JP4103509B2 - Control method of an internal combustion engine having a continuously variable transmission by an air-fuel ratio control device - Google Patents

Control method of an internal combustion engine having a continuously variable transmission by an air-fuel ratio control device Download PDF

Info

Publication number
JP4103509B2
JP4103509B2 JP2002259846A JP2002259846A JP4103509B2 JP 4103509 B2 JP4103509 B2 JP 4103509B2 JP 2002259846 A JP2002259846 A JP 2002259846A JP 2002259846 A JP2002259846 A JP 2002259846A JP 4103509 B2 JP4103509 B2 JP 4103509B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002259846A
Other languages
Japanese (ja)
Other versions
JP2004098731A (en
Inventor
信一 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002259846A priority Critical patent/JP4103509B2/en
Publication of JP2004098731A publication Critical patent/JP2004098731A/en
Application granted granted Critical
Publication of JP4103509B2 publication Critical patent/JP4103509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無段変速機を有する内燃機関の空燃比制御装置による制御方法に関する。
【0002】
【従来の技術】
無段変速機を有する内燃機関では、一般的に、無段変速機の変速比を制御して、車両の目標駆動力を得るための要求出力を発生するのに燃料消費を最小とする機関回転数が実現されるようにしている。
【0003】
このような内燃機関において、スロットル弁ではなく、吸気弁によって吸入空気量を制御して、スロットル弁の閉弁に伴うポンピング損失の発生を防止するものがある(例えば、特許文献1参照)。しかしながら、こうして気筒毎に吸気弁によって吸入空気量を制御すると、気筒間において吸入空気量のばらつきが発生し易く、気筒間で噴射燃料を等量としていると、気筒によっては所望の燃焼空燃比を実現することができないことがある。もちろん、このような現象は、吸気弁により吸入空気量を制御する内燃機関だけでなく、スロットル弁により吸入空気量を制御する内燃機関においても各燃料噴射弁で所望量の燃料が噴射されないことによっても発生する。
【0004】
【特許文献1】
特開2001−159326号公報(段落番号0020から0029)
【特許文献2】
特開平11−257112号公報
【0005】
【発明が解決しようとする課題】
各気筒において所望の燃焼空燃比を実現するためには、定期的に各気筒から排出される排気ガス毎の空燃比を検出して気筒毎に燃料噴射量を学習制御することが必要であるが、そのためには、各気筒の排気ポート毎に空燃比センサを配置しなければならず、かなりのコストアップとなる。
【0006】
従って、本発明の目的は、各気筒の排気ポート毎に空燃比センサを配置しなくても、各気筒から排出される排気ガス毎の正確な空燃比を検出可能とする無段変速機を有する内燃機関の空燃比制御装置による制御方法を提供することである。
【0007】
【課題を解決するための手段】
本発明による請求項1に記載の制御方法は、無段変速機を有する内燃機関の空燃比制御装置による制御方法であって、定期的な又は任意の要求に基づく空燃比学習時期である時には、各気筒の排気管の合流部の下流側に設けられた空燃比センサにより各気筒の排気ガス毎の空燃比を検出するために、無段変速機の変速比を変化させ、内燃機関には機関回転数を低下させて要求出力を発生させる低回転運転を実施させることを特徴とする。
【0008】
また、本発明による請求項2に記載の制御方法は、請求項1に記載の制御方法において、前記内燃機関は可変動弁機構によって吸入空気量が制御されることを特徴とする。
【0009】
【発明の実施の形態】
図1は本発明による空燃比制御装置が取り付けられる内燃機関を示す概略図である。同図において、1は内燃機関であり、2は内燃機関1の出力軸である。出力軸2はトルクコンバータ3の一方側に接続され、トルクコンバータの他方側は前後進切換機構5に接続されている。前後進切換機構5は、自動無段変速機6の入力軸7に接続され、自動無段変速機6の出力軸8が車両のデファレンシャルギヤ(図示せず)に接続される。
【0010】
自動無段変速機6は、一般的に公知なベルト式又はトロイダル式であり、自由に変速比を変化させることができる。前後進切換機構5は、内燃機関1の出力軸2の回転方向をそのまま又は反転して自動無段変速機6の入力軸7へ伝達するものであり、それにより、車両は、前進に加えて後進が可能となる。トルクコンバータ3は、ロックアップ状態とされて内燃機関1の出力軸2と前後進切換機構5とを機械的に連結することを可能とすることに加えて、ロックアップ状態が解除されて非ロックアップ状態とされれば、内燃機関1の出力は、流体を介して前後進切換機構5へ伝達され、また、車両停止時には、内燃機関1の出力を前後進切換機構5へ伝達させないようにすることも可能である。トルクコンバータ3、前後進切換機構5、及び、自動無段変速機6は、運転者によるアクセルペダルの踏込量及び運転者によるシフトレバー位置に基づき電子制御装置(図示せず)によって自動的に制御される。
【0011】
図2は内燃機関1の概略断面図である。図2において、10は燃焼室、11はピストンである。12は排気弁であり、13は排気弁12を介して燃焼室10内へ通じる排気ポートである。14は吸気弁であり、15は吸気弁14を介して燃焼室10へ通じる吸気ポートである。吸気ポート15には吸気管16が接続され、吸気管16は各気筒共通のサージタンク17を介して大気へ通じている。サージタンク17の直上流側にはスロットル弁18が配置されている。19は気筒毎に設けられて吸気管16内へ燃料を噴射するための燃料噴射弁であり、20は燃焼室10へ臨む点火プラグである。
【0012】
スロットル弁18は、アクセルペダルと機械的に連動するものではなく、ステップモータ等によって自由に開度制御可能なものである。本内燃機関においては、吸気弁14の開弁期間及びリフト量が可変とされて燃焼室10内へ供給される吸入空気量を制御するようになっており、それにより、スロットル弁18は通常時において全開され、ポンピング損失を発生しないようになっている。
【0013】
排気ポート13には排気管21が接続され、各気筒の排気管21は合流して触媒装置(図示せず)を介して大気へ開放されており、この合流部の直下流側には、排気ガス中の酸素濃度に基づき排気ガスの空燃比を検出する空燃比センサ22が配置されている。
【0014】
図3は、吸気弁14の開弁期間及びリフト量を可変とする可変動弁機構を示す概略図である。同図において、30はカムシャフトであり、軸線方向にテーパ状のカム面を有するカム31が取り付けられている。吸気弁14のバルブリフタ32には揺動子33が設けられ、バルブスプリング34によって揺動子33がカム31に常に当接するようになっている。
【0015】
このような構成によって、カムシャフト30を油圧力又は電気モータ駆動力等により軸線方向D1へ移動させると、揺動子33とテーパ状のカム面との当接位置が変化し、吸気弁14の開弁期間が長くなると共にリフト量も大きくなる。逆に、カムシャフト30を軸線方向D2へ移動させると、図3に示すようになって、吸気弁14の開弁期間が短くなると共にリフト量も小さくなる。
【0016】
こうして、必要吸気量が少ない時には吸気弁14の開弁期間を短くすると共にリフト量を小さくし、必要吸気量が多くなるほど吸気弁14の開弁期間を長くすると共にリフト量も大きくされ、スロットル弁18を全開してポンピング損失を発生させることなく、所望量の吸気を燃焼室10内へ供給することが可能となる。
【0017】
各気筒における吸気弁14の開弁期間及びリフト量は、カムシャフト30に設けられた同一形状の各カム31によって、同じ開弁期間及び同じリフト量に制御されるが、実際的には、各カム31の僅かな形状の違いや、各カム31のカムシャフト30への取り付け位置の僅かなずれ等によって、各気筒間で吸気弁の開弁期間及びリフト量に僅かな違いが発生することがある。また、各気筒において吸気弁及び吸気ポートへのデポジット付着量は異なり、特に、吸気弁の開弁期間及びリフト量が小さくされて吸入吸気量が少なくされる時には、このデポジット付着量が吸入吸気量に大きく影響する。それにより各気筒における吸入空気量にばらつきが発生すると、各燃料噴射弁19において等量の燃料が噴射されても、気筒によっては、所望の燃焼空燃比が実現されずに意図する燃焼を実施することができない。
【0018】
所望燃焼空燃比を実現するために、排気合流部の下流側に設けられた空燃比センサ22によって、定期的に排気ガスの空燃比を検出し、学習制御によって燃料噴射量の補正値を更新することは一般的である。しかしながら、空燃比センサ22によって各気筒の排気ガス毎の空燃比を検出するためには、空燃比センサ22の検出位置において各気筒の排気ガスが混ざり合わないようにしなければならない。そのためには、空燃比センサ22による空燃比学習時期を低回転時としなければならないが、この空燃比学習時期が低回転時となっている保証はなく、また、低回転時であっても、排気ガス量が少ない時には、排気ガスの空燃比を正確に検出することができない。
【0019】
本発明による空燃比制御装置は、予め定められた空燃比学習時期に、空燃比センサ22によって各気筒の排気ガス毎の正確な空燃比を検出可能とするために、図4に示すフローチャートによって自動無段変速機6における変速比を制御する。先ず、ステップ101において、アクセルペダルの踏込量と車両速度とに基づき、予め定められたマップ等を使用して、自動無段変速機6の出力軸8における車両の目標駆動力Fが算出される。次いで、ステップ102では、この目標駆動力Fと車両速度とに基づき内燃機関の要求出力Pが、目標駆動力Fと車両速度との積によって算出される。ステップ103では、定期的な又は任意の要求に基づく空燃比学習時期であるか否かが判断される。この判断が否定される時にはステップ104へ進む。
【0020】
ステップ104では、要求出力Pに対して燃料消費を最小とする第一機関目標回転数Ntが、予め定めされたマップ等を使用して決定される。次いで、ステップ106では現在の機関回転数に基づき第一機関目標回転数Ntが実現されるように、自動無段変速機6の変速比Rが決定され、この変速比Rに基づき自動無段変速機6が制御される。
【0021】
図5は、機関回転数Nと機関トルクTとに基づく機関運転状態の等機関出力線図である。すなわち、各実線上の運転状態は同じ機関出力を発生し、高回転高トルク側の実線ほど(機関出力Pの添え字が小さい実線ほど)高い機関出力を発生する運転状態を示している。各機関出力(P1からP6)に対する第一機関目標回転数Ntは、図5において、各機関出力線と点線との交点における機関回転数である。こうして、前述した自動無段変速機6の変速比制御によって、内燃機関は、目標駆動力Fを得るための要求出力Pを発生させるために、燃料消費を最小とするように図5の点線上の運転状態が選択され、通常運転が実施される。
【0022】
一方、空燃比学習時期であれば、図4のフローチャートにおけるステップ103における判断が肯定され、ステップ105へ進む。ステップ105では、要求出力Pに対して第一機関目標回転数Nより低い第二機関目標回転数Nt’が、予め定められたマップ等を使用して決定される。次いで、ステップ106では現在の機関回転数に基づき第二機関目標回転数Nt’が実現されるように、自動無段変速機6の変速比Rが決定され、この変速比Rに基づき自動無段変速機6が制御される。
【0023】
各機関出力(P1からP6)に対する第二機関目標回転数Nt’は、図5において、各機関出力線と一点鎖線との交点における機関回転数である。こうして、前述した自動無段変速機6の変速比制御によって、内燃機関は、目標駆動力Fを得るための要求出力Pを発生させるために、空燃比学習制御時期においては、燃料消費を最小とする運転状態に比較して、機関回転数を低下させる運転状態が選択され、低回転運転が実施される。
【0024】
前述したように、図5における点線は、各機関出力を発生させるのに燃料消費を最小とする運転状態を示している。この通常運転に比較して、一点鎖線の低回転運転は、機関回転数Nが低く機関トルクTが高い運転である。それにより、低回転であるために、空燃比センサ22によって各気筒の排気ガス毎の空燃比を検出する際に、空燃比センサ22の検出位置において各気筒の排気ガスが混ざり合うことはなく、また、機関トルクTを高くするのに吸入空気量及び燃料噴射量が多くされ、排気ガス量が多くなるために、空燃比センサ22によって排気ガスの空燃比を正確に検出し易くなる。こうして、各気筒の排気ポート毎に空燃比センサを配置しなくても、排気集合部の直下流に配置された単一の空燃比センサ22を使用して、各気筒から排出される排気ガス毎の空燃比を正確に検出することが可能となる。
【0025】
気筒毎の排気ガスの空燃比が正確に検出されれば、所望燃焼空燃比が、理論空燃比、リーン空燃比、又は、リッチ空燃比のいずれであっても、燃料噴射弁毎に燃料噴射の補正量を正確に算出して、これまでの補正量を更新することができる。それにより、各気筒において吸入空気量が多少ばらついても、各気筒において所望の燃焼空燃比を実現することができ、各気筒において意図する燃焼が実施可能となる。
【0026】
本フローチャートにおいて、通常運転として燃料消費を最小とする運転を実施するようにしたが、これは本発明を限定するものではない。この時にどのような運転が実施されても、空燃比学習時期においては、目標駆動力を変化させないで機関回転数を低下させると共に機関トルクを高める運転をするようにすれば、検出位置において各気筒から排出される排気ガスが互いに混ざり難くなり、また、各気筒から排出される排気ガス量を増加させることもでき、各気筒の排気ガス毎の空燃比を正確に検出し易くなる。
【0027】
本実施形態において、燃料噴射弁19は吸気管16内に燃料を噴射するものとしたが、これは本発明を限定するものではなく、燃料噴射弁は、気筒内へ直接的に燃料を噴射するものでも良い。また、燃料噴射弁毎に燃料噴射量がばらつくことによっても各気筒で所望の燃焼空燃比を実現できないこととなり、可変動弁機構によって各気筒の吸入空気量を制御することは、本発明を限定するものではない。
【0028】
【発明の効果】
このように、本発明による制御方法は、無段変速機を有する内燃機関の空燃比制御装置による制御方法であって、定期的な又は任意の要求に基づく空燃比学習時期である時には、各気筒の排気管の合流部の下流側に設けられた空燃比センサにより各気筒の排気ガス毎の空燃比を検出するために、無段変速機の変速比を変化させ、内燃機関には機関回転数を低下させて要求出力を発生させる低回転運転を実施させるようになっている。それにより、各気筒の排気ポート毎に空燃比センサを配置せずに、排気合流部の下流側に少なくとも一つの空燃比センサを配置すれば、この空燃比センサによって空燃比を検出する際において、機関回転数の低下によって検出位置において各気筒から排出される排気ガスが互いに混ざり合うようなことはなく、また、要求出力を発生させるには機関回転数の低下に伴って機関トルクが高められ、各気筒から排出される排気ガス量を増加させることができ、空燃比センサによって空燃比を検出し易くなる。こうして、各気筒から排出される排気ガス毎の空燃比を正確に検出することが可能となる。
【図面の簡単な説明】
【図1】本発明による空燃比制御装置が取り付けられる内燃機関を示す概略図である。
【図2】図1の内燃機関の概略断面図である。
【図3】可変動弁機構を示す概略図である。
【図4】自動無段変速機の変速比制御を示すフローチャートである。
【図5】等機関出力の運転状態を示すマップである。
【符号の説明】
1…内燃機関
