JP4103304B2 - Silicon wafer manufacturing method - Google Patents

Silicon wafer manufacturing method Download PDF

Info

Publication number
JP4103304B2
JP4103304B2 JP2000161772A JP2000161772A JP4103304B2 JP 4103304 B2 JP4103304 B2 JP 4103304B2 JP 2000161772 A JP2000161772 A JP 2000161772A JP 2000161772 A JP2000161772 A JP 2000161772A JP 4103304 B2 JP4103304 B2 JP 4103304B2
Authority
JP
Japan
Prior art keywords
wafer
glossiness
silicon wafer
etching
back surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000161772A
Other languages
Japanese (ja)
Other versions
JP2001342096A (en
Inventor
雅史 則本
和成 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2000161772A priority Critical patent/JP4103304B2/en
Publication of JP2001342096A publication Critical patent/JP2001342096A/en
Application granted granted Critical
Publication of JP4103304B2 publication Critical patent/JP4103304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高精度の平坦度を有しかつ表裏を識別させるためのシリコンウェーハの製造方法に関する。
【0002】
【従来の技術】
一般に半導体シリコンウェーハの製造工程は、引上げたシリコン単結晶インゴットから切出し、スライスして得られたウェーハを、面取り、機械研磨(ラッピング)、エッチング、機械的化学的研磨(メカノケミカルポリッシング)及び洗浄する工程から構成され、高精度の平坦度を有するウェーハとして生産される。これらの工程は目的により、その一部の工程が入替えられたり、複数回繰返されたり、或いは熱処理、研削等他の工程が付加、置換されたりして種々の工程が行われる。
【0003】
半導体デバイスの微細化と高集積化が進むに従って、更に高精度の平坦度を有するシリコンウェーハ製造が要求されており、従来のシリコンウェーハの製造方法では限界が指摘されている。これらの問題を解決する1つの方策としてシリコンウェーハの両面同時ポリッシングが提案された。これは、シリコンウェーハを仕上げ厚さより若干薄いキャリアの中に装填し、両面ラッピングと同様の機構でメカノケミカルポリッシングする方法である。上記方法を用いた両面研磨装置は、例えば、相対する上下の定盤に研磨布を貼付け、その間にウェーハ外径より0.5〜2mm程度大きい直径のホールを3〜6個設けた、キャリアと称する薄円盤を定盤全体で4〜5枚セットする。キャリアは定盤の中心に位置するサンギアと定盤の外周周囲に位置するインターナルギアとそれぞれかみ合って保持される。そのキャリアホールにウェーハをセットした後、上下定盤の回転、キャリアの公転及びウェーハ自体の自転という複雑な運動を利用し、メカノケミカルポリッシングを行うものである。上記両面研磨装置によりウェーハの表裏面ともにポリッシングされ、極めて高精度の平坦度、均一厚みが得られる。
【0004】
このように両面研磨装置による両面同時ポリッシング方法は高精度の平坦度が得られるため非常に有用な方法であるが、両面同時ポリッシングで得られる両面鏡面ウェーハはウェーハの表裏面を同時にポリッシングすることにより作製されるため、表裏面の区別がつき難い問題があった。この問題を解決するために両面研磨装置を用いて表裏面を異なる研磨レートで研磨して両面同時ポリッシング後のシリコンウェーハの表裏面の区別をつけようとする方法も提案されている(特開平10−135164、特開平10−135165)。また、デバイスプロセスの搬送系でのウェーハ有無の検知はウェーハ裏面により行われているため、裏面が鏡面であると、検知困難や誤検知するなどの問題も生じていた。更に、裏面の光沢度を半導体デバイスメーカーが所望し取扱いやすい数値とされる100〜200%程度にすることが非常に難しい問題もあった。
【0005】
この両面研磨装置を用いた両面同時ポリッシングにおける上記問題点を解決する方法として、シリコンウェーハ裏面に酸化膜又は窒化膜を形成し、このウェーハに両面同時ポリッシングを施す方法が開示されている(特開平10−303154号)。この方法ではウェーハ裏面に所定の厚みの酸化膜又は窒化膜を形成して裏面が容易にポリッシングされないように保護した後、両面研磨装置を用いて両面同時ポリッシングを行い、研磨後に酸化膜又は窒化膜を除去する。これにより両面研磨装置を用いて高精度の平坦度を有する片面鏡面ウェーハを得ることができ、かつ裏面側の光沢度を半導体デバイスメーカーが所望する取扱いやすい数値にすることができる。
【0006】
【発明が解決しようとする課題】
しかし、特開平10−303154号公報に示される方法では裏面膜付け工程及び膜除去工程が半導体シリコンウェーハの製造工程にそれぞれ付加されるため、製造コストが上昇する問題点があった。
また、特開平10−135164号公報及び特開平10−135165号公報に示される方法では、製造コストが上昇する問題はないが、従来のポリッシング前のウェーハを用いた場合には、裏面の光沢度が300%前後になってしまい、裏面の光沢度を半導体デバイスメーカーが所望する100〜200%程度にすることが難しい問題点があった。
【0007】
本発明の目的は、両面同時ポリッシング後のシリコンウェーハ表裏面の区別が可能なシリコンウェーハの製造方法を提供することにある。
【0008】
【課題を解決するための手段】
【0009】
請求項に係る発明は、シリコン単結晶インゴットより切出し、面取り、ラッピングを施した加工変質層を有するシリコンウェーハをエッチングして、表裏面にそれぞれ加工変質層がなく、かつ表裏面の光沢度がそれぞれ10%以下であるシリコンウェーハを得るシリコンウェーハの製造方法において、HFとHNO 3 とCH 3 COOHとH 2 Oとを、HF(50重量%):HNO 3 (70重量%):CH 3 COOH(99.8重量%):H 2 O=1:5:2:2の容積比で混合して調製された反応律速型の混酸エッチング液を用い、エッチングを反応律速型エッチングにより行うシリコンウェーハの製造方法である。
請求項に係る発明では、加工変質層を有するシリコンウェーハのエッチングを反応律速型エッチングにより行うことにより、拡散律速型の酸をエッチング液として用いた場合に比べ、表面の微小粗さが大きくなる。そのため従来のウェーハより光沢度を低下させたウェーハを作製することができる。
【0010】
請求項に係る発明は、請求項に係る発明であって、複数の槽に互いに同一組成のエッチング液をそれぞれ貯え、加工変質層を有するシリコンウェーハを複数の槽に貯えられたエッチング液に順次浸漬した後、引上げることにより反応律速型エッチングを行うシリコンウェーハの製造方法である。
請求項に係る発明では、複数の槽に貯えられたエッチング液にシリコンウェーハを順次浸漬した後、引上げるエッチングを行うことによりウェーハ表面の平坦度を悪化させずに加工変質層を除去することができる。
【0011】
フッ酸(HF)及び硝酸(HNO 3 )を含む酸エッチング液によりエッチングすることにより、エッチング処理効果が確実に発揮され、エッチングの取り代の制御も比較的容易に低コストで行うことができる。
【0012】
また、酸エッチング液に酢酸を更に含むことにより、シリコンウェーハのエッチングによる面荒れを適度に抑えることができる。
【0013】
上記方法によって製造され、表裏面の光沢度をそれぞれ従来の光沢度より低い20%以下にしたシリコンウェーハに両面研磨装置を用いて両面同時ポリッシングを行うことにより、両面同時ポリッシング後の表面の光沢度を300%以上にして裏面の光沢度を100〜200%に抑えることができる。従って表裏面の光沢度の違いにより、ポリッシング後のウェーハの表裏面を識別することができる。
【0014】
【発明の実施の形態】
次に本発明の実施の形態について説明する。
本発明の表裏面にそれぞれ加工変質層がなく、かつ表裏面の光沢度がそれぞれ20%以下であるシリコンウェーハは、主としてシリコンウェーハ製造工程におけるメカノケミカルポリッシングを行う前のウェーハとして用いられる。更にこのシリコンウェーハは、裏面ポリッシングを行う前のウェーハとしても用いられる。この裏面ポリッシングの方法としては、ラップドウェーハにアルカリエッチングにより形成された凹凸面の裏面に軽くポリッシングを施した後に、表面を鏡面ポリッシングする方法(特開平6−349795)や、ラップドウェーハに酸エッチングを施し、エッチング後のウェーハの裏面にライトポリッシングを施した後に表面を鏡面ポリッシングする方法(特開平10−55990)が挙げられる。
光沢度はJIS規格(JIS Z 8741)により定義されている。この規格によれば、光沢度は、ある試料面に対し、入射角θで入射した光の鏡面反射光束Ψsの、屈折率が1.567のガラス表面の同一測定系における鏡面反射光束Ψs0に対する割合をパーセントで表示した数値として表される。光沢度Gr(θ)は下記式(1)に示す式により表すことができ、シリコンウェーハ表面の光沢度を測定する場合の入射角θは60°である。
【0015】
【数1】

Figure 0004103304
【0016】
本発明の反応律速型エッチング液は、酸エッチング液に限らず、アルカリエッチング液などのような反応律速型エッチング液も含まれる。
【0017】
ラッピング工程及びラッピング後洗浄工程を経た加工変質層を有するウェーハを従来の酸エッチング液によりエッチングすると表裏面の光沢度がそれぞれ100〜200%程度のウェーハが得られる。このウェーハを両面研磨装置を用いて両面同時ポリッシングするとポリッシング後のウェーハ裏面の光沢度は300%前後になってしまい、前述した通り、表裏面の区別がつき難い、デバイスプロセスの搬送系でのウェーハ有無の検知困難や誤検知がある、裏面の光沢度を100〜200%程度にすることが非常に難しいなど様々な問題を生じる。
【0018】
そこで本発明の構成は、両面同時ポリッシングを行う前のウェーハを表裏面にそれぞれ加工変質層がなく、かつウェーハの表裏面の光沢度をそれぞれ20%以下とすることを特徴とする。両面同時ポリッシングを行う前のウェーハの表裏面の光沢度をそれぞれ従来の光沢度より低くすることにより、ポリッシング後の光沢度を抑えることができる。この表裏面の光沢度がそれぞれ20%以下のウェーハを用いて両面研磨装置を用いて両面同時ポリッシングを行うとポリッシング後のウェーハ表面の光沢度を300%以上にするとともに裏面の光沢度を200%以下とすることができる。その結果、表裏面の光沢度の違いから、表裏面の区別をつけることができる。
両面同時ポリッシングを行う前のウェーハの表裏面の光沢度はそれぞれ20%以下である。表裏面の光沢度はそれぞれ10%以下が好ましい。光沢度が20%を越えるとポリッシング後の裏面の光沢度が200%を越えてしまう不具合を生じる。また、表裏面の区別がつき難くなる。
【0019】
次に本発明のシリコンウェーハの製造方法について説明する。
ラッピング工程及びラッピング後洗浄工程を経た加工変質層を有するシリコンウェーハを反応律速型混酸エッチング液によりエッチングする。反応律速型混酸エッチング液を用いた場合、従来の拡散律速型混酸エッチング液と比較して、表面の微小粗さが大きくなる。これは反応律速型混酸エッチング液中と、拡散律速型混酸エッチング液中ではシリコンの化学反応形態が異なることに由来する。即ち、反応律速型混酸エッチング液中では拡散律速型混酸エッチング液中と比較して、混酸液に難溶なNOガス(一酸化窒素ガス)が大量に発生し、このガスによりエッチング反応の局所的なムラが生じているためと推定される。光沢度とは単位面積当たりの反射光強度を示す数値であるため、表面の微小粗さが小さいほど、大きな数値を示す。そのため、表裏面の光沢度を20%以下という小さい値とするためには、反応律速型の混酸液を用いてエッチングすることが望ましい。
【0020】
本発明のエッチング方法としてはこのエッチング液を槽に貯え、この槽にラッピング及びラッピング後洗浄工程を経た加工変質層を有するシリコンウェーハを液を撹拌しながら浸漬して加工変質層を除去した後、引上げる。次にこのウェーハを超純水に浸漬してリンスした後、乾燥する。エッチング時の温度が20℃より低い場合には、化学反応熱のためにエッチング液の温度が上昇しやすくなるので、温度調節のために大きな冷却設備が必要となる。また、50℃より大きい場合には、エッチング槽などに使用可能な素材が、テトラフルオロエチレン(商品名:テフロン)等ごく一部の樹脂に限られてしまうため、高価な装置になりやすい。そのため、エッチング時の温度は20〜50℃の範囲が好ましい。
なお、複数の槽に互いに同一組成の反応律速型エッチング液又は互いに異なる組成の反応律速型エッチング液をそれぞれ貯え、ラッピング及びラッピング後洗浄工程を経た加工変質層を有するウェーハを複数の槽に貯えられたエッチング液に順次浸漬した後、引上げるエッチング方法を行うことにより、ラッピング工程で得られた平坦度を維持し、かつ表裏面の光沢度がそれぞれ20%以下のウェーハを製造することができる。
【0021】
【実施例】
次に本発明の実施例を比較例とともに説明する。
<実施例1>
ラッピング工程及びラッピング後洗浄工程を経た加工変質層を有する直径が200mmのシリコンウェーハを用意した。次に、HFとHNO3とCH3COOHとH2Oとを、HF(50重量%):HNO3(70重量%):CH3COOH(99.8重量%):H2O=1:5:2:2の容積比で混合して反応律速型の混酸エッチング液を調製した。この30℃のエッチング液を槽に貯え、この槽に上記シリコンウェーハを液を撹拌しながら300秒間浸漬して加工変質層を除去した後、引上げた。このウェーハを超純水に3分間浸漬してリンスした後乾燥して、ウェーハ表裏面の光沢度を測定したところ光沢度はそれぞれ5%であった。この光沢度は日本電色社製の光沢度計によりグロス(Gross)60°の規格で測定した。
【0022】
<比較例1>
HFとHNO3とCH3COOHとH2Oとを、HF(50重量%):HNO3(70重量%):CH3COOH(99.8重量%):H2O=1:5:2:1の容積比で混合して拡散律速型の混酸エッチング液を調製した。この30℃のエッチング液を槽に貯え、この槽に実施例1と同一のシリコンウェーハを液を撹拌しながら100秒間浸漬して加工変質層を除去した後、引上げた。このウェーハを超純水に3分間浸漬してリンスした後乾燥して、ウェーハ表裏面の光沢度を実施例1と同一の光沢度計を用いて測定したところ光沢度はそれぞれ16%であった。
<比較例2>
HFとHNO3とCH3COOHとH2Oとを、HF(50重量%):HNO3(70重量%):CH3COOH(99.8重量%):H2O=1:4:2:0.5の容積比で混合して拡散律速型の混酸エッチング液を調製した。この30℃のエッチング液を槽に貯え、この槽に実施例1と同一のシリコンウェーハを液を撹拌しながら50秒間浸漬して加工変質層を除去した後、引上げた。このウェーハを超純水に3分間浸漬してリンスした後乾燥して、ウェーハ表裏面の光沢度を実施例1と同一の光沢度計を用いて測定したところ光沢度はそれぞれ25%であった。
【0023】
<比較評価>
エッチング後のウェーハ表裏面を両面研磨装置を用いて下記の研磨条件で両面同時ポリッシングを施して両面鏡面ウェーハを得た。
(1) 上定盤回転速度:10rpm
(2) 下定盤回転速度:10rpm
(3) インターナルギア回転速度:10rpm
(4) サンギア回転速度:10rpm
(5) 研磨時間:20分間
実施例1、比較例1及び2における両面同時ポリッシング後のウェーハ表裏面の光沢度を上述した光沢度計を用いて測定した結果を表1に示す。
【0024】
【表1】
Figure 0004103304
【0025】
比較例1及び2に対して実施例1では表1より明らかなように、エッチング後のウェーハ表裏面の光沢度(研磨前材料の光沢度)が低いほど、両面同時ポリッシング後のウェーハ裏面の光沢度が低くなっている。実施例1では表裏面の光沢度の差が確認でき、表裏面の区別が可能であることが判る。
【0026】
【発明の効果】
以上述べたように、本発明では、加工変質層を有するシリコンウェーハを反応律速型酸エッチング液によりエッチングすることにより、表裏面にそれぞれ加工変質層がなく、かつ表裏面の光沢度がそれぞれ10%以下のシリコンウェーハを作製できる。このウェーハを両面研磨装置を用いて両面同時ポリッシングすると、ポリッシング後の表面の光沢度が300%以上でかつ裏面の光沢度が200%以下の鏡面シリコンウェーハを作製することができる。その結果、表裏面の光沢度の違いよりウェーハ表裏面の区別をつけることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production how silicon-way Ha for identifying the a and sides flatness of high precision.
[0002]
[Prior art]
In general, in the manufacturing process of a semiconductor silicon wafer, a wafer obtained by cutting and slicing from a pulled silicon single crystal ingot is chamfered, mechanically polished (lapping), etched, mechanically chemical polished (mechanochemical polishing), and cleaned. It is composed of processes and is produced as a wafer with high precision flatness. Depending on the purpose, some of these steps are replaced, repeated a plurality of times, or other steps such as heat treatment and grinding are added or replaced to perform various steps.
[0003]
As miniaturization and higher integration of semiconductor devices progress, the manufacture of silicon wafers with higher precision flatness is required, and the limitations of conventional silicon wafer manufacturing methods are pointed out. As one measure for solving these problems, simultaneous double-side polishing of a silicon wafer has been proposed. In this method, a silicon wafer is loaded into a carrier slightly thinner than the finished thickness, and mechanochemical polishing is performed by a mechanism similar to double-sided lapping. The double-side polishing apparatus using the above method includes, for example, a carrier in which a polishing cloth is pasted on opposite upper and lower surface plates, and 3 to 6 holes having a diameter about 0.5 to 2 mm larger than the outer diameter of the wafer are provided therebetween. Set 4 to 5 thin disks to be called. The carrier is held in mesh with a sun gear located at the center of the surface plate and an internal gear located around the outer periphery of the surface plate. After the wafer is set in the carrier hole, mechanochemical polishing is performed using a complicated motion of rotation of the upper and lower surface plates, revolution of the carrier, and rotation of the wafer itself. Both the front and back surfaces of the wafer are polished by the above-described double-side polishing apparatus, and extremely high flatness and uniform thickness can be obtained.
[0004]
As described above, the double-sided simultaneous polishing method using the double-side polishing apparatus is very useful because high-accuracy flatness can be obtained, but the double-sided mirror surface wafer obtained by double-sided simultaneous polishing is performed by simultaneously polishing the front and back surfaces of the wafer. Since it was produced, there was a problem that it was difficult to distinguish the front and back surfaces. In order to solve this problem, a method has also been proposed in which a front and back surface is polished at different polishing rates using a double-side polishing apparatus to distinguish the front and back surfaces of a silicon wafer after simultaneous double-side polishing (Japanese Patent Laid-Open No. Hei 10). -135164, JP-A-10-135165). Further, since the presence / absence of the wafer in the device process transfer system is detected from the back surface of the wafer, if the back surface is a mirror surface, problems such as difficulty in detection and erroneous detection also occur. Furthermore, there is a problem that it is very difficult to set the glossiness of the back surface to about 100 to 200%, which is a value desired by a semiconductor device manufacturer and easy to handle.
[0005]
As a method for solving the above problems in double-sided simultaneous polishing using this double-side polishing apparatus, a method of forming an oxide film or a nitride film on the back surface of a silicon wafer and performing double-sided simultaneous polishing on this wafer is disclosed (Japanese Patent Laid-Open No. Hei. 10-303154). In this method, an oxide film or nitride film having a predetermined thickness is formed on the back surface of the wafer to protect the back surface from being easily polished, and then double-side polishing is performed using a double-side polishing apparatus, and the oxide film or nitride film is polished after polishing. Remove. As a result, a single-sided mirror wafer having high-precision flatness can be obtained using a double-side polishing apparatus, and the glossiness on the back side can be set to a numerical value that is easy to handle as desired by the semiconductor device manufacturer.
[0006]
[Problems to be solved by the invention]
However, the method disclosed in Japanese Patent Application Laid-Open No. 10-303154 has a problem that the manufacturing cost increases because the backside film forming step and the film removing step are added to the semiconductor silicon wafer manufacturing step.
Further, in the methods disclosed in Japanese Patent Laid-Open Nos. 10-135164 and 10-135165, there is no problem that the manufacturing cost increases. However, when a conventional wafer before polishing is used, the glossiness of the back surface is increased. As a result, the glossiness on the back surface is difficult to be about 100 to 200% as desired by the semiconductor device manufacturer.
[0007]
The purpose of the present invention is to provide a manufacturing how the silicon wafer table can be distinguished on the back surface of the silicon-way Ha after duplex simultaneous polishing.
[0008]
[Means for Solving the Problems]
[0009]
The invention according to claim 1, cut out from a silicon single crystal ingot, chamfering, the silicon wafer is etched with a damaged layer having been subjected to lapping, without each affected layer on both surfaces, and the glossiness of the front and back surfaces In a silicon wafer manufacturing method for obtaining silicon wafers each having 10% or less , HF, HNO 3 , CH 3 COOH, and H 2 O are mixed with HF (50 wt%): HNO 3 (70 wt%): CH 3 COOH. (99.8% by weight): H 2 O = 1: 5: 2: A silicon wafer that is etched by reaction-controlled etching using a reaction-controlled mixed acid etchant prepared by mixing at a volume ratio of 1: 5: 2: 2 . It is a manufacturing method.
In the invention according to claim 1 , by performing etching of the silicon wafer having the work-affected layer by reaction-controlled etching, the surface roughness is increased as compared with the case where a diffusion-controlled acid is used as the etching solution. . Therefore, it is possible to produce a wafer having a lower gloss than a conventional wafer.
[0010]
The invention according to claim 2 is the invention according to claim 1 , wherein an etching solution having the same composition is stored in a plurality of tanks, and a silicon wafer having a work-affected layer is stored in the plurality of tanks. This is a silicon wafer manufacturing method in which reaction-controlled etching is performed by sequentially dipping and then pulling up.
In the invention according to claim 2 , after the silicon wafer is sequentially immersed in the etching solution stored in a plurality of tanks, the work-affected layer is removed without deteriorating the flatness of the wafer surface by performing a pull-up etching. Can do.
[0011]
By etching by acid etching solution containing upper Symbol hydrofluoric acid (HF) and nitric acid (HNO 3), is exhibited reliably etching treatment effect, it is carried out at relatively easily lower cost machining allowance of controlling the etching it can.
[0012]
Furthermore, by further containing acetic acid etchant can be suppressed moderately to surface roughening by etching of the silicon wafer.
[0013]
Glossiness of the surface after double-sided simultaneous polishing by performing double-sided simultaneous polishing using a double- side polishing machine on a silicon wafer manufactured by the above method and having a glossiness of 20% or less lower than the conventional glossiness. And the glossiness of the back surface can be suppressed to 100 to 200% . Therefore, the front and back surfaces of the polished wafer can be identified by the difference in glossiness between the front and back surfaces.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
A silicon wafer having no work-affected layers on the front and back surfaces of the present invention and having a glossiness of 20% or less on each of the front and back surfaces is mainly used as a wafer before mechanochemical polishing in the silicon wafer manufacturing process. Furthermore, this silicon wafer is also used as a wafer before performing back surface polishing. As a back surface polishing method, a lightly polished back surface of a concavo-convex surface formed by alkaline etching on a wrapped wafer and then a mirror polishing of the surface (Japanese Patent Laid-Open No. 6-349795), or an acid treatment on a wrapped wafer. There is a method (Japanese Patent Laid-Open No. 10-55990) in which etching is performed and light polishing is performed on the back surface of the etched wafer, and then the surface is mirror-polished.
The glossiness is defined by the JIS standard (JIS Z 8741). According to this standard, the glossiness is relative to the specular reflected light beam ψs 0 in the same measurement system on the glass surface having a refractive index of 1.567. Expressed as a number with percentages expressed as percentages. The glossiness Gr (θ) can be expressed by the following equation (1), and the incident angle θ when measuring the glossiness of the silicon wafer surface is 60 °.
[0015]
[Expression 1]
Figure 0004103304
[0016]
The reaction-limited etching solution of the present invention is not limited to an acid etching solution, but also includes a reaction-limited etching solution such as an alkali etching solution.
[0017]
When a wafer having a work-affected layer that has undergone a lapping process and a cleaning process after lapping is etched with a conventional acid etching solution, wafers having a glossiness of about 100 to 200% on the front and back surfaces are obtained. When this wafer is polished on both sides simultaneously using a double-side polishing machine, the glossiness of the backside of the wafer after polishing is around 300%, and as described above, it is difficult to distinguish between the front and back sides, and the wafer in the transport system of the device process. There are various problems such as difficulty in detecting presence / absence or false detection, and extremely difficult to make the glossiness of the back surface about 100 to 200%.
[0018]
Therefore, the configuration of the present invention is characterized in that there is no work-affected layer on the front and back surfaces of the wafer before performing double-side simultaneous polishing, and the glossiness of the front and back surfaces of the wafer is 20% or less, respectively. By making the glossiness of the front and back surfaces of the wafer before performing double-sided simultaneous polishing lower than the conventional glossiness, the glossiness after polishing can be suppressed. When a double-side polishing machine is used to perform both-side polishing using a wafer having a glossiness of 20% or less on each of the front and back surfaces, the glossiness of the wafer surface after polishing is increased to 300% or more and the glossiness of the backside is 200%. It can be as follows. As a result, it is possible to distinguish the front and back surfaces from the difference in glossiness between the front and back surfaces.
The glossiness of the front and back surfaces of the wafer before performing double-sided simultaneous polishing is 20% or less, respectively. The glossiness of the front and back surfaces is preferably 10% or less. If the glossiness exceeds 20%, there is a problem that the glossiness of the back surface after polishing exceeds 200%. Moreover, it becomes difficult to distinguish the front and back surfaces.
[0019]
Next, the manufacturing method of the silicon wafer of this invention is demonstrated.
A silicon wafer having a work-affected layer that has undergone the lapping process and the cleaning process after lapping is etched with a reaction-limited mixed acid etching solution. When a reaction-controlled mixed acid etching solution is used, the surface roughness is increased compared to a conventional diffusion-controlled mixed acid etching solution. This is because the chemical reaction form of silicon is different between the reaction-controlled mixed acid etching solution and the diffusion-controlled mixed acid etching solution. That is, in the reaction-limited mixed acid etching solution, a larger amount of NO gas (nitrogen monoxide gas) is generated which is less soluble in the mixed acid solution than in the diffusion-controlled mixed acid etching solution. This is presumably because of unevenness. Since the glossiness is a numerical value indicating the intensity of reflected light per unit area, the smaller the surface roughness, the higher the numerical value. Therefore, in order to make the glossiness of the front and back surfaces as small as 20% or less, it is desirable to perform etching using a reaction-controlled mixed acid solution.
[0020]
As an etching method of the present invention, this etching solution is stored in a tank, and after removing the work-affected layer by immersing a silicon wafer having a work-affected layer that has undergone lapping and a cleaning process after lapping in this tank while stirring the liquid, Pull up. Next, the wafer is immersed in ultrapure water for rinsing and then dried. When the temperature at the time of etching is lower than 20 ° C., the temperature of the etching solution is likely to rise due to the heat of chemical reaction, and thus a large cooling facility is required for temperature adjustment. Further, when the temperature is higher than 50 ° C., materials that can be used for an etching tank or the like are limited to a small part of resin such as tetrafluoroethylene (trade name: Teflon), and thus an expensive apparatus is likely to be obtained. Therefore, the temperature during etching is preferably in the range of 20 to 50 ° C.
A plurality of tanks can store reaction-limited etching liquids having the same composition or reaction-limited etching liquids having different compositions from each other, and wafers having a work-affected layer that has undergone a lapping and cleaning process after lapping can be stored in a plurality of tanks. After sequentially dipping in the etching solution, a pulling etching method is performed, so that a wafer having a flatness obtained in the lapping step and having a glossiness of 20% or less on each of the front and back surfaces can be manufactured.
[0021]
【Example】
Next, examples of the present invention will be described together with comparative examples.
<Example 1>
A silicon wafer having a diameter of 200 mm having a work-affected layer that has undergone a lapping process and a cleaning process after lapping was prepared. Next, HF, HNO 3 , CH 3 COOH, and H 2 O are mixed with HF (50 wt%): HNO 3 (70 wt%): CH 3 COOH (99.8 wt%): H 2 O = 1: A reaction-controlled mixed acid etching solution was prepared by mixing at a volume ratio of 5: 2: 2. The etching solution at 30 ° C. was stored in a tank, and the silicon wafer was immersed in the tank for 300 seconds while stirring the liquid to remove the work-affected layer and then pulled up. The wafer was immersed in ultrapure water for 3 minutes, rinsed, dried, and the glossiness of the front and back surfaces of the wafer was measured. The glossiness was 5%. This glossiness was measured with a gloss meter manufactured by Nippon Denshoku Co., Ltd., with a gloss of 60 °.
[0022]
<Comparative Example 1>
HF, HNO 3 , CH 3 COOH, and H 2 O are mixed with HF (50 wt%): HNO 3 (70 wt%): CH 3 COOH (99.8 wt%): H 2 O = 1: 5: 2. A diffusion-limited mixed acid etching solution was prepared by mixing at a volume ratio of 1: 1. This etching solution at 30 ° C. was stored in a tank, and the same silicon wafer as in Example 1 was immersed in this tank for 100 seconds while stirring the liquid to remove the work-affected layer and then pulled up. The wafer was immersed in ultrapure water for 3 minutes, rinsed, dried, and the glossiness of the front and back surfaces of the wafer was measured using the same glossmeter as in Example 1. The glossiness was 16%, respectively. .
<Comparative example 2>
HF, HNO 3 , CH 3 COOH, and H 2 O are mixed with HF (50 wt%): HNO 3 (70 wt%): CH 3 COOH (99.8 wt%): H 2 O = 1: 4: 2. Was mixed at a volume ratio of 0.5 to prepare a diffusion-controlled mixed acid etching solution. This etching solution at 30 ° C. was stored in a tank, and the same silicon wafer as in Example 1 was immersed in this tank for 50 seconds while stirring the liquid to remove the work-affected layer and then pulled up. This wafer was immersed in ultrapure water for 3 minutes, rinsed, dried, and the glossiness of the front and back surfaces of the wafer was measured using the same glossmeter as in Example 1. The glossiness was 25%, respectively. .
[0023]
<Comparison evaluation>
The wafer front and back surfaces after etching were subjected to simultaneous double-side polishing under the following polishing conditions using a double-side polishing apparatus to obtain a double-sided mirror wafer.
(1) Upper surface plate rotation speed: 10rpm
(2) Lower surface plate rotation speed: 10rpm
(3) Internal gear rotation speed: 10rpm
(4) Sun gear rotation speed: 10rpm
(5) Polishing time: 20 minutes Table 1 shows the results of measuring the glossiness of the front and back surfaces of the wafer after both-side simultaneous polishing in Example 1 and Comparative Examples 1 and 2 using the above-described gloss meter.
[0024]
[Table 1]
Figure 0004103304
[0025]
As is clear from Table 1 in Comparative Example 1 and 2, in Example 1, the lower the glossiness of the wafer front and back surfaces after etching (the glossiness of the material before polishing), the lower the glossiness of the wafer back surface after both-side polishing. The degree is low. In Example 1, the difference in glossiness between the front and back surfaces can be confirmed, and it can be seen that the front and back surfaces can be distinguished.
[0026]
【The invention's effect】
As described above, in the present invention, by etching a silicon wafer having a work-affected layer with a reaction-controlled acid etching solution, there are no work-affected layers on the front and back surfaces, and the glossiness on the front and back surfaces is 10 %. The following silicon wafers can be produced. When this wafer is polished on both sides simultaneously using a double-side polishing apparatus, a mirror silicon wafer having a glossiness of 300% or more on the surface after polishing and a glossiness of 200% or less on the back surface can be produced. As a result, it is possible to distinguish the front and back surfaces of the wafer from the difference in glossiness between the front and back surfaces.

Claims (2)

シリコン単結晶インゴットより切出し、面取り、ラッピングを施した加工変質層を有するシリコンウェーハをエッチングして、表裏面にそれぞれ加工変質層がなく、かつ前記表裏面の光沢度がそれぞれ10%以下であるシリコンウェーハを得るシリコンウェーハの製造方法において、
HFとHNO 3 とCH 3 COOHとH 2 Oとを、HF(50重量%):HNO 3 (70重量%):CH 3 COOH(99.8重量%):H 2 O=1:5:2:2の容積比で混合して調製された反応律速型の混酸エッチング液を用い、前記エッチングを反応律速型エッチングにより行うシリコンウェーハの製造方法。
A silicon wafer having a work-affected layer cut out, chamfered, and lapped from a silicon single crystal ingot is etched so that there is no work-affected layer on each of the front and back surfaces, and the gloss on each of the front and back surfaces is 10% or less. In the silicon wafer manufacturing method for obtaining a wafer,
HF, HNO 3 , CH 3 COOH, and H 2 O are mixed with HF (50 wt%): HNO 3 (70 wt%): CH 3 COOH (99.8 wt%): H 2 O = 1: 5: 2. : A method for producing a silicon wafer , wherein a reaction-limited mixed acid etching solution prepared by mixing at a volume ratio of 2 is used, and the etching is performed by reaction-limited etching.
複数の槽に互いに同一組成のエッチング液をそれぞれ貯え、
加工変質層を有するシリコンウェーハを前記複数の槽に貯えられたエッチング液に順次浸漬した後、引上げることにより反応律速型エッチングを行う請求項記載のシリコンウェーハの製造方法
Stored etchant having the same composition with each other into a plurality of tanks, respectively,
After a silicon wafer having a work-affected layer was successively immersed in an etching solution which is stored in the plurality of tanks, the method for producing a silicon wafer of claim 1 wherein the reaction is carried out rate-determining type etching by pulling Ru.
JP2000161772A 2000-05-31 2000-05-31 Silicon wafer manufacturing method Expired - Lifetime JP4103304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000161772A JP4103304B2 (en) 2000-05-31 2000-05-31 Silicon wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000161772A JP4103304B2 (en) 2000-05-31 2000-05-31 Silicon wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2001342096A JP2001342096A (en) 2001-12-11
JP4103304B2 true JP4103304B2 (en) 2008-06-18

Family

ID=18665748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000161772A Expired - Lifetime JP4103304B2 (en) 2000-05-31 2000-05-31 Silicon wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP4103304B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146848B2 (en) * 2007-06-26 2013-02-20 株式会社Sumco Epitaxial wafer manufacturing method
CN103361739B (en) * 2013-07-08 2016-01-20 浙江晶科能源有限公司 A kind of crystal silicon solar batteries implements the method for back of the body polishing in producing

Also Published As

Publication number Publication date
JP2001342096A (en) 2001-12-11

Similar Documents

Publication Publication Date Title
US5429711A (en) Method for manufacturing wafer
US20050112893A1 (en) Method for producing a silicon wafer
US7851375B2 (en) Alkaline etchant for controlling surface roughness of semiconductor wafer
KR100706683B1 (en) Silicon wafer processing method
US20020034881A1 (en) Process for etching silicon wafers
JP2008088051A (en) Epitaxial wafer and its manufacturing method
WO2000072374A1 (en) Detection of processing-induced defects in silicon wafer
JP4103304B2 (en) Silicon wafer manufacturing method
JP2002203823A (en) Method for processing semiconductor wafer, and semiconductor wafer
US8617908B2 (en) Method for producing a substrate including a step of thinning with stop when a porous zone is detected
KR100607890B1 (en) Film thickness measuring monitor wafer
JP2003100701A (en) Method for etching silicon wafer and method for differentiating front and rear surface of silicon wafer using the same
JPH05315305A (en) Wafer polishing method
JPH11233485A (en) Semiconductor wafer and machining method therefor
JP3890981B2 (en) Alkaline etching solution, method for etching silicon wafer using this etching solution, and method for differentiating front and back surfaces of silicon wafer using this method
WO2023032488A1 (en) Method for cleaning silicon wafer and method for producing silicon wafer
JP6123150B2 (en) Method for evaluating silicon wafer processing amount and method for manufacturing silicon wafer
JP3578238B2 (en) Silicon wafer processing method
JP3584824B2 (en) High flatness semiconductor wafer and method of manufacturing the same
TW506008B (en) Semiconductor wafer manufacturing process
JP2004063954A (en) Etching method of silicon wafer, and method of differentiating front and rear faces of silicon wafer using the etching method
JP2003142544A (en) Method for evaluating minute defect in silicon wafer
JP2003203890A (en) Method for manufacturing silicon wafer
JP2003282509A (en) Method for manufacturing silicon wafer
JP2005005490A (en) Method of manufacturing semiconductor wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250