JP2005179501A - Conductive coating, conductive coated film, coating for monitoring cracks, and coated film for detecting cracks - Google Patents
Conductive coating, conductive coated film, coating for monitoring cracks, and coated film for detecting cracks Download PDFInfo
- Publication number
- JP2005179501A JP2005179501A JP2003422399A JP2003422399A JP2005179501A JP 2005179501 A JP2005179501 A JP 2005179501A JP 2003422399 A JP2003422399 A JP 2003422399A JP 2003422399 A JP2003422399 A JP 2003422399A JP 2005179501 A JP2005179501 A JP 2005179501A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- crack
- coating film
- crack detection
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Paints Or Removers (AREA)
Abstract
Description
この発明は、導電顔料と有機樹脂とを含む導電性塗料、塗装対象物の表面に塗布され形成された導電性塗膜、亀裂の発生が予測される検出対象物の表面に塗布され、この検出対象物の亀裂を検出する亀裂検出用塗料、及び亀裂を検出する亀裂検出用塗膜に関する。 The present invention is applied to a conductive paint containing a conductive pigment and an organic resin, a conductive coating applied on the surface of the object to be coated, and applied to the surface of the object to be detected where cracks are expected to occur. The present invention relates to a crack detection paint for detecting cracks in an object and a crack detection coating film for detecting cracks.
鋼構造物には、繰り返し荷重を受けることで引張荷重のかかる部位に疲労亀裂が発生したり、接合部のリベットやボルトの緩みや脱落などの重大変状が発生したりする。このような重大変状が構造物の耐力に影響するほどの大きさに成長すると構造物の破壊に至るため、変状部位別に許容される変状程度を超えるおそれがある場合には補修や補強のための工事が行われている。鋼構造物の重大変状は、通常の状態では複数年かけて進展するため変状発生時に直ちに補修や補強を行う必要はない。また、変状の中には進展が途中で止まる場合もあるため、補修や補強の必要性を判定するためには変状発生後の進展を監視する必要がある。 In steel structures, fatigue cracks occur at sites where tensile loads are applied due to repeated loads, and serious conditions such as loosening or dropping of rivets and bolts at joints occur. If such a serious condition grows to a size that affects the proof stress of the structure, the structure will be destroyed. Construction is being done for. The seriousness of steel structures develops over multiple years under normal conditions, so there is no need to repair or reinforce immediately when deformation occurs. Moreover, since the progress may stop in the middle of the deformation, it is necessary to monitor the progress after the occurrence of the deformation in order to determine the necessity of repair or reinforcement.
鋼構造物の検査には、2年を超えない範囲で行われる定期検査と、地震などの異常時に大きな荷重を受けた場合に行われる不定期検査と、定期検査などで異常が想定された場合に実施される詳細検査とがある。定期検査と不定期検査は、巡回による検査通路からの目視検査が主体であり、この目視検査では亀裂の発生が想定される箇所に近接して防食塗膜の破断箇所を目視で観察する。鋼材の亀裂発生に伴う塗膜破断は、応力集中箇所と想定される部位から直線的に成長しているので、他の塗膜破断原因と容易に区別することができる。また、過去の経験から鋼材の疲労亀裂時に防食塗膜が破断に至ることが知られている。リベットやボルトの破断は、接合部が観察できれば双眼鏡などを用いて容易に発見することができる。リベットやボルトの緩みは、これらの周りの塗膜の破断状況を近接して観察し、ハンマーなどで叩き音の変化を確認する打音検査によって発見することができる。一方、詳細検査は、検査目的によって異なるが検査のために足場の架設を伴うことがある。巡回による目視によって変状が発見されるのは検査通路に近い部位のみであり、多くの場合には足場を架設して接近観察が必要になるが、足場の架設には多くの費用が必要になる。このため、緊急性の高い詳細検査以外では、10〜15年毎に実施されている塗替え塗装工事の塗装足場を活用して検査されている。 For inspection of steel structures, periodic inspections that are conducted within two years, irregular inspections that are performed when a large load is received during an abnormality such as an earthquake, and abnormalities that are assumed by periodic inspections, etc. There are detailed inspections conducted. The periodic inspection and the irregular inspection mainly consist of visual inspection from the inspection passage by patrol, and in this visual inspection, the breakage portion of the anticorrosion coating film is visually observed in the vicinity of the portion where the occurrence of cracks is assumed. The coating film rupture accompanying the occurrence of cracks in the steel material grows linearly from the portion assumed to be the stress concentration portion, and can be easily distinguished from other coating film rupture causes. Moreover, it is known from past experience that the anticorrosion coating film breaks at the time of fatigue cracking of the steel material. Rupture of rivets and bolts can be easily detected using binoculars if the joint can be observed. Looseness of rivets and bolts can be detected by a hammering test in which the rupture state of the coating film around them is closely observed and a change in the hammering sound is confirmed with a hammer or the like. On the other hand, the detailed inspection may involve the construction of a scaffold for the inspection, although it varies depending on the inspection purpose. Deformation is discovered by visual inspection only at the site close to the inspection passage. In many cases, it is necessary to construct a scaffold and observe it closely, but it requires a lot of cost to construct the scaffold. Become. For this reason, except for highly urgent detailed inspections, inspection is carried out by using the coating scaffolding of the repainting work carried out every 10 to 15 years.
近年、導電性薄膜を構造物に配置しこの構造物に亀裂が発生したときにこの導電性薄膜が破断することで亀裂を検知する方法が提案されている。例えば、従来の亀裂検知材は、防水性を有する絶縁塗料をトンネルの壁面に塗布して形成された下地層と、線状模様の電気回路を形成するように下地層の表面に導電性塗料を塗布して形成された導電層と、下地層と同様の絶縁塗料を導電層及び下地層に塗布して形成されこれらを被覆する保護層とを備えている(特許文献1参照)。このような従来の亀裂検知材では、壁面にひび割れが発生して異常が発生するとこの異常箇所の周辺が剥離して導電層が断線し導電層が非通電状態になるため、センサが導電層の非通電状態を検出して壁面の異常を検出することができる。 In recent years, a method has been proposed in which a conductive thin film is arranged in a structure and the crack is detected by breaking the conductive thin film when a crack occurs in the structure. For example, a conventional crack detection material has a base layer formed by applying a waterproof insulating paint to the wall surface of a tunnel, and a conductive paint on the surface of the base layer so as to form a linear pattern electric circuit. A conductive layer formed by coating, and a protective layer formed by coating the conductive layer and the base layer with the same insulating paint as the base layer are provided (see Patent Document 1). In such a conventional crack detection material, if a crack occurs on the wall surface and an abnormality occurs, the periphery of this abnormal part is peeled off, the conductive layer is disconnected, and the conductive layer is in a non-energized state. An abnormal state of the wall surface can be detected by detecting a non-energized state.
このような従来の亀裂監視材では、亀裂の検出が可能な電気抵抗の低い導電性塗料によって導電層を形成する必要がある。近年、帯電防止、電磁シールド、結露防止などを目的とする低電気抵抗の導電性塗料が知られている。例えば、従来の導電性塗料(従来技術1)は、カーボンブラックとグラファイトとをアクリル系樹脂水系分散体に混合分散させている(特許文献2参照)。この従来技術1では、電気抵抗値が最小となるようにカーボンブラックとグラファイトとの添加混合比率を調整して結露の発生を防止している。また、従来の導電性塗料(従来技術2)は、カーボンブラック顔料とエポキシ樹脂とを配合している(特許文献3参照)。この従来技術2では、カーボンブラック顔料とエポキシ樹脂との混合割合を調整して、電気抵抗値のばらつきを小さくし塗膜強度を向上させている。
In such a conventional crack monitoring material, it is necessary to form a conductive layer with a conductive paint having a low electrical resistance capable of detecting a crack. In recent years, conductive coatings with low electrical resistance for the purpose of preventing electrification, electromagnetic shielding, prevention of condensation and the like are known. For example, in a conventional conductive paint (prior art 1), carbon black and graphite are mixed and dispersed in an acrylic resin aqueous dispersion (see Patent Document 2). In this
従来技術1では、二種類の導電性顔料であるカーボンブラックとグラファイトとを体積抵抗率が低くなるような混合比率で調整する必要がある。このため、導電顔料が一種類の場合に比べて調整が困難であるとともに、亀裂検出用塗料として利用する場合には、体積抵抗率が低すぎるため亀裂の進展を十分に検出することができないという問題がある。また、従来技術2では、カーボンブラック顔料とエポキシ樹脂とを混合しているが、亀裂検出用塗料として利用する場合には体積抵抗率が高すぎるため亀裂の発生とこの亀裂の進展を十分に検出することができないという問題がある。
In the
この発明の課題は、亀裂の検出に最適な体積抵抗率を有し現場施工が容易であり精度よく亀裂を検出することができる導電性塗料、亀裂検出用塗料及び亀裂検出用塗膜を提供することである。 An object of the present invention is to provide a conductive coating, a crack detection coating, and a crack detection coating film that have an optimum volume resistivity for crack detection, are easy to perform on-site, and can accurately detect cracks. That is.
この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、導電顔料と有機樹脂とを含む導電性塗料であって、前記導電顔料としてカーボンブラックを含み、前記有機樹脂としてエポキシ樹脂を含み、前記導電顔料の質量に対する前記有機樹脂の質量が300〜700wt%であることを特徴とする導電性塗料である。
The present invention solves the above-mentioned problems by the solving means described below.
In addition, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this embodiment.
The invention of
請求項2の発明は、導電顔料と有機樹脂とを含む導電性塗料であって、前記導電顔料としてニッケル粉を含み、前記有機樹脂としてエポキシ樹脂を含み、前記導電顔料の質量に対する前記有機樹脂の質量が20〜80wt%であることを特徴とする導電性塗料である。 The invention of claim 2 is a conductive paint containing a conductive pigment and an organic resin, wherein the conductive pigment contains nickel powder, the organic resin contains an epoxy resin, and the organic resin has a mass relative to the mass of the conductive pigment. A conductive paint characterized by having a mass of 20 to 80 wt%.
請求項3の発明は、塗装対象物の表面に塗布され形成された導電性塗膜であって、請求項1又は請求項2に記載の導電性塗料が前記塗装対象物の表面に塗布され形成されていることを特徴とする導電性塗膜である。
The invention of
請求項4の発明は、請求項3に記載の導電性塗膜において、前記塗装対象物の表面は、鋼構造物の絶縁層表面又はコンクリート構造物の表面であることを特徴とする導電性塗膜である。 According to a fourth aspect of the present invention, in the conductive coating film according to the third aspect, the surface of the object to be coated is an insulating layer surface of a steel structure or a surface of a concrete structure. It is a membrane.
請求項5の発明は、亀裂の発生が予測される検出対象物の表面に塗布され、この検出対象物の亀裂を検出する亀裂検出用塗料であって、請求項1又は請求項2に記載の導電性塗料を含むことを特徴とする亀裂検出用塗料である。 The invention according to claim 5 is a crack detection coating material that is applied to the surface of a detection object to be predicted to generate a crack and detects a crack of the detection object. A crack detection coating material comprising a conductive coating material.
請求項6の発明は、請求項5に記載の亀裂検出用塗料において、前記検出対象物の表面は、鋼構造物の絶縁層表面又はコンクリート構造物の表面であることを特徴とする亀裂検出用塗料である。 The invention of claim 6 is the crack detection paint according to claim 5, wherein the surface of the detection object is an insulating layer surface of a steel structure or a surface of a concrete structure. It is a paint.
請求項7の発明は、亀裂(C)を検出する亀裂検出用塗膜であって、請求項3又は請求項4に記載の導電性塗膜の電極(2a,2b;4)間の抵抗値が200〜10000Ωであることを特徴とする亀裂検出用塗膜(1;3)である。
The invention of claim 7 is a crack detecting coating film for detecting cracks (C), and the resistance value between the electrodes (2a, 2b; 4) of the conductive coating film of
請求項8の発明は、請求項7に記載の亀裂検出用塗膜において、前記導電性塗膜の厚みは、10〜100μmであることを特徴とする亀裂検出用塗膜である。 The invention of claim 8 is the crack detection coating film according to claim 7, wherein the conductive coating film has a thickness of 10 to 100 μm.
請求項9の発明は、請求項7又は請求項8に記載の亀裂検出用塗膜において、前記導電性塗膜の物性は、引張試験による破断時の伸びが10〜30%であることを特徴とする亀裂検出用塗膜である。 The invention according to claim 9 is the crack detecting coating film according to claim 7 or claim 8, wherein the conductive coating film has a physical property that the elongation at break by a tensile test is 10 to 30%. It is a coating film for crack detection.
この発明によると、亀裂の検出に最適な体積抵抗率を有し現場施工が容易であり精度よく亀裂を検出することができる。 According to the present invention, it has an optimal volume resistivity for detecting cracks, is easy to perform on-site, and can detect cracks with high accuracy.
以下、この発明の実施形態について詳しく説明する。
この発明の実施形態に係る亀裂検出用塗膜は、鋼構造物などの亀裂を検出する塗膜であり、鋼構造物の絶縁層表面に亀裂検出用塗料を塗布して形成される。ここで、鋼構造物の絶縁層は、この鋼構造物に亀裂が発生したときに同時に亀裂が発生するような絶縁性塗料などによって形成されている。亀裂検出用塗料は、亀裂の発生が予測される鋼構造物の絶縁層表面に塗布され、この鋼構造物の亀裂を検出する塗料であり、導電性顔料と有機材料とを含む導電性塗料である。導電顔料としては、カーボンブラック、グラファイト、ニッケル、銅、銀などが好ましく、有機樹脂としてはエポキシ樹脂、ポリウレタン樹脂、アクリル樹脂、フェノール樹脂、アルキルシリケート樹脂などが好ましい。
Hereinafter, embodiments of the present invention will be described in detail.
The crack detection coating film according to the embodiment of the present invention is a coating film for detecting cracks in a steel structure or the like, and is formed by applying a crack detection coating to the surface of an insulating layer of a steel structure. Here, the insulating layer of the steel structure is formed of an insulating paint or the like that causes a crack to occur at the same time when a crack occurs in the steel structure. The crack detection coating is a coating that is applied to the surface of an insulating layer of a steel structure where cracks are expected to occur and detects cracks in the steel structure. It is a conductive coating that contains a conductive pigment and an organic material. is there. As the conductive pigment, carbon black, graphite, nickel, copper, silver and the like are preferable, and as the organic resin, an epoxy resin, a polyurethane resin, an acrylic resin, a phenol resin, an alkyl silicate resin, and the like are preferable.
亀裂検出用塗膜の厚さは、10μm以下では現場施工によって連続した塗膜が得られないおそれがあり、100μm以上では塗装したときに垂れなどの塗膜欠陥が多く発生し、この塗膜欠陥を防止するために粘度を高くすると施工性が犠牲になるおそれがある。このため、亀裂検出用塗膜の厚さは、10〜100μmが好ましく、特に30〜60μmが望ましい。亀裂検出用塗膜の物性は、引張試験による破断時の伸びが10%以下では鋼構造物の温度差による伸縮などの他の要因によって割れるおそれがあり、30%以上では鋼構造物の亀裂発生時やボルトの緩み時に亀裂検出用塗膜が同時に破壊しないおそれがある。このため、亀裂検出用塗膜の物性は、引張試験による破断時の伸びが10〜30%であることが好ましい。亀裂検出用塗膜は、亀裂の進展を検出する場合には、体積抵抗率が1〜10Ω・cmとなり、塗布後の電極間の抵抗が200〜10000Ω、好ましくは200〜2000Ωとなるように、導電顔料と有機樹脂との配合量を調整して形成されている。また、亀裂検出用塗膜は、亀裂の発生を検出する場合には亀裂の進展を検出する場合に比べて体積抵抗率が0.01〜1Ω・cmと低く、塗布後の電極間の抵抗が200〜10000Ω、好ましくは200〜2000Ωとなるように、導電顔料と有機樹脂との配合量を調整して形成することが好ましい。亀裂検出用塗料の粘度は、現場で刷毛、ローラ又はスプレーなどによって塗布できる程度に調整することが好ましい。 If the thickness of the crack detection coating film is 10 μm or less, there is a risk that a continuous coating film may not be obtained by on-site construction, and if it is 100 μm or more, many coating film defects such as sagging occur when applied. If the viscosity is increased in order to prevent this, workability may be sacrificed. For this reason, the thickness of the crack detection coating film is preferably 10 to 100 μm, particularly preferably 30 to 60 μm. The physical properties of the crack detection coating film may break due to other factors such as expansion and contraction due to the temperature difference of the steel structure when the elongation at break by tensile test is 10% or less, and cracking of the steel structure occurs when it is 30% or more. There is a risk that the crack detection coating film will not be destroyed at the same time when the bolt is loosened. For this reason, as for the physical property of the coating film for a crack detection, it is preferable that the elongation at the time of the fracture | rupture by a tensile test is 10 to 30%. When detecting the progress of cracks, the crack detection coating film has a volume resistivity of 1 to 10 Ω · cm, and a resistance between electrodes after application of 200 to 10,000 Ω, preferably 200 to 2000 Ω, It is formed by adjusting the blending amount of the conductive pigment and the organic resin. The crack detection coating film has a lower volume resistivity of 0.01 to 1 Ω · cm when detecting the occurrence of cracks and a resistance between electrodes after coating of 200 to 200 when compared to the detection of crack growth. It is preferably formed by adjusting the blending amount of the conductive pigment and the organic resin so as to be 10000Ω, preferably 200 to 2000Ω. It is preferable to adjust the viscosity of the crack detection coating material to such an extent that it can be applied on site with a brush, roller, spray, or the like.
この発明の実施形態に係る亀裂検出用塗膜には、以下に記載するような効果がある。
(1) この実施形態では、導電性塗料がカーボンブラックとエポキシ樹脂とを含み、カーボンブラックの質量に対するエポキシ樹脂の質量が300〜700wt%である。その結果、体積抵抗率が1〜10Ω・cm程度になるため鋼構造物などに発生した亀裂の進展を検出することができる。また、この実施形態では、導電性塗料がニッケル粉とエポキシ樹脂とを含み、ニッケル粉の質量に対するエポキシ樹脂の質量が20〜80wt%である。その結果、体積抵抗率が0.01〜1Ω・cm程度になるため鋼構造物などに発生する亀裂とこの亀裂の進展とを検出することができる。
The crack detection coating film according to the embodiment of the present invention has the following effects.
(1) In this embodiment, the conductive paint contains carbon black and an epoxy resin, and the mass of the epoxy resin is 300 to 700 wt% with respect to the mass of the carbon black. As a result, since the volume resistivity is about 1 to 10 Ω · cm, the progress of a crack generated in a steel structure or the like can be detected. In this embodiment, the conductive paint contains nickel powder and an epoxy resin, and the mass of the epoxy resin with respect to the mass of the nickel powder is 20 to 80 wt%. As a result, since the volume resistivity is about 0.01 to 1 Ω · cm, it is possible to detect a crack generated in a steel structure or the like and the progress of the crack.
(2) この実施形態では、導電性塗膜の電極間の抵抗値が200〜10000Ω、好ましくは200〜2000Ωであるため、亀裂の発生や亀裂の進展を高精度に検出することができる。また、この実施形態では、導電性塗膜の厚みが10〜100μmであるため、現場で連続して塗膜を形成可能であり垂れなどの塗膜欠陥の発生を防ぐことができる。さらに、この実施形態では、導電性塗膜の引張試験による破断時の伸びが10〜30%であるため、鋼構造物などに亀裂が発生するのと略同時に塗膜を破断させることができるとともに、鋼構造物などの温度変化による収縮によって塗膜が割れるのを防止することができる。 (2) In this embodiment, since the resistance value between the electrodes of the conductive coating film is 200-10000Ω, preferably 200-2000Ω, the occurrence of cracks and the progress of cracks can be detected with high accuracy. Further, in this embodiment, since the thickness of the conductive coating film is 10 to 100 μm, the coating film can be continuously formed on site and the occurrence of coating film defects such as dripping can be prevented. Furthermore, in this embodiment, since the elongation at break by a tensile test of the conductive coating film is 10 to 30%, the coating film can be broken almost simultaneously with the occurrence of a crack in a steel structure or the like. It is possible to prevent the coating film from cracking due to shrinkage due to temperature change of a steel structure or the like.
次に、この発明の実施例を説明する。
(抵抗測定実験1)
図1は、この発明の実施例に係る亀裂検出用塗膜の抵抗測定実験1の構成図であり、図1(A)は平面図であり、図1(B)は正面図である。
図1は、亀裂の発生が予測される検出対象物上に絶縁層を塗布し、その上に亀裂検出用塗膜1を塗布した状態の図である。この亀裂検出用塗膜1が検出対象物の亀裂を検出する塗膜である。亀裂検出用塗膜1は、亀裂検出用塗料を帯状に塗布して形成されており、亀裂の発生に応じて電気抵抗が変化する。亀裂検出用塗膜1は、導電顔料としてカーボンブラックを含み、有機材料として液状エポキシを含む樹脂/顔料割合が500%の導電性塗料を塗布して形成されている。電極2a,2bは、亀裂検出用塗膜1に電流を流す部分であり、距離L1=700mm間隔をあけて亀裂検出用塗膜1の表面に形成されている。図1に示す亀裂検出用塗膜1を長さL=720mm、厚さt=0.06mmで形成し、亀裂検出用塗膜1を幅W=1〜300mmまで変化させ、亀裂検出用塗膜1の一方の長辺から亀裂Cを導入して電極2a,2b間の電気抵抗を測定した。
Next, examples of the present invention will be described.
(Resistance measurement experiment 1)
FIG. 1 is a configuration diagram of
FIG. 1 is a diagram showing a state in which an insulating layer is applied on a detection target in which the occurrence of cracks is predicted, and a crack
図2は、この発明の実施例に係る亀裂検出用塗膜の抵抗測定実験1の測定結果を示すグラフである。図3は、この発明の実施例に係る亀裂検出用塗膜を幅=50mmで塗布したときの亀裂長さと抵抗値の増加量との関係を示すグラフである。
図2及び図3に示すグラフは、亀裂検出用塗膜1の亀裂長さと抵抗値の増加量との関係を示し、横軸は亀裂Cの長さ(mm)であり、縦軸は電極2a,2b間の抵抗値増加量(Ω)である。図2及び図3に示すように、亀裂Cの長さが長くなるほど電極2a,2b間の抵抗値の増加量が大きくなり、図2に示すように亀裂検出用塗膜1の幅Wが狭いほど微小長さの亀裂Cを検出可能であると考えられる。例えば、図2に示すように、亀裂検出用塗膜1を幅W=5mm以下で塗布した場合には、1mm以下の亀裂Cを検出することができ、亀裂検出用塗膜1を幅W=1mm程度で塗布した場合には、長さ0.5mm程度の亀裂Cを検出することができる。また、亀裂検出用塗膜1を幅W=10mm程度で塗布した場合には、長さ5mm程度の精度で10mm近くの亀裂長さを検出することができる。
FIG. 2 is a graph showing the measurement results of
The graphs shown in FIGS. 2 and 3 show the relationship between the crack length of the crack
(抵抗測定実験2)
図4は、この発明の実施例に係る亀裂検出用塗膜の抵抗測定実験2の構成図であり、図4(A)は平面図であり、図4(B)は正面図である。
図4に示す亀裂検出用塗膜3は、亀裂の発生が予測される検出対象物の絶縁層上に塗布されこの検出対象物の亀裂を検出する塗膜である。亀裂検出用塗膜3は、厚さ3.0mmの基板の表面に長さL=1800mm、幅W=900mmにわたり亀裂検出用塗料を面状に厚さt=0.06mmで塗布して形成されており、亀裂の発生に応じて電気抵抗が変化する。亀裂検出用塗膜3は、図1に示す亀裂検出用塗膜1と同様の導電性塗料を塗布して形成されている。電極4は、亀裂検出用塗膜3に電流を流す部分であり、亀裂検出用塗膜3の短辺から距離L1=400mm、長辺から距離L2=225mmの位置に、縦方向の間隔D1=225mm及び横方向の間隔D2=500mmで形成されている。図4に示す亀裂検出用塗膜3の中央に亀裂Cを導入して各電極4間の電気抵抗を測定した。
(Resistance measurement experiment 2)
4A and 4B are configuration diagrams of resistance measurement experiment 2 of the crack detection coating film according to the embodiment of the present invention, FIG. 4A is a plan view, and FIG. 4B is a front view.
The crack
図5は、この発明の実施例に係る亀裂検出用塗膜の抵抗測定実験2の測定結果を示すグラフである。
図5に示すグラフは、亀裂検出用塗膜3の亀裂長さと抵抗値の増加量との関係を示し、横軸は亀裂検出用塗膜3の短辺の長さ(mm)に対する亀裂長さ(mm)の比であり、縦軸は電極4間の抵抗増加量(Ω)である。ここで、αは、図4に示す電極位置PI,Pi間及び電極位置PIII,Piii間の抵抗増加量の平均値である。βは、電極位置PII,Pi間、電極位置PII,Piii間、電極位置PI,Pii間及び電極位置PIII,Pii間の抵抗増加量の平均値である。γは、電極位置PI,Piii間及び電極位置PIII,Pi間の抵抗増加量の平均値である。図5に示すように、亀裂Cの進展方向と同一方向で互いに対向する電極位置PA,PB間では亀裂Cの大きさに関わらず抵抗値増加量に変化がない。一方、亀裂Cの進展方向と交差する方向で互いに対向する電極位置PII,Pii間などでは亀裂Cが大きくなるほど抵抗変化量も大きくなる。その結果、亀裂Cの進展方向と交差する方向に配置された電極位置PII,Pii間などの抵抗値の変化を検出することで亀裂Cの発生とこの亀裂Cの長さを検出することができるとともに、亀裂Cの進展方向を検出することができる。
FIG. 5 is a graph showing a measurement result of resistance measurement experiment 2 of the crack detection coating film according to the example of the present invention.
The graph shown in FIG. 5 shows the relationship between the crack length of the crack
(実施例1)
図6は、この発明の実施例1に係る亀裂検出用塗料の樹脂/顔料割合と体積抵抗率との関係を示すグラフである。
図6に示す横軸は、樹脂/顔料割合(wt%)であり、縦軸は体積抵抗率(固有抵抗率)(Ω・cm)である。ここで、樹脂/顔料割合は、顔料の質量に対する樹脂の質量の割合を示し、数値が小さいほど樹脂量の少ない塗膜であることを示す。実施例1は、導電顔料としてカーボンブラック(電気化学工業(株)製、商品名:デンカブラック)を含み、有機材料として液状エポキシ樹脂(大日本インキ化学工業(株)製、商品名:エピクロン)を含む亀裂検出用塗料である。
(Example 1)
FIG. 6 is a graph showing the relationship between the resin / pigment ratio and the volume resistivity of the crack detection coating material according to Example 1 of the present invention.
The horizontal axis shown in FIG. 6 is the resin / pigment ratio (wt%), and the vertical axis is the volume resistivity (specific resistivity) (Ω · cm). Here, the resin / pigment ratio indicates the ratio of the mass of the resin to the mass of the pigment, and the smaller the value, the smaller the amount of resin. Example 1 includes carbon black (manufactured by Denki Black Co., Ltd., trade name: Denka Black) as a conductive pigment, and a liquid epoxy resin (trade name: Epicron, produced by Dainippon Ink & Chemicals, Inc.) as an organic material. It is a crack detection coating material containing.
表1は、カーボンブラック/液状エポキシ樹脂の体積抵抗率の測定結果を示す。実施例1は、図6及び表1に示すように、樹脂含有量が低下すると体積抵抗率が小さくなり導電性が向上している。亀裂の進展を検出するための亀裂進展検出用塗膜として実施例1の亀裂検出用塗料を使用する場合には、体積抵抗率が1〜10Ω・cm程度になるように、導電顔料の質量に対する有機樹脂の質量を300〜700wt%程度に調整することが望ましい。 Table 1 shows the measurement results of the volume resistivity of carbon black / liquid epoxy resin. In Example 1, as shown in FIG. 6 and Table 1, when the resin content decreases, the volume resistivity decreases and the conductivity is improved. When the crack detection coating material of Example 1 is used as a crack growth detection coating film for detecting the crack growth, the volume resistivity is about 1 to 10 Ω · cm with respect to the mass of the conductive pigment. It is desirable to adjust the mass of the organic resin to about 300 to 700 wt%.
(実施例2)
図7は、この発明の実施例2に係る亀裂検出用塗料の樹脂/顔料割合と体積抵抗率との関係を示すグラフである。
図7に示す横軸は、樹脂/顔料割合(wt%)であり、縦軸は体積抵抗率(mΩ・cm)である。実施例2は、導電顔料としてニッケル粉(関東化学(株)製の試薬)を含み、有機材料として液状エポキシ樹脂(大日本インキ化学工業(株)製、商品名:エピクロン)を含む亀裂検出用塗料である。
(Example 2)
FIG. 7 is a graph showing the relationship between the resin / pigment ratio and the volume resistivity of the crack detection coating material according to Example 2 of the present invention.
The horizontal axis shown in FIG. 7 is the resin / pigment ratio (wt%), and the vertical axis is the volume resistivity (mΩ · cm). Example 2 is for crack detection, which contains nickel powder (reagent manufactured by Kanto Chemical Co., Inc.) as a conductive pigment, and liquid epoxy resin (trade name: Epicron, manufactured by Dainippon Ink & Chemicals, Inc.) as an organic material. It is a paint.
表2は、ニッケル粉/液状エポキシ樹脂の体積抵抗率の測定結果を示す。実施例2は、図7及び表2に示すように、実施例1と同様に樹脂含有量が低下すると体積抵抗率が小さくなり導電性が向上している。亀裂の進展を検出するための亀裂進展検出用塗膜や、亀裂の発生を検出する亀裂発生検出用塗膜として実施例2の亀裂検出用塗料を使用する場合には、体積抵抗率が0.01〜0.04Ω・cm程度になるように、導電顔料の質量に対する有機樹脂の質量を20〜80wt%程度に調整することが望ましい。 Table 2 shows the measurement results of the volume resistivity of the nickel powder / liquid epoxy resin. In Example 2, as shown in FIG. 7 and Table 2, when the resin content decreases, the volume resistivity decreases and the conductivity is improved as in Example 1. In the case of using the crack detection coating material of Example 2 as a crack growth detection coating film for detecting the progress of cracks or a crack generation detection coating film for detecting the occurrence of cracks, the volume resistivity is 0.01 to It is desirable to adjust the mass of the organic resin to about 20 to 80 wt% with respect to the mass of the conductive pigment so as to be about 0.04 Ω · cm.
この発明は、以上説明した実施形態に限定するものではなく、種々の変形又は変更が可能であり、これらもこの発明の範囲内である。例えば、この実施形態では、検出対象物として鋼構造物を例に挙げて説明したが、コンクリート構造物などの他の構造物についてもこの発明を適用することができる。この場合には、コンクリート構造物の表面に亀裂検出用塗料を塗布することができる。また、この実施形態では、樹脂自体が液状である液状エポキシ樹脂によって亀裂検出用塗料を製造する場合を例に挙げて説明したが、液状エポキシ樹脂に比べて分子量が高く常温で固体である固形エポキシ樹脂によって亀裂検出用塗料を製造することもできる。さらに、この実施形態では、ニッケル粉によって亀裂検出用塗料を製造する場合を例に挙げて説明したがこれに限定するものではない。例えば、酸化物によって表面が覆われたニッケル粉以外の他の金属顔料であっても、樹脂中で粉砕することで導電性塗膜を形成できる場合には、このような他の金属顔料によって亀裂検出用塗料を製造することもできる。 The present invention is not limited to the embodiments described above, and various modifications or changes are possible, and these are also within the scope of the present invention. For example, in this embodiment, the steel structure has been described as an example of the detection target, but the present invention can also be applied to other structures such as a concrete structure. In this case, the crack detection paint can be applied to the surface of the concrete structure. Also, in this embodiment, the case where the crack detection coating material is manufactured using a liquid epoxy resin whose resin itself is liquid has been described as an example. However, the solid epoxy which has a higher molecular weight than that of the liquid epoxy resin and is solid at room temperature. It is also possible to produce a crack detection coating material with a resin. Furthermore, in this embodiment, the case where the crack detection coating material is manufactured using nickel powder has been described as an example, but the present invention is not limited to this. For example, even if other metal pigments other than nickel powder whose surface is covered with an oxide can be formed into a conductive coating film by being pulverized in a resin, cracks are caused by such other metal pigments. A detection paint can also be produced.
1 亀裂検出用塗膜
2a,2b 電極
3 亀裂検出用塗膜
4 電極
DESCRIPTION OF
Claims (9)
前記導電顔料としてカーボンブラックを含み、
前記有機樹脂としてエポキシ樹脂を含み、
前記導電顔料の質量に対する前記有機樹脂の質量が300〜700wt%であること、
を特徴とする導電性塗料。 A conductive paint containing a conductive pigment and an organic resin,
Carbon black is included as the conductive pigment,
Including an epoxy resin as the organic resin,
The weight of the organic resin with respect to the weight of the conductive pigment is 300 to 700 wt%,
Conductive paint characterized by
前記導電顔料としてニッケル粉を含み、
前記有機樹脂としてエポキシ樹脂を含み、
前記導電顔料の質量に対する前記有機樹脂の質量が20〜80wt%であること、
を特徴とする導電性塗料。 A conductive paint containing a conductive pigment and an organic resin,
Including nickel powder as the conductive pigment,
Including an epoxy resin as the organic resin,
The mass of the organic resin relative to the mass of the conductive pigment is 20 to 80 wt%,
Conductive paint characterized by
請求項1又は請求項2に記載の導電性塗料が前記塗装対象物の表面に塗布され形成されていること、
を特徴とする導電性塗膜。 A conductive coating applied to the surface of the object to be painted,
The conductive paint according to claim 1 or 2 is applied and formed on the surface of the object to be coated.
Conductive coating film characterized by
前記塗装対象物の表面は、鋼構造物の絶縁層表面又はコンクリート構造物の表面であること、
を特徴とする導電性塗膜。 In the electroconductive coating film of Claim 3,
The surface of the object to be painted is an insulating layer surface of a steel structure or a surface of a concrete structure;
Conductive coating film characterized by
請求項1又は請求項2に記載の導電性塗料を含むこと、
を特徴とする亀裂検出用塗料。 A crack detection coating that is applied to the surface of a detection object where cracks are predicted to occur and detects a crack in the detection object,
Including the conductive paint according to claim 1 or 2,
A paint for crack detection.
前記検出対象物の表面は、鋼構造物の絶縁層表面又はコンクリート構造物の表面であること、
を特徴とする亀裂検出用塗料。 In the crack detection paint according to claim 5,
The surface of the detection object is an insulating layer surface of a steel structure or a surface of a concrete structure;
A paint for crack detection.
請求項3又は請求項4に記載の導電性塗膜の電極間の抵抗値が200〜10000Ωであること、
を特徴とする亀裂検出用塗膜。 A crack detection coating for detecting cracks,
The resistance value between the electrodes of the conductive coating film according to claim 3 or claim 4 is 200 to 10,000Ω,
A coating for crack detection, characterized by
前記導電性塗膜の厚みは、10〜100μmであること、
を特徴とする亀裂検出用塗膜。 In the crack detection coating film according to claim 7,
The thickness of the conductive coating film is 10-100 μm,
A coating for crack detection, characterized by
前記導電性塗膜の物性は、引張試験による破断時の伸びが10〜30%であること、
を特徴とする亀裂検出用塗膜。
In the coating film for crack detection according to claim 7 or claim 8,
The physical property of the conductive coating film is that the elongation at break by a tensile test is 10 to 30%,
A coating for crack detection, characterized by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003422399A JP2005179501A (en) | 2003-12-19 | 2003-12-19 | Conductive coating, conductive coated film, coating for monitoring cracks, and coated film for detecting cracks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003422399A JP2005179501A (en) | 2003-12-19 | 2003-12-19 | Conductive coating, conductive coated film, coating for monitoring cracks, and coated film for detecting cracks |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005179501A true JP2005179501A (en) | 2005-07-07 |
Family
ID=34783289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003422399A Pending JP2005179501A (en) | 2003-12-19 | 2003-12-19 | Conductive coating, conductive coated film, coating for monitoring cracks, and coated film for detecting cracks |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005179501A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008081607A (en) * | 2006-09-27 | 2008-04-10 | Railway Technical Res Inst | Conductive coating, conductive coating film, coating for detecting crack and coating film for detecting crack |
JP2013145190A (en) * | 2012-01-16 | 2013-07-25 | Seiko Epson Corp | Sensor device |
WO2016051700A1 (en) * | 2014-09-30 | 2016-04-07 | タツタ電線株式会社 | Conductive coating material and method for producing shield package using same |
CN113189146A (en) * | 2021-04-16 | 2021-07-30 | 国网甘肃省电力公司经济技术研究院 | Device and method for monitoring ground fissure landslide by conductive concrete grounding network |
-
2003
- 2003-12-19 JP JP2003422399A patent/JP2005179501A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008081607A (en) * | 2006-09-27 | 2008-04-10 | Railway Technical Res Inst | Conductive coating, conductive coating film, coating for detecting crack and coating film for detecting crack |
JP2013145190A (en) * | 2012-01-16 | 2013-07-25 | Seiko Epson Corp | Sensor device |
WO2016051700A1 (en) * | 2014-09-30 | 2016-04-07 | タツタ電線株式会社 | Conductive coating material and method for producing shield package using same |
JP5985785B1 (en) * | 2014-09-30 | 2016-09-06 | タツタ電線株式会社 | Conductive paint for shielding electronic component package and method of manufacturing shield package using the same |
US10259952B2 (en) | 2014-09-30 | 2019-04-16 | Tatsuta Electric Wire & Cable Co., Ltd. | Conductive coating material for shielding electronic component package and method for producing shielded package |
CN113189146A (en) * | 2021-04-16 | 2021-07-30 | 国网甘肃省电力公司经济技术研究院 | Device and method for monitoring ground fissure landslide by conductive concrete grounding network |
CN113189146B (en) * | 2021-04-16 | 2024-05-28 | 国网甘肃省电力公司经济技术研究院 | Device and method for monitoring ground crack landslide through conductive concrete grounding grid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tan | Wire beam electrode: a new tool for studying localised corrosion and other heterogeneous electrochemical processes | |
Rohwerder et al. | Application of the Kelvin Probe method for screening the interfacial reactivity of conducting polymer based coatings for corrosion protection | |
Wang et al. | Study of localized corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode | |
Feng et al. | The degradation of passive film on carbon steel in concrete pore solution under compressive and tensile stresses | |
KR102326548B1 (en) | Device for Sensing Crack of Concrete Structure | |
Xu et al. | Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode | |
Yan et al. | Corrosion and mechanical properties of polyurethane/Al composite coatings with low infrared emissivity | |
DE3834628A1 (en) | CORROSION MEASURING CELL | |
Sánchez et al. | AC induced pitting and pit-to-crack transition of low carbon steels under cathodic protection | |
Sanchez et al. | Effect of AC interference on the stress corrosion cracking susceptibility of X65 steel under cathodic protection | |
Kamde et al. | Effect of sunlight/ultraviolet exposure on the corrosion of fusion-bonded epoxy (FBE) coated steel rebars in concrete | |
JP4726247B2 (en) | Crack monitoring material and crack monitoring system | |
JP2005179501A (en) | Conductive coating, conductive coated film, coating for monitoring cracks, and coated film for detecting cracks | |
Srinivasan et al. | Utilization of hydrophobic coatings on insulative skirts to attenuate galvanic corrosion between mechanically-fastened aluminum alloy and carbon-fiber reinforced polymer-matrix composites | |
Dunn et al. | Corrosion monitoring of steel reinforced concrete structures using embedded instrumentation | |
Bennett et al. | Cathodic protection of concrete bridges: a manual of practice | |
JP4137781B2 (en) | Crack monitoring system | |
JP5152952B2 (en) | Coating film for conductive wiring | |
JP4102296B2 (en) | Crack monitoring material and crack monitoring system | |
Lau et al. | Coating condition evaluation of epoxy coated rebar | |
RU89289U1 (en) | GROUNDER | |
Christodoulou et al. | Site performance of galvanic anodes in concrete repairs | |
JP4602719B2 (en) | Anticorrosion and repair methods for reinforced concrete structures | |
Xu et al. | Conductive mortar as anode material for cathodic protection of steel in concrete | |
Fancy et al. | Corrosion Performance of Nano-Particle Enriched Epoxy Primer for Marine Highway Bridge Application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090605 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090626 |