6…自動無段変速機
14…吸気弁
16…吸気管
19…燃料噴射弁
21…排気管
22…空燃比センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method by an air-fuel ratio control device for an internal combustion engine having a continuously variable transmission.
[0002]
[Prior art]
In an internal combustion engine having a continuously variable transmission, in general, an engine speed that controls fuel ratio of the continuously variable transmission to generate a required output for obtaining a target driving force of the vehicle to minimize fuel consumption. The number is to be realized.
[0003]
In such an internal combustion engine, there is an internal combustion engine that controls the amount of intake air not by a throttle valve but by an intake valve to prevent a pumping loss caused by closing the throttle valve (see, for example, Patent Document 1). However, if the intake air amount is controlled by the intake valve for each cylinder in this way, variations in the intake air amount are likely to occur between the cylinders. If the injected fuel is made equal between the cylinders, a desired combustion air-fuel ratio may be set depending on the cylinder. Sometimes it cannot be realized. Of course, this phenomenon is caused not only by the internal combustion engine that controls the intake air amount by the intake valve, but also by the fuel injection valve that does not inject the desired amount of fuel in the internal combustion engine that controls the intake air amount by the throttle valve. Also occurs.
[0004]
[Patent Document 1]
JP 2001-159326 A (paragraph numbers 0020 to 0029)
[Patent Document 2]
JP-A-11-257112 [0005]
[Problems to be solved by the invention]
In order to achieve a desired combustion air-fuel ratio in each cylinder, it is necessary to periodically detect the air-fuel ratio for each exhaust gas discharged from each cylinder and perform learning control of the fuel injection amount for each cylinder. For this purpose, an air-fuel ratio sensor must be provided for each exhaust port of each cylinder, which results in a considerable cost increase.
[0006]
Accordingly, an object of the present invention is to provide a continuously variable transmission capable of detecting an accurate air-fuel ratio for each exhaust gas discharged from each cylinder without arranging an air-fuel ratio sensor for each exhaust port of each cylinder. It is to provide a control method by an air-fuel ratio control device for an internal combustion engine.
[0007]
[Means for Solving the Problems]
The control method according to claim 1 of the present invention is a control method by an air-fuel ratio control device for an internal combustion engine having a continuously variable transmission, and when the air-fuel ratio learning timing is periodic or based on any request , In order to detect the air-fuel ratio for each exhaust gas of each cylinder by an air-fuel ratio sensor provided on the downstream side of the merging portion of the exhaust pipe of each cylinder, the gear ratio of the continuously variable transmission is changed. A low-rotation operation in which a required output is generated by reducing the number of revolutions is performed.
[0008]
The control method according to claim 2 of the present invention, in the control method according to claim 1, wherein the internal combustion engine is characterized in that the amount of intake air is controlled by the variable valve mechanism.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view showing an internal combustion engine to which an air-fuel ratio control apparatus according to the present invention is attached. In the figure, 1 is an internal combustion engine, and 2 is an output shaft of the internal combustion engine 1. The output shaft 2 is connected to one side of the torque converter 3, and the other side of the torque converter is connected to the forward / reverse switching mechanism 5. The forward / reverse switching mechanism 5 is connected to the input shaft 7 of the automatic continuously variable transmission 6, and the output shaft 8 of the automatic continuously variable transmission 6 is connected to a differential gear (not shown) of the vehicle.
[0010]
The automatic continuously variable transmission 6 is a generally known belt type or toroidal type, and can change the gear ratio freely. The forward / reverse switching mechanism 5 transmits the rotation direction of the output shaft 2 of the internal combustion engine 1 to the input shaft 7 of the automatic continuously variable transmission 6 as it is or reversely reversed. Backward is possible. The torque converter 3 is brought into a lock-up state so that the output shaft 2 of the internal combustion engine 1 and the forward / reverse switching mechanism 5 can be mechanically coupled. If it is in the up state, the output of the internal combustion engine 1 is transmitted to the forward / reverse switching mechanism 5 via the fluid, and the output of the internal combustion engine 1 is not transmitted to the forward / reverse switching mechanism 5 when the vehicle is stopped. It is also possible. The torque converter 3, the forward / reverse switching mechanism 5, and the automatic continuously variable transmission 6 are automatically controlled by an electronic control unit (not shown) based on the depression amount of the accelerator pedal by the driver and the shift lever position by the driver. Is done.
[0011]
FIG. 2 is a schematic sectional view of the internal combustion engine 1. In FIG. 2, 10 is a combustion chamber and 11 is a piston. Reference numeral 12 denotes an exhaust valve, and reference numeral 13 denotes an exhaust port that communicates with the combustion chamber 10 via the exhaust valve 12. 14 is an intake valve, and 15 is an intake port that leads to the combustion chamber 10 via the intake valve 14. An intake pipe 16 is connected to the intake port 15, and the intake pipe 16 communicates with the atmosphere via a surge tank 17 common to each cylinder. A throttle valve 18 is disposed immediately upstream of the surge tank 17. Reference numeral 19 denotes a fuel injection valve that is provided for each cylinder and injects fuel into the intake pipe 16. Reference numeral 20 denotes an ignition plug that faces the combustion chamber 10.
[0012]
The throttle valve 18 is not mechanically interlocked with the accelerator pedal, but can be freely controlled by a step motor or the like. In this internal combustion engine, the valve opening period and the lift amount of the intake valve 14 are made variable to control the amount of intake air supplied into the combustion chamber 10, whereby the throttle valve 18 is in a normal state. Is fully opened so that no pumping loss occurs.
[0013]
An exhaust pipe 21 is connected to the exhaust port 13, and the exhaust pipes 21 of the respective cylinders are joined and opened to the atmosphere via a catalyst device (not shown). An air-fuel ratio sensor 22 that detects the air-fuel ratio of the exhaust gas based on the oxygen concentration in the gas is disposed.
[0014]
FIG. 3 is a schematic view showing a variable valve mechanism that makes the valve opening period and lift amount of the intake valve 14 variable. In the figure, reference numeral 30 denotes a camshaft, to which a cam 31 having a cam surface tapered in the axial direction is attached. The valve lifter 32 of the intake valve 14 is provided with a rocker 33, and the rocker 33 is always in contact with the cam 31 by a valve spring 34.
[0015]
With such a configuration, when the camshaft 30 is moved in the axial direction D1 by hydraulic pressure or electric motor driving force, the contact position between the oscillator 33 and the tapered cam surface changes, and the intake valve 14 As the valve opening period becomes longer, the lift amount becomes larger. Conversely, when the camshaft 30 is moved in the axial direction D2, as shown in FIG. 3, the valve opening period of the intake valve 14 is shortened and the lift amount is also reduced.
[0016]
Thus, when the required intake air amount is small, the valve opening period of the intake valve 14 is shortened and the lift amount is reduced. As the required intake air amount increases, the valve opening period of the intake valve 14 is lengthened and the lift amount is also increased. It is possible to supply a desired amount of intake air into the combustion chamber 10 without fully opening 18 and causing a pumping loss.
[0017]
The valve opening period and the lift amount of the intake valve 14 in each cylinder are controlled to the same valve opening period and the same lift amount by the cams 31 of the same shape provided on the camshaft 30. A slight difference in the valve opening period and the lift amount of each intake valve may occur between the cylinders due to a slight difference in the shape of the cam 31 or a slight shift in the mounting position of each cam 31 to the camshaft 30. is there. In addition, the deposit amount on the intake valve and the intake port is different in each cylinder. In particular, when the intake valve opening period and the lift amount are reduced to reduce the intake air intake amount, this deposit attachment amount is the intake air intake amount. Greatly affects. As a result, when variation occurs in the intake air amount in each cylinder, even if an equal amount of fuel is injected in each fuel injection valve 19, the intended combustion is performed without realizing a desired combustion air-fuel ratio depending on the cylinder. I can't.
[0018]
In order to achieve the desired combustion air-fuel ratio, the air-fuel ratio sensor 22 provided downstream of the exhaust gas merging portion periodically detects the air-fuel ratio of the exhaust gas, and updates the correction value of the fuel injection amount by learning control. That is common. However, in order for the air-fuel ratio sensor 22 to detect the air-fuel ratio for each exhaust gas of each cylinder, it is necessary to prevent the exhaust gas of each cylinder from being mixed at the detection position of the air-fuel ratio sensor 22. For this purpose, the air-fuel ratio learning timing by the air-fuel ratio sensor 22 must be set at the time of low rotation, but there is no guarantee that the air-fuel ratio learning timing is at the time of low rotation, and even at the time of low rotation, When the amount of exhaust gas is small, the air-fuel ratio of the exhaust gas cannot be detected accurately.
[0019]
The air-fuel ratio control apparatus according to the present invention is automatically operated according to the flowchart shown in FIG. 4 so that the air-fuel ratio sensor 22 can detect the accurate air-fuel ratio for each exhaust gas at a predetermined air-fuel ratio learning timing. The gear ratio in the continuously variable transmission 6 is controlled. First, in step 101, the target driving force F of the vehicle on the output shaft 8 of the automatic continuously variable transmission 6 is calculated using a predetermined map or the like based on the accelerator pedal depression amount and the vehicle speed. . Next, at step 102, the required output P of the internal combustion engine is calculated based on the target driving force F and the vehicle speed based on the product of the target driving force F and the vehicle speed. In step 103, it is determined whether or not the air-fuel ratio learning timing is regular or based on any request. When this determination is negative, the routine proceeds to step 104.
[0020]
In step 104, the first engine target speed Nt that minimizes fuel consumption with respect to the required output P is determined using a predetermined map or the like. Next, at step 106, the speed ratio R of the automatic continuously variable transmission 6 is determined so that the first engine target speed Nt is realized based on the current engine speed, and the automatic continuously variable transmission is based on this speed ratio R. The machine 6 is controlled.
[0021]
FIG. 5 is an equi-engine output diagram of the engine operating state based on the engine speed N and the engine torque T. That is, the operating state on each solid line indicates the operating state in which the same engine output is generated and the higher engine output is generated as the solid line on the higher rotation high torque side (the smaller the subscript of the engine output P is). The first engine target speed Nt for each engine output (P1 to P6) is the engine speed at the intersection of each engine output line and the dotted line in FIG. In this manner, the internal combustion engine generates the required output P for obtaining the target driving force F by the speed ratio control of the automatic continuously variable transmission 6 described above, so that the fuel consumption is minimized. The operation state is selected and normal operation is performed.
[0022]
On the other hand, if it is the air-fuel ratio learning time, the determination in step 103 in the flowchart of FIG. In step 105, a second engine target speed Nt ′ lower than the first engine target speed N with respect to the required output P is determined using a predetermined map or the like. Next, at step 106, the speed ratio R of the automatic continuously variable transmission 6 is determined so that the second engine target speed Nt ′ is realized based on the current engine speed, and the automatic continuously variable speed is determined based on the speed ratio R. The transmission 6 is controlled.
[0023]
The second engine target speed Nt ′ for each engine output (P1 to P6) is the engine speed at the intersection of each engine output line and the one-dot chain line in FIG. Thus, the internal combustion engine generates the required output P for obtaining the target driving force F by the speed ratio control of the automatic continuously variable transmission 6 described above, so that the fuel consumption is minimized at the air-fuel ratio learning control timing. In comparison with the operation state to be performed, the operation state for reducing the engine speed is selected, and the low rotation operation is performed.
[0024]
As described above, the dotted line in FIG. 5 indicates an operating state in which fuel consumption is minimized in order to generate each engine output. Compared to this normal operation, the low-speed rotation operation indicated by the alternate long and short dash line is an operation in which the engine speed N is low and the engine torque T is high. Thereby, because of the low rotation speed, when the air-fuel ratio for each exhaust gas of each cylinder is detected by the air-fuel ratio sensor 22, the exhaust gas of each cylinder does not mix at the detection position of the air-fuel ratio sensor 22, Further, since the intake air amount and the fuel injection amount are increased to increase the engine torque T and the exhaust gas amount is increased, the air-fuel ratio sensor 22 can easily detect the air-fuel ratio of the exhaust gas accurately. In this way, even if an air-fuel ratio sensor is not provided for each exhaust port of each cylinder, a single air-fuel ratio sensor 22 arranged immediately downstream of the exhaust collecting portion is used for each exhaust gas discharged from each cylinder. It becomes possible to accurately detect the air-fuel ratio.
[0025]
If the air-fuel ratio of the exhaust gas for each cylinder is accurately detected, fuel injection is performed for each fuel injection valve regardless of whether the desired combustion air-fuel ratio is a stoichiometric air-fuel ratio, a lean air-fuel ratio, or a rich air-fuel ratio. The correction amount can be accurately calculated and the correction amount so far can be updated. Thereby, even if the intake air amount varies slightly in each cylinder, a desired combustion air-fuel ratio can be achieved in each cylinder, and intended combustion can be performed in each cylinder.
[0026]
In this flowchart, an operation that minimizes fuel consumption is performed as a normal operation, but this does not limit the present invention. Whatever operation is performed at this time, at the air-fuel ratio learning time, if the engine speed is decreased and the engine torque is increased without changing the target driving force, each cylinder is detected at the detection position. The exhaust gases discharged from the cylinders are less likely to mix with each other, and the amount of exhaust gas discharged from each cylinder can be increased, making it easy to accurately detect the air-fuel ratio for each exhaust gas in each cylinder.
[0027]
In the present embodiment, the fuel injection valve 19 injects fuel into the intake pipe 16, but this does not limit the present invention, and the fuel injection valve injects fuel directly into the cylinder. Things can be used. Further, even if the fuel injection amount varies for each fuel injection valve, the desired combustion air-fuel ratio cannot be realized in each cylinder, and the control of the intake air amount in each cylinder by the variable valve mechanism limits the present invention. Not what you want.
[0028]
【The invention's effect】
As described above, the control method according to the present invention is a control method by an air-fuel ratio control device for an internal combustion engine having a continuously variable transmission, and each cylinder is in a periodic or arbitrary air-fuel ratio learning timing based on an arbitrary request. In order to detect the air-fuel ratio for each exhaust gas of each cylinder by an air-fuel ratio sensor provided downstream of the merging portion of the exhaust pipe, the speed ratio of the continuously variable transmission is changed. The low-rotation operation for generating the required output by reducing the pressure is performed. Accordingly, if at least one air-fuel ratio sensor is disposed downstream of the exhaust gas merging portion without disposing an air-fuel ratio sensor for each exhaust port of each cylinder, when detecting the air-fuel ratio by this air-fuel ratio sensor, The exhaust gas discharged from each cylinder at the detection position does not mix with each other due to the decrease in the engine speed, and in order to generate the required output, the engine torque is increased with the decrease in the engine speed, The amount of exhaust gas discharged from each cylinder can be increased, and the air-fuel ratio can be easily detected by the air-fuel ratio sensor. In this way, it becomes possible to accurately detect the air-fuel ratio for each exhaust gas discharged from each cylinder.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an internal combustion engine to which an air-fuel ratio control apparatus according to the present invention is attached.
2 is a schematic cross-sectional view of the internal combustion engine of FIG.
FIG. 3 is a schematic view showing a variable valve mechanism.
FIG. 4 is a flowchart showing gear ratio control of the automatic continuously variable transmission.
FIG. 5 is a map showing an operating state of equal engine output.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 6 ... Automatic continuously variable transmission 14 ... Intake valve 16 ... Intake pipe 19 ... Fuel injection valve 21 ... Exhaust pipe 22 ... Air-fuel ratio sensor

Claims (2)

無段変速機を有する内燃機関の空燃比制御装置による制御方法であって、定期的な又は任意の要求に基づく空燃比学習時期である時には、各気筒の排気管の合流部の下流側に設けられた空燃比センサにより各気筒の排気ガス毎の空燃比を検出するために、無段変速機の変速比を変化させ、内燃機関には機関回転数を低下させて要求出力を発生させる低回転運転を実施させることを特徴とする制御方法 A control method by an air-fuel ratio control apparatus for an internal combustion engine having a continuously variable transmission , provided at a downstream side of a merging portion of an exhaust pipe of each cylinder when the air-fuel ratio learning timing is regular or based on any request. In order to detect the air-fuel ratio for each exhaust gas of each cylinder by the air-fuel ratio sensor, the low-speed rotation that changes the gear ratio of the continuously variable transmission and reduces the engine speed to generate the required output for the internal combustion engine A control method characterized by causing operation. 前記内燃機関は可変動弁機構によって吸入空気量が制御されることを特徴とする請求項1に記載の制御方法The control method according to claim 1, wherein an intake air amount of the internal combustion engine is controlled by a variable valve mechanism.
JP2002259846A 2002-09-05 2002-09-05 Control method of an internal combustion engine having a continuously variable transmission by an air-fuel ratio control device Expired - Fee Related JP4103509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259846A JP4103509B2 (en) 2002-09-05 2002-09-05 Control method of an internal combustion engine having a continuously variable transmission by an air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259846A JP4103509B2 (en) 2002-09-05 2002-09-05 Control method of an internal combustion engine having a continuously variable transmission by an air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JP2004098731A JP2004098731A (en) 2004-04-02
JP4103509B2 true JP4103509B2 (en) 2008-06-18

Family

ID=32260729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259846A Expired - Fee Related JP4103509B2 (en) 2002-09-05 2002-09-05 Control method of an internal combustion engine having a continuously variable transmission by an air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP4103509B2 (en)

Also Published As

Publication number Publication date
JP2004098731A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4407711B2 (en) Control device for torque demand type internal combustion engine
US6742498B2 (en) Apparatus and method for controlling internal combustion engine
KR930700314A (en) Control devices of internal combustion engines and continuously variable transmissions
JP2006336503A (en) Air-fuel ratio control device for internal combustion engine
JP2016160864A (en) Control device for engine
JP4054711B2 (en) Variable valve engine
JP4815407B2 (en) Operation control device for internal combustion engine
JP2016160865A (en) Control device for engine
JP3678095B2 (en) Control device for internal combustion engine
JP4103509B2 (en) Control method of an internal combustion engine having a continuously variable transmission by an air-fuel ratio control device
JP2008231952A (en) Driving force control device of vehicle
JP2000097088A (en) Fuel injection amount control device of internal- combustion engine
JP4765887B2 (en) Control device for internal combustion engine
JP4602383B2 (en) Control device for variable valve internal combustion engine
JP2004100528A (en) Ignition timing control apparatus for internal combustion engine
JPS63176635A (en) Electronic type fuel injection controller
JP2009133245A (en) Control device for internal combustion engine
JP6196042B2 (en) Power unit controller
JP4924679B2 (en) Control device for torque demand type internal combustion engine
JP2020122412A (en) Vehicular control apparatus
JP2007127100A (en) Control device for internal combustion engine
JP2004211601A (en) Fuel cut control device of internal combustion engine for vehicle
JP2004100547A (en) Control device for internal combustion engine
JP2007107406A (en) Drive control device for vehicle
JP4133288B2 (en) Variable valve timing control method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees