JP4103626B2 - Electric fastening tool - Google Patents

Electric fastening tool Download PDF

Info

Publication number
JP4103626B2
JP4103626B2 JP2003044012A JP2003044012A JP4103626B2 JP 4103626 B2 JP4103626 B2 JP 4103626B2 JP 2003044012 A JP2003044012 A JP 2003044012A JP 2003044012 A JP2003044012 A JP 2003044012A JP 4103626 B2 JP4103626 B2 JP 4103626B2
Authority
JP
Japan
Prior art keywords
oil pulse
pulse mechanism
heat
air
fastening tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003044012A
Other languages
Japanese (ja)
Other versions
JP2004249423A (en
Inventor
貴啓 大久保
隆雄 田辺
光雄 小倉
真一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2003044012A priority Critical patent/JP4103626B2/en
Publication of JP2004249423A publication Critical patent/JP2004249423A/en
Application granted granted Critical
Publication of JP4103626B2 publication Critical patent/JP4103626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電動モータにより回転駆動されて衝撃トルクを発生するオイルパルス機構部を備えた電動式締結工具に関するものである。
【0002】
【従来の技術】
図6に従来のオイルパルス機構部を備えたエア式締結工具の一例を示す。このエア式締結工具はハウジング2、外枠6内に圧縮空気により回転するエアモータ8、該エアモータ8の前方に遊星歯車機構部部3、オイルパルス機構部4が連設されている。オイルパルス機構部4は、エアモータ8により回転されるライナ41に形成した空洞内にオイルを充填、密閉し、ライナ41内に同軸に嵌挿した出力軸42に2個の羽根挿入溝43を設け、羽根挿入溝43内に羽根44を嵌挿し、羽根44を常時出力軸42の外周方向にスプリング47で付勢してライナ41に当接するように構成している。
【0003】
ライナ41には、内周面に山形状に突出した4個のシール部が形成されており(図示せず)、このうち、羽根44の先端が接してライナ41に形成した空洞内をシールする2個のシール部は、相互に180°回転対象となるように設定し、出力軸42の外周面に形成したシール部46に接してライナ41に形成した空洞内をシールする他の2個のシール部は、前記2個のシール部が相互に180°回転対象となる中間に、相互に180°回転非対象となるように設定している。また、ライナ41内に同軸に嵌挿した出力軸42は、2個の羽根44を羽根挿入溝43内に嵌挿するとともに相互に180°回転対象となるように設定し、さらに、外周面に山形状に突出した2個のシール部を前記2個の相互に180°回転対象となる羽根44の中間にそれぞれ180°回転非対象となるように形成し、かつ、ライナ41に形成した2個のシール部と接してライナ41に形成した空洞をシールするように設定する。これにより、エアモータ8にてライナ41を回転駆動することにより、ライナ41のシール部と出力軸42の羽根44の先端が合致しライナ41のシール部と出力軸42のシール部が合致した時、ライナ41に形成した空洞は高圧室と低圧室の4室に分割され、ライナ41の出力軸42に対する相対的な1回転に対し、出力軸42に1回の間欠的な衝撃トルクを発生することができる。また、エアモータ8を逆転した時も、同じくライナ41の出力軸42に対する相対的な1回転に対し、出力軸42に1回の間欠的な衝撃トルクを発生することができる(例えば、特許文献1参照。)。
【0004】
この方式を用いたオイルパルス機構部としては、金属同士の衝突がないため従来から低騒音型として用いられている。
【0005】
このオイルパルス機構部4による締結工具はオイル圧縮時にオイルが高圧室から低圧室に押し出されるため摩擦が発生し、また、前記羽根44が前記ライナ41と摺動する際の摩擦抵抗が生じる。これらによる発熱のため内部のオイルが温度上昇し、オイルの粘度が変化し出力変動する。最悪、発熱によるオイルパルス機構部4内の圧力上昇によりオイルが漏れるという問題がある。
【0006】
エアモータ8を用いたエア式締結工具ではエアモータ8を回転させる圧縮空気を利用し、エアモータ8回転後の排気をオイルパルス機構部4の外周に流している。圧縮空気は断熱膨張するため冷たく、この冷たい空気でオイルパルス機構部4を強制冷却し、発熱の問題を解決していた。しかし、エア式締結工具はコンプレッサ、エアホースを必要とするため取り扱いが不便であった。
【0007】
電動式締結工具においては取り扱いが容易だが、エア式締結工具に有るような冷たい空気は存在せず、オイルパルス機構部4を強制的に冷却することはできない。また、電動モータ1の回転子11にファン12を取り付け、このファン12により発生する風をオイルパルス機構部4にあて、冷却を試みた場合でも、電動モータ1の発熱もあり風が圧縮空気のような冷たい風にはならないため、このファン風のみでオイルパルス機構部4を強制冷却することはできない。
【0008】
以上のように電動式締結工具は発熱を解消できず、発熱がオイルパルス機構部4の許容温度範囲内に収まるように、締付能力の限定、連続作業の制約が必要となっていた。
【特許文献1】
実公平4−51988号公報
【0009】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、作業中に発熱するオイルパルス機構部の温度を許容範囲内に収まるように放熱を促進し、締付能力の限定、連続作業の制約等が無い取り扱いの容易な電動式締結工具を提供することである。
【0010】
【課題を解決するための手段】
本発明は、電動モータにより回転駆動されて衝撃トルクを発生するオイルパルス機構部を備えた電動式締結工具において、前記オイルパルス機構部の外周に放熱用突起を設けたることを特徴とする。
【0011】
前記放熱用突起は、らせん形状とすること、隣り合う突起同士の間隔はオイルパルス機構部を収納する外枠の内壁と放熱用突起外周とのスキマより大きく設定すること、さらには、オイルパルス機構部の軸芯と平行なスリットを設けたことを特徴とする。
【0012】
また、前記外枠に、放熱用突起の両端の位置に合わせて風窓を設けたことを特徴とする。
【0013】
【発明の実施の形態】
以下図1〜図5の実施例を参照して本発明を説明する。図1は、本発明に係わる電動式締結工具の要部断面図である。
【0014】
概略構造はハウジング2内に後方より電動モータ1、遊星歯車機構部3、オイルパルス機構部4、放熱用突起5、外枠6が配置されている。オイルパルス機構部4は、オイルの圧縮を利用した公知の形式のものである。
【0015】
充電可能の電池(図示省略)、若しくは通常の交流電源(図示省略)によりモータ1が駆動し、モータ1の動力はモータ1の先端に連結されているピニオン31を介して遊星歯車機構部3に伝達され、オイルパルス機構部4を駆動する。オイルパルス機構部4は、電動モータ1により回転されるライナ41に形成した空洞内にオイルを充填、密閉し、ライナ41内に同軸に嵌挿した出力軸42に2個の羽根挿入溝43を設け、羽根挿入溝43内に羽根44を嵌挿し、羽根44を常時出力軸42の外周方向に付勢してライナ41に当接するように構成し、ライナ41を回転駆動することにより、ライナ41の内周面に形成したシール部と出力軸42の外周面に形成したシール部46が合致した時オイルパルス機構部4内に圧力が発生して、出力軸42から衝撃トルクとして発生され、先端工具(図示省略)を介して締付作業を行う。
【0016】
前記オイルパルス機構部4の運転により、該オイルパルス機構部4内ではオイルが高圧室から低圧室へ押し出される際の摩擦、前記羽根44と前記ライナ41の摺動摩擦により発熱してしまう。この熱を前記オイルパルス機構部4から放熱させるため、図2のように前記オイルパルス機構部4の外周へ外形表面積が大きくなるように放熱用突起5を設ける。該放熱用突起5は、軸方向に直線もしくは円周方向に形成しても良いが、ある一定の角度のついたらせん状に設定することで最も表面積を大きくすることができ、締付作業中に発熱する前記オイルパルス機構部4の放熱を促進させることができる。
【0017】
尚、前記放熱用突起5は、前記オイルパルス機構部4のライナケース45に直接加工し構成しても良いし、金属製の別部品として前期オイルパルス機構部4の外周(ライナケース45の外周)に圧入しても同様の効果が得られる。
【0018】
図3に、図1のA部拡大図を示してある。前記放熱用突起5によって形成される溝部51の溝幅Bは、前記オイルパルス機構部4を収納する外枠6の内壁と前記放熱用突起5の外形により構成されるスキマCより大きくなるように設定する。前記放熱用突起5は、図1、図2の説明で述べたように放熱の役目があるため前記外枠6に伝熱しやすいように極力前記スキマCは小さくした方が良い。このように構成することで、前記オイルパルス機構部4が回転した時、前記外枠6の内壁は相対的に逆方向へ動いたのと同じことになり、溝部51内の空気は空気の持つ粘性力により相対速度が発生し、前記オイルパルス機構部4の回転方向とは逆方向の流れが発生する。この空気は抵抗の低い方を流れようとし、前記外枠6内の構成が前記スキマCより前記溝幅Bのほうが大きくなっているため、溝部51内を優先して流れ、図2の矢印(オイルパルス機構部4が右回転時)のように前記外枠6の中にある空気は前記放熱用突起5のらせん形状に沿って強制的に移動させられる。従って、前記外郭部6内に空気の流れを形成して、前記放熱用突起5から放熱することができる。また、前記外枠6内の熱を撹拌することにもなり、前記外枠6に効率良く伝熱することができる。
【0019】
図2は右回転時を表しており、左回転時は、空気の流れは逆方向になる。また、前記放熱用突起5のらせん形状の溝部51の幅、角度を変更することで、空気の流れる方向、熱の撹拌力を変更することができる。
【0020】
図4は、前記放熱用突起5に前記オイルパルス機構部4の軸芯と平行にスリット52を設けた外観図である。前記オイルパルス機構部4の運転中は、前記放熱用突起5のらせん形状によって前記外枠6内に空気の流れを形成できることは図2の説明で述べたが、この空気は、らせん形状に沿って溝部51内を長時間移動させる、すなわち、らせん形状の条数(放熱用突起5の個数)を多くすると、空気の流量と前記放熱用突起5からの放熱のバランスを崩し、空気の熱量が飽和して前記放熱用突起5から空気への熱伝達量が低下し、放熱効果を低下させる恐れがある。また、この熱量の飽和した空気は、前記外枠6への伝熱を遮断する断熱材の役目をする恐れもある。これは、前記オイルパルス機構部4の運転中の回転数、らせん形状から求められる溝部51内の空気の平均流速と流量、溝部51の表面積および放熱量から計算して推定・防止することは可能である。
【0021】
らせん形状の条数(放熱用突起5の個数)を多くした時にこれを防止しつつ、さらに放熱効果を上げる方法として、図4のように前記放熱用突起5に前記オイルパルス機構部4の軸芯と平行にスリット52を設けらせん形状の溝部51を分断することで、空気の流れに沿う距離(溝部51の長さ)を短くし、スリット52を通して空気を前方もしくは後方へ水平に移動させることで熱量が飽和していない空気を確保して前記放熱用突起5から空気への熱伝達量を向上させる方法がある。図4の矢印(オイルパルス機構部4が右回転時)のように、空気をらせん形状に沿って動かすこととスリット52を通して水平に動かすことを併せ持つことで、放熱をさらに促進することができる。
【0022】
連続締付作業になると前記オイルパルス機構部4の発熱が大きくなり、前記外枠6もしくは前記外枠6内の空気に伝熱し放熱する方式の許容熱量を超えてしまう恐れがある。前記オイルパルス機構部4の外周に流れる空気は、非常に高温となり前記オイルパルス機構部4は放熱できなくなってしまう。
【0023】
よって図5のように、前記外枠6に前記放熱用突起5の両端の位置に合わせて空気の吸入、排気穴となる風窓7を設ける。前記オイルパルス機構部4を収納する前記外枠6の内壁と前記放熱用突起5の外形により構成されるスキマCを極力小さくしているため、空気は、通るときの抵抗が低い溝部51の方を流れる。そのため、両端の位置から大きく外れた前記放熱用突起5の無い位置に風窓7を設けると、前記スキマCの抵抗が高く空気の流れが悪くなってしまう。しかし、風窓7を前記外郭部6に前記放熱用突起5の両端の位置に合わせて設けることで、溝部51の上に開口する形となり前記放熱用突起5が風窓7を通過するときに、前記放熱用突起5の回転方向側の面で気圧が高くなり反対側の面で気圧が低くなりポンプ作用を発生し、溝部51内に空気を取り入れ空気の流れを形成することができる。
【0024】
よって、前記オイルパルス機構部4の回転中は常に外気を取り入れ、高温となった内気は排出するように構成され、さらに放熱を促進することができる。
【0025】
【発明の効果】
本発明によれば、オイルパルス機構部の外周へ外形表面積が大きくなるように放熱用突起を設け、該放熱用突起はらせん状になるように設定することで前記オイルパルス機構部の放熱を促進させ、前記放熱用突起の溝幅を、前記オイルパルス機構部を収納する外枠の内壁と前記放熱用突起の外形により構成されるスキマより大きくなるように設定し、該放熱用突起には前記オイルパルス機構部の軸芯に対して水平にスリットを設けることで、前記外枠内に空気の流れを形成し放熱を促進させることができる。
【0026】
更に前記外枠に前記放熱用突起の両端の位置に合わせて設けた空気の吸入・排気穴となる風窓から高温になった空気を前記放熱用突起の形状に沿って強制的に外枠内部を移動させ、排気するように設定することで、締付能力の限定、連続作業の制約等が無い取り扱いの容易な電動式締結工具を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す断面図である。
【図2】本発明の実施例を示す断面図である。
【図3】図1のA部拡大図である。
【図4】本発明の実施例を示すオイルパルス機構部の外観側面図である。
【図5】本発明の実施例を示す断面図である。
【図6】従来のオイルパルス機構部を備えたエア式締結工具を示す断面図である。
【符号の説明】
1は電動モータ、2はハウジング、3は遊星歯車機構部、4はオイルパルス機構部、5は放熱用突起、6は外枠、7は風窓、8はエアモータ、11は回転子、12はファン、31はピニオン、41はライナ、42は出力軸、43は羽根挿入溝、44は羽根、45はライナケース、46はシール部、47はスプリング、51は溝部、52はスリットである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric fastening tool including an oil pulse mechanism that is rotationally driven by an electric motor to generate impact torque.
[0002]
[Prior art]
FIG. 6 shows an example of a pneumatic fastening tool provided with a conventional oil pulse mechanism. In this pneumatic fastening tool, an air motor 8 that is rotated by compressed air in a housing 2 and an outer frame 6, and a planetary gear mechanism portion 3 and an oil pulse mechanism portion 4 are connected in front of the air motor 8. The oil pulse mechanism 4 fills and seals oil in a cavity formed in a liner 41 rotated by an air motor 8, and provides two blade insertion grooves 43 on an output shaft 42 that is coaxially inserted in the liner 41. The blades 44 are fitted into the blade insertion grooves 43, and the blades 44 are always urged by the springs 47 in the outer peripheral direction of the output shaft 42 so as to come into contact with the liner 41.
[0003]
The liner 41 is formed with four seal portions (not shown) projecting in a mountain shape on the inner peripheral surface, and of these, the tip of the blade 44 contacts and seals the inside of the cavity formed in the liner 41. The two seal portions are set so as to rotate 180 ° relative to each other, and are in contact with the seal portion 46 formed on the outer peripheral surface of the output shaft 42 to seal the inside of the cavity formed in the liner 41. The seal portion is set so that the two seal portions are not subject to rotation by 180 ° between the two seal portions in the middle. Further, the output shaft 42 fitted coaxially in the liner 41 is set so that the two blades 44 are inserted into the blade insertion groove 43 and are mutually rotated by 180 °. Two seal portions protruding in a mountain shape are formed in the middle of the two blades 44 that are 180 ° rotation targets so as not to rotate 180 °, and two seal portions 41 are formed on the liner 41. The cavity formed in the liner 41 in contact with the seal portion is set to be sealed. Accordingly, when the liner 41 is rotated by the air motor 8, the seal portion of the liner 41 and the tip of the blade 44 of the output shaft 42 are matched, and the seal portion of the liner 41 and the seal portion of the output shaft 42 are matched. The cavity formed in the liner 41 is divided into four chambers, a high pressure chamber and a low pressure chamber, and generates one intermittent impact torque on the output shaft 42 for one rotation relative to the output shaft 42 of the liner 41. Can do. Further, when the air motor 8 is reversed, one intermittent impact torque can be generated on the output shaft 42 for one rotation relative to the output shaft 42 of the liner 41 (for example, Patent Document 1). reference.).
[0004]
An oil pulse mechanism using this method has been conventionally used as a low noise type because there is no collision between metals.
[0005]
The fastening tool by the oil pulse mechanism 4 generates friction because the oil is pushed out from the high pressure chamber to the low pressure chamber when the oil is compressed, and frictional resistance is generated when the blade 44 slides with the liner 41. Due to the heat generated by these, the temperature of the internal oil rises, the viscosity of the oil changes and the output fluctuates. At worst, there is a problem that oil leaks due to an increase in pressure in the oil pulse mechanism 4 due to heat generation.
[0006]
In the pneumatic fastening tool using the air motor 8, compressed air that rotates the air motor 8 is used, and the exhaust gas after rotating the air motor 8 flows to the outer periphery of the oil pulse mechanism unit 4. Since the compressed air is adiabatically expanded, the compressed air is cold, and the oil pulse mechanism 4 is forcibly cooled with the cold air to solve the problem of heat generation. However, the pneumatic fastening tool is inconvenient to handle because it requires a compressor and an air hose.
[0007]
The electric fastening tool is easy to handle, but there is no cold air as in the pneumatic fastening tool, and the oil pulse mechanism 4 cannot be forcibly cooled. Further, even when a fan 12 is attached to the rotor 11 of the electric motor 1 and the wind generated by the fan 12 is applied to the oil pulse mechanism 4 to attempt cooling, the electric motor 1 generates heat and the wind is compressed air. Since it does not become such a cold wind, the oil pulse mechanism unit 4 cannot be forcibly cooled only by this fan wind.
[0008]
As described above, the electric fastening tool cannot eliminate heat generation, and it is necessary to limit the tightening capability and limit the continuous operation so that the heat generation is within the allowable temperature range of the oil pulse mechanism unit 4.
[Patent Document 1]
Japanese Utility Model Publication No. 4-51988 [0009]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to promote heat dissipation so as to keep the temperature of the oil pulse mechanism that generates heat during work within an allowable range, and it is easy to handle without limitation of tightening ability and restriction of continuous work. Is to provide a simple electric fastening tool.
[0010]
[Means for Solving the Problems]
The present invention is characterized in that, in an electric fastening tool including an oil pulse mechanism portion that is rotationally driven by an electric motor and generates an impact torque, a heat dissipation protrusion is provided on the outer periphery of the oil pulse mechanism portion.
[0011]
The heat dissipating protrusion has a spiral shape, and the interval between adjacent protrusions is set to be larger than the clearance between the inner wall of the outer frame that houses the oil pulse mechanism and the outer periphery of the heat dissipating protrusion, and further, the oil pulse mechanism A slit parallel to the axis of the part is provided.
[0012]
The outer frame may be provided with wind windows in accordance with the positions of both ends of the heat dissipation protrusion.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the embodiments shown in FIGS. FIG. 1 is a cross-sectional view of a main part of an electric fastening tool according to the present invention.
[0014]
In the schematic structure, an electric motor 1, a planetary gear mechanism portion 3, an oil pulse mechanism portion 4, a heat dissipation protrusion 5, and an outer frame 6 are arranged in the housing 2 from the rear. The oil pulse mechanism unit 4 is of a known type utilizing oil compression.
[0015]
The motor 1 is driven by a rechargeable battery (not shown) or a normal AC power supply (not shown), and the power of the motor 1 is transmitted to the planetary gear mechanism 3 via a pinion 31 connected to the tip of the motor 1. Then, the oil pulse mechanism 4 is transmitted. The oil pulse mechanism unit 4 fills and seals oil in a cavity formed in a liner 41 rotated by the electric motor 1, and has two blade insertion grooves 43 on an output shaft 42 that is coaxially inserted in the liner 41. The blade 41 is fitted and inserted into the blade insertion groove 43, and the blade 44 is constantly urged in the outer peripheral direction of the output shaft 42 so as to come into contact with the liner 41. By rotating the liner 41, the liner 41 is driven. When the seal portion formed on the inner peripheral surface of the shaft and the seal portion 46 formed on the outer peripheral surface of the output shaft 42 coincide with each other, pressure is generated in the oil pulse mechanism portion 4, and is generated as an impact torque from the output shaft 42. Tightening work is performed via a tool (not shown).
[0016]
Due to the operation of the oil pulse mechanism 4, heat is generated in the oil pulse mechanism 4 due to friction when oil is pushed out from the high pressure chamber to the low pressure chamber and sliding friction between the blades 44 and the liner 41. In order to dissipate this heat from the oil pulse mechanism 4, a heat dissipating protrusion 5 is provided on the outer periphery of the oil pulse mechanism 4 so as to increase the outer surface area as shown in FIG. 2. The heat-dissipating protrusions 5 may be formed in a straight line or a circumferential direction in the axial direction, but the surface area can be maximized by setting it in a spiral shape with a certain angle. The heat release of the oil pulse mechanism 4 that generates heat can be promoted.
[0017]
The heat-dissipating protrusions 5 may be directly machined and configured on the liner case 45 of the oil pulse mechanism unit 4, or the outer periphery of the oil pulse mechanism unit 4 (the outer periphery of the liner case 45) as a separate metal part. The same effect can be obtained by press fitting.
[0018]
FIG. 3 shows an enlarged view of part A of FIG. The groove width B of the groove 51 formed by the heat radiating protrusion 5 is larger than a gap C formed by the inner wall of the outer frame 6 that houses the oil pulse mechanism 4 and the outer shape of the heat radiating protrusion 5. Set. As described in the description of FIGS. 1 and 2, the heat dissipating protrusion 5 has a role of heat dissipation. Therefore, it is preferable to make the gap C as small as possible so that heat can be easily transferred to the outer frame 6. With this configuration, when the oil pulse mechanism 4 rotates, the inner wall of the outer frame 6 moves in the opposite direction, and the air in the groove 51 has air. A relative speed is generated by the viscous force, and a flow in a direction opposite to the rotation direction of the oil pulse mechanism unit 4 is generated. This air tends to flow in the direction of lower resistance, and the structure in the outer frame 6 has a larger groove width B than the gap C. Therefore, the air flows preferentially in the groove 51, and the arrow ( The air in the outer frame 6 is forcibly moved along the helical shape of the heat-dissipating protrusion 5 as in the case of the oil pulse mechanism 4 rotating clockwise. Accordingly, an air flow can be formed in the outer shell 6 to radiate heat from the heat radiating protrusion 5. Further, the heat in the outer frame 6 is agitated, and the heat can be efficiently transferred to the outer frame 6.
[0019]
FIG. 2 shows the case of right rotation, and the air flow is reversed in the case of left rotation. In addition, by changing the width and angle of the spiral groove 51 of the heat dissipating protrusion 5, the air flowing direction and the heat stirring force can be changed.
[0020]
FIG. 4 is an external view in which a slit 52 is provided in the heat dissipation projection 5 in parallel with the axis of the oil pulse mechanism 4. While the oil pulse mechanism 4 is in operation, it has been described in the description of FIG. 2 that the air flow can be formed in the outer frame 6 by the helical shape of the heat dissipation protrusion 5. If the groove 51 is moved for a long time, that is, if the number of spiral stripes (the number of the heat dissipation protrusions 5) is increased, the balance between the air flow rate and the heat dissipation from the heat dissipation protrusions 5 is lost, and the amount of heat of the air is reduced. The amount of heat transfer from the heat dissipation protrusion 5 to the air may be reduced and the heat dissipation effect may be reduced. In addition, the air having a saturated amount of heat may serve as a heat insulating material that blocks heat transfer to the outer frame 6. This can be estimated and prevented by calculating from the rotational speed during operation of the oil pulse mechanism 4, the average flow velocity and flow rate of the air in the groove 51 obtained from the spiral shape, the surface area of the groove 51 and the heat radiation amount. It is.
[0021]
As a method of further increasing the heat dissipation effect while preventing this when the number of spiral streaks (the number of heat dissipation protrusions 5) is increased, the heat dissipation protrusion 5 has a shaft of the oil pulse mechanism 4 as shown in FIG. A slit 52 is provided in parallel with the core, and the spiral groove 51 is divided to shorten the distance along the air flow (the length of the groove 51) and to move the air horizontally forward or backward through the slit 52. There is a method of improving the amount of heat transfer from the heat dissipating projection 5 to the air by securing air in which the amount of heat is not saturated. As shown by the arrows in FIG. 4 (when the oil pulse mechanism 4 rotates clockwise), heat can be further promoted by having both the movement of the air along the spiral shape and the horizontal movement of the air through the slit 52.
[0022]
When the continuous tightening operation is performed, heat generation of the oil pulse mechanism unit 4 increases, which may exceed the allowable heat amount of the method of transferring heat to the outer frame 6 or the air in the outer frame 6 to dissipate heat. The air flowing around the outer periphery of the oil pulse mechanism 4 becomes very hot, and the oil pulse mechanism 4 cannot radiate heat.
[0023]
Therefore, as shown in FIG. 5, the outer frame 6 is provided with air windows 7 serving as air intake and exhaust holes in accordance with the positions of both ends of the heat dissipation projection 5. Since the gap C constituted by the inner wall of the outer frame 6 that houses the oil pulse mechanism 4 and the outer shape of the heat-dissipating protrusion 5 is made as small as possible, the groove 51 has a lower resistance when air passes through it. Flowing. Therefore, if the wind window 7 is provided at a position without the heat-dissipating protrusion 5 greatly deviated from the positions of both ends, the resistance of the clearance C is high and the air flow is deteriorated. However, by providing the wind window 7 in the outer shell 6 so as to match the positions of the both ends of the heat dissipation projection 5, the shape is opened on the groove 51, and when the heat dissipation protrusion 5 passes through the wind window 7, The air pressure increases on the surface on the rotation direction side of the heat dissipating protrusion 5 and the air pressure decreases on the surface on the opposite side to generate a pump action, and air can be taken into the groove 51 to form an air flow.
[0024]
Therefore, it is configured so that outside air is always taken in while the oil pulse mechanism unit 4 is rotating, and the inside air that has reached a high temperature is discharged, and heat dissipation can be further promoted.
[0025]
【The invention's effect】
According to the present invention, the heat radiating protrusion is provided on the outer periphery of the oil pulse mechanism so as to increase the outer surface area, and the heat radiating protrusion is set to be spiral to promote heat dissipation of the oil pulse mechanism. And the groove width of the heat dissipating protrusion is set to be larger than the clearance formed by the inner wall of the outer frame that houses the oil pulse mechanism and the outer shape of the heat dissipating protrusion. By providing a slit horizontally with respect to the axis of the oil pulse mechanism, an air flow can be formed in the outer frame to promote heat dissipation.
[0026]
Further, air that has become hot from a wind window serving as an air intake / exhaust hole provided in the outer frame in accordance with the positions of both ends of the heat dissipation protrusion is forced to move inside the outer frame along the shape of the heat dissipation protrusion. By setting it to be moved and exhausted, it is possible to provide an electric fastening tool that is easy to handle and has no limitation on the tightening capability and no restriction on continuous work.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an embodiment of the present invention.
FIG. 3 is an enlarged view of a portion A in FIG.
FIG. 4 is an external side view of an oil pulse mechanism showing an embodiment of the present invention.
FIG. 5 is a cross-sectional view showing an embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a pneumatic fastening tool provided with a conventional oil pulse mechanism.
[Explanation of symbols]
1 is an electric motor, 2 is a housing, 3 is a planetary gear mechanism, 4 is an oil pulse mechanism, 5 is a heat dissipation projection, 6 is an outer frame, 7 is an air window, 8 is an air motor, 11 is a rotor, and 12 is a fan , 31 is a pinion, 41 is a liner, 42 is an output shaft, 43 is a blade insertion groove, 44 is a blade, 45 is a liner case, 46 is a seal portion, 47 is a spring, 51 is a groove portion, and 52 is a slit.

Claims (4)

電動モータと、
該電動モータにより回転駆動されて衝撃トルクを発生するオイルパルス機構部と、
該オイルパルス機構部を収納する外枠と、
を備えた電動式締結工具において、
該オイルパルス機構部の表面に、該オイルパルス機構部の回転方向に対して斜めに延びる突起を設け、該突起の軸方向の両端の位置に合わせて該外枠に風窓を設け、該オイルパルス機構部が回転すると該突起に沿って空気が流れるよう構成したことを特徴とする電動締結工具。
An electric motor;
An oil pulse mechanism that is rotationally driven by the electric motor to generate impact torque;
An outer frame for housing the oil pulse mechanism,
In the electric fastening tool with
A protrusion extending obliquely with respect to the rotation direction of the oil pulse mechanism is provided on the surface of the oil pulse mechanism, and a wind window is provided in the outer frame in accordance with the positions of both ends in the axial direction of the protrusion. An electric fastening tool characterized in that air flows along the protrusion when the mechanism portion rotates.
該突起を回転方向に互いに間隔をおいて複数設けたことを特徴とする請求項1記載の電動式締結工具。The electric fastening tool according to claim 1, wherein a plurality of the protrusions are provided at intervals in the rotation direction. 該突起を軸方向に互いに間隔をおいて複数設けたことを特徴とする請求項1又は2記載の電動式締結工具。The electric fastening tool according to claim 1 or 2, wherein a plurality of the protrusions are provided at intervals in the axial direction. 該突起を軸方向及び回転方向に互いに間隔をおいて複数設け、回転方向において互いに隣合う該突起の間に形成される隙間が軸方向に並ぶことによって軸方向に延びるスリットが形成されることを特徴とする請求項1記載の電動式締結工具。A plurality of the projections are provided at intervals in the axial direction and the rotation direction, and a slit formed between the projections adjacent to each other in the rotation direction is arranged in the axial direction, thereby forming a slit extending in the axial direction. The electric fastening tool according to claim 1, wherein:
JP2003044012A 2003-02-21 2003-02-21 Electric fastening tool Expired - Fee Related JP4103626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044012A JP4103626B2 (en) 2003-02-21 2003-02-21 Electric fastening tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044012A JP4103626B2 (en) 2003-02-21 2003-02-21 Electric fastening tool

Publications (2)

Publication Number Publication Date
JP2004249423A JP2004249423A (en) 2004-09-09
JP4103626B2 true JP4103626B2 (en) 2008-06-18

Family

ID=33026846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044012A Expired - Fee Related JP4103626B2 (en) 2003-02-21 2003-02-21 Electric fastening tool

Country Status (1)

Country Link
JP (1) JP4103626B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011903B2 (en) * 2006-09-15 2012-08-29 マックス株式会社 Hand tool
JP5318663B2 (en) * 2009-05-27 2013-10-16 瓜生製作株式会社 Hydraulic torque wrench
JP5423281B2 (en) * 2009-09-25 2014-02-19 日立工機株式会社 Oil pulse tool
CN105345715B (en) * 2015-12-07 2017-03-22 苏州市纽莱克电子科技有限公司 Impact torque electric power tool and control method thereof

Also Published As

Publication number Publication date
JP2004249423A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP4103626B2 (en) Electric fastening tool
KR101326515B1 (en) Heat radiation structure of Canned motor type pump
JP3567655B2 (en) Viscous heater
JPH09123746A (en) Viscous heater
JP2003291074A (en) Impact tool
CN111934468B (en) Temperature control voltage division thread motor
JP2005014146A (en) Oil pulse impact tool
CN211231468U (en) Multifunctional high-rotation-speed air compressor
CN113991922A (en) Motor cooling system and cooling method
JP3645339B2 (en) Scroll type fluid machine
JP2010284734A (en) Oil pulse tool
JP3460454B2 (en) Viscous heater
CN213990363U (en) Three-phase asynchronous motor with heat dissipation function
CN212056682U (en) Bearing lubricating system of centrifugal machine
KR100540777B1 (en) The engine use withdraw heat of cooling system
CN115782558B (en) Walking unit
US20170226857A1 (en) Energy recovery device with heat dissipation mechanisms
CN218829410U (en) Motor heat dissipation assembly and motor
CN216904589U (en) Heat conduction type motor shaft
CN212210746U (en) Three-phase asynchronous motor cooling system
CN219197726U (en) Cooling mechanism for automobile water pump
CN220964559U (en) Motor cooling heat radiation structure
CN209982216U (en) Intermittent type formula work high protection level motor
CN207910580U (en) A kind of electric machine stand
CN115765284A (en) Motor radiating assembly and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Ref document number: 4103626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150404

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees