JP4102296B2 - Crack monitoring material and crack monitoring system - Google Patents

Crack monitoring material and crack monitoring system Download PDF

Info

Publication number
JP4102296B2
JP4102296B2 JP2003422392A JP2003422392A JP4102296B2 JP 4102296 B2 JP4102296 B2 JP 4102296B2 JP 2003422392 A JP2003422392 A JP 2003422392A JP 2003422392 A JP2003422392 A JP 2003422392A JP 4102296 B2 JP4102296 B2 JP 4102296B2
Authority
JP
Japan
Prior art keywords
crack
monitoring
conductive layer
detection
energization state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003422392A
Other languages
Japanese (ja)
Other versions
JP2005181108A (en
Inventor
田中  誠
孝文 江成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2003422392A priority Critical patent/JP4102296B2/en
Publication of JP2005181108A publication Critical patent/JP2005181108A/en
Application granted granted Critical
Publication of JP4102296B2 publication Critical patent/JP4102296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、亀裂の発生が予測される監視対象物の表面に形成され、この監視対象物の亀裂の発生及びこの亀裂の進展を監視する亀裂監視材、並びに亀裂の発生及びこの亀裂の進展を監視する亀裂監視システムに関する。   The present invention relates to a crack monitoring material that is formed on the surface of a monitoring object that is predicted to generate cracks, monitors the occurrence of cracks in the monitoring object and the progress of the cracks, and the generation of cracks and the progress of the cracks. The present invention relates to a crack monitoring system to be monitored.

鋼構造物には、繰り返し荷重を受けることで引張荷重のかかる部位に疲労亀裂が発生したり、接合部のリベットやボルトの緩みや脱落などの重大変状が発生したりする。このような重大変状が構造物の耐力に影響するほどの大きさに成長すると構造物の破壊に至るため、変状部位別に許容される変状程度を超えるおそれがある場合には補修や補強のための工事が行われている。鋼構造物の重大変状は、通常の状態では複数年かけて進展するため変状発生時に直ちに補修や補強を行う必要はない。また、変状の中には進展が途中で止まる場合もあるため、補修や補強の必要性を判定するためには変状発生後の進展を監視する必要がある。   In steel structures, fatigue cracks occur at sites where tensile loads are applied due to repeated loads, and serious conditions such as loosening or dropping of rivets and bolts at joints occur. If such a serious condition grows to a size that affects the proof stress of the structure, the structure will be destroyed. Construction is being done for. The seriousness of steel structures develops over multiple years under normal conditions, so there is no need to repair or reinforce immediately when deformation occurs. Moreover, since the progress may stop in the middle of the deformation, it is necessary to monitor the progress after the occurrence of the deformation in order to determine the necessity of repair or reinforcement.

Figure 0004102296
Figure 0004102296

表1は、鋼構造物に発生する重大変状として直ちに補修や補強が必要になる場合の例である。例えば、表1に示すように、主桁フランジ、縦桁、横桁引張り側フランジの亀裂は20mmに達した場合には、直ちに補修や補強が必要な状態であると判定される。ここで、表1に示す一群とは、継手を構成する一枚の母材に用いられるリベット又はボルトの全体を意味する。重大変状は、リベットやボルトの緩みや破断による接合力の低下、部材の疲労亀裂による破断強度の低下、地盤沈下による構造物全体の変位による走行安定性の低下に大きく分けられる。疲労亀裂は、繰り返し荷重の載荷時に引っ張り力が作用する部位に発生するため、発生箇所は構造形式によってある程度想定できる。また、発生した亀裂の構造物に与える影響が部位で異なることが知られている。   Table 1 is an example in the case where repair or reinforcement is required immediately as a serious problem occurring in a steel structure. For example, as shown in Table 1, when the cracks in the main girder flange, stringer, and cross beam tension side flange reach 20 mm, it is immediately determined that repair or reinforcement is necessary. Here, the group shown in Table 1 means the whole rivet or bolt used for one base material constituting the joint. The serious condition is roughly divided into a decrease in joining force due to loosening and breaking of rivets and bolts, a decrease in breaking strength due to fatigue cracking of members, and a decrease in running stability due to displacement of the entire structure due to ground subsidence. Fatigue cracks occur at sites where a tensile force is applied when a repeated load is applied, so the occurrence location can be assumed to some extent depending on the structure type. In addition, it is known that the influence of the generated crack on the structure differs depending on the part.

鋼構造物の検査には、2年を超えない範囲で行われる定期検査と、地震などの異常時に大きな荷重を受けた場合に行われる不定期検査と、定期検査などで異常が想定された場合に実施される詳細検査とがある。定期検査と不定期検査は、巡回による検査通路からの目視検査が主体であり、この目視検査では亀裂の発生が想定される箇所に近接して防食塗膜の破断箇所を目視で観察する。鋼材の亀裂発生に伴う塗膜破断は、応力集中箇所と想定される部位から直線的に成長しているので、他の塗膜破断原因と容易に区別することができる。また、過去の経験から鋼材の疲労亀裂時に防食塗膜が破断に至ることが知られている。リベットやボルトの破断は、接合部が観察できれば双眼鏡などを用いて容易に発見することができる。リベットやボルトの緩みは、これらの周りの塗膜の破断状況を近接して観察し、ハンマーなどで叩き音の変化を確認する打音検査によって発見することができる。一方、詳細検査は、検査目的によって異なるが検査のために足場の架設を伴うことがある。巡回による目視によって変状が発見されるのは検査通路に近い部位のみであり、多くの場合には足場を架設して接近観察が必要になるが、足場の架設には多くの費用が必要になる。このため、緊急性の高い詳細検査以外では、10〜15年毎に実施されている塗替え塗装工事の塗装足場を活用して検査されている。   For inspection of steel structures, periodic inspections that are conducted within two years, irregular inspections that are performed when a large load is received during an abnormality such as an earthquake, and abnormalities that are assumed by periodic inspections, etc. There are detailed inspections conducted. The periodic inspection and the irregular inspection mainly consist of visual inspection from the inspection passage by patrol, and in this visual inspection, the breakage portion of the anticorrosion coating film is visually observed in the vicinity of the portion where the occurrence of cracks is assumed. The coating film rupture accompanying the occurrence of cracks in the steel material grows linearly from the portion assumed to be the stress concentration portion, and can be easily distinguished from other coating film rupture causes. Moreover, it is known from past experience that the anticorrosion coating film breaks at the time of fatigue cracking of the steel material. Rupture of rivets and bolts can be easily detected using binoculars if the joint can be observed. Looseness of rivets and bolts can be detected by a hammering test in which the rupture state of the coating film around them is closely observed and a change in the hammering sound is confirmed with a hammer or the like. On the other hand, the detailed inspection may involve the construction of a scaffold for the inspection, although it varies depending on the inspection purpose. Deformation is discovered by visual inspection only at the site close to the inspection passage. In many cases, it is necessary to construct a scaffold and observe it closely, but it requires a lot of cost to construct the scaffold. Become. For this reason, except for highly urgent detailed inspections, inspection is carried out by using the coating scaffolding of the repainting work carried out every 10 to 15 years.

従来の亀裂検知方法には、超音波式や磁粉探傷式による亀裂検知と長さの計測方法がある。この方法では、極めて小さい亀裂の発見と長さの高精度な評価は可能であるが、従来の目視による検査で亀裂が発見された後に近接して測定することになるため、亀裂の発見の目的に適さないとともに、目視による観察以上の高精度な計測の必要性も少ない。また、従来の亀裂検知方法には、鋼構造物に加わる繰返し応力を素子によってモニタして疲労寿命を予測する方法がある。この方法では、構造物の適当な箇所に設置した素子に加わる繰返し応力をモニタし、使用鋼材の経験的に知られる破壊までの繰返し数によってマイナー則を用いて期間を予測することができる。しかし、この方法では、亀裂の発生時期の確定や亀裂の成長に関する情報が得られず、構造物に補修や補強が必要であるか否かを判定することができず、補修や補強の時期も知ることができない。さらに、従来の亀裂検知方法には、鋼構造物の電気抵抗などの特性変化から亀裂の発生と進展を検知する方法がある。この方法では、鋼構造物自体の電気特性の変化をモニタして、鋼材の抵抗値の変化から亀裂の発生を求めることができる。しかし、この方法では、鋼材自体の抵抗が極めて低いため、印加した電流の流れる経路が短い小型試験片や小型構造物では検知が可能であるが、大型構造物では電流の経路が大きいため、亀裂による抵抗の減少量が極僅かになり、抵抗の変化を効果的に検知することが困難になる。   Conventional crack detection methods include crack detection and length measurement methods using an ultrasonic method and a magnetic particle flaw detection method. Although this method can detect extremely small cracks and evaluate the length with high accuracy, it can measure closely after the cracks are detected by conventional visual inspection. And is not necessary for high-precision measurement beyond visual observation. Further, as a conventional crack detection method, there is a method for predicting a fatigue life by monitoring a cyclic stress applied to a steel structure by an element. In this method, it is possible to monitor a cyclic stress applied to an element installed at an appropriate location of a structure and predict a period using a minor rule based on the number of repetitions until the fracture of the steel material used is empirically known. However, this method does not provide information on the determination of crack initiation time and crack growth, and cannot determine whether the structure needs repair or reinforcement. I can't know. Furthermore, as a conventional crack detection method, there is a method of detecting the occurrence and progress of a crack from a change in characteristics such as electrical resistance of a steel structure. In this method, it is possible to monitor the change in the electrical characteristics of the steel structure itself and determine the occurrence of cracks from the change in the resistance value of the steel material. However, with this method, the resistance of the steel material itself is extremely low, so detection is possible with small test pieces and small structures where the path of the applied current is short, but large structures have large current paths, so cracks The amount of decrease in resistance due to this becomes extremely small, and it becomes difficult to effectively detect a change in resistance.

近年、導電性薄膜を構造物に配置しこの構造物に亀裂が発生したときにこの導電性薄膜が破断することで亀裂を検知する方法が提案されている。例えば、従来の亀裂検知材(従来技術1)は、防水性を有する絶縁塗料をトンネルの壁面に塗布して形成された下地層と、線状模様の電気回路を形成するように下地層の表面に導電性塗料を塗布して形成された導電層と、下地層と同様の絶縁塗料を導電層及び下地層に塗布して形成されこれらを被覆する保護層とを備えている(特許文献1参照)。このような従来の亀裂検知材では、壁面にひび割れが発生して異常が発生するとこの異常箇所の周辺が剥離して導電層が断線し導電層が非通電状態になるため、センサが導電層の非通電状態を検出して壁面の異常を検出することができる。   In recent years, a method has been proposed in which a conductive thin film is arranged in a structure and the crack is detected by breaking the conductive thin film when a crack occurs in the structure. For example, the conventional crack detection material (Prior Art 1) has a base layer formed by applying a waterproof insulating paint to the wall surface of a tunnel, and a surface of the base layer so as to form a linear pattern electric circuit. And a protective layer formed by applying an insulating paint similar to the base layer to the conductive layer and the base layer to cover them (see Patent Document 1). ). In such a conventional crack detection material, if a crack occurs on the wall surface and an abnormality occurs, the periphery of this abnormal part is peeled off, the conductive layer is disconnected, and the conductive layer is in a non-energized state. An abnormal state of the wall surface can be detected by detecting a non-energized state.

特開2001-201477号公報(段落番号0010〜0015及び図2)Japanese Unexamined Patent Publication No. 2001-201477 (paragraph numbers 0010 to 0015 and FIG. 2)

また、従来の亀裂検知材(従来技術2)は、加工対象物や試験片に取り付けられる誘電体層と、この誘電体層に亀裂が発生し進展したときに破壊される抵抗層と、この抵抗層の表面に形成されこの抵抗層に電流を流す2つの湾曲状の電極とを備える(特許文献2参照)。このような従来の亀裂検知材では、亀裂の進展方向に対して略均一な感度を有するように電極層が湾曲状に形成されているため、2つの電極間の抵抗値の変化から亀裂の成長を評価することができる。   Further, the conventional crack detection material (Prior Art 2) includes a dielectric layer attached to a workpiece or a test piece, a resistance layer that is broken when a crack occurs in the dielectric layer, and the resistance layer. And two curved electrodes that are formed on the surface of the layer and allow current to flow through the resistance layer (see Patent Document 2). In such a conventional crack detection material, the electrode layer is formed in a curved shape so as to have a substantially uniform sensitivity with respect to the crack propagation direction. Therefore, the growth of the crack from the change in the resistance value between the two electrodes. Can be evaluated.

特開平11-094787号公報(段落番号0021〜0048及び図1)Japanese Patent Laid-Open No. 11-094787 (paragraph numbers 0021 to 0048 and FIG. 1)

近年、塗装周期(塗替え塗装周期)の延伸と無塗装構造物の登場という2つの環境の変化が鋼構造物におきている。高耐久型塗装系の導入により塗替え塗装周期が30年ほどに延伸しているため、塗装足場を活用した近接による検査では検査期間が長期化している。また、耐候性鋼の採用による無塗装化により塗装足場の活用が期待できなくなっている。このため、このような環境の変化により検査のためだけの足場の架設が将来必要になり、足場の架設によって検査費用が増大してしまう問題がある。   In recent years, two environmental changes have occurred in steel structures: extending the coating cycle (repainting cycle) and the appearance of unpainted structures. Due to the introduction of a highly durable coating system, the repainting cycle has been extended to about 30 years, so the inspection period for proximity inspection using a coating scaffold has become longer. In addition, the use of paint scaffolding can no longer be expected due to the absence of painting due to the use of weather-resistant steel. For this reason, there is a problem that due to such changes in the environment, it will be necessary to construct a scaffold only for inspection in the future, and the inspection cost will increase due to the construction of the scaffold.

また、従来技術1では、マスキングテープなどを使用して下地層、導電層及び保護層を塗装する必要があるため、作業が困難で手間がかかるとともに、亀裂の発生を検知することはできるが亀裂の成長を評価することができないという問題がある。さらに、従来技術2では、2つの湾曲状の電極の中心に亀裂が発生するようにこれらの電極を配置する必要があり、亀裂の発生箇所を正確に予測できない場合には、亀裂の発生前に電極を配置することができないという問題がある。   Moreover, in the prior art 1, since it is necessary to paint a base layer, a conductive layer, and a protective layer using a masking tape or the like, the work is difficult and troublesome, and the occurrence of a crack can be detected. There is a problem that the growth of can not be evaluated. Furthermore, in the prior art 2, it is necessary to arrange these electrodes so that a crack is generated at the center of the two curved electrodes, and when the crack occurrence location cannot be accurately predicted, before the crack occurs, There is a problem that electrodes cannot be arranged.

この発明の課題は、検査費用を節減し検査の確実性を向上させ現場施工が容易であり検知機能を長時間維持することができる亀裂監視材及び亀裂監視システムを提供することである。   An object of the present invention is to provide a crack monitoring material and a crack monitoring system capable of reducing inspection costs, improving the reliability of inspection, facilitating on-site construction, and maintaining a detection function for a long time.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、亀裂(C 1 )を検出する亀裂発生検出部(5)とこの亀裂発生検出部が検出した亀裂の進展を検出する亀裂進展検出部(4)とを、この亀裂の発生が予測される監視対象物(1)の表面(1b)に重ねて形成、この監視対象物の亀裂の発生及びこの亀裂の進展を監視する亀裂監視材であって、前記亀裂発生検出部は、前記亀裂の発生に応じて電気抵抗が変化する亀裂発生検出用導電層(5a)と、前記亀裂発生検出用導電層に電流を流す亀裂発生検出用電極層(5b,5c)とを備え、前記亀裂進展検出部は、前記亀裂の進展に応じて電気抵抗が変化する亀裂進展検出用導電層(4a)と、前記亀裂進展検出用導電層に電流を流す亀裂進展検出用電極層(4c〜4f)とを備え、前記亀裂発生検出用導電層及び前記亀裂進展検出用導電層は、前記監視対象物に発生が予測される亀裂の起点側に長辺側が位置するように、導電性塗料を塗布して帯状に形成されており、前記亀裂発生検出用導電層は、前記亀裂進展検出用導電層よりも幅が狭く形成されていることを特徴とする亀裂監視材(3)である。
The present invention solves the above-mentioned problems by the solving means described below.
In addition, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this embodiment.
According to the first aspect of the present invention, a crack occurrence detecting unit (5) for detecting a crack (C 1 ) and a crack progress detecting unit (4) for detecting the progress of the crack detected by the crack occurrence detecting unit are provided . A crack monitoring material that is formed on the surface (1b) of a monitoring object (1) that is predicted to be generated, and that monitors the occurrence of cracks in the monitoring object and the progress of the cracks, the crack occurrence detection unit Comprises a crack generation detecting conductive layer (5a) whose electrical resistance changes in accordance with the occurrence of the crack, and a crack generation detecting electrode layer (5b, 5c) for passing a current through the crack generation detecting conductive layer. The crack progress detection unit includes a crack progress detection conductive layer (4a) whose electrical resistance changes in accordance with the progress of the crack, and a crack progress detection electrode layer (4c) for passing a current through the crack progress detection conductive layer. ~ 4f), the crack generation detection conductive layer and the crack The spreading detection conductive layer is formed in a strip shape by applying a conductive paint so that the long side is located on the crack starting point side which is predicted to occur in the monitored object. The layer is a crack monitoring material (3) characterized in that the layer is formed narrower than the crack propagation detection conductive layer .

請求項2の発明は、請求項1に記載の亀裂監視材において、前記亀裂進展検出部は、前記亀裂の発生した位置を検出することを特徴とする亀裂監視材である。   According to a second aspect of the present invention, in the crack monitoring material according to the first aspect, the crack progress detection unit detects a position where the crack is generated.

請求項の発明は、請求項1又は請求項に記載の亀裂監視材において、前記亀裂進展検出用導電層は、前記監視対象物に許容される亀裂長さに応じた幅に形成されていることを特徴とする亀裂監視材である。 According to a third aspect of the present invention, in the crack monitoring material according to the first or second aspect , the crack propagation detection conductive layer is formed to have a width corresponding to a crack length allowed for the monitored object. It is the crack monitoring material characterized by having.

請求項の発明は、請求項から請求項までのいずれか1項に記載の亀裂監視材において、前記亀裂進展検出用導電層は、前記亀裂進展検出用電極層によって複数の監視領域(A1〜A3)に区画されており、この亀裂進展検出用導電層の長さ方向の隣接する一対の前記亀裂進展検出用電極層によって一つの監視領域が形成されていることを特徴とする亀裂監視材である。 The invention according to claim 4, in crack monitoring material according to any one of claims 1 to 3, wherein the crack growth detection conductive layer, said plurality by crack propagation detecting electrode layer monitoring region ( A 1 to A 3 ), and one monitoring region is formed by a pair of the crack progress detection electrode layers adjacent to each other in the longitudinal direction of the crack progress detection conductive layer. It is a crack monitoring material.

請求項の発明は、亀裂(C1)の発生及びこの亀裂の進展を監視する亀裂監視システムであって、請求項から請求項までのいずれか1項に記載の亀裂監視材(3)と、前記亀裂発生検出用導電層(5a)及び前記亀裂進展検出用導電層(4a)の通電状態を測定(S110,S150,S180〜S200,S250,S280〜S300)する通電状態測定部(9)と、前記通電状態測定部の測定結果に基づいて前記監視対象物(1)に発生する亀裂を評価(S170,S210,S230,S270)する評価部(11)とを備える亀裂監視システム(2)である。 The invention according to claim 5 is a crack monitoring system for monitoring the generation of cracks (C 1 ) and the progress of the cracks, and the crack monitoring material according to any one of claims 1 to 4 (3 ) And an energization state measurement unit (S110, S150, S180 to S200, S250, S280 to S300) for measuring energization states of the crack occurrence detection conductive layer (5a) and the crack propagation detection conductive layer (4a) ( 9) and a crack monitoring system comprising an evaluation unit (11) that evaluates cracks occurring in the monitoring object (1) based on the measurement result of the energization state measurement unit (S170, S210, S230, S270). 2).

請求項の発明は、請求項に記載の亀裂監視システムにおいて、前記通電状態測定部は、前記亀裂進展検出用電極層によって前記亀裂進展検出用導電層が複数の監視領域(A1〜A3)に区画されているときに、前記監視領域毎に通電状態を測定(S150)し、前記評価部は、前記監視領域毎の通電状態の測定結果に基づいて亀裂の発生した監視領域を特定(S170)することを特徴とする亀裂監視システムである。 According to a sixth aspect of the present invention, in the crack monitoring system according to the fifth aspect , the energization state measuring unit includes a plurality of monitoring regions (A 1 to A) in which the crack progress detection conductive layer is formed by the crack progress detection electrode layer. 3 ) When the area is partitioned, the energization state is measured for each monitoring area (S150), and the evaluation unit identifies the monitoring area where the crack has occurred based on the measurement result of the energization state for each monitoring area. (S170) It is a crack monitoring system characterized by carrying out.

請求項の発明は、請求項又は請求項に記載の亀裂監視システムにおいて、前記通電状態測定部の測定結果を補正(S200,S300)する補正部(12)を備え、前記評価部は、補正後の測定結果に基づいて前記亀裂を評価(S210,S230)することを特徴とする亀裂監視システムである。 A seventh aspect of the present invention is the crack monitoring system according to the fifth or sixth aspect , further comprising a correction unit (12) for correcting (S200, S300) a measurement result of the energization state measurement unit, wherein the evaluation unit includes: The crack monitoring system is characterized in that the crack is evaluated (S210, S230) based on the corrected measurement result.

請求項の発明は、請求項に記載の亀裂監視システムにおいて、前記通電状態測定部は、前記亀裂進展検出用電極層によって前記亀裂進展検出用導電層が複数の監視領域に区画されているときに、前記監視領域毎に通電状態を測定(S150)し、前記補正部は、前記亀裂進展検出用導電層(4a)に亀裂が発生したときに、亀裂の発生していない監視領域(A2,A3)の通電状態の測定結果に基づいて、亀裂の発生した監視領域(A1)の通電状態の測定結果を補正(S200)することを特徴とする亀裂監視システムである。 An eighth aspect of the present invention is the crack monitoring system according to the seventh aspect , wherein in the energization state measuring unit, the crack progress detection conductive layer is partitioned into a plurality of monitoring regions by the crack progress detection electrode layer. In some cases, an energization state is measured for each monitoring region (S150), and the correction unit detects a crack-free monitoring region (A) when a crack occurs in the crack propagation detection conductive layer (4a). based on 2, a 3 of the energized state) measurements, a crack monitoring system, characterized in that the measurement result of the current state of crack occurrence was monitored area (a 1) is corrected (S200).

請求項の発明は、請求項又は請求項に記載の亀裂監視システムにおいて、前記通電状態測定部は、前記亀裂進展検出用電極層によって前記亀裂進展検出用導電層が複数の監視領域に区画されているときに、隣接する2つの前記監視領域(A1,A2;A2,A3)毎に通電状態を測定(S250)し、前記補正部は、前記亀裂進展検出用電極層(4d)に亀裂が発生したときに、亀裂の発生していない前記亀裂進展検出用電極層(4e)を含む隣接する2つの監視領域(A2,A3)の通電状態の測定結果に基づいて、亀裂の発生した前記亀裂進展検出用電極層(4d)を含む隣接する2つの監視領域(A1.A2)の通電状態の測定結果を補正(S300)することを特徴とする亀裂監視システムである。 According to a ninth aspect of the present invention, in the crack monitoring system according to the seventh or eighth aspect , the energization state measuring unit is configured such that the crack progress detection conductive layer is placed in a plurality of monitoring regions by the crack progress detection electrode layer. When it is partitioned, the energization state is measured for each of the two adjacent monitoring areas (A 1 , A 2 ; A 2 , A 3 ) (S250), and the correction unit is configured to detect the crack propagation detection electrode layer. When a crack occurs in (4d), based on the measurement result of the energized state of two adjacent monitoring regions (A 2 , A 3 ) including the crack growth detection electrode layer (4e) where no crack has occurred. Then, the crack monitoring is characterized in that the measurement result of the energization state of the two adjacent monitoring areas (A 1 .A 2 ) including the crack growth detection electrode layer (4d) where the crack has occurred is corrected (S300). System.

この発明によると、検査費用を節減し検査の確実性を向上させ現場施工が容易であり検知機能を長時間維持することができる。   According to the present invention, the inspection cost can be reduced, the reliability of the inspection can be improved, the on-site construction is easy, and the detection function can be maintained for a long time.

以下、図面を参照して、この発明の実施形態について詳しく説明する。
図1は、この発明の実施形態に係る亀裂監視システムによって監視される鋼構造物に亀裂が発生した状態を示す斜視図であり、図1(A)は主桁下フランジに亀裂が発生した状態を示し、図1(B)は腹板に亀裂が発生した状態を示し、図1(C)は主桁切欠部から亀裂が発生した状態を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing a state in which a crack has occurred in a steel structure monitored by a crack monitoring system according to an embodiment of the present invention, and FIG. 1 (A) shows a state in which a crack has occurred in a flange under a main girder. FIG. 1 (B) shows a state where a crack has occurred in the abdomen, and FIG. 1 (C) shows a state where a crack has occurred from the main girder notch.

図1に示す鋼構造物1は、鋼材によって構成された固定構造物である。鋼構造物1は、例えば、鉄道車両が走行する線路の下部に空間を確保し列車の荷重を支持する橋梁である。鋼構造物1は、図1に示すように、鋼板と山形鋼とを溶接などによって接合してI形の桁に組み立てた主桁1aを備えており、この主桁1aは主桁1aの下部板を形成する下フランジ1bと、主桁1aの上部板を構成する上フランジ1cと、下フランジ1bと上フランジ1cとを結合する腹板1dと、主桁1aのせん断力による座屈を防止する中間補剛材1eと、主桁1aの一部を切り欠いて形成した切欠部1fなどから構成されている。例えば、図1(A)に示す鋼構造物1には、主桁1aの長さ方向の略中間における下フランジ1bの縁部から亀裂C1が発生しており、下フランジ1bと腹板1dとが接合する接合部から亀裂C2,C3が発生している。図1(B)に示す鋼構造物1には、腹板1dと中間補剛材1eとが接合する接合部から腹板1dに亀裂C4,C5が発生している。図1(C)に示す鋼構造物1には、下フランジ1bと腹板1dとが接合する接合部から亀裂C6が発生している。 A steel structure 1 shown in FIG. 1 is a fixed structure made of a steel material. The steel structure 1 is, for example, a bridge that secures a space below a track on which a railway vehicle travels and supports a train load. As shown in FIG. 1, the steel structure 1 is provided with a main girder 1a assembled into an I-shaped girder by joining a steel plate and an angle steel by welding or the like. The main girder 1a is a lower part of the main girder 1a. The lower flange 1b that forms the plate, the upper flange 1c that constitutes the upper plate of the main girder 1a, the belly plate 1d that couples the lower flange 1b and the upper flange 1c, and the buckling due to the shearing force of the main girder 1a are prevented. Intermediate stiffener 1e and a cutout portion 1f formed by cutting out a part of the main beam 1a. For example, in the steel structure 1 shown in FIG. 1 (A), a crack C 1 is generated from the edge of the lower flange 1b substantially in the middle of the main girder 1a, and the lower flange 1b and the stomach plate 1d Cracks C 2 and C 3 are generated from the joint where the joints are joined. In the steel structure 1 shown in FIG. 1 (B), cracks C 4 and C 5 are generated in the belly plate 1d from the joint where the belly plate 1d and the intermediate stiffener 1e are joined. In the steel structure 1 shown in FIG. 1 (C), a crack C 6 is generated from a joint where the lower flange 1b and the belly plate 1d are joined.

図2は、この発明の実施形態に係る亀裂監視システムの構成図である。
亀裂監視システム2は、鋼構造物1の亀裂の発生及びこの亀裂の進展を監視するシステムである。亀裂監視システム2は、図2に示すように、亀裂監視材3と、リード線6,7と、電源部8と、通電状態測定部9と、制御部10と、評価部11と、補正部12と、通信部13と、収容部14とを備えている。亀裂監視システム2は、図1に示す亀裂C1〜C6の発生が予測される鋼構造物1の部位にそれぞれ設置されている。以下では、図1(A)に示すように、下フランジ1bの縁部(長辺部)に亀裂監視材3を形成した場合を例に挙げて説明する。
FIG. 2 is a configuration diagram of the crack monitoring system according to the embodiment of the present invention.
The crack monitoring system 2 is a system that monitors the occurrence of cracks in the steel structure 1 and the progress of the cracks. As shown in FIG. 2, the crack monitoring system 2 includes a crack monitoring material 3, lead wires 6 and 7, a power supply unit 8, an energization state measurement unit 9, a control unit 10, an evaluation unit 11, and a correction unit. 12, a communication unit 13, and a storage unit 14. The crack monitoring system 2 is installed in each part of the steel structure 1 where the occurrence of cracks C 1 to C 6 shown in FIG. 1 is predicted. Below, as shown to FIG. 1 (A), the case where the crack monitoring material 3 is formed in the edge part (long side part) of the lower flange 1b is mentioned as an example, and is demonstrated.

図3は、この発明の実施形態に係る亀裂監視システムの亀裂監視材の一部を破断して示す斜視図である。図4は、この発明の実施形態に係る亀裂監視システムの亀裂監視材の平面図である。図5は、図4のV-V線で切断した状態を示す断面図である。
亀裂監視材3は、亀裂C1の発生が予測される鋼構造物1の表面に形成され、この鋼構造物1の亀裂C1の発生及びこの亀裂C1の進展を監視する部材である。亀裂監視材3は、図3〜図5に示すように、亀裂進展検出部4と、亀裂発生検出部5とを備えている。亀裂監視材3は、図1に示すように、亀裂C1の発生が予測される鋼構造物1の縁部に、刷毛、ローラ又はスプレーなどによって塗布され形成されている。
FIG. 3 is a perspective view showing a part of the crack monitoring material of the crack monitoring system according to the embodiment of the present invention. FIG. 4 is a plan view of a crack monitoring material of the crack monitoring system according to the embodiment of the present invention. FIG. 5 is a cross-sectional view showing a state cut along line VV in FIG.
The crack monitoring material 3 is a member that is formed on the surface of the steel structure 1 where the occurrence of the crack C 1 is predicted, and monitors the generation of the crack C 1 of the steel structure 1 and the progress of the crack C 1 . As shown in FIGS. 3 to 5, the crack monitoring material 3 includes a crack progress detection unit 4 and a crack occurrence detection unit 5. As shown in FIG. 1, the crack monitoring material 3 is formed by applying to the edge of the steel structure 1 where the occurrence of the crack C 1 is predicted by using a brush, a roller, or a spray.

亀裂進展検出部4は、亀裂発生検出部5が検出した亀裂C1の進展を検出する部分であり、亀裂進展検出用導電層4aと、防錆絶縁層4bと、亀裂進展検出用電極層4c〜4fと、環境遮断層4gとを備えている。亀裂進展検出部4は、亀裂発生検出部5が検出した亀裂C1の進展を検出可能なようにこの亀裂発生検出部5の下側に形成されている。亀裂進展検出部4は、長期間にわたり耐久性が期待できる塗装系材料によって構成されており鋼構造物1の表面に形成されている。 The crack progress detection unit 4 is a part that detects the progress of the crack C 1 detected by the crack occurrence detection unit 5, and includes a crack progress detection conductive layer 4a, a rust prevention insulating layer 4b, and a crack progress detection electrode layer 4c. To 4f and an environmental barrier layer 4g. The crack progress detector 4 is formed below the crack occurrence detector 5 so that the progress of the crack C 1 detected by the crack occurrence detector 5 can be detected. The crack progress detector 4 is made of a coating material that can be expected to have durability over a long period of time, and is formed on the surface of the steel structure 1.

亀裂進展検出用導電層4aは、亀裂C1の発生に応じて電気抵抗が変化する塗膜である。亀裂進展検出用導電層4aは、図3及び図4に示すように、鋼構造物1に発生が予測される亀裂C1の起点側に長辺側が位置するように、防錆絶縁層4bの表面に帯状に形成されている。亀裂進展検出用導電層4aは、鋼構造物1に許容される亀裂長さに応じた幅に形成されており、鋼構造物1に許容される亀裂長さが長いときには幅が広く形成され、鋼構造物1に許容される亀裂長さが短いときには幅が狭く形成される。亀裂進展検出用導電層4aは、亀裂進展検出用電極層4c〜4fによって複数の監視領域A1,A2,A3に区画されている。亀裂進展検出用導電層4aは、亀裂進展検出用導電層4aの長さ方向の隣接する一対の亀裂進展検出用電極層4c,4dによって監視領域A1が形成され、一対の亀裂進展検出用電極層4d,4eによって監視領域A2が形成され、一対の亀裂進展検出用電極層4e,4fによって監視領域A3が形成されている。亀裂進展検出用導電層4aは、例えば、導電顔料と有機樹脂とを含む導電性塗料を塗布して形成されており、導電顔料としてはカーボンブラック、グラファイト、ニッケル、銅、銀などが好ましく、有機樹脂としてはエポキシ樹脂、ポリウレタン樹脂、アクリル樹脂、フェノール樹脂、アルキルシリケート樹脂などが好ましい。 Crack detection conductive layer 4a is a coating film having an electric resistance varying according to the occurrence of the crack C 1. As shown in FIGS. 3 and 4, the crack propagation detection conductive layer 4 a is formed of the rust-proof insulating layer 4 b so that the long side is located on the starting side of the crack C 1 that is predicted to occur in the steel structure 1. It is formed in a band shape on the surface. The crack propagation detection conductive layer 4a is formed in a width corresponding to the crack length allowed in the steel structure 1, and is formed wider when the crack length allowed in the steel structure 1 is long, When the crack length allowed in the steel structure 1 is short, the width is narrow. Crack detection conductive layer 4a is divided into a plurality of monitoring areas A 1, A 2, A 3 by crack propagation detecting electrode layer 4C~4f. Crack detection conductive layer 4a, a pair of crack propagation detecting electrode layer 4c adjacent in the length direction of the crack growth detection conductive layer 4a, the monitoring area A 1 by 4d are formed, a pair of crack growth detection electrodes layer 4d, the monitoring regions a 2 formed by 4e, a pair of crack propagation detecting electrode layer 4e, the monitoring area a 3 by the 4f are formed. The crack propagation detection conductive layer 4a is formed, for example, by applying a conductive paint containing a conductive pigment and an organic resin, and the conductive pigment is preferably carbon black, graphite, nickel, copper, silver, or the like. As the resin, epoxy resin, polyurethane resin, acrylic resin, phenol resin, alkyl silicate resin, and the like are preferable.

亀裂進展検出用導電層4aの塗膜厚さは、10μm以下では現場施工によって連続した塗膜が得られないおそれがあり、100μm以上では塗装したときに垂れなどの塗膜欠陥が多く発生し、この塗膜欠陥を防止するために粘度を高くすると施工性が犠牲になるおそれがある。このため、亀裂進展検出用導電層4aの塗膜厚さは、10〜100μmが好ましく、特に30〜60μmが望ましい。亀裂進展検出用導電層4aの塗膜の物性は、引張試験による破断時の伸びが10%以下では鋼構造物1の温度差による伸縮などの他の要因によって割れるおそれがあり、30%以上では鋼構造物1の亀裂発生時やボルトの緩み時に亀裂進展検出用導電層4aが同時に破壊しないおそれがある。このため、亀裂進展検出用導電層4aの塗膜の物性は、引張試験による破断時の伸びが10〜30%であることが好ましい。亀裂進展検出用導電層4aは、体積抵抗率が1〜10Ω・cmとなり、塗布後の電極間の抵抗が200〜10000Ω、好ましくは200〜2000Ωとなるように、導電顔料と有機樹脂との配合量を調整して形成されている。亀裂進展検出用導電層4aの塗料粘度は、現場で刷毛、ローラ又はスプレーなどによって塗布できる程度に調整することが好ましい。   If the coating thickness of the conductive layer 4a for crack growth detection is 10 μm or less, there is a possibility that a continuous coating film cannot be obtained by on-site construction, and if it is 100 μm or more, many coating film defects such as dripping occur when applied, If the viscosity is increased to prevent this coating film defect, the workability may be sacrificed. For this reason, the coating thickness of the crack propagation detection conductive layer 4a is preferably 10 to 100 μm, particularly preferably 30 to 60 μm. The physical properties of the coating of the crack propagation detection conductive layer 4a may be broken by other factors such as expansion and contraction due to the temperature difference of the steel structure 1 when the elongation at break by tensile test is 10% or less, and at 30% or more When the crack of the steel structure 1 occurs or when the bolt is loosened, there is a possibility that the crack propagation detection conductive layer 4a is not destroyed at the same time. For this reason, as for the physical property of the coating film of the crack growth detection conductive layer 4a, it is preferable that the elongation at break by a tensile test is 10 to 30%. The conductive layer 4a for detecting crack propagation has a volume resistivity of 1 to 10 Ω · cm, and a combination of a conductive pigment and an organic resin so that the resistance between electrodes after application is 200 to 10,000 Ω, preferably 200 to 2000 Ω. It is formed by adjusting the amount. It is preferable to adjust the paint viscosity of the crack propagation detecting conductive layer 4a to such an extent that it can be applied on site by brush, roller, spray, or the like.

防錆絶縁層4bは、鋼構造物1と亀裂進展検出用導電層4aとを電気的に絶縁するとともに鋼構造物1の腐食を防止する塗膜である。防錆絶縁層4bは、図3及び図5に示すように、鋼構造物1の表面(鋼素地)に亀裂C1の検知範囲を含むように広く塗布され形成されている。防錆絶縁層4bは、例えば、防錆顔料入りエポキシ樹脂や有機ジンクリッチペイントなどのような鋼構造物用防食塗装系に適用されている下塗り塗料である。防錆絶縁層4bの塗膜厚さは、30〜100μmが好ましい。 The rust-proof insulating layer 4b is a coating film that electrically insulates the steel structure 1 from the crack propagation detecting conductive layer 4a and prevents corrosion of the steel structure 1. As shown in FIGS. 3 and 5, the rust prevention insulating layer 4 b is widely applied and formed on the surface (steel base) of the steel structure 1 so as to include the detection range of the crack C 1 . The anticorrosive insulating layer 4b is an undercoat paint applied to an anticorrosion coating system for steel structures such as an epoxy resin containing an antirust pigment or an organic zinc rich paint. The coating thickness of the rust-proof insulating layer 4b is preferably 30 to 100 μm.

亀裂進展検出用電極層4c〜4fは、亀裂進展検出用導電層4aに電流を流す塗膜である。亀裂進展検出用電極層4c〜4fは、図4及び図5に示すように、亀裂進展検出用導電層4aの長さ方向に、この亀裂進展検出用導電層4aの表面に等間隔で4箇所配置されている。亀裂進展検出用電極層4c〜4fは、亀裂進展検出用導電層4aの短辺と平行になるように、この亀裂進展検出用導電層4aの幅と同じ長さで帯状に塗布されている。亀裂進展検出用電極層4c〜4fは、図3及び図4に示すように、亀裂進展検出用導電層4aを複数の監視領域A1 3 に区画している。亀裂進展検出用電極層4c〜4fは、亀裂進展検出用導電層4aと同一の導電性塗料を塗布して形成されており、塗膜厚さ、塗膜の物性及び塗料粘度も亀裂進展検出用導電層4aと同一である。亀裂進展検出用電極層4c〜4fは、体積抵抗率が1〜10Ω・cmとなるように、導電顔料と有機樹脂との配合量を調整して形成することが好ましい。 The crack growth detection electrode layers 4c to 4f are coating films that allow a current to flow through the crack growth detection conductive layer 4a. As shown in FIGS. 4 and 5, the crack growth detection electrode layers 4 c to 4 f are arranged at four equal intervals on the surface of the crack growth detection conductive layer 4 a in the length direction of the crack growth detection conductive layer 4 a. Has been placed. The crack progress detection electrode layers 4c to 4f are applied in a strip shape with the same length as the width of the crack progress detection conductive layer 4a so as to be parallel to the short side of the crack progress detection conductive layer 4a. As shown in FIGS. 3 and 4, the crack growth detection electrode layers 4 c to 4 f divide the crack growth detection conductive layer 4 a into a plurality of monitoring regions A 1 to A 3 . The crack propagation detection electrode layers 4c to 4f are formed by applying the same conductive paint as the crack propagation detection conductive layer 4a, and the coating thickness, the physical properties of the paint, and the paint viscosity are also used for crack propagation detection. It is the same as the conductive layer 4a. The crack propagation detection electrode layers 4c to 4f are preferably formed by adjusting the blending amount of the conductive pigment and the organic resin so that the volume resistivity is 1 to 10 Ω · cm.

環境遮断層4gは、亀裂進展検出用導電層4a及び亀裂進展検出用電極層4c〜4fを保護するとともに鋼構造物1の防食性を向上させる塗膜である。また、環境遮断層4gは、亀裂進展検出部4と亀裂発生検出部5とを電気的に絶縁する塗膜である。環境遮断層4gは、図3及び図5に示すように、亀裂進展検出用導電層4a及び亀裂進展検出用電極層4c〜4fを被覆するように、これらの表面に塗布され形成されている。環境遮断層4gは、例えば、環境遮断性に優れたエポキシ樹脂系塗料などのような鋼構造物用防食塗装系に適用される中塗り塗料である。環境遮断層4gの塗膜厚さは、60〜120μmが好ましい。   The environmental barrier layer 4g is a coating film that protects the crack propagation detection conductive layer 4a and the crack growth detection electrode layers 4c to 4f and improves the corrosion resistance of the steel structure 1. The environment blocking layer 4g is a coating film that electrically insulates the crack progress detection unit 4 and the crack occurrence detection unit 5 from each other. As shown in FIGS. 3 and 5, the environment blocking layer 4 g is applied and formed on these surfaces so as to cover the crack growth detection conductive layer 4 a and the crack growth detection electrode layers 4 c to 4 f. The environment blocking layer 4g is an intermediate coating applied to an anticorrosion coating system for steel structures such as an epoxy resin coating having excellent environmental blocking properties. The coating thickness of the environmental barrier layer 4g is preferably 60 to 120 μm.

亀裂発生検出部5は、鋼構造物1に発生する亀裂C1を検出する部分であり、図3〜図5に示すように亀裂発生検出用導電層5aと、亀裂発生検出用電極層5b,5cと、環境遮断層5dと、耐候層5eとを備えている。亀裂発生検出部5は、亀裂進展検出部4と同様の塗装系材料によって構成されており、亀裂進展検出部4に重ねて塗布されている。 The crack occurrence detection part 5 is a part for detecting a crack C 1 occurring in the steel structure 1, and as shown in FIGS. 3 to 5, the crack occurrence detection conductive layer 5a, the crack occurrence detection electrode layer 5b, 5c, an environmental barrier layer 5d, and a weather resistant layer 5e. The crack occurrence detection unit 5 is made of the same coating material as that of the crack progress detection unit 4 and is applied to the crack progress detection unit 4 in an overlapping manner.

亀裂発生検出用導電層5aは、亀裂C1の発生に応じて電気抵抗が変化する塗膜である。亀裂発生検出用導電層5aは、図3に示すように、鋼構造物1に発生が予測される亀裂C1の起点側に長辺側が位置するように、環境遮断層4gの表面に帯状に形成されている。亀裂発生検出用導電層5aは、亀裂発生時の極僅かな亀裂長さを検知可能なように、亀裂進展検出用導電層4aよりも幅が狭く形成されており、亀裂進展検出用導電層4aの長辺を含むように線状に塗布されている。亀裂発生検出用導電層5aは、亀裂進展検出用導電層4aと同一の導電性塗料を塗布して形成されており、塗膜厚さ、塗膜の物性及び塗料粘度も亀裂進展検出用導電層4aと同一である。亀裂発生検出用導電層5aの塗膜幅は、5mm以下が望ましい。亀裂発生検出用導電層5aは、亀裂進展検出用導電層4aよりも体積抵抗率が0.01〜1Ω・cmと低く、塗布後の電極間の抵抗が200〜10000Ω、好ましくは200〜2000Ωとなるように、導電顔料と有機樹脂との配合量を調整して形成されている。 Crack detection conductive layer 5a is a coating film having an electric resistance varying according to the occurrence of the crack C 1. Crack detection conductive layer 5a, as shown in FIG. 3, so that the long side to the starting point side of the crack C 1 to occur steel structure 1 is expected to position the strip on the surface of the environmental barrier layer 4g Is formed. The crack generation detecting conductive layer 5a is formed to be narrower than the crack progress detecting conductive layer 4a so as to detect an extremely slight crack length at the time of crack generation. It is applied in a linear shape so as to include the long side. The crack generation detecting conductive layer 5a is formed by applying the same conductive paint as the crack progress detecting conductive layer 4a, and the coating thickness, the physical properties of the paint film, and the paint viscosity are also determined. It is the same as 4a. The coating film width of the crack generation detecting conductive layer 5a is desirably 5 mm or less. The crack generation detecting conductive layer 5a has a volume resistivity lower than that of the crack progress detecting conductive layer 4a of 0.01-1 Ω · cm, and the resistance between the electrodes after coating is 200-10000Ω, preferably 200-2000Ω. Further, it is formed by adjusting the blending amount of the conductive pigment and the organic resin.

亀裂発生検出用電極層5b,5cは、亀裂発生検出用導電層5aに電流を流す塗膜である。亀裂発生検出用電極層5b,5cは、図3〜図5に示すように、亀裂発生検出用導電層5aの長さ方向の両端部に配置されており、亀裂発生検出用導電層5aの短辺と平行になるように、亀裂発生検出用導電層5aの幅と同じ幅で帯状に塗布されている。亀裂発生検出用電極層5b,5cは、亀裂進展検出用導電層4aと同一の導電性塗料を塗布して形成されており、塗膜厚さ、塗膜の物性及び塗料粘度も亀裂進展検出用導電層4aと同一である。亀裂発生検出用電極層5b,5cは、亀裂進展検出用電極層4c〜4fと体積抵抗率が同一になるように、導電顔料と有機樹脂との配合量を調整して形成することが好ましい。   The crack occurrence detection electrode layers 5b and 5c are coatings that allow current to flow through the crack occurrence detection conductive layer 5a. As shown in FIGS. 3 to 5, the crack occurrence detection electrode layers 5b and 5c are arranged at both ends in the longitudinal direction of the crack occurrence detection conductive layer 5a, and are short of the crack occurrence detection conductive layer 5a. It is applied in a strip shape with the same width as the width of the crack generation detecting conductive layer 5a so as to be parallel to the side. The crack occurrence detection electrode layers 5b and 5c are formed by applying the same conductive paint as the crack propagation detection conductive layer 4a, and the film thickness, the physical properties of the paint film, and the paint viscosity are also used for crack propagation detection. It is the same as the conductive layer 4a. The crack generation detection electrode layers 5b and 5c are preferably formed by adjusting the blending amount of the conductive pigment and the organic resin so that the volume resistivity of the crack growth detection electrode layers 4c to 4f is the same.

環境遮断層5dは、亀裂発生検出用導電層5a及び亀裂発生検出用電極層5b,5cを保護するとともに鋼構造物1の防食性を向上させる塗膜である。環境遮断層5dは、図3及び図5に示すように、亀裂発生検出用導電層5a及び亀裂発生検出用電極層5b,5cを被覆するように、これらの表面に塗布されている。環境遮断層5dは、環境遮断層4gと同様の中塗り塗料であり、環境遮断層5dの塗膜厚さは環境遮断層4gと同一であることが好ましい。   The environmental barrier layer 5 d is a coating film that protects the crack occurrence detection conductive layer 5 a and the crack occurrence detection electrode layers 5 b and 5 c and improves the corrosion resistance of the steel structure 1. As shown in FIGS. 3 and 5, the environment blocking layer 5 d is applied to these surfaces so as to cover the crack generation detection conductive layer 5 a and the crack generation detection electrode layers 5 b and 5 c. The environmental barrier layer 5d is an intermediate coating similar to the environmental barrier layer 4g, and the coating thickness of the environmental barrier layer 5d is preferably the same as that of the environmental barrier layer 4g.

耐候層5eは、環境遮断層5dを自然因子の作用から保護する塗膜である。耐候層5eは、環境遮断層5dを被覆するようにこの表面に耐候性塗料を塗布して形成されている。耐候層5eは、例えば、耐紫外線性及び耐薬品性に優れたポリウレタン樹脂やふっ素樹脂などのような鋼構造物用防食塗装系に適用される上塗り塗料である。   The weather resistant layer 5e is a coating film that protects the environmental barrier layer 5d from the action of natural factors. The weather resistant layer 5e is formed by applying a weather resistant paint to the surface so as to cover the environmental barrier layer 5d. The weather resistant layer 5e is a top coating applied to an anticorrosion coating system for a steel structure such as a polyurethane resin or a fluorine resin excellent in ultraviolet resistance and chemical resistance.

リード線6は、亀裂進展検出用導電層4aに電流を流す電線である。リード線6は、図2に示すように、一方の端部が亀裂進展検出用電極層4c〜4fにそれぞれ取り付けられ接続されており、他方の端部が通電状態測定部9に接続されている。リード線7は、亀裂発生検出用導電層5aに電流を流す電線である。リード線7は、一方の端部が亀裂発生検出用電極層5b,5cに取り付けられ接続されており、他方の端部が通電状態測定部9に接続されている。   The lead wire 6 is an electric wire that allows current to flow through the conductive layer 4a for detecting crack propagation. As shown in FIG. 2, one end of each lead wire 6 is attached to and connected to the crack growth detection electrode layers 4 c to 4 f, and the other end is connected to the energization state measuring unit 9. . The lead wire 7 is an electric wire that allows a current to flow through the crack occurrence detection conductive layer 5a. One end of the lead wire 7 is attached and connected to the crack generation detecting electrode layers 5 b and 5 c, and the other end is connected to the energization state measuring unit 9.

図2に示す電源部8は、亀裂進展検出用電極層4c〜4及び亀裂発生検出用電極層5b,5cに電力を供給する直流電源又は交流電源である。電源部8は、制御部10からの指令に基づいて、亀裂進展検出用電極層4c,4d間、亀裂進展検出用電極層4d,4e間、亀裂進展検出用電極層4e,4f間、及び亀裂発生検出用電極層5b,5c間に電力を供給する。   The power supply unit 8 shown in FIG. 2 is a DC power supply or an AC power supply that supplies power to the crack growth detection electrode layers 4c to 4 and the crack generation detection electrode layers 5b and 5c. Based on the command from the control unit 10, the power supply unit 8 is connected between the crack propagation detection electrode layers 4c and 4d, between the crack propagation detection electrode layers 4d and 4e, between the crack propagation detection electrode layers 4e and 4f, and cracks. Electric power is supplied between the generation detection electrode layers 5b and 5c.

通電状態測定部9は、亀裂進展検出用導電層4a及び亀裂発生検出用導電層5aの通電状態を測定する抵抗測定器などである。通電状態測定部9は、制御部10からの指令に基づいて、監視領域A1 3 毎に通電状態を測定するとともに、隣接する2つの監視領域A1,A2;A2,A3毎に通電状態を測定する。通電状態測定部9は、電源部8に接続されており、電源部8からの電力を亀裂進展検出用電極層4c〜4f及び亀裂発生検出用電極層5b,5cに供給する。 The energization state measuring unit 9 is a resistance measuring instrument that measures the energization state of the crack propagation detection conductive layer 4a and the crack occurrence detection conductive layer 5a. The energization state measuring unit 9 measures the energization state for each of the monitoring areas A 1 to A 3 based on a command from the control unit 10, and two adjacent monitoring areas A 1 , A 2 ; A 2 , A 3. Measure the energization state every time. The energization state measurement unit 9 is connected to the power supply unit 8 and supplies the power from the power supply unit 8 to the crack growth detection electrode layers 4c to 4f and the crack generation detection electrode layers 5b and 5c.

図6は、この発明の実施形態に係る亀裂監視システムの通電状態測定部の測定動作を説明するための平面図であり、図6(A)は亀裂進展検出用導電層に亀裂が発生した状態を示し、図6(B)は亀裂進展検出用電極層に亀裂が発生した状態を示す。
通電状態測定部9は、図6(A)に示すように、監視領域A1に亀裂C1が発生したときには、亀裂進展検出用電極層4c,4d間(監視領域A1)の亀裂進展検出用導電層4aの電気抵抗を測定するとともに、亀裂進展検出用電極層4d,4e間(監視領域A2)の電気抵抗又は亀裂進展検出用電極層4e,4f間(監視領域A3)の電気抵抗を測定する。一方、通電状態測定部9は、図6(B)に示すように、亀裂進展検出用電極層4dに亀裂C1が発生したときには、亀裂進展検出用電極層4c,4e間(監視領域A1,A2)の亀裂進展検出用導電層4aの電気抵抗を測定するとともに、亀裂進展検出用電極層4d,4f間(監視領域A2,A3)の電気抵抗を測定する。
FIG. 6 is a plan view for explaining the measurement operation of the energization state measuring unit of the crack monitoring system according to the embodiment of the present invention, and FIG. 6 (A) is a state in which a crack is generated in the crack propagation detection conductive layer. FIG. 6B shows a state in which a crack has occurred in the crack growth detection electrode layer.
As shown in FIG. 6A, when the crack C 1 occurs in the monitoring region A 1 , the energization state measurement unit 9 detects the crack progress between the crack growth detection electrode layers 4c and 4d (monitoring region A 1 ). with measuring the electrical resistance of the use conductive layer 4a, the electrical crack growth detecting electrode layer 4d, between 4e (monitoring region a 2) of the electrical resistance or crack growth detecting electrode layer 4e, among 4f (surveillance area a 3) Measure resistance. On the other hand, as shown in FIG. 6 (B), when the crack C 1 is generated in the crack progress detection electrode layer 4d, the energization state measurement unit 9 is connected between the crack progress detection electrode layers 4c and 4e (monitoring region A 1). , A 2 ), the electrical resistance of the crack growth detection conductive layer 4a and the electrical resistance between the crack growth detection electrode layers 4d, 4f (monitoring areas A 2 , A 3 ) are measured.

図2に示す制御部10は、亀裂監視システム2の種々の動作を制御する中央処理部(CPU)である。制御部10は、電源部8に電力の供給を指令したり、通電状態測定部9に通電状態の測定を指令したり、通電状態測定部9の測定結果を補正部12に送信してこの補正部12にこの測定結果を補正させたり、補正部12の補正結果を評価部11に送信してこの評価部11に亀裂C1を評価させたり、評価部11の評価結果を通信部13から送信させたりする。制御部10には、電源部8と、通電状態測定部9と、評価部11と、補正部12と、通信部13とが接続されている。 The control unit 10 shown in FIG. 2 is a central processing unit (CPU) that controls various operations of the crack monitoring system 2. The control unit 10 instructs the power supply unit 8 to supply power, instructs the energization state measurement unit 9 to measure the energization state, or transmits the measurement result of the energization state measurement unit 9 to the correction unit 12 to correct this. the section 12 or to correct the measurement result, transmission by sending a correction result of the correction unit 12 to the evaluation unit 11 to the evaluation unit 11 or to evaluate the crack C 1, the evaluation result of the evaluation unit 11 from the communication unit 13 I will let you. The control unit 10 is connected to a power supply unit 8, an energization state measurement unit 9, an evaluation unit 11, a correction unit 12, and a communication unit 13.

評価部11は、通電状態測定部9の測定結果に基づいて鋼構造物1に発生する亀裂C1を評価する部分である。評価部11は、監視領域A1〜A3毎の通電状態の測定結果に基づいて、亀裂C1の発生した監視領域A1を特定したり亀裂C1の規模を評価したりする。評価部11は、通電状態測定部9の測定結果を補正部12が補正したときには、補正後の測定結果に基づいて亀裂C1を評価する。 The evaluation unit 11 is a part that evaluates the crack C 1 generated in the steel structure 1 based on the measurement result of the energization state measurement unit 9. The evaluation unit 11 specifies the monitoring region A 1 where the crack C 1 has occurred or evaluates the scale of the crack C 1 based on the measurement result of the energization state for each of the monitoring regions A 1 to A 3 . When the correction unit 12 corrects the measurement result of the energization state measurement unit 9, the evaluation unit 11 evaluates the crack C 1 based on the corrected measurement result.

補正部12は、通電状態測定部9の測定結果を補正する部分である。補正部12は、外気温による変化や経年による特性変化などの影響を受けたときに、通電状態測定部9の測定結果を補償する。補正部12は、図6(A)に示すように、亀裂進展検出用導電層4aに亀裂C1が発生したときに、亀裂C1の発生していない監視領域A2,A3の通電状態の測定結果に基づいて、亀裂C1の発生した監視領域A1の通電状態の測定結果を補正する。また、補正部12は、図6(B)に示すように、亀裂進展検出用電極層4dに亀裂C1が発生したときに、亀裂C1の発生していない亀裂進展検出用電極層4eを含む隣接する2つの監視領域A2,A3の通電状態の測定結果に基づいて、亀裂C1の発生した亀裂進展検出用電極層4dを含む隣接する2つの監視領域A1,A2の通電状態の測定結果を補正する。 The correction unit 12 is a part that corrects the measurement result of the energization state measurement unit 9. The correction unit 12 compensates the measurement result of the energization state measurement unit 9 when it is affected by a change due to the outside air temperature or a characteristic change due to aging. Correcting unit 12, as shown in FIG. 6 (A), when the cracks C 1 occurs in crack propagation detection conductive layer 4a, the energization state of the surveillance area A 2, A 3 which is not cracking C 1 Based on the measurement result, the measurement result of the energization state of the monitoring area A 1 where the crack C 1 has occurred is corrected. Further, as shown in FIG. 6 (B), when the crack C 1 occurs in the crack growth detection electrode layer 4d, the correction unit 12 applies the crack growth detection electrode layer 4e in which no crack C 1 is generated. Based on the measurement result of the energization state of the two adjacent monitoring areas A 2 and A 3 including , the energization of the two adjacent monitoring areas A 1 and A 2 including the crack growth detection electrode layer 4d in which the crack C 1 has occurred. Correct the measurement result of the state.

図2に示す通信部13は、評価部11の評価結果を送信する部分である。通信部13は、制御部10が出力する評価情報を図示しない中央監視室内の送受信機に有線又は無線により送信したり、この中央監視室内の送受信機からの評価情報の送信指令を受信したりする送受信機などである。   The communication unit 13 illustrated in FIG. 2 is a part that transmits the evaluation result of the evaluation unit 11. The communication unit 13 transmits the evaluation information output from the control unit 10 to a transceiver in the central monitoring room (not shown) by wire or wirelessly, or receives an evaluation information transmission command from the transceiver in the central monitoring room. Such as a transceiver.

収容部14は、電源部8、通電状態測定部9、制御部10、評価部11及び補正部12を収容する部分である。収容部14には、リード線6,7が引き込まれており図示しない接続端子にこれらが接続されている。収容部14は、図2に示すように、電源部8及び通電状態測定部9などをユニット化した状態で収容しており、図3に示すように鋼構造物1の表面に取り付けられ固定されている。   The accommodating portion 14 is a portion that accommodates the power source portion 8, the energized state measuring portion 9, the control portion 10, the evaluating portion 11, and the correcting portion 12. Lead wires 6 and 7 are drawn into the accommodating portion 14 and are connected to connection terminals (not shown). As shown in FIG. 2, the accommodating part 14 accommodates the power supply part 8 and the energization state measuring part 9 in a united state, and is attached and fixed to the surface of the steel structure 1 as shown in FIG. ing.

次に、この発明の実施形態に係る亀裂監視システムにおける亀裂監視材の製造方法を説明する。
図1に示すように、鋼構造物1では構成部材のエッジ部などの限られた範囲を起点として亀裂C1〜C6が発生するおそれがある。例えば、図1(A)に示すように、下フランジ1bのエッジ部を起点として亀裂C1の発生が予測される場合には、図3に示すように鋼構造物1の塗替え塗装時にこのエッジ部に沿って、鋼構造物1の表面に防錆絶縁塗料を塗布し防錆絶縁層4bを形成する。次に、防錆絶縁層4bの表面に導電性塗料を帯状に塗布して、亀裂進展検出用導電層4aを形成する。その後に、亀裂進展検出用導電層4aの表面に導電性塗料を等間隔に4本線状に塗布して亀裂進展検出用電極層4c〜4fを形成し、亀裂進展検出用電極層4c〜4fにそれぞれリード線6を接続する。次に、亀裂進展検出用導電層4a及び亀裂進展検出用電極層4c〜4fの表面に環境遮断性を有する塗料を帯状に塗布して環境遮断層4gを形成し、鋼構造物1の表面に亀裂進展検出部4が形成される。
Next, a method for manufacturing a crack monitoring material in the crack monitoring system according to the embodiment of the present invention will be described.
As shown in FIG. 1, cracks C 1 to C 6 may occur in the steel structure 1 starting from a limited range such as an edge portion of a constituent member. For example, as shown in FIG. 1 (A), when the occurrence of a crack C 1 is predicted starting from the edge of the lower flange 1b, the steel structure 1 is repainted as shown in FIG. Along with the edge portion, a rust preventive insulating paint is applied to the surface of the steel structure 1 to form a rust preventive insulating layer 4b. Next, a conductive paint is applied in a strip shape on the surface of the anticorrosive insulating layer 4b to form a crack propagation detecting conductive layer 4a. After that, conductive paint is applied to the surface of the crack growth detection conductive layer 4a in four lines at equal intervals to form crack growth detection electrode layers 4c to 4f, and the crack growth detection electrode layers 4c to 4f are formed. Each lead wire 6 is connected. Next, an environmental barrier layer 4g is formed by coating the surface of the crack growth detection conductive layer 4a and the crack growth detection electrode layers 4c to 4f in a strip shape with a coating having an environmental barrier property, on the surface of the steel structure 1. A crack growth detection unit 4 is formed.

次に、下フランジ1bのエッジ部に沿って環境遮断層4gの表面にこの環境遮断層4gよりも狭い幅で導電性塗料を帯状に塗布して、亀裂発生検出用導電層5aを形成する。その後に、亀裂発生検出用導電層5aの表面の両端部に導電性塗料をそれぞれ線状に塗布して亀裂発生検出用電極層5b,5cを形成し、亀裂発生検出用電極層5b,5cにそれぞれリード線7を接続する。次に、亀裂発生検出用導電層5a及び亀裂発生検出用電極層5b,5cの表面に環境遮断性を有する塗料を帯状に塗布して環境遮断層5dを形成する。その後に、環境遮断層5dの表面に耐候性塗料を帯状に塗布して耐候層5eを形成し、亀裂進展検出部4の表面に亀裂発生検出部5が形成され、鋼構造物1の表面に亀裂監視材3が形成される。最後に、鋼構造物1の表面に収容部14を固定して、リード線6,7が収容部14の接続端子に接続される。   Next, a conductive paint 5a is formed on the surface of the environmental barrier layer 4g along the edge of the lower flange 1b so as to have a width narrower than that of the environmental barrier layer 4g. After that, conductive paint is applied linearly to both ends of the surface of the crack occurrence detection conductive layer 5a to form crack occurrence detection electrode layers 5b and 5c, and the crack occurrence detection electrode layers 5b and 5c are formed. Each lead wire 7 is connected. Next, an environmental barrier layer 5d is formed by coating the surface of the crack generation detecting conductive layer 5a and the crack generation detecting electrode layers 5b and 5c in a strip shape with an environmental barrier coating. After that, a weather-resistant paint is applied in a band shape on the surface of the environmental barrier layer 5d to form the weather-resistant layer 5e, and the crack occurrence detecting part 5 is formed on the surface of the crack progress detecting part 4, and the surface of the steel structure 1 is formed. A crack monitoring material 3 is formed. Finally, the accommodating portion 14 is fixed to the surface of the steel structure 1, and the lead wires 6 and 7 are connected to the connection terminals of the accommodating portion 14.

次に、この発明の実施形態に係る亀裂監視システムの動作を説明する。
図7は、この発明の実施形態に係る亀裂監視システムの動作を説明するためのフローチャートである。
ステップ(以下Sという)100において、電源がONする。図2に示す制御部10が電源部8に電力の供給を指令すると、図3に示す亀裂進展検出用電極層4c〜4f及び亀裂発生検出用電極層5b,5cに電源部8が電力を供給し、亀裂進展検出用導電層4a及び亀裂発生検出用導電層5aに電流が流れる。
Next, the operation of the crack monitoring system according to the embodiment of the present invention will be described.
FIG. 7 is a flowchart for explaining the operation of the crack monitoring system according to the embodiment of the present invention.
In step (hereinafter referred to as S) 100, the power is turned on. When the control unit 10 shown in FIG. 2 instructs the power supply unit 8 to supply power, the power supply unit 8 supplies power to the crack growth detection electrode layers 4c to 4f and the crack generation detection electrode layers 5b and 5c shown in FIG. Then, a current flows through the crack propagation detecting conductive layer 4a and the crack occurrence detecting conductive layer 5a.

S110において、亀裂発生検出用導電層5aの通電状態が測定される。図2に示す制御部10が通電状態測定部9に通電状態の測定開始を指令すると、図3に示す亀裂発生検出用導電層5aの通電状態の変化を通電状態測定部9が測定して測定結果を制御部10に送信する。   In S110, the energization state of the crack occurrence detection conductive layer 5a is measured. When the control unit 10 shown in FIG. 2 instructs the energization state measurement unit 9 to start the measurement of the energization state, the energization state measurement unit 9 measures and measures a change in the energization state of the crack occurrence detection conductive layer 5a shown in FIG. The result is transmitted to the control unit 10.

S120において、通電状態が変化したか否かが評価される。通電状態測定部9の測定結果を制御部10が評価部11に送信すると、亀裂発生検出用導電層5aの電気抵抗の変化を評価部11が評価する。図1(A)に示すように、下フランジ1bのエッジ部を起点として亀裂C1が発生すると、図2〜図5に示すようにこのエッジ部側の亀裂監視材3の縁部が部分的に破断して亀裂監視材3に亀裂C1が発生する。亀裂発生時の極僅かな亀裂長さでは、亀裂進展検出用導電層4aの電気抵抗の変化量は小さいが、亀裂進展検出用導電層4aの幅に比べて亀裂発生検出用導電層5aの幅が狭く形成されているため、亀裂発生検出用導電層5aの電気抵抗の変化量は大きい。通電状態が変化したときにはS130に進み、通電状態が変化していないときには通電状態が変化するまで判断を繰り返す。 In S120, it is evaluated whether or not the energization state has changed. When the control unit 10 transmits the measurement result of the energization state measurement unit 9 to the evaluation unit 11, the evaluation unit 11 evaluates the change in the electrical resistance of the crack occurrence detection conductive layer 5a. As shown in FIG. 1A, when a crack C 1 occurs starting from the edge of the lower flange 1b, the edge of the crack monitoring material 3 on the edge side is partially shown in FIGS. crack C 1 occurs crack monitoring member 3 to break. When the crack length is very small, the amount of change in the electrical resistance of the crack growth detection conductive layer 4a is small, but the width of the crack generation detection conductive layer 5a is larger than the width of the crack growth detection conductive layer 4a. Is formed narrowly, the amount of change in the electrical resistance of the crack occurrence detecting conductive layer 5a is large. When the energization state changes, the process proceeds to S130, and when the energization state does not change, the determination is repeated until the energization state changes.

S130において、亀裂C1の発生が評価される。亀裂発生検出用導電層5aの電気抵抗が変化したときには、鋼構造物1に亀裂C1が発生したと評価部11が評価する。 In S130, cracking C 1 is evaluated. When the electrical resistance of crack detection conductive layer 5a has changed, the evaluation unit 11 and the crack C 1 has occurred is evaluated steel structure 1.

S140において、評価結果が送信される。亀裂C1の発生を評価部11が評価情報として制御部10に送信するとこの評価情報を制御部10が通信部13に送信し、図示しない中央監視室にこの評価情報を通信部13が送信する。 In S140, the evaluation result is transmitted. When the evaluation unit 11 transmits the occurrence of the crack C 1 as evaluation information to the control unit 10, the control unit 10 transmits this evaluation information to the communication unit 13, and the communication unit 13 transmits this evaluation information to a central monitoring room (not shown). .

S150において、監視領域A1〜A3毎に通電状態が測定される。制御部10が通電状態測定部9に通電状態の測定開始を指令すると、監視領域A1〜A3毎に亀裂進展検出用導電層4aの通電状態の変化を通電状態測定部9が測定して、測定結果を制御部10に送信する。 In S150, the energized state is measured for each monitoring area A 1 to A 3. When the control unit 10 instructs the measurement start of the energization state to the energized state measuring unit 9, the change in energization state of crack growth detection conductive layer 4a was measured energized state measurement section 9 for each monitoring area A 1 to A 3 The measurement result is transmitted to the control unit 10.

S160において、通電状態が変化したか否かが評価される。通電状態測定部9の測定結果を制御部10が評価部11に送信すると、監視領域A1〜A3毎に電気抵抗の変化を評価部11が評価する。通電状態が変化したときにはS170に進み、通電状態が変化していないときにはS250に進む。 In S160, it is evaluated whether or not the energization state has changed. When the control unit 10 transmits the measurement result of the energization state measurement unit 9 to the evaluation unit 11, the evaluation unit 11 evaluates the change in electrical resistance for each of the monitoring regions A 1 to A 3 . When the energization state has changed, the process proceeds to S170, and when the energization state has not changed, the process proceeds to S250.

S170において、亀裂発生領域が評価される。図6(A)に示すように、亀裂進展検出用導電層4aの監視領域A1内に亀裂C1が発生してこの亀裂C1がさらに成長し進展すると、監視領域A2,A3内の電気抵抗の変化量に比べて監視領域A1内の電気抵抗の変化量が大きくなる。このため、各監視領域A1〜A3内の亀裂進展検出用導電層4aの電気抵抗を通電状態測定部9がそれぞれ測定して、各監視領域A1〜A3内の電気抵抗の変化を評価部11が評価する。その結果、電気抵抗の変化が最も大きい監視領域A1内に亀裂C1が発生したことが評価部11によって評価されて亀裂C1の発生位置が特定される。 In S170, the crack occurrence region is evaluated. As shown in FIG. 6A, when a crack C 1 is generated in the monitoring region A 1 of the crack growth detection conductive layer 4a and this crack C 1 further grows and progresses, the inside of the monitoring regions A 2 and A 3 The amount of change in electrical resistance in the monitoring area A 1 is larger than the amount of change in electrical resistance. Thus, by measuring the electrical resistance conducting state measuring section 9 of the crack growth detection conductive layer 4a in the surveillance area A 1 to A 3 are each a change in electrical resistance in each monitoring area A 1 to A 3 Evaluation part 11 evaluates. As a result, the evaluation unit 11 evaluates that the crack C 1 has occurred in the monitoring region A 1 where the change in electrical resistance is the largest, and specifies the generation position of the crack C 1 .

S180において、亀裂C1の発生していない監視領域A2又は監視領域A3の抵抗値が測定される。亀裂進展検出用導電層4aや亀裂進展検出用電極層4c〜4fが外気温の変化や経年による特性の変化などの影響を受ける場合には、通電状態測定部9の測定結果を補償する必要がある。このため、図6(A)に示すように、監視領域A1内の亀裂進展検出用導電層4aに亀裂C1が発生したときには、監視領域A2内又は監視領域A3内の電気抵抗の測定値を通電状態測定部9が測定してこの測定結果を制御部10に送信し、制御部10がこの測定結果を補正部12に送信する。 In S180, the resistance value of the monitoring area A 2 or monitoring area A 3 no cracking C 1 is measured. When the crack growth detection conductive layer 4a and the crack growth detection electrode layers 4c to 4f are affected by changes in the outside air temperature or changes in characteristics over time, it is necessary to compensate the measurement results of the energization state measurement unit 9. is there. Therefore, as shown in FIG. 6 (A), in the surveillance area A 1 to the crack growth detection conductive layer 4a when the cracks C 1 occurs, surveillance area A 2 or surveillance area A 3 in the electrical resistance of The energization state measurement unit 9 measures the measurement value and transmits the measurement result to the control unit 10, and the control unit 10 transmits the measurement result to the correction unit 12.

S190において、亀裂C1の発生した監視領域A1の抵抗値が測定される。通電状態測定部9が監視領域A1内の抵抗値を測定してこの測定結果を制御部10に送信し、制御部10がこの測定結果を補正部12に送信する。 In S190, the resistance value of the monitoring area A 1 generated cracks C 1 is measured. The energization state measurement unit 9 measures the resistance value in the monitoring area A 1 and transmits the measurement result to the control unit 10, and the control unit 10 transmits the measurement result to the correction unit 12.

S200において、亀裂C1の発生した監視領域A1の抵抗値が補正される。監視領域A2内又は監視領域A3内の電気抵抗の測定値の初期値からの変化量(外気温の変化や経年による影響値)を補正部12が演算する。その結果、監視領域A1内の電気抵抗の測定値からこの変化量を補正部12が減算することで温度や材質の変化が補償される。補正後の測定結果を補正部12が制御部10に送信すると、この補正後の測定結果を制御部10が評価部11に送信する。 In S200, the resistance value of the monitoring area A 1 generated cracks C 1 is corrected. The correction unit 12 calculates the amount of change from the initial value of the measured value of the electrical resistance in the monitoring area A 2 or the monitoring area A 3 (influence value due to changes in outside air temperature or aging). As a result, the correction unit 12 subtracts the amount of change from the measured value of the electrical resistance in the monitoring area A 1 to compensate for changes in temperature and material. When the correction unit 12 transmits the corrected measurement result to the control unit 10, the control unit 10 transmits the corrected measurement result to the evaluation unit 11.

S210において、亀裂長さが評価される。補正部12が補正した補正後の抵抗値の変化量に基づいて、外気温の変化や経年による影響されない実際の亀裂C1の長さが評価部11によって評価される。 In S210, the crack length is evaluated. The evaluation unit 11 evaluates the actual length of the crack C 1 that is not affected by changes in the outside air temperature or aging, based on the amount of change in the resistance value after correction corrected by the correction unit 12.

S220において、評価結果が送信される。亀裂C1の発生及び長さを評価部11が評価情報として制御部10に送信するとこの評価情報を制御部10が通信部13に送信し、図示しない中央監視室にこの評価情報を通信部13が送信する。 In S220, the evaluation result is transmitted. When the evaluation unit 11 transmits the occurrence and length of the crack C 1 to the control unit 10 as evaluation information, the control unit 10 transmits the evaluation information to the communication unit 13, and this evaluation information is transmitted to the central monitoring room (not shown). Send.

S230において、許容亀裂長さに亀裂C1が到達したか否かが評価される。例えば、表1に示すように、下フランジ1bに亀裂C1が発生した場合には、許容亀裂長さ20mmにこの亀裂C1が達したときに鋼構造物1が直ちに補強が必要な状態になる。このため、通電状態測定部9の測定結果に基づいて許容亀裂長さに亀裂C1が到達したか否かを評価部11が評価する。許容亀裂長さに亀裂C1が到達したときにはS240に進み、許容亀裂長さに亀裂C1が到達していないときにはS180に戻り亀裂長さの評価を繰り返す。 In S230, whether the crack C 1 has reached evaluates to acceptable crack length. For example, as shown in Table 1, when a crack C 1 occurs in the lower flange 1b, the steel structure 1 immediately needs to be reinforced when the crack C 1 reaches an allowable crack length of 20 mm. Become. For this reason, the evaluation unit 11 evaluates whether or not the crack C 1 has reached the allowable crack length based on the measurement result of the energization state measurement unit 9. Allowable crack proceeds to S240 when the cracks C 1 reaches the length, repeat the evaluation of crack length returns to S180 when the crack C 1 to acceptable crack length is not reached.

S240において、評価結果が送信される。鋼構造物1に直ちに補強が必要であるという評価結果を評価部11が評価情報として制御部10に送信すると、この評価情報を制御部10が通信部13に送信して、図示しない中央監視室にこの評価情報を通信部13が送信する。   In S240, the evaluation result is transmitted. When the evaluation unit 11 transmits the evaluation result that the steel structure 1 needs to be immediately reinforced as the evaluation information to the control unit 10, the control unit 10 transmits the evaluation information to the communication unit 13, and the central monitoring room (not shown). The communication unit 13 transmits this evaluation information.

S250において、隣接する監視領域A1,A2;A2,A3毎に亀裂進展検出用導電層4aの通電状態が測定される。図6(B)に示すように、亀裂進展検出用電極層4dに亀裂C1が発生したときには、各監視領域A1,A2,A3毎に亀裂進展検出用導電層4aを通電状態測定部9が測定しても抵抗値に変化が見られないおそれがある。このため、制御部10が通電状態測定部9に通電状態の測定開始を指令すると、隣接する監視領域A1,A2及び隣接する監視領域A2,A3の通電状態の変化を通電状態測定部9が測定して測定結果を制御部10に送信する。 In S250, the energization state of the crack growth detecting conductive layer 4a is measured for each of the adjacent monitoring areas A 1 , A 2 ; A 2 , A 3 . As shown in FIG. 6B, when a crack C 1 occurs in the crack growth detection electrode layer 4d, the conduction state measurement of the crack growth detection conductive layer 4a is performed for each of the monitoring regions A 1 , A 2 , A 3. Even if the part 9 measures, there is a possibility that the resistance value does not change. For this reason, when the control unit 10 instructs the energization state measurement unit 9 to start the energization state measurement, the change in the energization state of the adjacent monitoring areas A 1 and A 2 and the adjacent monitoring areas A 2 and A 3 is measured. The unit 9 measures and transmits the measurement result to the control unit 10.

S260において、通電状態が変化したか否かが評価される。通電状態が変化していないときには、鋼構造物1に亀裂C1が発生していないと考えられるためS110に戻り亀裂発生検出用導電層5aの通電状態が繰返し測定され、通電状態が変化したときにはS270に進む。 In S260, it is evaluated whether or not the energization state has changed. When the energized state has not changed, it is considered that the crack C 1 has not occurred in the steel structure 1, so the process returns to S110 and the energized state of the crack generation detecting conductive layer 5a is repeatedly measured, and the energized state has changed. The process proceeds to S270.

S270において、亀裂発生領域が評価される。図6(B)に示すように、亀裂進展検出用電極層4d内に亀裂C1が発生してこの亀裂C1がさらに成長し進展すると、亀裂進展検出用電極層4d,4f間の電気抵抗の減少量に比べて亀裂進展検出用電極層4c,4e間の電気抵抗の減少量が大きくなる。その結果、電気抵抗の変化が最も大きい監視領域A1,A2内の亀裂進展検出用電極層4dに亀裂C1が発生したことが評価部11によって評価されて亀裂C1の発生位置が特定される。 In S270, the crack occurrence region is evaluated. As shown in FIG. 6 (B), when the crack propagation detecting electrode layers 4d and cracks C 1 occurs the crack C 1 is further growth progresses, crack growth detecting electrode layer 4d, the electrical resistance between the 4f The amount of decrease in electrical resistance between the crack growth detection electrode layers 4c and 4e is larger than the amount of decrease in. As a result, the evaluation unit 11 evaluates that the crack C 1 has occurred in the crack growth detection electrode layer 4d in the monitoring regions A 1 and A 2 where the change in electrical resistance is the largest, and the occurrence position of the crack C 1 is specified. Is done.

S280において、亀裂C1の発生していない亀裂進展検出用導電層4dを含む監視領域A2,A3の抵抗値が測定される。亀裂進展検出用導電層4aや亀裂進展検出用電極層4c〜4fが外気温の変化や経年による特性の変化などの影響を受ける場合には、通電状態測定部9の測定結果を補償する必要がある。このため、図6(B)に示すように、亀裂進展検出用電極層4d内に亀裂C1が発生したときには、亀裂進展検出用電極層4d,4f間(監視領域A2,A3内)の抵抗値を通電状態測定部9が測定してこの測定結果を制御部10に送信し、制御部10がこの測定結果を補正部12に送信する。 In S280, the resistance values of the monitoring areas A 2 and A 3 including the crack growth detecting conductive layer 4d in which no crack C 1 is generated are measured. When the crack growth detection conductive layer 4a and the crack growth detection electrode layers 4c to 4f are affected by changes in the outside air temperature or changes in characteristics over time, it is necessary to compensate the measurement results of the energization state measurement unit 9. is there. For this reason, as shown in FIG. 6B, when a crack C 1 occurs in the crack growth detection electrode layer 4d, between the crack growth detection electrode layers 4d and 4f (in the monitoring regions A 2 and A 3 ). Is measured by the energization state measurement unit 9 and the measurement result is transmitted to the control unit 10, and the control unit 10 transmits the measurement result to the correction unit 12.

S290において、亀裂C1の発生した亀裂進展検出用導電層4cを含む監視領域A1,A2の抵抗値が測定される。亀裂進展検出用電極層4c,4e間(監視領域A1,A2内)の抵抗値を通電状態測定部9が測定してこの測定結果を制御部10に送信し、制御部10がこの測定結果を補正部12に送信する。 In S290, the resistance values of the monitoring areas A 1 and A 2 including the crack growth detecting conductive layer 4c in which the crack C 1 has occurred are measured. The resistance state between the crack growth detection electrode layers 4c and 4e (in the monitoring areas A 1 and A 2 ) is measured by the energization state measurement unit 9 and the measurement result is transmitted to the control unit 10, and the control unit 10 performs this measurement. The result is transmitted to the correction unit 12.

300において、亀裂C1の発生した亀裂進展検出用導電層4cを含む監視領域A1,A2の抵抗値が補正される。亀裂進展検出用電極層4d,4f間(監視領域A2,A3内)の電気抵抗の測定値の初期値からの変化量(外気温の変化や経年による影響値)を補正部12が演算する。その結果、亀裂進展検出用電極層4c,4e間(監視領域A1,A2内)の電気抵抗の測定値からこの変化量を補正部12が減算することで温度や材質の変化が補償される。S300以降はS210に進み同様の処理がされる。 In S 300 , the resistance values of the monitoring regions A 1 and A 2 including the crack growth detection conductive layer 4 c in which the crack C 1 has occurred are corrected. The correction unit 12 calculates the amount of change from the initial value of the measured value of the electrical resistance between the crack growth detection electrode layers 4d and 4f (within the monitoring areas A 2 and A 3 ) To do. As a result, the correction unit 12 subtracts this amount of change from the measured value of the electrical resistance between the crack growth detection electrode layers 4c and 4e (within the monitoring areas A 1 and A 2 ) to compensate for changes in temperature and material. The After S300, the process proceeds to S210 and the same processing is performed.

この発明の実施形態に係る亀裂監視システム及び亀裂監視材には、以下に記載するような効果がある。
(1) この実施形態では、鋼構造物1に発生する亀裂C1を亀裂発生検出部5が検出し、この亀裂発生検出部5が検出した亀裂C1の進展を亀裂進展検出部4が検出する。その結果、鋼構造物1の疲労亀裂のような鋼構造物1の健全性に影響する重大な変状の発生を検出することができるとともに、この変状の進展も検出することができるため、目視検査による不確実性を解消することができる。
The crack monitoring system and the crack monitoring material according to the embodiment of the present invention have the following effects.
(1) In this embodiment, the crack occurrence detection unit 5 detects the crack C 1 generated in the steel structure 1, and the crack progress detection unit 4 detects the progress of the crack C 1 detected by the crack occurrence detection unit 5. To do. As a result, since it is possible to detect the occurrence of a serious deformation that affects the soundness of the steel structure 1 such as a fatigue crack of the steel structure 1, it is also possible to detect the progress of this deformation. Uncertainty due to visual inspection can be eliminated.

(2) この実施形態では、亀裂C1の発生した位置を亀裂進展検出部4が検出する。このため、鋼構造物1の健全性に影響する重大な変状の発生位置を特定することができるため、この亀裂C1の発生した位置を重点的に監視することができる。 (2) In this embodiment, the crack progress detection unit 4 detects the position where the crack C 1 occurs. Therefore, it is possible to identify the occurrence position of serious Deformation affecting the health of the steel structures 1 can intensively monitor the occurrence position of the crack C 1.

(3) この実施形態では、亀裂進展検出部4及び亀裂発生検出部5が塗料を塗布して形成されている。このため、例えば、鋼構造物1の塗替え塗装工事に合わせて塗料を塗布して亀裂進展検出部4及び亀裂発生検出部5を形成することができる。その結果、屋外や現場で容易に施工することができるとともに、検査のためだけに足場を架設する必要がなくなり経費を節減することができる。 (3) In this embodiment, the crack progress detection unit 4 and the crack occurrence detection unit 5 are formed by applying paint. For this reason, for example, the crack progress detection part 4 and the crack generation | occurrence | production detection part 5 can be formed by apply | coating a coating material according to the repainting construction of the steel structure 1. FIG. As a result, it can be easily constructed outdoors or on site, and it is not necessary to build a scaffold only for inspection, thereby reducing costs.

(4) この実施形態では、亀裂C1の進展に応じて電気抵抗が変化する亀裂進展検出用導電層4aと、この亀裂進展検出用導電層4aに電流を流す亀裂進展検出用電極層4c〜4fとを亀裂進展検出部4が備える。また、この実施形態では、亀裂C1の発生に応じて電気抵抗が変化する亀裂発生検出用導電層5aと、この亀裂発生検出用導電層5aに電流を流す亀裂発生検出用電極層5b,5cとを亀裂発生検出部5が備える。このため、亀裂C1の発生や進展などの鋼構造物1の変状を検査通路などの遠隔地から電気抵抗の変化として確認することができる。 (4) In this embodiment, the crack propagation detection conductive layer 4a whose electric resistance changes according to the progress of the crack C 1, crack propagation detecting electrode layer current flows in the crack growth detection conductive layer 4a 4C- 4 f is provided in the crack growth detection unit 4. Further, in this embodiment, the cracking detection conductive layer 5a having an electric resistance varying according to the occurrence of the crack C 1, crack detection electrode layer 5b supplying a current to the crack detection conductive layer 5a, 5c Are provided in the crack occurrence detection unit 5. For this reason, the deformation of the steel structure 1 such as the occurrence and development of the crack C 1 can be confirmed as a change in electrical resistance from a remote place such as an inspection passage.

(5) この実施形態では、鋼構造物1に発生が予測される亀裂C1の起点側に長辺側が位置するように、亀裂発生検出用導電層5aが帯状に形成されている。その結果、亀裂発生時の極僅かな亀裂長さであっても電気抵抗の変化が大きくなり、亀裂C1の発生を容易に検出することができる。 (5) In this embodiment, as the long side to the origin side of the crack C 1 to occur steel structure 1 is predicted is positioned, crack detection conductive layer 5a is formed in a strip shape. As a result, even if the crack length is very small at the time of crack occurrence, the change in electrical resistance becomes large, and the occurrence of crack C 1 can be easily detected.

(6) この実施形態では、亀裂発生検出用導電層5aは亀裂進展検出用導電層4aよりも幅が狭く形成されている。このため、亀裂C1が発生したときの電気抵抗の変化が亀裂進展検出用導電層4aに比べて亀裂発生検出用導電層5aのほうが大きくなり、亀裂発生検出用導電層5aによって極僅かな亀裂C1の発生も検出することができる。 (6) In this embodiment, the crack occurrence detection conductive layer 5a is formed to be narrower than the crack propagation detection conductive layer 4a. For this reason, the change in electrical resistance when the crack C 1 occurs is larger in the crack generation detecting conductive layer 5a than in the crack progress detecting conductive layer 4a, and the crack generation detecting conductive layer 5a causes a slight crack. The occurrence of C 1 can also be detected.

(7) この実施形態では、亀裂進展検出用導電層4aは鋼構造物1に許容される亀裂長さに応じた幅に形成されている。このため、鋼構造物1に許容される亀裂長さに達するまで亀裂C1の成長を監視し評価することができる。 (7) In this embodiment, the crack propagation detection conductive layer 4 a is formed to have a width corresponding to the crack length allowed in the steel structure 1. For this reason, the growth of the crack C 1 can be monitored and evaluated until the crack length allowed for the steel structure 1 is reached.

(8) この実施形態では、亀裂進展検出用導電層4aが亀裂進展検出用電極層4c〜4fによって複数の監視領域A1〜A3に区画されており、この亀裂進展検出用導電層4aの長さ方向の隣接する一対の亀裂進展検出用電極層4c〜4fによって一つの監視領域A1〜A3が形成されている。その結果、いずれの監視領域A1〜A3内に亀裂C1が発生したかを容易に検出することができる。 (8) In this embodiment, the crack propagation detection conductive layer 4a is the crack propagation detecting electrode layer 4c~4f is divided into a plurality of monitoring areas A 1 to A 3, the crack growth detection conductive layer 4a one monitoring area a 1 to a 3 is formed by the length direction of the adjacent pair of crack growth detecting electrode layer 4C~4f. As a result, it is possible to easily detect in which monitoring area A 1 to A 3 the crack C 1 has occurred.

(9) この実施形態では、通電状態測定部9の測定結果に基づいて鋼構造物1に発生する亀裂C1を評価部11が評価するため、通電状態の変化に基づいて鋼構造物1に発生する亀裂C1及びこの亀裂C1の進展を簡単に検出することができる。 (9) In this embodiment, since the evaluation unit 11 evaluates the crack C 1 generated in the steel structure 1 based on the measurement result of the energization state measurement unit 9, the steel structure 1 is changed based on the change in the energization state. The generated crack C 1 and the progress of the crack C 1 can be easily detected.

(10) この実施形態では、監視領域A1〜A3毎の通電状態測定部9の測定結果に基づいて亀裂C1の発生した監視領域A1を評価部11が特定するため、亀裂C1の発生位置を検出することができる。 (10) In this embodiment, since the evaluation unit 11 specifies the monitoring region A 1 in which the crack C 1 has occurred based on the measurement result of the energization state measuring unit 9 for each of the monitoring regions A 1 to A 3 , the crack C 1 Can be detected.

(11) この実施形態では、通電状態測定部9の測定結果を補正部12が補正し、補正後の測定結果に基づいて亀裂C1を評価部11が評価するため、外気温の変化や経年による特性の変化などの影響を補償することができる。 (11) In this embodiment, the measurement result of the energization state measurement unit 9 corrects the correction unit 12, since the evaluation unit 11 crack C 1 based on the measurement result after the correction are evaluated, the outside air temperature change or aging It is possible to compensate for influences such as a change in characteristics due to.

(12) この実施形態では、亀裂進展検出用導電層4aに亀裂C1が発生したときに、亀裂C1の発生していない監視領域A2又は監視領域A3の通電状態の測定結果に基づいて、亀裂C1の発生した監視領域A1の通電状態の測定結果を補正部12が補正する。その結果、亀裂C1の発生した監視領域A1内の電気特性に含まれる外気温や材料特性の変化分を考慮して、監視領域A1内の測定値を補正することができる。 (12) In this embodiment, when the crack C 1 is generated in the crack growth detection conductive layer 4a, based on the measurement result of the energization state of the monitoring region A 2 or the monitoring region A 3 where the crack C 1 is not generated. Thus, the correction unit 12 corrects the measurement result of the energization state of the monitoring region A 1 where the crack C 1 occurs. As a result, the measurement value in the monitoring area A 1 can be corrected in consideration of the outside air temperature and the change in material characteristics included in the electrical characteristics in the monitoring area A 1 where the crack C 1 occurs.

(13) この実施形態では、亀裂進展検出用電極層4dに亀裂C1が発生したときに、亀裂C1の発生していない亀裂進展検出用電極層4eを含む隣接する2つの監視領域A2,A3の通電状態の測定結果に基づいて、亀裂C1の発生した亀裂進展検出用電極層4dを含む隣接する2つの監視領域A1,A2の通電状態の測定結果を補正部12が補正する。その結果、亀裂C1の発生した亀裂進展検出用電極層4dを含む隣接する監視領域A1,A2内の電気特性に含まれる外気温や材料特性の変化分を評価して、監視領域A1,A2内の測定値を補正することができる。 (13) In this embodiment, when the cracks C 1 occurs in crack propagation detecting electrode layer 4d, the two adjacent containing no cracking C 1 Crack detection electrode layer 4e surveillance area A 2 Based on the measurement result of the energization state of A 3 , A 3, the correction unit 12 determines the measurement result of the energization state of the two adjacent monitoring regions A 1 and A 2 including the crack growth detection electrode layer 4 d where the crack C 1 has occurred. to correct. As a result, the change in the outside air temperature and the material characteristics included in the electrical characteristics in the adjacent monitoring areas A 1 and A 2 including the crack growth detection electrode layer 4d where the crack C 1 has occurred are evaluated, and the monitoring area A The measured values in 1 and A 2 can be corrected.

次に、この発明の実施例を説明する。
(抵抗測定実験)
図8は、この発明の実施例に係る亀裂検出用塗膜の抵抗測定実験の構成図であり、図8(A)は平面図であり、図8(B)は正面図である。
図8に示す亀裂検出用塗膜15は、亀裂の発生が予測される検出対象物に塗布されこの検出対象物の亀裂を検出する塗膜である。亀裂検出用塗膜15は、亀裂検出用塗料を帯状に塗布して形成されており、亀裂の発生に応じて電気抵抗が変化する。亀裂検出用塗膜15は、導電顔料としてカーボンブラックを含み、有機材料として液状エポキシを含む樹脂/顔料割合が500%の亀裂検出用塗料を塗布して形成されている。電極16a,16bは、亀裂検出用塗膜15に電流を流す部分であり、距離L1=700mm間隔をあけて亀裂検出用塗膜15の表面に形成されている。図8に示す亀裂検出用塗膜15を長さL=720mm、厚さt=0.06mmで形成し、亀裂検出用塗膜15を幅W=1〜300mmまで変化させ、亀裂検出用塗膜15の一方の長辺から亀裂Cを導入して電極16a,16b間の電気抵抗を測定した。
Next, examples of the present invention will be described.
(Resistance measurement experiment)
FIG. 8 is a configuration diagram of a resistance measurement experiment of a crack detection coating film according to an embodiment of the present invention, FIG. 8 (A) is a plan view, and FIG. 8 (B) is a front view.
The crack detection coating film 15 shown in FIG. 8 is a coating film that is applied to a detection target that is predicted to generate cracks and detects a crack in the detection target. The crack-detecting coating film 15 is formed by applying a crack-detecting coating material in a strip shape, and its electric resistance changes according to the occurrence of a crack. The crack detection coating film 15 is formed by applying a crack detection paint having a resin / pigment ratio of 500% containing carbon black as a conductive pigment and liquid epoxy as an organic material. The electrodes 16a and 16b are portions that allow current to flow through the crack detection coating film 15, and are formed on the surface of the crack detection coating film 15 with a distance L 1 = 700 mm apart. The crack detection coating film 15 shown in FIG. 8 is formed with a length L = 720 mm and a thickness t = 0.06 mm, and the crack detection coating film 15 is changed to a width W = 1 to 300 mm. A crack C was introduced from one of the long sides, and the electrical resistance between the electrodes 16a and 16b was measured.

図9は、この発明の実施例に係る亀裂検出用塗膜の亀裂長さと抵抗値の増加量との関係を示すグラフである。図10は、この発明の実施例に係る亀裂検出用塗膜を幅=50mmで塗布したときの亀裂長さと抵抗値の増加量との関係を示すグラフである。
図9及び図10に示す横軸は、亀裂Cの長さ(mm)であり、縦軸は電極間の抵抗値増加量(Ω)である。図9及び図10に示すように、亀裂Cの長さが長くなるほど電極16a,16b間の抵抗値の増加量が大きくなり、図9に示すように亀裂検出用塗膜15の幅Wが狭いほど微小長さの亀裂Cを検出可能であると考えられる。例えば、図9に示すように、亀裂検出用塗膜15を幅W=5mm以下で塗布した場合には、1mm以下の亀裂Cを検出することができ、亀裂検出用塗膜15を幅W=1mm程度で塗布した場合には、長さ0.5mm程度の亀裂Cを検出することができる。また、亀裂検出用塗膜15を幅W=10mm程度で塗布した場合には、長さ5mm程度の精度で10mm近くの亀裂長さを検出することができる。
FIG. 9 is a graph showing the relationship between the crack length of the crack detection coating film and the amount of increase in the resistance value according to the embodiment of the present invention. FIG. 10 is a graph showing the relationship between the crack length and the increase in resistance value when the crack detection coating film according to the example of the present invention is applied with a width = 50 mm.
The horizontal axis shown in FIGS. 9 and 10 is the length (mm) of the crack C, and the vertical axis is the resistance value increase amount (Ω) between the electrodes. As shown in FIGS. 9 and 10, as the length of the crack C increases, the amount of increase in the resistance value between the electrodes 16a and 16b increases, and as shown in FIG. 9, the width W of the crack detection coating film 15 decreases. It is considered that the crack C having a very small length can be detected. For example, as shown in FIG. 9, when the crack detection coating film 15 is applied with a width W = 5 mm or less, a crack C of 1 mm or less can be detected, and the crack detection coating film 15 has a width W = When applied at about 1 mm, a crack C having a length of about 0.5 mm can be detected. Further, when the crack detection coating film 15 is applied with a width W of about 10 mm, a crack length close to 10 mm can be detected with an accuracy of about 5 mm in length.

(実施例1)
図11は、この発明の実施例1に係る亀裂検出用塗料の樹脂/顔料割合と体積抵抗率との関係を示すグラフである。
図11に示す横軸は、樹脂/顔料割合(wt%)であり、縦軸は体積抵抗率(固有抵抗率)(Ω・cm)である。ここで、樹脂/顔料割合は、顔料の質量に対する樹脂の質量の割合を示し、数値が小さいほど樹脂量の少ない塗膜であることを示す。実施例1は、導電顔料としてカーボンブラック(電気化学工業(株)製、商品名:デンカブラック)を含み、有機材料として液状エポキシ樹脂(大日本インキ化学工業(株)製、商品名:エピクロン)を含む亀裂検出用塗料である。
Example 1
FIG. 11 is a graph showing the relationship between the resin / pigment ratio and the volume resistivity of the crack detection coating material according to Example 1 of the present invention.
The horizontal axis shown in FIG. 11 is the resin / pigment ratio (wt%), and the vertical axis is the volume resistivity (specific resistivity) (Ω · cm). Here, the resin / pigment ratio indicates the ratio of the mass of the resin to the mass of the pigment, and the smaller the value, the smaller the amount of resin. Example 1 includes carbon black (manufactured by Denki Black Co., Ltd., trade name: Denka Black) as a conductive pigment, and a liquid epoxy resin (trade name: Epicron, produced by Dainippon Ink & Chemicals, Inc.) as an organic material. It is a crack detection coating material containing.

Figure 0004102296
Figure 0004102296

表2は、カーボンブラック/液状エポキシ樹脂の体積抵抗率の測定結果を示す。実施例1は、図11及び表2に示すように、樹脂含有量が低下すると体積抵抗率が小さくなり導電性が向上している。図3〜図5に示す亀裂進展検出用導電層4aとして実施例1の亀裂検出用塗料を使用する場合には、体積抵抗率が1〜10Ω・cm程度になるように、導電顔料の質量に対する有機樹脂の質量を300〜700wt%程度に調整することが望ましい。   Table 2 shows the measurement results of the volume resistivity of carbon black / liquid epoxy resin. In Example 1, as shown in FIG. 11 and Table 2, when the resin content decreases, the volume resistivity decreases and the conductivity is improved. When the crack detection coating material of Example 1 is used as the crack propagation detection conductive layer 4a shown in FIGS. 3 to 5, the volume resistivity is about 1 to 10 Ω · cm with respect to the mass of the conductive pigment. It is desirable to adjust the mass of the organic resin to about 300 to 700 wt%.

(実施例2)
図12は、この発明の実施例2に係る亀裂検出用塗料の樹脂/顔料割合と体積抵抗率との関係を示すグラフである。
図12に示す横軸は、樹脂/顔料割合(wt%)であり、縦軸は体積抵抗率(mΩ・cm)である。実施例2は、導電顔料としてニッケル粉(関東化学(株)製の試薬)を含み、有機材料として液状エポキシ樹脂(大日本インキ化学工業(株)製、商品名:エピクロン)を含む亀裂検出用塗料である。
(Example 2)
FIG. 12 is a graph showing the relationship between the resin / pigment ratio and the volume resistivity of the crack detection coating material according to Example 2 of the present invention.
The horizontal axis shown in FIG. 12 is the resin / pigment ratio (wt%), and the vertical axis is the volume resistivity (mΩ · cm). Example 2 is for crack detection, which contains nickel powder (reagent manufactured by Kanto Chemical Co., Inc.) as a conductive pigment, and liquid epoxy resin (trade name: Epicron, manufactured by Dainippon Ink & Chemicals, Inc.) as an organic material. It is a paint.

Figure 0004102296
Figure 0004102296

表3は、ニッケル粉/液状エポキシ樹脂の体積抵抗率の測定結果を示す。実施例2は、図12及び表3に示すように、実施例1と同様に樹脂含有量が低下すると体積抵抗率が小さくなり導電性が向上している。図3〜図5に示す亀裂進展検出用電極層4c〜4f、亀裂発生検出用導電層5a及び亀裂発生検出用電極層5b,5cとして実施例2の亀裂検出用塗料を使用する場合には、体積抵抗率が0.01〜0.04Ω・cm程度になるように、導電顔料の質量に対する有機樹脂の質量を20〜80wt%程度に調整することが望ましい。   Table 3 shows the measurement results of the volume resistivity of nickel powder / liquid epoxy resin. In Example 2, as shown in FIG. 12 and Table 3, when the resin content decreases, the volume resistivity decreases and the conductivity improves as in Example 1. When the crack detection coating material of Example 2 is used as the crack growth detection electrode layers 4c to 4f, the crack generation detection conductive layer 5a, and the crack generation detection electrode layers 5b and 5c shown in FIGS. It is desirable to adjust the mass of the organic resin to about 20 to 80 wt% with respect to the mass of the conductive pigment so that the volume resistivity is about 0.01 to 0.04 Ω · cm.

この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、監視対象物として鋼構造物1を例に挙げて説明したが、コンクリート構造物などの他の構造物についてもこの発明を適用することができる。また、この実施形態では、疲労亀裂などによって鋼構造物1に亀裂C1が発生する場合を例に挙げて説明したが、リベットやボルトなどの緩みによって塗膜に亀裂が発生する場合についてもこの発明を適用することができる。さらに、この実施形態では、亀裂進展検出部4上に亀裂発生検出部5を形成した場合を例に挙げて説明したが、亀裂発生検出部5上に亀裂進展検出部4を形成することもできる。
The present invention is not limited to the embodiment described above, and various modifications or changes can be made as described below, and these are also within the scope of the present invention.
(1) In this embodiment, the steel structure 1 has been described as an example of the monitoring object, but the present invention can also be applied to other structures such as a concrete structure. Further, in this embodiment, the case where the crack C 1 occurs in the steel structure 1 due to fatigue cracks has been described as an example. However, this case also occurs when cracks occur in the coating film due to loosening of rivets, bolts, and the like. The invention can be applied. Furthermore, in this embodiment, the case where the crack occurrence detection unit 5 is formed on the crack progress detection unit 4 has been described as an example, but the crack progress detection unit 4 can also be formed on the crack occurrence detection unit 5. .

(2) この実施形態では、4本の亀裂進展検出用電極層4c〜4fによって亀裂進展検出用導電層4aを3つの監視領域A1〜A3に区画する場合を例に挙げて説明したがこれに限定するものではなく、4つ以上の監視領域に区画することもできる。また、この実施形態では、樹脂自体が液状である液状エポキシ樹脂によって亀裂検出用塗料を製造する場合を例に挙げて説明したが、液状エポキシ樹脂に比べて分子量が高く常温で固体である固形エポキシ樹脂によって亀裂検出用塗料を製造することもできる。さらに、この実施形態では、ニッケル粉によって亀裂検出用塗料を製造する場合を例に挙げて説明したがこれに限定するものではない。例えば、酸化物によって表面が覆われたニッケル粉以外の他の金属顔料であっても、樹脂中で粉砕することで導電性塗膜を形成できる場合には、このような他の金属顔料によって亀裂検出用塗料を製造することもできる。 (2) In this embodiment, a case defining the crack growth detection conductive layer 4a into three monitoring regions A 1 to A 3 by four crack propagation detecting electrode layer 4c~4f been described as an example However, the present invention is not limited to this, and can be divided into four or more monitoring areas. Also, in this embodiment, the case where the crack detection coating material is manufactured using a liquid epoxy resin whose resin itself is liquid has been described as an example. However, the solid epoxy which has a higher molecular weight than that of the liquid epoxy resin and is solid at room temperature. It is also possible to produce a crack detection coating material with a resin. Furthermore, in this embodiment, the case where the crack detection coating material is manufactured using nickel powder has been described as an example, but the present invention is not limited to this. For example, even if other metal pigments other than nickel powder whose surface is covered with an oxide can be formed into a conductive coating film by being pulverized in a resin, cracks are caused by such other metal pigments. A detection paint can also be produced.

この発明の実施形態に係る亀裂監視システムによって監視される鋼構造物に亀裂が発生した状態を示す斜視図であり、(A)は主桁下フランジに亀裂が発生した状態を示し、(B)は腹板に亀裂が発生した状態を示し、(C)は主桁切欠部から亀裂が発生した状態を示す。It is a perspective view which shows the state which the crack generate | occur | produced in the steel structure monitored by the crack monitoring system which concerns on embodiment of this invention, (A) shows the state which the crack generate | occur | produced in the main girder lower flange, (B) Shows a state where a crack is generated in the abdominal plate, and (C) shows a state where a crack is generated from the main girder notch. この発明の実施形態に係る亀裂監視システムの構成図である。It is a block diagram of the crack monitoring system which concerns on embodiment of this invention. この発明の実施形態に係る亀裂監視システムの亀裂監視材の一部を破断して示す斜視図である。It is a perspective view which fractures | ruptures and shows a part of crack monitoring material of the crack monitoring system which concerns on embodiment of this invention. この発明の実施形態に係る亀裂監視システムの亀裂監視材の平面図である。It is a top view of the crack monitoring material of the crack monitoring system concerning an embodiment of this invention. 図4のV-V線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the VV line | wire of FIG. この発明の実施形態に係る亀裂監視システムの通電状態測定部の測定動作を説明するための平面図であり、(A)は亀裂進展検出用導電層に亀裂が発生した状態を示し、(B)は亀裂進展検出用電極層に亀裂が発生した状態を示す。It is a top view for demonstrating the measurement operation | movement of the electricity supply state measuring part of the crack monitoring system which concerns on embodiment of this invention, (A) shows the state which the crack generate | occur | produced in the conductive layer for crack progress detection, (B) Indicates a state in which cracks are generated in the electrode layer for detecting crack propagation. この発明の実施形態に係る亀裂監視システムの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the crack monitoring system which concerns on embodiment of this invention. この発明の実施例に係る亀裂検出用塗膜の抵抗測定実験の構成図であり、(A)は平面図であり、(B)は正面図である。It is a block diagram of the resistance measurement experiment of the coating film for a crack detection which concerns on the Example of this invention, (A) is a top view, (B) is a front view. この発明の実施例に係る亀裂検出用塗膜の亀裂長さと抵抗値の増加量との関係を示すグラフである。It is a graph which shows the relationship between the crack length of the coating film for a crack detection which concerns on the Example of this invention, and the increase amount of resistance value. この発明の実施例に係る亀裂検出用塗膜を幅=50mmで塗布したときの亀裂長さと抵抗値の増加量との関係を示すグラフである。It is a graph which shows the relationship between the crack length when the coating film for a crack detection based on the Example of this invention is apply | coated by width = 50mm, and the increase amount of resistance value. この発明の実施例1に係る亀裂検出用塗料の樹脂/顔料割合と体積抵抗率との関係を示すグラフである。It is a graph which shows the relationship between the resin / pigment ratio and volume resistivity of the crack detection coating material which concerns on Example 1 of this invention. この発明の実施例2に係る亀裂検出用塗料の樹脂/顔料割合と体積抵抗率との関係を示すグラフである。It is a graph which shows the relationship between resin / pigment ratio of the coating material for crack detections based on Example 2 of this invention, and volume resistivity.

符号の説明Explanation of symbols

1 鋼構造物(監視対象物)
2 亀裂監視システム
3 亀裂監視材
4 亀裂進展検出部
4a 亀裂進展検出用導電層
4b 防錆絶縁層
4c〜4f 亀裂進展検出用電極層
4g 環境遮断層
5 亀裂発生検出部
5a 亀裂発生検出用導電層
5b,5c 亀裂発生検出用電極層
5d 環境遮断層
5e 耐候層
6,7 リード線
8 電源部
9 通電状態測定部
10 制御部
11 評価部
12 補正部
13 通信部
14 収容部
15 亀裂検出用塗膜
16a,16b 電極
1〜A3 監視領域
1〜C6 亀裂

1 Steel structure (monitoring object)
DESCRIPTION OF SYMBOLS 2 Crack monitoring system 3 Crack monitoring material 4 Crack progress detection part 4a Conductive layer for crack progress detection 4b Rust prevention insulating layer 4c-4f Electrode layer for crack progress detection 4g Environmental barrier layer 5 Crack occurrence detection part 5a Conductive layer for crack occurrence detection 5b, 5c Crack generation detection electrode layer 5d Environmental barrier layer 5e Weatherproof layer 6, 7 Lead wire 8 Power supply unit 9 Current state measurement unit 10 Control unit 11 Evaluation unit 12 Correction unit 13 Communication unit 14 Housing unit 15 Crack detection coating film 16a, 16b electrodes A 1 to A 3 monitoring area C 1 -C 6 crack

Claims (9)

亀裂を検出する亀裂発生検出部とこの亀裂発生検出部が検出した亀裂の進展を検出する亀裂進展検出部とを、この亀裂の発生が予測される監視対象物の表面に重ねて形成、この監視対象物の亀裂の発生及びこの亀裂の進展を監視する亀裂監視材であって、
前記亀裂発生検出部は、
前記亀裂の発生に応じて電気抵抗が変化する亀裂発生検出用導電層と、
前記亀裂発生検出用導電層に電流を流す亀裂発生検出用電極層とを備え、
前記亀裂進展検出部は、
前記亀裂の進展に応じて電気抵抗が変化する亀裂進展検出用導電層と、
前記亀裂進展検出用導電層に電流を流す亀裂進展検出用電極層とを備え、
前記亀裂発生検出用導電層及び前記亀裂進展検出用導電層は、前記監視対象物に発生が予測される亀裂の起点側に長辺側が位置するように、導電性塗料を塗布して帯状に形成されており、
前記亀裂発生検出用導電層は、前記亀裂進展検出用導電層よりも幅が狭く形成されていること、
を特徴とする亀裂監視材。
A crack propagation detecting unit for detecting the development of a crack that the crack detector and the crack detection unit has detected that detects cracks, is formed to overlap the surface of the object to be monitored by this cracking is expected, this A crack monitoring material for monitoring the occurrence of cracks in the monitored object and the progress of the cracks,
The crack occurrence detection unit,
A conductive layer for detecting the occurrence of cracks, the electrical resistance of which changes according to the occurrence of cracks;
A crack occurrence detection electrode layer for passing an electric current to the crack occurrence detection conductive layer,
The crack progress detector is
A conductive layer for detecting crack progress in which electrical resistance changes in accordance with the progress of the crack;
A crack progress detection electrode layer for passing an electric current to the crack progress detection conductive layer;
The crack generation detection conductive layer and the crack progress detection conductive layer are formed in a strip shape by applying a conductive paint so that the long side is located on the start side of the crack that is predicted to occur in the monitored object. Has been
The crack occurrence detection conductive layer is formed narrower than the crack propagation detection conductive layer,
Crack monitoring material characterized by
請求項1に記載の亀裂監視材において、
前記亀裂進展検出部は、前記亀裂の発生した位置を検出すること、
を特徴とする亀裂監視材。
In the crack monitoring material according to claim 1,
The crack progress detector detects a position where the crack has occurred;
Crack monitoring material characterized by
請求項1又は請求項に記載の亀裂監視材において、
前記亀裂進展検出用導電層は、前記監視対象物に許容される亀裂長さに応じた幅に形成されていること、
を特徴とする亀裂監視材。
In the crack monitoring material according to claim 1 or claim 2 ,
The crack propagation detection conductive layer is formed to have a width corresponding to the crack length allowed for the monitoring object;
Crack monitoring material characterized by
請求項から請求項までのいずれか1項に記載の亀裂監視材において、
前記亀裂進展検出用導電層は、前記亀裂進展検出用電極層によって複数の監視領域に区画されており、この亀裂進展検出用導電層の長さ方向の隣接する一対の前記亀裂進展検出用電極層によって一つの監視領域が形成されていること、
を特徴とする亀裂監視材。
In the crack monitoring material according to any one of claims 1 to 3 ,
The crack progress detection conductive layer is partitioned into a plurality of monitoring regions by the crack progress detection electrode layer, and a pair of adjacent crack progress detection electrode layers in the length direction of the crack progress detection conductive layer. That one monitoring area is formed by
Crack monitoring material characterized by
亀裂の発生及びこの亀裂の進展を監視する亀裂監視システムであって、
請求項から請求項までのいずれか1項に記載の亀裂監視材と、
前記亀裂発生検出用導電層及び前記亀裂進展検出用導電層の通電状態を測定する通電状態測定部と、
前記通電状態測定部の測定結果に基づいて前記監視対象物に発生する亀裂を評価する評価部と、
を備える亀裂監視システム。
A crack monitoring system for monitoring the occurrence of cracks and the progress of the cracks,
The crack monitoring material according to any one of claims 1 to 4 ,
An energization state measuring unit for measuring an energization state of the crack occurrence detection conductive layer and the crack propagation detection conductive layer;
An evaluation unit for evaluating a crack generated in the monitoring object based on a measurement result of the energization state measurement unit;
Crack monitoring system with.
請求項に記載の亀裂監視システムにおいて、
前記通電状態測定部は、前記亀裂進展検出用電極層によって前記亀裂進展検出用導電層が複数の監視領域に区画されているときに、前記監視領域毎に通電状態を測定し、
前記評価部は、前記監視領域毎の通電状態の測定結果に基づいて亀裂の発生した監視領域を特定すること、
を特徴とする亀裂監視システム。
The crack monitoring system according to claim 5 , wherein
The energization state measurement unit measures the energization state for each monitoring region when the crack propagation detection conductive layer is partitioned into a plurality of monitoring regions by the crack propagation detection electrode layer,
The evaluation unit specifies a monitoring region where a crack has occurred based on a measurement result of an energization state for each monitoring region;
A crack monitoring system characterized by.
請求項又は請求項に記載の亀裂監視システムにおいて、
前記通電状態測定部の測定結果を補正する補正部を備え、
前記評価部は、補正後の測定結果に基づいて前記亀裂を評価すること、
を特徴とする亀裂監視システム。
In the crack monitoring system according to claim 5 or 6 ,
A correction unit for correcting the measurement result of the energization state measurement unit;
The evaluation unit evaluates the crack based on a corrected measurement result;
A crack monitoring system characterized by.
請求項に記載の亀裂監視システムにおいて、
前記通電状態測定部は、前記亀裂進展検出用電極層によって前記亀裂進展検出用導電層が複数の監視領域に区画されているときに、前記監視領域毎に通電状態を測定し、
前記補正部は、前記亀裂進展検出用導電層に亀裂が発生したときに、亀裂の発生していない監視領域の通電状態の測定結果に基づいて、亀裂の発生した監視領域の通電状態の測定結果を補正すること、
を特徴とする亀裂監視システム。
The crack monitoring system according to claim 7 , wherein
The energization state measurement unit measures the energization state for each monitoring region when the crack propagation detection conductive layer is partitioned into a plurality of monitoring regions by the crack propagation detection electrode layer,
When the crack is generated in the crack propagation detection conductive layer, the correction unit is based on the measurement result of the energization state of the monitoring region where no crack is generated, and the measurement result of the energization state of the monitoring region where the crack is generated Correcting
A crack monitoring system characterized by.
請求項又は請求項に記載の亀裂監視システムにおいて、
前記通電状態測定部は、前記亀裂進展検出用電極層によって前記亀裂進展検出用導電層が複数の監視領域に区画されているときに、隣接する2つの前記監視領域毎に通電状態を測定し、
前記補正部は、前記亀裂進展検出用電極層に亀裂が発生したときに、亀裂の発生していない前記亀裂進展検出用電極層を含む隣接する2つの監視領域の通電状態の測定結果に基づいて、亀裂の発生した前記亀裂進展検出用電極層を含む隣接する2つの監視領域の通電状態の測定結果を補正すること、
を特徴とする亀裂監視システム。
In the crack monitoring system according to claim 7 or claim 8 ,
The energization state measurement unit measures the energization state for each of the two adjacent monitoring regions when the crack propagation detection conductive layer is partitioned into a plurality of monitoring regions by the crack propagation detection electrode layer,
When the crack is generated in the crack progress detection electrode layer, the correction unit is based on the measurement result of the energization state of two adjacent monitoring regions including the crack progress detection electrode layer in which no crack is generated. Correcting the measurement result of the energization state of two adjacent monitoring regions including the crack growth detection electrode layer where the crack has occurred,
A crack monitoring system characterized by.
JP2003422392A 2003-12-19 2003-12-19 Crack monitoring material and crack monitoring system Expired - Fee Related JP4102296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422392A JP4102296B2 (en) 2003-12-19 2003-12-19 Crack monitoring material and crack monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422392A JP4102296B2 (en) 2003-12-19 2003-12-19 Crack monitoring material and crack monitoring system

Publications (2)

Publication Number Publication Date
JP2005181108A JP2005181108A (en) 2005-07-07
JP4102296B2 true JP4102296B2 (en) 2008-06-18

Family

ID=34783285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422392A Expired - Fee Related JP4102296B2 (en) 2003-12-19 2003-12-19 Crack monitoring material and crack monitoring system

Country Status (1)

Country Link
JP (1) JP4102296B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345089B2 (en) * 2010-02-25 2013-11-20 公益財団法人鉄道総合技術研究所 Crack monitoring apparatus and crack monitoring method
CN112748156B (en) * 2020-12-24 2023-11-17 哈尔滨工业大学 Structural apparent crack monitoring system and monitoring method
CN114413828B (en) * 2022-01-21 2023-12-29 吉林建筑大学 Structural deformation monitoring method for light steel structure assembly type building

Also Published As

Publication number Publication date
JP2005181108A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP6770046B2 (en) Cathode anticorrosion monitoring probe
JP5936276B2 (en) Crack monitoring device
US8111078B1 (en) Oxidizing power sensor for corrosion monitoring
JP4726247B2 (en) Crack monitoring material and crack monitoring system
JP5345089B2 (en) Crack monitoring apparatus and crack monitoring method
Poberezhny et al. Minimizing losses during natural gas transportation
JP4102296B2 (en) Crack monitoring material and crack monitoring system
JP4137781B2 (en) Crack monitoring system
Bennett et al. Cathodic protection of concrete bridges: a manual of practice
JP5515680B2 (en) Heavy anti-corrosion coated steel and its durability monitoring method
JP2008081607A (en) Conductive coating, conductive coating film, coating for detecting crack and coating film for detecting crack
JP2005179501A (en) Conductive coating, conductive coated film, coating for monitoring cracks, and coated film for detecting cracks
Christodoulou et al. Site performance of galvanic anodes in concrete repairs
JP2017179467A (en) Electrical protection structure for reinforced concrete structure and method for measuring effect of the same
Galvanic Galvanic cathodic protection of reinforced and prestressed concrete using a thermally sprayed aluminum coating
JP4747084B2 (en) Cathodic protection management method and cathode protection management system
KR100485953B1 (en) Method for cathodic protection for metal structure
Wang et al. Transmission Structure Corrosion Due to Stray Currents and Inspection Techniques: A Review
JP7466866B2 (en) Methods for assessing the integrity of reinforced concrete structures
CN111257213B (en) Device and method for in-situ monitoring of underwater anti-corrosion coating of marine structure
Cardoso et al. Evaluation of Galvanic Coupling of Lean Duplex Stainless Steel and Carbon Steel in Simulated Pore Solution for Concrete Structures in Marine Environment
Choi et al. A Galvanic Sensor for Monitoring the Corrosion Damage of Buried Pipelines: Part 1Electrochemical Tests to Determine the Correlation of Probe Current to Actual Corrosion Damage in Synthetic Groundwater, MARCH 2005
Ebell et al. Corrosion monitoring of reinforced concrete structures: The DGZfP specification B12 Collaboration
US20220049363A1 (en) Methods for controling and monitoring the degree of cathodic rotection for metal structutres and burried pipelines using coupled mutielectrode sensors
Tinnea Field performance of sprayed zinc cathodic protection anodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees