustion engine 1 can be reduced.

更に、可変圧縮比内燃機関1の圧縮比を変更する要求がある場合であっても、その要求が圧縮比を低くする要求である場合は、可変圧縮比内燃機関1の圧縮比の変更を吸排気弁の開閉特性の変更より優先的に行い、その要求が圧縮比を高くする要求である場合は、吸排気弁の開閉特性の変更を可変圧縮比内燃機関1の圧縮比の変更より優先的に行うことになる。   Further, even when there is a request to change the compression ratio of the variable compression ratio internal combustion engine 1, if the request is a request to lower the compression ratio, the change in the compression ratio of the variable compression ratio internal combustion engine 1 is absorbed. If the request is made in preference to the change in the opening / closing characteristics of the exhaust valve and the request is to increase the compression ratio, the change in the opening / closing characteristics of the intake / exhaust valve has priority over the change in the compression ratio of the variable compression ratio internal combustion engine 1. Will be done.

これにより、吸排気弁の開閉特性の変更より圧縮比の変更が優先されることで、可変圧縮比内燃機関1におけるノッキングがより確実に回避され得る。また、吸排気弁の開閉特性の変更が圧縮比の変更より優先されることで、量に限りのある潤滑油を効率的に使用し、可変圧縮比内燃機関1の機関出力やエミッションの悪化を可及的に抑制するとともに、圧縮比の変更をすることが可能となる。即ち、可変圧縮比内燃機関1の運転状態に基づいて、潤滑油を優先的に供給する部位を変更することで、可変圧縮比内燃機関1の運転状態をより良好に保つことが可能となる。   Thereby, the change in the compression ratio is given priority over the change in the opening / closing characteristics of the intake / exhaust valves, so that knocking in the variable compression ratio internal combustion engine 1 can be avoided more reliably. In addition, since the change in the open / close characteristics of the intake / exhaust valve has priority over the change in the compression ratio, the limited amount of lubricating oil can be used efficiently, and the engine output and emission of the variable compression ratio internal combustion engine 1 can be reduced. While suppressing as much as possible, it becomes possible to change the compression ratio. That is, it is possible to keep the operating state of the variable compression ratio internal combustion engine 1 better by changing the portion that preferentially supplies the lubricating oil based on the operating state of the variable compression ratio internal combustion engine 1.

本発明の実施の形態に係る圧縮比が変更可能である可変圧縮比内燃機関において、圧縮比を変更可能とする機構の構成を示す図である。It is a figure which shows the structure of the mechanism which can change a compression ratio in the variable compression ratio internal combustion engine which can change the compression ratio which concerns on embodiment of this invention. 本発明の実施の形態に係る可変圧縮比内燃機関において圧縮比が変更される推移を概略的に示す図である。It is a figure which shows roughly the transition in which the compression ratio is changed in the variable compression ratio internal combustion engine which concerns on embodiment of this invention. 本発明の実施の形態に係る可変圧縮比内燃機関の概略構成を示す図である。1 is a diagram showing a schematic configuration of a variable compression ratio internal combustion engine according to an embodiment of the present invention. 本発明の実施の形態に係る可変圧縮比内燃機関において、圧縮比を変更可能とする機構に潤滑油を供給する潤滑油供給制御を示す制御フローチャートである。4 is a control flowchart showing a lubricant supply control for supplying a lubricant to a mechanism capable of changing a compression ratio in the variable compression ratio internal combustion engine according to the embodiment of the present invention. 図5(a)および(b)は、本発明の実施の形態に係る可変圧縮比内燃機関における潤滑油の供給経路を概略的に示した図である。FIGS. 5 (a) and 5 (b) are diagrams schematically showing a lubricating oil supply path in the variable compression ratio internal combustion engine according to the embodiment of the present invention. 図6(a)および(b)は、本発明の実施の形態に係る可変圧縮比内燃機関における潤滑油の供給経路を概略的に示した第二の図である。6 (a) and 6 (b) are second diagrams schematically showing a lubricating oil supply path in the variable compression ratio internal combustion engine according to the embodiment of the present invention. 図7(a)、(b)および(c)は、本発明の実施の形態に係る可変圧縮比内燃機関における潤滑油の供給経路を概略的に示した第三の図である。FIGS. 7A, 7B, and 7C are third diagrams schematically showing a lubricating oil supply path in the variable compression ratio internal combustion engine according to the embodiment of the present invention. 本発明の実施の形態に係る可変圧縮比内燃機関において、圧縮比を変更可能とする機構に潤滑油を供給する潤滑油供給制御を示す第二の制御フローチャートである。FIG. 6 is a second control flowchart showing a lubricant supply control for supplying the lubricant to a mechanism capable of changing the compression ratio in the variable compression ratio internal combustion engine according to the embodiment of the present invention. 本発明の実施の形態に係る可変圧縮比内燃機関において、圧縮比を変更可能とする機構に潤滑油を供給する潤滑油供給制御を示す第三の制御フローチャートである。FIG. 9 is a third control flowchart showing a lubricant supply control for supplying a lubricant to a mechanism capable of changing the compression ratio in the variable compression ratio internal combustion engine according to the embodiment of the present invention.

符号の説明Explanation of symbols

1・・・・可変圧縮比内燃機関
2・・・・気筒
3・・・・シリンダブロック
4・・・・クランクケース
5・・・・カム収納孔
8・・・・軸受収納孔
9・・・・制御軸
9a・・・・軸部
9b・・・・カム部
9c・・・・可動軸受部
14a・・・・吸気側可変動弁機構
14b・・・・排気側可変動弁機構
16・・・・吸気弁
17・・・・排気弁
23・・・・ポンプ
25・・・・油圧センサ
27・・・・オイルホール用供給枝管
28・・・・可変圧縮比機構用供給枝管
29・・・・可変動弁機構用供給枝管
30・・・・潤滑油供給本管
31・・・・ECU
32・・・・オイルホール
33・・・・流量調整弁
34・・・・バイパス枝管
35・・・・流量調整弁
DESCRIPTION OF SYMBOLS 1 ... Variable compression ratio internal combustion engine 2 ... Cylinder 3 ... Cylinder block 4 ... Crankcase 5 ... Cam accommodation hole 8 ... Bearing accommodation hole 9 ... · Control shaft 9a ··· Shaft portion 9b ··· Cam portion 9c ··· Movable bearing portion 14a · · · Intake side variable valve mechanism 14b · · · Exhaust side variable valve mechanism 16 ··・ ・ Intake valve 17 ・ ・ ・ ・ Exhaust valve 23 ・ ・ ・ ・ Pump 25 ・ ・ ・ ・ Hydraulic sensor 27 ・ ・ ・ ・ Supply branch pipe for oil hole 28 ・ ・ ・ ・ Supply branch pipe for variable compression ratio mechanism 29 ・... Supply branch pipe for variable valve mechanism 30 ... Lubricant supply main pipe 31 ... ECU
32 ... Oil hole 33 ... Flow control valve 34 ... Bypass branch 35 ... Flow control valve

Claims (6)

軸受部で支持され且つ内燃機関の機関要素と連結された制御軸を駆動させることにより、該内燃機関の圧縮比を変更する圧縮比制御手段と、
前記制御軸または前記軸受部に潤滑油を供給する潤滑油供給手段と、
前記内燃機関の圧縮比の変更を開始する直前又は変更開始時からの所定期間において、前記潤滑油供給手段によって前記制御軸または前記軸受部へ供給される潤滑油量を、前記制御軸の停止時の該潤滑油供給量より増量する潤滑油供給制御手段と、を備えることを特徴とする可変圧縮比内燃機関。
Compression ratio control means for changing the compression ratio of the internal combustion engine by driving a control shaft supported by the bearing portion and connected to the engine element of the internal combustion engine;
Lubricating oil supply means for supplying lubricating oil to the control shaft or the bearing portion;
Immediately before starting the change of the compression ratio of the internal combustion engine or during a predetermined period from the start of the change, the amount of lubricating oil supplied to the control shaft or the bearing portion by the lubricating oil supply means is determined when the control shaft is stopped. And a lubricating oil supply control means for increasing the lubricating oil supply amount of the variable compression ratio internal combustion engine.
前記圧縮比制御手段は、軸受部で支持され且つシリンダブロックおよびクランクケースと連結された制御軸を回転駆動させることにより、該シリンダブロックと該クランクケースとを相対移動させて前記内燃機関の圧縮比を変更することを特徴とする請求項1に記載の可変圧縮比内燃機関。 The compression ratio control means rotates the control shaft supported by the bearing portion and connected to the cylinder block and the crankcase, thereby moving the cylinder block and the crankcase relative to each other to compress the compression ratio of the internal combustion engine. The variable compression ratio internal combustion engine according to claim 1, wherein: 前記潤滑油供給制御手段は、更に、前記所定期間の経過後であって前記制御軸が回転駆動されているときに、前記潤滑油供給手段によって前記制御軸または前記軸受部へ供給される潤滑油量を減量することを特徴とする請求項1又は請求項2に記載の可変圧縮比内燃機関。 The lubricating oil supply control means is further configured to supply the lubricating oil supplied to the control shaft or the bearing portion by the lubricating oil supply means when the control shaft is driven to rotate after the elapse of the predetermined period. 3. The variable compression ratio internal combustion engine according to claim 1, wherein the amount is reduced. 前記潤滑油供給手段内の潤滑油の圧力、または該潤滑油供給手段と接続される潤滑油供給通路内の潤滑油の圧力を検出する潤滑油圧力検出手段を、更に備え、
前記潤滑油圧力検出手段によって検出される圧力が所定の圧力より低いときは、前記圧縮比制御手段による前記内燃機関の圧縮比の変更を禁止することを特徴とする請求項1から請求項3の何れかに記載の可変圧縮比内燃機関。
Lubricating oil pressure detection means for detecting the pressure of the lubricating oil in the lubricating oil supply means or the pressure of the lubricating oil in the lubricating oil supply passage connected to the lubricating oil supply means,
4. The change in the compression ratio of the internal combustion engine by the compression ratio control means is prohibited when the pressure detected by the lubricating oil pressure detection means is lower than a predetermined pressure. The variable compression ratio internal combustion engine according to any one of the above.
前記潤滑油供給手段によって前記制御軸または前記軸受部に供給される潤滑油と供給経路の一部を同一とする潤滑油が供給される前記内燃機関の機関要素を、更に備え、
前記内燃機関の運転状態に基づいて、前記潤滑油供給手段による前記制御軸または前記軸受部への潤滑油供給と、前記内燃機関の機関要素への潤滑油供給との何れを優先するかを決定することを特徴とする請求項1から請求項3の何れかに記載の可変圧縮比内燃機関。
An engine element of the internal combustion engine that is supplied with lubricating oil having the same part of the supply path as the lubricating oil supplied to the control shaft or the bearing portion by the lubricating oil supply means;
Based on the operating state of the internal combustion engine, it is determined whether to give priority to the supply of lubricant to the control shaft or the bearing portion by the lubricant supply means or the supply of lubricant to the engine element of the internal combustion engine. The variable compression ratio internal combustion engine according to any one of claims 1 to 3, wherein the variable compression ratio internal combustion engine is provided.
前記内燃機関の機関要素は、供給された潤滑油によって、該内燃機関の吸気弁もしくは排気弁の少なくとも何れかの開閉特性を変更する吸排気弁制御手段であって、
前記内燃機関の運転状態に基づいて、前記吸排気弁制御手段への潤滑油の供給を、前記潤滑油供給手段による前記制御軸または前記軸受部への潤滑油供給より優先して行うことを特徴とする請求項5に記載の可変圧縮比内燃機関。
The engine element of the internal combustion engine is an intake / exhaust valve control means for changing an opening / closing characteristic of at least one of an intake valve or an exhaust valve of the internal combustion engine by supplied lubricating oil,
The supply of the lubricating oil to the intake / exhaust valve control means is performed with priority over the supply of the lubricating oil to the control shaft or the bearing portion by the lubricating oil supply means based on the operating state of the internal combustion engine. The variable compression ratio internal combustion engine according to claim 5.
JP2003303205A 2003-08-27 2003-08-27 Variable compression ratio internal combustion engine Expired - Lifetime JP4103731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303205A JP4103731B2 (en) 2003-08-27 2003-08-27 Variable compression ratio internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303205A JP4103731B2 (en) 2003-08-27 2003-08-27 Variable compression ratio internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005069181A JP2005069181A (en) 2005-03-17
JP4103731B2 true JP4103731B2 (en) 2008-06-18

Family

ID=34407267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303205A Expired - Lifetime JP4103731B2 (en) 2003-08-27 2003-08-27 Variable compression ratio internal combustion engine

Country Status (1)

Country Link
JP (1) JP4103731B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993103B2 (en) * 2007-07-26 2012-08-08 トヨタ自動車株式会社 Variable compression ratio internal combustion engine
JP5077252B2 (en) * 2009-01-29 2012-11-21 トヨタ自動車株式会社 Variable compression ratio internal combustion engine
DE102011104934A1 (en) * 2011-06-21 2012-12-27 Daimler Ag An adjusting device for variably setting a compression ratio of an internal combustion engine
WO2013080673A1 (en) * 2011-11-29 2013-06-06 日産自動車株式会社 Lubrication structure for variable compression ratio internal combustion engine
JP5768775B2 (en) * 2012-07-19 2015-08-26 トヨタ自動車株式会社 Internal combustion engine
JP6201791B2 (en) * 2014-02-05 2017-09-27 トヨタ自動車株式会社 Internal combustion engine
WO2020144789A1 (en) * 2019-01-10 2020-07-16 日産自動車株式会社 Internal combustion engine
JP7334299B1 (en) * 2022-03-31 2023-08-28 本田技研工業株式会社 Variable compression ratio device for internal combustion engine

Also Published As

Publication number Publication date
JP2005069181A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4497018B2 (en) Variable compression ratio internal combustion engine
RU2407904C2 (en) Method of adjusting mechanical compression ratio and actual compression ratio start point (versions)
KR100980863B1 (en) Variable compression apparatus for vehicle engine
CN105189950B (en) To the machine oil feeding mechanism of engine supply machine oil
JP4259545B2 (en) Spark ignition internal combustion engine
JP5720857B2 (en) Control device and control method for variable compression ratio internal combustion engine
JP4428442B2 (en) Spark ignition internal combustion engine
RU2411381C2 (en) Internal combustion engine with spark ignition (versions)
JP2002115571A (en) Variable compression ratio mechanism for internal combustion engine
JP2004197582A (en) Intake controller for engine
JP3168537B2 (en) Intake and exhaust valve control system for internal combustion engine
JP4103731B2 (en) Variable compression ratio internal combustion engine
EP1571301A2 (en) Valve characteristic changing apparatus for internal combustion engine
CN105189977A (en) Control device for multi-cylinder engine
RU2439354C2 (en) Internal combustion engine with spark ignition
JP2008157128A (en) Spark ignition type internal combustion engine
RU2434156C1 (en) Internal combustion engine with spark ignition
RU2436981C2 (en) Internal combustion engine with spark ignition
JP2010169066A (en) Control device for vehicle
JP4631830B2 (en) Variable compression ratio internal combustion engine
JP2009008016A (en) Spark ignition internal combustion engine
JP4172496B2 (en) Variable compression ratio internal combustion engine
JP4007350B2 (en) Control method of variable compression ratio mechanism
JP2006207563A (en) Variable compression ratio internal combustion engine
JP4714610B2 (en) Variable compression ratio device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6