JP4103308B2 - 3D live-action video shooting and presentation system - Google Patents

3D live-action video shooting and presentation system Download PDF

Info

Publication number
JP4103308B2
JP4103308B2 JP2000207583A JP2000207583A JP4103308B2 JP 4103308 B2 JP4103308 B2 JP 4103308B2 JP 2000207583 A JP2000207583 A JP 2000207583A JP 2000207583 A JP2000207583 A JP 2000207583A JP 4103308 B2 JP4103308 B2 JP 4103308B2
Authority
JP
Japan
Prior art keywords
video
camera
stereoscopic
live
action
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000207583A
Other languages
Japanese (ja)
Other versions
JP2002027494A (en
Inventor
洋 星野
健之 鈴木
高史 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000207583A priority Critical patent/JP4103308B2/en
Publication of JP2002027494A publication Critical patent/JP2002027494A/en
Application granted granted Critical
Publication of JP4103308B2 publication Critical patent/JP4103308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、広視野角且つ高解像度の立体実写映像を撮影し且つ提示することが可能な立体実写映像撮影提示システムに関するものである。
【0002】
【従来の技術】
従来、曲率の違う2つの双曲面ミラー(又は上下対称に配置された2つの角錐ミラー)を、外側の焦点を、原点で一致するよう配置し、その原点にレンズ中心がくるようカメラを配置することにより、投影面に、計測点の2つのステレオ対が同時に投影されることにより、一度に全周囲のステレオ画像を撮影可能とした全方位ステレオ画像撮影装置が提案されている(特開平11−95344号公報参照)。
【0003】
また、背面投写型ディスプレイ装置を縦3段、横4段に積み上げてなり、上及び左右方向の視野角が広く、臨場感のある映像を提示することが可能な背面投写型マルチスクリーンディスプレイシステムが提案されている(特開平8−271979号公報参照)。
【0004】
【発明が解決しようとする課題】
上記全方位ステレオ画像撮影装置では、カメラの配置が映像観察者の視点と異なる配置になっているため、そのままでは撮影した実写映像を映像提示に用いることができず、一度何らかの記録手段に保存した後、画像処理を施す必要がある。したがって、遠隔制御等のように、撮影した実写映像を即座に観賞する用途には適用不能である。
【0005】
また、上記両公報に記載された2つの従来技術とも、実写映像を撮影するカメラと映像提示装置との対応について言及されておらず、両者が正しく対応していない場合に、観賞される映像のサイズなどに違和感が生じる問題については解決されていない。
【0006】
本発明は上記事情に鑑みて為されたものであり、その目的とするところは、広視野角且つ高解像度の立体実写映像を観賞者の視点で撮影するとともに撮影した立体実写映像を即座に観賞者に提示することが可能な立体実写映像撮影提示システムを提供することにある。
【0007】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、多面体からなり入射した光を所望の方向へ反射させるとともに互いの中心線が人間の左右の眼の距離に略等しい距離だけ離間して配設される一対の反射用光学部品、各反射用光学部品により各々の撮影中心点の虚像が略一致するように配置された複数台のカメラからなる2組のカメラ群を具備して立体実写映像を撮影する立体実写映像撮影装置と、各組のカメラ群に含まれる2台のカメラから出力される映像信号に基づいて立体実写映像を同一画面上に映し出す複数の映像表示手段を具備して立体実写映像撮影装置で撮影された立体実写映像を観賞者に提示する立体実写映像提示装置とを備え、立体実写映像撮影装置は、各反射用光学部品の内側に下方視野を撮影するカメラがそれぞれ設けられ、このカメラの撮影中心点が各カメラ群の撮影中心点の虚像と略一致するように配置されてなり、立体実写映像提示装置は、下方視野を撮影する各カメラから出力される映像信号に基づいて立体実写映像を同一画面上に映し出す映像表示手段を具備してなることを特徴とし、互いの中心線が人間の左右の眼の距離に略等しい距離だけ離間して配置された2つの反射用光学部品で反射された映像を2組のカメラ群により撮影することにより、観賞者の視点で立体実写映像を広視野角且つ高解像度で撮影することができ、また、立体実写映像撮影装置のカメラから出力される映像信号が立体実写映像提示装置の映像表示手段に逐次伝送されるため、立体実写映像撮影装置で撮影された立体実写映像が即座に立体実写映像提示装置で違和感なく観賞することが可能となり、さらに、鉛直方向に視野を広げることができて、より広視野の実写映像を高い解像度で撮影することが可能となる。
【0008】
請求項2の発明は、請求項1の発明において、映像表示手段は、それぞれにカメラからの映像信号が入力されるカメラと同数台の投射器と、投影された光の偏光方向を保持する部材で形成され投射器によりカメラで撮影された映像が投影される複数のスクリーンと、各スクリーンに割り当てられた2台の投射器の投射口に取り付けられ各カメラ群に応じて偏光方向が異なる偏光フィルタと、偏光フィルタと同一構成の偏光フィルタが取り付けられて観賞者に装着される偏光眼鏡とを備えたことを特徴とし、偏光眼鏡を通して見る観賞者に対して各スクリーンに投影された映像を立体実写映像として知覚させることができる。
【0009】
請求項3の発明は、請求項2の発明において、偏光フィルタとして円偏光フィルタを用いることを特徴とし、映像表示手段の画面に対する観賞者の首の傾きによらずに円偏光の回転方向で分離でき、左右の映像の混入(クロストーク)を防止することができる。
【0010】
請求項4の発明は、請求項1又は2又は3の発明において、観賞者から映像表示手段の各画面を見たときの視野角が各映像表示手段と対応するカメラの視野角と略一致するように映像表示手段の各画面が配置されることを特徴とし、カメラで撮影した映像をそのまま映像表示手段の画面に表示しても観賞者に知覚される立体映像の大きさに違和感が生じない。
【0011】
請求項5の発明は、請求項1〜4の何れかの発明において、反射用光学部品は、一面にカメラを固定する固定手段を具備したプリズムからなることを特徴とし、立体実写映像撮影装置全体の小型化を図りながら、各カメラの撮影中心点を高精度で一致させることができる。
【0012】
請求項6の発明は、請求項1〜5の何れかの発明において、立体実写映像撮影装置の各カメラから出力される映像信号に対してカメラの撮影画像を水平方向にシフトする画像処理を施した後に立体実写映像提示装置に映像信号を出力する画像処理装置を備えたことを特徴とし、画像処理装置によるシフト処理のシフト量に応じて、右眼用の映像と左眼用の映像とで視差を調整することができ、その結果、観賞者が知覚する立体実写映像の奥行き感覚の調整が可能となる。
【0013】
【発明の実施の形態】
本発明の実施形態を説明する前に、本発明の基本構成を備えた参考例について説明する。
参考例1)
図1は本参考例の立体実写映像撮影提示システムを構成する立体実写映像撮影装置の概略構成図を示している。この立体実写映像撮影装置では、角錐状に形成された一対の反射用光学部品1A,1Bと、各反射用光学部品1A,1Bと組になる複数台(例えば3台)のカメラ2A1〜2A3,2B1〜2B3とを備え、2つの反射用光学部品1A,1Bが中心線G間の距離を通常の人間の左右の眼の距離に相当する距離分F(55mm〜75mm程度)だけ離間して配置される。ここで、各反射用光学部品1A,1Bと組になる複数台のカメラ2A1〜2A3,2B1〜2B3を総称して各々「カメラ群2A」,「カメラ群2B」と呼ぶことにする。
【0014】
反射用光学部品1A,1Bは角錐状の部材に金属膜を蒸着した角錐型のミラー(鏡)で構成される。カメラ2A1…は従来周知の構成を有するものであって、レンズ、CCD等の撮像素子、信号処理回路等を具備し、撮像した映像を電気信号(映像信号)に変換して出力する。
【0015】
ここで、反射用光学部品1Aとカメラ群2A、反射用光学部品1Bとカメラ群2Bからなる各組において、カメラ群2A,2Bに含まれる複数台のカメラ2A1〜2A3,2B1〜2B3と反射用光学部品1A,1Bとの光学的な配置について、図3及び図4を参照して説明する。図3に示すように、各カメラ2A1〜2A3,2B1〜2B3の撮影中心点P(レンズの中心点)の虚像が反射用光学部品1A,1Bの中心線G上の1点(図3における点X)に集まり、且つ図4に示すように、点Xに撮影中心点が集まった各カメラ2A1〜2A3,2B1〜2B3の虚像における視野(撮影範囲)M1〜M3が重複や死角なく隣接するように、反射用光学部品1A,1Bの三角形状の各側面に対向して配置される。
【0016】
而して、上記構成により各カメラ群2A,2Bで死角や重複なく広視野の実写映像を高い解像度で撮影することが可能となり、さらに2つのカメラ群2A,2Bを人間の左右の眼の距離に相当する距離分だけ離間して配置することにより、通常の人間の視点から見たときの立体映像が撮影可能となる。
【0017】
一方、本参考例の立体実写映像撮影提示システムを構成する立体実写映像提示装置の概略構成図を図2に示す。この立体実写映像提示装置では、観賞者Hの前方及び側方を囲むように配置される3つのスクリーン11A,11B,11Cと、各スクリーン11A〜11Cに背面側から映像を投射する各一対の投射器(プロジェクタ)12A1〜12A3,12B1〜12B3とを備え、全体として投射器12A1〜12A3,12B1〜12B3をカメラ2A1〜2A3,2B1〜2B3と同数とし、スクリーン11A〜11Cをカメラ2A1〜2A3,2B1〜2B3の半数としている。なお、投射器12A1…としては従来周知の構成を有するものが使用可能であるから詳しい説明は省略する。
【0018】
各スクリーン11A、,11B,11Cに割り当てられた2台の投射器12A1と12B1,12A2と12B2,12A3と12B3は、図5に示すように、それぞれの投射口に互いに偏光方向が異なる偏光フィルタ13a,13bが取り付けられ、2台の投射器12A1と12B1,…から投射される投射光がスクリーン11A,…上でぴったりと重なって投影されるように、例えば上下に並べて配置される。また、スクリーン11A,…は投影された光の偏光方向を保持することが可能な素材で構成される。そして、観賞者は左右それぞれに上記偏光フィルタ13a,13bと同一構成の偏光フィルタが取り付けられた偏光眼鏡14を装着してスクリーン11A〜11Cに投影された映像を見ることにより、視差のついた立体映像を観賞することができる。
【0019】
ところで、立体実写映像撮影装置の各カメラ2A1〜2A3,2B1〜2B3と、立体実写映像提示装置の各投射器12A1〜12A3,12B1〜12B3とは、同じ符号(2Anと12An、2Bnと12Bn、但しn=1,2,3)同士がケーブル等によって電気的に接続され、各カメラ2A1〜2A3,2B1〜2B3から出力される映像信号がケーブル等を介して各投射器12A1〜12A3,12B1〜12B3に伝送される。ここで、ケーブル等で接続されるカメラ2An,2Bnと投射器12An,12Bnとは、カメラ2An,2Bnの視野の方向と、投射器12An,12Bnが映像を投射するスクリーン11A,11B,11Cを観賞者Hから見たときの方向とが一致するように対応づけられている。また、投射器12An,12Bnの投射口に取り付けられる偏光フィルタ13a,13bは、取り付けられるカメラ2An,2Bnが右眼用の映像を撮影するカメラ群2Aに属するか、左眼用の映像を撮影するカメラ群2Bに属するかに応じて、観賞者Hが装着する偏光眼鏡14の右眼又は左眼に用いた偏光フィルタと同一構成のもの(偏光方向が一致するもの)が用いられる。
【0020】
上述のように構成された本参考例の立体実写映像撮影提示システムでは、立体実写映像撮影装置のカメラ2An,2Bnから出力される映像信号が立体実写映像提示装置の投射器12An,12Bnに逐次伝送されるため、立体実写映像撮影装置で撮影された立体実写映像が即座に立体実写映像提示装置で違和感なく観賞することが可能となる。
【0021】
ところで、投射器12An,12Bnの投射口に取り付ける偏光フィルタ及び観賞者Hが装着する偏光眼鏡14に用いる偏光フィルタとしては、円偏光フィルタを用いるのが望ましい。円偏光フィルタは、4分の1波長板と直線偏光フィルタを組み合せて構成されるフィルタで、右回りあるいは左回りの円偏光のうち、何れか一方の回転方向の円偏光のみを通す機能を有するフィルタである。すなわち、この円偏光フィルタ13a,13bを投射器12An,12Bnの投射口に取り付けることにより、投射器12An,12Bnの投射光は右回りあるいは左回りとなり、さらにこの投射光を円偏光フィルタを用いた偏光眼鏡14を装着して観賞すれば、右眼及び左眼で見る映像の分離がスクリーン11A〜11Cに対する観賞者Hの首の傾きによらずに円偏光の回転方向で分離できるので、投射器12An,12Bnからの投射光を確実に左右に分離することができ、左右の映像が混入(クロストーク)するのを防止することができる。
【0022】
参考例2)
参考例は、立体実写映像提示装置における3枚のスクリーン11A,11B,11Cを、図6及び図7に示すように各スクリーン11A〜11Cの中心を通る法線K1〜K3が一点Oで交叉し、且つこの交叉点Oから各スクリーン11A〜11Cを見込む角度N1〜N3が立体実写映像撮影装置における各カメラ2An,2Bnの視野角M1〜M3と一致するように配置する点に特徴がある。なお、これ以外の構成は参考例1と共通であるから図示並びに説明は省略する。
【0023】
観賞者Hは、図7に示すように上記交叉点Oからスクリーン11A〜11Cに投影される映像を観賞する。また、投射器12An,12Bnは、上述のように配置された各スクリーン11A〜11Cに対して画面一杯に映像が投影されるような後方の位置に配置される。
【0024】
而して、上記構成によれば、カメラ2An,2Bnで撮影した映像をそのままスクリーン11A〜11Cに投影しても、観賞者Hに知覚される立体映像の大きさに違和感が生じないという利点がある。
【0025】
参考例3)
参考例は、立体実写映像撮影装置における反射用光学部品の構造に特徴があり、これ以外の構成は参考例1と共通であるから図示並びに説明は省略する。
【0026】
参考例における反射用光学部品3は、石英ガラス等の透光性材料製のプリズムからなり、図8及び図9に示すように四角錐をその1つの底辺を含み底辺に平行でない平面で切り取った形状に形成され、斜面3aと対向する底面3bの略中央に円筒形の凹所3cが設けられている。そして、この凹所3c内にカメラ2An,2Bnのレンズ先端部分が挿入されることで反射用光学部品3にカメラ2An,2Bnが固定されることになる。ここで、斜面3aと底面3bに隣り合う反射用光学部品3の前面3dからカメラ2An,2Bnの視野角M1〜M3内に入射する光が、全て反射用光学部品3の内面で全反射するように透光性材料の屈折率及び斜面3aの角度が設定されている。
【0027】
而して、プリズムからなる反射用光学部品3の凹所3cにレンズ先端部分を挿入してカメラ2An,2Bnを固定するようにしているから、立体実写映像撮影装置全体の小型化を図りながら、各カメラ2An,2Bnの撮影中心点Pを高精度で一致させることができる。
【0028】
参考例4)
参考例は、図10に示すように立体実写映像撮影装置の各カメラ2An,2Bnから出力される映像信号に対して画像処理を施す画像処理装置10を備えた点に特徴があり、これ以外の構成は参考例1と共通であるから図示並びに説明は省略する。
【0029】
画像処理装置は従来周知の構成を有し、図11に示すようにカメラ2An,2Bnで撮影された撮影画像Wの1フレーム分をメモリに蓄積し、1フレームの画像Wを水平方向に所望の距離だけ移動(シフト)する処理を行った後、そのシフト処理後の1フレーム分の画像(映像信号)W’を立体実写映像提示装置の各投射器12An,12Bnに出力するものである。
【0030】
而して、画像処理装置によるシフト処理のシフト量に応じて、右眼用の映像と左眼用の映像とで視差を調整することができ、その結果、観賞者Hが知覚する立体実写映像の奥行き感覚の調整が可能となる。
【0031】
(実施形態
本実施形態の基本構成は参考例1と共通であり、共通する部分については同一の符号を付して説明を省略する。
【0032】
本実施形態の立体実写映像撮影装置では、図12に示すように角錐状の反射用光学部品1A,1Bに設けた内部スペースに、下方を撮影するためのカメラ2A4,2B4が配置されている。このようなスペースを設けるには、肉厚の薄い板状の鏡やプリズムを組み合わせることで角錐の側面の一面(例えば、視野の後方に相当する面)を除去したような形状に反射用光学部品1A,1Bを形成すればよい。
【0033】
ここで、追加されたカメラ2A4,2B4と反射用光学部品1A,1Bとの光学的な配置について、図13を参照して説明する。図13に示すように、各カメラ2A1〜2A3,2B1〜2B3の撮影中心点Pの虚像が集まった反射用光学部品1A,1Bの中心線G上の点Xと、追加されたカメラ2A4,2B4の撮影中心点Pとが一致するとともに、追加されたカメラ2A4,2B4の視野(撮影範囲)M4が、追加されたカメラ2A4,2B4と上下方向で隣接するカメラ2A2,2B2の視野M2と重複や死角が生じることなく隣接するように、反射用光学部品1A,1Bに設けた内部スペースに各カメラ2A4,2B4が配置される。
【0034】
一方、本実施形態の立体実写映像提示装置では、図14に示すように観賞者Hから見てスクリーン11A〜11Cの下方に配置されたスクリーン11Dと、スクリーン11Dの背面側に設置され、追加されたカメラ2A4,2B4からの映像信号が各々入力される2台の投射器12A4,12B4とが追加されている。追加されたスクリーン11Dは、図15に示すように中心を通る法線K4が実施形態2で説明した交叉点Oを通り、且つ法線K4の方向が、割り当てられたカメラ2A4,2B4の光軸と対応するように配置される。なお、2台の投射器12A4,12B4とカメラ2A4,2B4との対応関係、および投射器12A4,12B4の投射口に取り付けられる偏光フィルタの左右の別は参考例1〜3に準じる。
【0035】
而して、本実施形態によれば鉛直方向に視野を広げることができ、より広視野の実写映像を高い解像度で撮影することが可能となる。
【0036】
【発明の効果】
請求項1の発明は、多面体からなり入射した光を所望の方向へ反射させるとともに互いの中心線が人間の左右の眼の距離に略等しい距離だけ離間して配設される一対の反射用光学部品、各反射用光学部品により各々の撮影中心点の虚像が略一致するように配置された複数台のカメラからなる2組のカメラ群を具備して立体実写映像を撮影する立体実写映像撮影装置と、各組のカメラ群に含まれる2台のカメラから出力される映像信号に基づいて立体実写映像を同一画面上に映し出す複数の映像表示手段を具備して立体実写映像撮影装置で撮影された立体実写映像を観賞者に提示する立体実写映像提示装置とを備え、立体実写映像撮影装置は、各反射用光学部品の内側に下方視野を撮影するカメラがそれぞれ設けられ、このカメラの撮影中心点が各カメラ群の撮影中心点の虚像と略一致するように配置されてなり、立体実写映像提示装置は、下方視野を撮影する各カメラから出力される映像信号に基づいて立体実写映像を同一画面上に映し出す映像表示手段を具備してなるので、互いの中心線が人間の左右の眼の距離に略等しい距離だけ離間して配置された2つの反射用光学部品で反射された映像を2組のカメラ群により撮影することにより、観賞者の視点で立体実写映像を広視野角且つ高解像度で撮影することができ、また、立体実写映像撮影装置のカメラから出力される映像信号が立体実写映像提示装置の映像表示手段に逐次伝送されるため、立体実写映像撮影装置で撮影された立体実写映像が即座に立体実写映像提示装置で違和感なく観賞することが可能となり、さらに、鉛直方向に視野を広げることができて、より広視野の実写映像を高い解像度で撮影することが可能となるという効果がある。
【0037】
請求項2の発明は、請求項1の発明において、映像表示手段は、それぞれにカメラからの映像信号が入力されるカメラと同数台の投射器と、投影された光の偏光方向を保持する部材で形成され投射器によりカメラで撮影された映像が投影される複数のスクリーンと、各スクリーンに割り当てられた2台の投射器の投射口に取り付けられ各カメラ群に応じて偏光方向が異なる偏光フィルタと、偏光フィルタと同一構成の偏光フィルタが取り付けられて観賞者に装着される偏光眼鏡とを備えたので、偏光眼鏡を通して見る観賞者に対して各スクリーンに投影された映像を立体実写映像として知覚させることができるという効果がある。
【0038】
請求項3の発明は、請求項2の発明において、偏光フィルタとして円偏光フィルタを用いるので、映像表示手段の画面に対する観賞者の首の傾きによらずに円偏光の回転方向で分離でき、左右の映像の混入(クロストーク)を防止することができるという効果がある。
【0039】
請求項4の発明は、請求項1又は2又は3の発明において、観賞者から映像表示手段の各画面を見たときの視野角が各映像表示手段と対応するカメラの視野角と略一致するように映像表示手段の各画面が配置されるので、カメラで撮影した映像をそのまま映像表示手段の画面に表示しても観賞者に知覚される立体映像の大きさに違和感が生じないという効果がある。
【0040】
請求項5の発明は、請求項1〜4の何れかの発明において、反射用光学部品は、一面にカメラを固定する固定手段を具備したプリズムからなるので、立体実写映像撮影装置全体の小型化を図りながら、各カメラの撮影中心点を高精度で一致させることができるという効果がある。
【0041】
請求項6の発明は、請求項1〜5の何れかの発明において、立体実写映像撮影装置の各カメラから出力される映像信号に対してカメラの撮影画像を水平方向にシフトする画像処理を施した後に立体実写映像提示装置に映像信号を出力する画像処理装置を備えたので、画像処理装置によるシフト処理のシフト量に応じて、右眼用の映像と左眼用の映像とで視差を調整することができ、その結果、観賞者が知覚する立体実写映像の奥行き感覚の調整が可能となるという効果がある。
【図面の簡単な説明】
【図1】 本発明の参考例1における立体実写映像撮影装置を示す概略構成図である。
【図2】 同上における立体実写映像提示装置を示す概略構成図である。
【図3】 同上における立体実写映像撮影装置の反射用光学部品とカメラとの光学的配置を説明するための説明図である。
【図4】 同上における立体実写映像撮影装置の動作説明図である。
【図5】 同上における立体実写映像提示装置の動作説明図である。
【図6】 参考例2における立体実写映像提示装置の動作説明図である。
【図7】 同上における立体実写映像提示装置の動作説明図である。
【図8】 参考例3における立体実写映像撮影装置の一部省略した概略構成図である。
【図9】 同上における立体実写映像撮影装置の一部省略した断面図である。
【図10】 参考例4を示す概略構成図である。
【図11】 同上の動作説明図である。
【図12】 本発明の実施形態おける立体実写映像撮影装置を示す概略構成図である。
【図13】 同上における立体実写映像撮影装置の反射用光学部品とカメラとの光学的配置を説明するための説明図である。
【図14】 同上における立体実写映像提示装置を示す概略構成図である。
【図15】 同上の動作説明図である。
【符号の説明】
1A,1B 反射用光学部品
2A,2B カメラ群
2A1〜2A3,2B1〜2B3 カメラ
11A〜11C スクリーン
12A1〜12A3,12B1〜12B3 投射器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-dimensional real image photographing / presentation system capable of photographing and presenting a three-dimensional real image having a wide viewing angle and high resolution.
[0002]
[Prior art]
Conventionally, two hyperboloid mirrors with different curvatures (or two pyramid mirrors arranged vertically symmetrically) are arranged so that the outer focal points coincide with each other at the origin, and the camera is arranged so that the lens center comes to the origin. Thus, there has been proposed an omnidirectional stereo image photographing apparatus capable of photographing a stereo image of the entire circumference at once by projecting two stereo pairs of measurement points onto the projection surface at the same time (Japanese Patent Laid-Open No. Hei 11- No. 95344).
[0003]
Also, there is a rear projection type multi-screen display system in which rear projection type display devices are stacked in three vertical rows and four horizontal rows, have wide viewing angles in the upper and left and right directions, and can present realistic images. It has been proposed (see JP-A-8-271979).
[0004]
[Problems to be solved by the invention]
In the above-mentioned omnidirectional stereo image capturing device, the camera is arranged differently from the viewpoint of the video observer, so the photographed video cannot be used for video presentation as it is, and is once stored in some recording means. After that, it is necessary to perform image processing. Therefore, it cannot be applied to a purpose of instantly viewing a photographed real image such as remote control.
[0005]
In addition, neither of the two prior arts described in the above-mentioned publications mentions the correspondence between a camera that captures a live-action video and a video presentation device. The problem of uncomfortable size has not been solved.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to shoot a stereoscopic video image having a wide viewing angle and a high resolution from the viewpoint of the viewer and instantly view the captured stereoscopic video image. The present invention provides a stereoscopic live-action video shooting and presentation system that can be presented to a person.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is configured to reflect incident light made of a polyhedron in a desired direction, and the center lines of the polyhedrons are spaced apart by a distance substantially equal to the distance between the left and right eyes of a human. A pair of reflecting optical parts, and a stereoscopic live-action image comprising two sets of camera groups including a plurality of cameras arranged so that the virtual images of the respective photographing center points substantially coincide with each other by the reflecting optical parts A stereoscopic live-action video photographing device for photographing a three-dimensional real-time video, and a plurality of video display means for projecting a stereoscopic live-action video on the same screen based on video signals output from two cameras included in each set of camera groups. 3D live video presentation device that presents viewers with 3D live video shot by the live video shooting device, and each 3D live video shooting device is provided with a camera that shoots the lower field of view inside each reflective optical component Et The camera center point of the camera is arranged so as to substantially coincide with the virtual image of the camera center point of each camera group, and the stereoscopic video display device is based on the video signal output from each camera that captures the lower field of view. And a video display means for projecting a three-dimensional live-action video on the same screen, and the two center lines are arranged so that their centerlines are separated by a distance substantially equal to the distance between the left and right eyes of a human being. By photographing the images reflected by the optical components with two sets of cameras, it is possible to shoot a stereoscopic live-action image with a wide viewing angle and high resolution from the viewpoint of the viewer. Since the video signal output from the 3D live-action video presentation device is sequentially transmitted to the video display means, the 3D live-action video shot by the 3D live-action video shooting device can be immediately viewed without any sense of incongruity. It becomes possible to further be able to widen the field of view in the vertical direction, it is possible to photograph the photographed image of a wider field of view with high resolution.
[0008]
According to a second aspect of the present invention, in the first aspect of the present invention, the video display means includes the same number of projectors as the cameras to which video signals from the cameras are input, and a member that holds the polarization direction of the projected light. A plurality of screens on which images projected by a projector and projected by a camera are projected, and polarizing filters attached to projection ports of two projectors assigned to each screen and having different polarization directions depending on each camera group A polarizing filter having the same configuration as that of the polarizing filter and attached to the viewer, and a stereoscopic live-action image projected on each screen to the viewer looking through the polarizing glasses. It can be perceived as a video.
[0009]
According to a third aspect of the present invention, in the second aspect of the present invention, a circular polarizing filter is used as the polarizing filter, and the light is separated in the rotational direction of the circularly polarized light regardless of the inclination of the viewer's neck with respect to the screen of the image display means. And mixing of the left and right images (crosstalk) can be prevented.
[0010]
According to a fourth aspect of the present invention, in the first, second, or third aspect of the invention, the viewing angle when the viewer views each screen of the video display means substantially matches the viewing angle of the camera corresponding to each video display means. The screens of the video display means are arranged as described above, and even if the video shot by the camera is displayed on the screen of the video display means as it is, there is no sense of incongruity in the size of the stereoscopic video perceived by the viewer. .
[0011]
According to a fifth aspect of the present invention, in any of the first to fourth aspects of the present invention, the reflecting optical component comprises a prism having a fixing means for fixing the camera on one surface, and the entire stereoscopic live-action image photographing device The center of photographing of each camera can be matched with high accuracy while downsizing.
[0012]
According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, image processing for shifting the image captured by the camera in the horizontal direction is performed on the video signal output from each camera of the stereoscopic video image capturing apparatus. After that, an image processing device that outputs a video signal to the stereoscopic live image presentation device is provided, and depending on the shift amount of the shift processing by the image processing device, the right eye video and the left eye video The parallax can be adjusted, and as a result, the depth sensation of the stereoscopic video image perceived by the viewer can be adjusted.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Before describing an embodiment of the present invention, a reference example having the basic configuration of the present invention will be described.
( Reference Example 1)
FIG. 1 is a schematic configuration diagram of a stereoscopic live-action video shooting apparatus that constitutes the stereoscopic real-time video shooting and presentation system of this reference example . In this stereoscopic video camera, a pair of reflective optical components 1A and 1B formed in a pyramid shape and a plurality of (for example, three) cameras 2A 1 to 2A paired with each of the reflective optical components 1A and 1B. 3, 2B 1 and a ~2B 3, 2 one reflective optical part 1A, 1B is the distance fraction F (about 55Mm~75mm) corresponding to the distance between the center line G in the distance of the eye of the left and right normal human only Spaced apart. Wherein each reflective optical component 1A, each collectively multiple cameras 2A 1 ~2A 3, 2B 1 ~2B 3 become 1B and set "Camera group 2A", to be referred to as a "camera group 2B" To do.
[0014]
The reflecting optical components 1A and 1B are constituted by pyramid-shaped mirrors (mirrors) in which a metal film is deposited on a pyramidal member. The camera 2A 1 has a well-known configuration and includes a lens, an image pickup device such as a CCD, a signal processing circuit, and the like, and converts the picked-up video into an electric signal (video signal) and outputs it.
[0015]
Here, a plurality of cameras 2A 1 to 2A 3 , 2B 1 to 2B included in the camera groups 2A and 2B in each set including the reflecting optical component 1A and the camera group 2A, and the reflecting optical component 1B and the camera group 2B. 3 and 4 will be described with reference to FIGS. 3 and 4. FIG. As shown in FIG. 3, a virtual image of the photographing center point P (lens center point) of each of the cameras 2A 1 to 2A 3 and 2B 1 to 2B 3 is a point on the center line G of the reflecting optical components 1A and 1B ( gathering point X) in FIG. 3, and as shown in FIG. 4, the field of view (imaging range in the virtual image of each camera 2A 1 ~2A 3, 2B 1 ~2B 3 shooting center point was gathered in the point X) M1 to M3 Are arranged opposite to the triangular side surfaces of the reflecting optical components 1A and 1B so that they are adjacent to each other without overlapping or blind spots.
[0016]
Thus, the camera group 2A, 2B can take a wide field of view image with high resolution without blind spots or overlap, and the two camera groups 2A, 2B can be separated by the distance between the left and right eyes of a human. By separating them from each other by a distance corresponding to, a stereoscopic image can be taken when viewed from a normal human viewpoint.
[0017]
On the other hand, FIG. 2 shows a schematic configuration diagram of a stereoscopic live-action video presenting apparatus constituting the stereoscopic real-time video shooting / presentation system of the present reference example . In this three-dimensional live-action image presentation device, three screens 11A, 11B, and 11C arranged so as to surround the front and side of the viewer H, and a pair of projections that project images from the back side to the screens 11A to 11C. and a vessel (projector) 12A 1 ~12A 3, 12B 1 ~12B 3, the projector 12A 1 ~12A 3, 12B 1 ~12B 3 camera 2A 1 ~2A 3, 2B 1 ~2B 3 and the same number as a whole The screens 11A to 11C are half of the cameras 2A 1 to 2A 3 and 2B 1 to 2B 3 . Incidentally, detailed description will be omitted because projector 12A 1 ... The one having a known structure conventionally available.
[0018]
As shown in FIG. 5, two projectors 12A 1 and 12B 1 , 12A 2 and 12B 2 , and 12A 3 and 12B 3 assigned to the screens 11A, 11B, and 11C are polarized with respect to each projection port. Polarizing filters 13a and 13b having different directions are attached, and the projection light projected from the two projectors 12A 1 and 12B 1 ,... Is projected onto the screen 11A,. Arranged side by side. Further, the screen 11A,... Is made of a material that can maintain the polarization direction of the projected light. Then, the viewer wears polarized glasses 14 each having a polarizing filter having the same configuration as the polarizing filters 13a and 13b on the left and right sides, and sees the images projected on the screens 11A to 11C, thereby providing a stereoscopic image with parallax. You can appreciate the video.
[0019]
Incidentally, the respective cameras 2A stereoscopic live action image capturing device 1 ~2A 3, 2B 1 ~2B 3 , the stereoscopic live action each projector 12A 1 ~12A 3 video presentation device, 12B 1 ~12B 3, the same reference numerals (2A n and 12A n , 2B n and 12B n (where n = 1, 2, 3) are electrically connected by cables or the like, and video signals output from the cameras 2A 1 to 2A 3 and 2B 1 to 2B 3 There are transmitted via a cable or the like to each projector 12A 1 ~12A 3, 12B 1 ~12B 3. Here, the cameras 2A n and 2B n and the projectors 12A n and 12B n connected by a cable or the like project the direction of the field of view of the cameras 2A n and 2B n and the projectors 12A n and 12B n project images. The screens 11 </ b> A, 11 </ b> B, and 11 </ b> C are associated with each other so as to match the directions when viewed from the viewer H. In addition, the polarizing filters 13a and 13b attached to the projection ports of the projectors 12A n and 12B n belong to the camera group 2A in which the attached cameras 2A n and 2B n take images for the right eye, or for the left eye. Depending on whether it belongs to the camera group 2B that shoots an image, a polarizing filter having the same configuration as the polarizing filter used for the right eye or the left eye of the polarizing glasses 14 worn by the viewer H (those having the same polarization direction) is used. .
[0020]
In the stereoscopic live-action video shooting and presentation system of the present reference example configured as described above, video signals output from the cameras 2A n and 2B n of the stereoscopic real-video shooting device are used as the projectors 12A n and 12B of the stereoscopic real-life video presentation device. Since it is sequentially transmitted to n , the stereoscopic live-action video shot by the stereoscopic real-image shooting device can be immediately viewed without any sense of incongruity in the stereoscopic live-action video presentation device.
[0021]
By the way, it is desirable to use a circular polarizing filter as the polarizing filter attached to the projection ports of the projectors 12A n and 12B n and the polarizing filter used in the polarizing glasses 14 worn by the viewer H. The circularly polarizing filter is a filter configured by combining a quarter wave plate and a linearly polarizing filter, and has a function of passing only circularly polarized light in one of the rotation directions of clockwise or counterclockwise circularly polarized light. It is a filter. That is, the circularly polarizing filter 13a, 13b a projector 12A n, by attaching a projection opening of 12B n, projectors 12A n, projection light 12B n becomes clockwise or counterclockwise, further circularly polarized light the projection light If the polarizing glasses 14 using the filter are attached and viewed, the separation of the images seen by the right eye and the left eye can be separated in the rotation direction of the circularly polarized light regardless of the inclination of the viewer H's neck with respect to the screens 11A to 11C. Therefore, the projection light from the projectors 12A n and 12B n can be reliably separated into the right and left, and the left and right images can be prevented from being mixed (crosstalk).
[0022]
( Reference Example 2)
In this reference example , three screens 11A, 11B, and 11C in a stereoscopic live-action image presentation device intersect normal lines K1 to K3 passing through the centers of the screens 11A to 11C at a single point O as shown in FIGS. The angle N1 to N3 at which the screens 11A to 11C are viewed from the intersection point O is arranged so as to coincide with the viewing angles M1 to M3 of the cameras 2A n and 2B n in the stereoscopic live-action image capturing device. is there. Since other configurations are the same as those in Reference Example 1, illustration and description thereof are omitted.
[0023]
The viewer H views the images projected on the screens 11A to 11C from the intersection point O as shown in FIG. Further, the projectors 12A n and 12B n are arranged at rear positions so that the images are projected to the full screen on the screens 11A to 11C arranged as described above.
[0024]
Thus, according to the above configuration, even if the images taken by the cameras 2A n and 2B n are projected on the screens 11A to 11C as they are, there is no sense of incongruity in the size of the stereoscopic image perceived by the viewer H. There are advantages.
[0025]
( Reference Example 3)
This reference example is characterized by the structure of the reflective optical component in the stereoscopic live-action image capturing device, and the other configurations are the same as those of the reference example 1, so illustration and description thereof are omitted.
[0026]
The reflecting optical component 3 in this reference example is made of a prism made of a light-transmitting material such as quartz glass, and a quadrangular pyramid is cut out on a plane that includes one base and is not parallel to the base as shown in FIGS. A cylindrical recess 3c is provided in the approximate center of the bottom surface 3b facing the inclined surface 3a. Then, the cameras 2A n and 2B n are fixed to the reflecting optical component 3 by inserting the lens tip portions of the cameras 2A n and 2B n into the recess 3c. Here, all light incident on the viewing angles M1 to M3 of the cameras 2A n and 2B n from the front surface 3d of the reflecting optical component 3 adjacent to the inclined surface 3a and the bottom surface 3b is totally reflected by the inner surface of the reflecting optical component 3. Thus, the refractive index of the translucent material and the angle of the inclined surface 3a are set.
[0027]
Thus, since the front end of the lens is inserted into the recess 3c of the reflecting optical component 3 made of a prism and the cameras 2A n and 2B n are fixed, the entire stereoscopic video shooting apparatus can be reduced in size. However, the photographing center points P of the cameras 2A n and 2B n can be matched with high accuracy.
[0028]
( Reference Example 4)
As shown in FIG. 10, the present reference example is characterized in that it includes an image processing device 10 that performs image processing on video signals output from the cameras 2A n and 2B n of the stereoscopic video shooting device. Since other configurations are the same as those in Reference Example 1, illustration and description thereof are omitted.
[0029]
The image processing apparatus has a conventionally well-known configuration. As shown in FIG. 11, one frame of the captured image W captured by the cameras 2A n and 2B n is stored in the memory, and the one-frame image W is stored in the horizontal direction. After performing a process of shifting (shifting) by a desired distance, an image (video signal) W ′ for one frame after the shift process is output to each of the projectors 12A n and 12B n of the stereoscopic live-action video presentation device It is.
[0030]
Thus, the parallax can be adjusted between the right-eye video and the left-eye video according to the shift amount of the shift processing by the image processing apparatus, and as a result, the stereoscopic live-action video perceived by the viewer H The depth sensation can be adjusted.
[0031]
(Embodiment )
The basic configuration of this embodiment is the same as that of Reference Example 1, and common portions are denoted by the same reference numerals and description thereof is omitted.
[0032]
In the stereoscopic live-action image capturing device of this embodiment, as shown in FIG. 12, cameras 2A 4 and 2B 4 for photographing the lower side are arranged in an internal space provided in the pyramidal reflective optical components 1A and 1B. Yes. In order to provide such a space, a reflective optical component having a shape in which one side of the side surface of the pyramid (for example, a surface corresponding to the rear of the field of view) is removed by combining a thin plate-like mirror or prism is combined. What is necessary is just to form 1A and 1B.
[0033]
Here, the optical arrangement of the added cameras 2A 4 and 2B 4 and the reflecting optical components 1A and 1B will be described with reference to FIG. As shown in FIG. 13, a point X on the center line G of the reflecting optical components 1A and 1B on which the virtual images of the photographing center points P of the cameras 2A 1 to 2A 3 and 2B 1 to 2B 3 gathered are added. with a camera 2A 4, imaging center point of 2B 4 P coincide, the field of view (imaging range) M4 cameras 2A 4, 2B 4 added is, adjacent to the camera 2A 4, 2B 4 added in the vertical direction The cameras 2A 4 and 2B 4 are arranged in an internal space provided in the reflective optical components 1A and 1B so as to be adjacent to the visual field M2 of the cameras 2A 2 and 2B 2 without overlapping or blind spots.
[0034]
On the other hand, in the three-dimensional live-action image presentation device of the present embodiment, as shown in FIG. 14, the screen 11D disposed below the screens 11A to 11C as viewed from the viewer H, and the back side of the screen 11D are installed and added. Two projectors 12A 4 and 12B 4 to which video signals from the cameras 2A 4 and 2B 4 are respectively input are added. As shown in FIG. 15, the added screen 11D has a normal line K4 passing through the center passing through the intersection point O described in the second embodiment, and the direction of the normal line K4 is that of the assigned cameras 2A 4 and 2B 4 . It arrange | positions so that it may correspond with an optical axis. The correspondence between the two projectors 12A 4 and 12B 4 and the cameras 2A 4 and 2B 4 and the left and right of the polarizing filter attached to the projection port of the projectors 12A 4 and 12B 4 are shown in Reference Examples 1 to 3. According to
[0035]
Thus, according to the present embodiment, the field of view can be expanded in the vertical direction, and it is possible to shoot a wide-field real image with high resolution.
[0036]
【The invention's effect】
According to the first aspect of the present invention, a pair of reflecting optics, which are composed of polyhedrons, reflect incident light in a desired direction and are spaced apart from each other by a distance approximately equal to the distance between the left and right human eyes. A stereoscopic live-action image photographing apparatus that has two sets of camera groups including a plurality of cameras arranged so that virtual images of respective photographing center points substantially coincide with each other by optical components for reflection and each reflection. And a plurality of video display means for projecting a stereoscopic video on the same screen based on video signals output from two cameras included in each set of camera groups. and a stereoscopic Stock video presentation device for presenting a stereoscopic Stock video to viewer, stereoscopic Stock video imaging apparatus, a camera is provided respectively to shoot LVF inside each reflective optics, imaging center point of the camera It is arranged so that it substantially matches the virtual image of the shooting center point of each camera group, and the stereoscopic live image presentation device displays the stereoscopic real video on the same screen based on the video signal output from each camera that captures the lower visual field. Since the image display means for projecting is provided , two sets of images reflected by the two reflecting optical components arranged such that their center lines are separated from each other by a distance substantially equal to the distance between the left and right eyes of a human being. By shooting with a camera group, it is possible to shoot a stereoscopic video with a wide viewing angle and high resolution from the viewer's viewpoint, and the video signal output from the camera of the stereoscopic video camera is presented as a stereoscopic video. for sequentially transmitted to the video display means of the device, it is possible to watch without discomfort stereoscopic Stock video presentation device stereoscopic live action image captured by the stereoscopic live action image capturing device in real Furthermore, vertical To be able to widen the field of view direction, there is an effect that it is possible to be taken at a higher resolution Stock Video of a wider field of view.
[0037]
According to a second aspect of the present invention, in the first aspect of the present invention, the video display means includes the same number of projectors as the cameras to which video signals from the cameras are input, and a member that holds the polarization direction of the projected light. A plurality of screens on which images projected by a projector and projected by a camera are projected, and polarizing filters attached to projection ports of two projectors assigned to each screen and having different polarization directions depending on each camera group And polarizing glasses that are attached to the viewer with a polarizing filter having the same configuration as the polarizing filter, so that the viewer can view the images projected on each screen as stereoscopic images. There is an effect that can be made.
[0038]
In the invention of claim 3, in the invention of claim 2, since a circular polarizing filter is used as the polarizing filter, it can be separated in the rotational direction of the circularly polarized light irrespective of the inclination of the viewer's neck with respect to the screen of the image display means. There is an effect that it is possible to prevent mixing (crosstalk) of the video.
[0039]
According to a fourth aspect of the present invention, in the first, second, or third aspect of the invention, the viewing angle when the viewer views each screen of the video display means substantially matches the viewing angle of the camera corresponding to each video display means. Since each screen of the video display means is arranged as described above, there is an effect that even if the video taken by the camera is displayed on the screen of the video display means as it is, the size of the stereoscopic video perceived by the viewer does not feel strange. is there.
[0040]
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the reflecting optical component comprises a prism having a fixing means for fixing the camera on one surface. There is an effect that the photographing center point of each camera can be matched with high accuracy.
[0041]
According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, image processing for shifting the image captured by the camera in the horizontal direction is performed on the video signal output from each camera of the stereoscopic video image capturing apparatus. After that, the image processing device that outputs the video signal to the stereoscopic live image presentation device is provided, so that the parallax is adjusted between the video for the right eye and the video for the left eye according to the shift amount of the shift processing by the image processing device. As a result, it is possible to adjust the depth sensation of the stereoscopic live-action image perceived by the viewer.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a stereoscopic live-action image capturing device in Reference Example 1 of the present invention .
[Fig. 2] Fig. 2 is a schematic configuration diagram showing a stereoscopic live-action image presenting device according to the above.
FIG. 3 is an explanatory diagram for explaining an optical arrangement of a reflection optical component and a camera of the stereoscopic live-action image photographing apparatus according to the above.
[Fig. 4] Fig. 4 is a diagram for explaining the operation of the stereoscopic live-action image capturing device of the above.
[Fig. 5] Fig. 5 is an operation explanatory diagram of the stereoscopic live-action image presentation device according to the above.
6 is an operation explanatory diagram of a stereoscopic live-action image presentation device in Reference Example 2. FIG.
[Fig. 7] Fig. 7 is an operation explanatory diagram of the stereoscopic live-action image presentation device according to the above.
FIG. 8 is a schematic configuration diagram in which a part of the stereoscopic live-action image capturing device in Reference Example 3 is omitted.
FIG. 9 is a cross-sectional view in which the stereoscopic live-action image capturing apparatus is partially omitted.
10 is a schematic configuration diagram showing a reference example 4. FIG.
FIG. 11 is an operation explanatory diagram of the above.
12 is a schematic diagram showing the three-dimensional live action image capturing apparatus definitive to an embodiment of the present invention.
FIG. 13 is an explanatory diagram for explaining an optical arrangement of a reflection optical component and a camera of the stereoscopic live-action image capturing device according to the embodiment;
FIG. 14 is a schematic configuration diagram showing the stereoscopic live-action image presentation device according to the above.
FIG. 15 is an operation explanatory diagram of the above.
[Explanation of symbols]
1A, 1B Reflective optical component 2A, 2B Camera group 2A1-2A3, 2B1-2B3 Camera 11A-11C Screen 12A1-12A3, 12B1-12B3 Projector

Claims (6)

多面体からなり入射した光を所望の方向へ反射させるとともに互いの中心線が人間の左右の眼の距離に略等しい距離だけ離間して配設される一対の反射用光学部品、各反射用光学部品により各々の撮影中心点の虚像が略一致するように配置された複数台のカメラからなる2組のカメラ群を具備して立体実写映像を撮影する立体実写映像撮影装置と、各組のカメラ群に含まれる2台のカメラから出力される映像信号に基づいて立体実写映像を同一画面上に映し出す複数の映像表示手段を具備して立体実写映像撮影装置で撮影された立体実写映像を観賞者に提示する立体実写映像提示装置とを備え、立体実写映像撮影装置は、各反射用光学部品の内側に下方視野を撮影するカメラがそれぞれ設けられ、このカメラの撮影中心点が各カメラ群の撮影中心点の虚像と略一致するように配置されてなり、立体実写映像提示装置は、下方視野を撮影する各カメラから出力される映像信号に基づいて立体実写映像を同一画面上に映し出す映像表示手段を具備してなることを特徴とする立体実写映像撮影提示システム。A pair of reflecting optical components, each of which is made of a polyhedron and reflects incident light in a desired direction and whose center lines are spaced apart by a distance approximately equal to the distance between the left and right eyes of a human, and each reflecting optical component A three-dimensional live-action image capturing apparatus that includes two sets of camera groups each including a plurality of cameras arranged so that the virtual images of the respective shooting center points substantially coincide with each other, and each set of camera groups 3D real-life video captured by a 3D real-time video imaging device having a plurality of video display means for projecting a 3D real-life video on the same screen based on video signals output from two cameras included in and a stereoscopic Stock video presentation device for presenting stereoscopic live action image capturing device, a camera for photographing the LVF inside each reflective optical components are respectively provided, shooting center point of the camera of each camera group The three-dimensional real image presentation device is arranged so as to substantially coincide with the virtual image of the center point, and the three-dimensional real image presentation device displays the three-dimensional real image on the same screen based on the video signal output from each camera that captures the lower visual field stereoscopic live action image capturing presentation system characterized by comprising comprises a. 映像表示手段は、それぞれにカメラからの映像信号が入力されるカメラと同数台の投射器と、投影された光の偏光方向を保持する部材で形成され投射器によりカメラで撮影された映像が投影される複数のスクリーンと、各スクリーンに割り当てられた2台の投射器の投射口に取り付けられ各カメラ群に応じて偏光方向が異なる偏光フィルタと、偏光フィルタと同一構成の偏光フィルタが取り付けられて観賞者に装着される偏光眼鏡とを備えたことを特徴とする請求項1記載の立体実写映像撮影提示システム。The video display means projects the same number of projectors as the cameras to which the video signals from the cameras are input, and a member that holds the polarization direction of the projected light and is captured by the projector. A plurality of screens, a polarizing filter that is attached to the projection port of two projectors assigned to each screen and has a different polarization direction according to each camera group, and a polarizing filter having the same configuration as the polarizing filter The stereoscopic live-action video shooting and presentation system according to claim 1, further comprising polarized glasses worn by a viewer. 偏光フィルタとして円偏光フィルタを用いることを特徴とする請求項2記載の立体実写映像撮影提示システム。  3. The stereoscopic live-action video shooting and presentation system according to claim 2, wherein a circular polarizing filter is used as the polarizing filter. 観賞者から映像表示手段の各画面を見たときの視野角が各映像表示手段と対応するカメラの視野角と略一致するように映像表示手段の各画面が配置されることを特徴とする請求項1又は2又は3記載の立体実写映像撮影提示システム。  The screens of the video display means are arranged so that the viewing angles when viewing each screen of the video display means from the viewer substantially coincide with the viewing angles of the cameras corresponding to the video display means. Item 3. The stereoscopic live-action video shooting and presentation system according to Item 1, 2 or 3. 反射用光学部品は、一面にカメラを固定する固定手段を具備したプリズムからなることを特徴とする請求項1〜4の何れかに記載の立体実写映像撮影提示システム。  5. The three-dimensional live-action video shooting and presentation system according to claim 1, wherein the reflection optical component is a prism having a fixing unit that fixes the camera on one surface. 立体実写映像撮影装置の各カメラから出力される映像信号に対してカメラの撮影画像を水平方向にシフトする画像処理を施した後に立体実写映像提示装置に映像信号を出力する画像処理装置を備えたことを特徴とする請求項1〜5の何れかに記載の立体実写映像撮影提示システム Provided with an image processing device that outputs a video signal to a stereoscopic live-action video presentation device after performing image processing for shifting a captured image of the camera in the horizontal direction on a video signal output from each camera of the stereoscopic real-time video shooting device The three-dimensional live-action video shooting and presentation system according to any one of claims 1 to 5 .
JP2000207583A 2000-07-07 2000-07-07 3D live-action video shooting and presentation system Expired - Fee Related JP4103308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000207583A JP4103308B2 (en) 2000-07-07 2000-07-07 3D live-action video shooting and presentation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000207583A JP4103308B2 (en) 2000-07-07 2000-07-07 3D live-action video shooting and presentation system

Publications (2)

Publication Number Publication Date
JP2002027494A JP2002027494A (en) 2002-01-25
JP4103308B2 true JP4103308B2 (en) 2008-06-18

Family

ID=18704326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000207583A Expired - Fee Related JP4103308B2 (en) 2000-07-07 2000-07-07 3D live-action video shooting and presentation system

Country Status (1)

Country Link
JP (1) JP4103308B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033570A (en) * 2004-07-20 2006-02-02 Olympus Corp Image generating device
KR100619067B1 (en) 2005-01-31 2006-08-31 삼성전자주식회사 Stereoscopic projection system

Also Published As

Publication number Publication date
JP2002027494A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
JP5172972B2 (en) 3D image display device
JP4863527B2 (en) Stereoscopic imaging device
JP4057652B2 (en) Autostereoscopic image forming apparatus and system incorporating the same
CA2473375C (en) Apparatus for stereoscopic photography
EP0460873A1 (en) Apparatus for displaying an image
WO2009004742A1 (en) Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses
JP4421673B2 (en) 3D image display device
CN107111147A (en) Stereos copic viewing device
WO2016128157A1 (en) Stereoscopic reproduction system using transparency
JPH07504766A (en) Image forming system with two sets of screens
JP3676916B2 (en) Stereoscopic imaging device and stereoscopic display device
JP4103308B2 (en) 3D live-action video shooting and presentation system
KR102172408B1 (en) Three-dimensional image projection apparatus
JPH09224265A (en) Method and device for recording stereoscopic image
US20060083437A1 (en) Three-dimensional image display apparatus
JP4353001B2 (en) 3D imaging adapter
CA2194630A1 (en) Viewing system for electronic 3-d animation and 3-d viewing mirror
JP3463960B2 (en) 3D image display device
JPH09182113A (en) Three-dimensional solid video signal conversion device and video camera device using the device
JPH0397390A (en) Solid display device
JP2707549B2 (en) Pseudo three-dimensional video projector
JP2001312018A (en) Two-in-a-set image and stereo camera for obtaining the image
WO2013061334A1 (en) 3d stereoscopic imaging device with auto parallax
JPH0879801A (en) Stereoscopic projector
TWI573435B (en) Dimensional image camera display system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees