JP4101553B2 - Method for producing antibacterial active substance - Google Patents

Method for producing antibacterial active substance Download PDF

Info

Publication number
JP4101553B2
JP4101553B2 JP2002135266A JP2002135266A JP4101553B2 JP 4101553 B2 JP4101553 B2 JP 4101553B2 JP 2002135266 A JP2002135266 A JP 2002135266A JP 2002135266 A JP2002135266 A JP 2002135266A JP 4101553 B2 JP4101553 B2 JP 4101553B2
Authority
JP
Japan
Prior art keywords
medium
lactic acid
culture
active substance
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002135266A
Other languages
Japanese (ja)
Other versions
JP2003325193A (en
Inventor
西 弘 一 中
岡 道 子 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Holdings Co Ltd
Original Assignee
Kirin Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Holdings Co Ltd filed Critical Kirin Holdings Co Ltd
Priority to JP2002135266A priority Critical patent/JP4101553B2/en
Publication of JP2003325193A publication Critical patent/JP2003325193A/en
Application granted granted Critical
Publication of JP4101553B2 publication Critical patent/JP4101553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の背景】
発明の分野
本発明は、飲料や食品の香味に影響を及ぼさず、低濃度の添加が可能で、安全かつ高い抗菌活性を有する乳酸菌発酵生産物の製造方法に関する。
【0002】
背景技術
乳酸菌のある種のものはバクテリオシンと呼ばれる抗菌活性物質を生産する。これらは発酵食品に含まれて、昔から食品の保存性を高めていることがよく知られており、長い食経験上からも安全性が評価されている。中でもナイシンは熱に安定で100℃、15分間の加熱でも分解せず、食品や飲料でも使用しやすく、通常のタンパク質分解酵素例えば胃の消化酵素で容易に分解されることがわかっており安全性が証明されている(森地敏樹ら編「バイオプリザベーション」(2000)幸書房)。
【0003】
バクテリオシンを生産する乳酸菌は、例えば、乳製品由来でナイシンを生産するLactococcucs lactis のグループが有名である。しかし、乳酸菌研究集談会編「乳酸菌の科学と技術」学会出版センター(1996)に記載されるように、乳酸菌は一般に独特の香味、例えば乳酸に代表される酸味やダイアセチルやアルデヒド等の異臭を生産して発酵物に呈する。これら香味は特定の発酵食品には重要な風味を形成するが、一方このような発酵物が含むバクテリオシンを飲料や惣菜等の食品の汚染菌抑制に使用のため添加すると、その風味やテクスチャーに影響を与える。また、これを避けるために、風味に影響のない低い添加量では、含まれるバクテリオシンの濃度は低く充分な抗菌活性は得られなかった。
【0004】
このため、高い抗菌活性(以下「静菌活性」を含む意味で用いられる)を得て添加濃度を低くするため、特開平5−268975号に記載のような、コーンスティープリカーや酵母エキスの窒素源とバレイショ成分の糖源を組み合わせた培地による培養方法が提案されている。しかし、この発酵物は、例えばスープ等のような香味の濃厚な食品では欠点が現れにくいが、香味が濃厚でない清涼飲料等で期待する抗菌効果を得るための量を添加すると香味上の問題が発生し、依然として香味上の問題点は解決されていない。
【0005】
一方、中野政弘編「発酵食品」光琳全書21(1967)に記載されているように、豆乳を乳酸菌等で発酵させ、食品として利用する方法は良く知られ、いずれもその目的は、栄養的に改善したり、新しい乳製品風飲料や食品であった。前者の具体例としては、特開2001−340059号に記載の、生体に有用な大豆イソフラボンをアグリコンとする例がある。また、後者の具体例としては特開2002−51720号に、豆乳に乳酸菌の資化しやすい糖質や甘味料を加え、風味を改善した発酵豆乳の例がある。これら技術は、豆乳の乳酸菌発酵により香味的や栄養的に優れたものを生産する方法であり、これらの発酵物は本発明によるものとは利用目的が全く異なるものである。更に、使用している乳酸菌も、例えば乳酸菌研究集談会編「乳酸菌の科学と技術」学会出版センター(1996)や中野政弘編「発酵食品」光琳全書21(1967)で記載されているように、Lactobacillus bulgaricusStreptococcus属等でこれらはナイシン等のバクテリオシンを生産しない。
【0006】
【発明の概要】
一般に乳酸菌の増殖に適した基本培地は、乳酸菌研究集談会編「乳酸菌の科学と技術」学会出版センター(1996)に記載されている脱脂乳、乳成分ホエータンパク質、トマト果汁、麦芽エキス、酵母エキスと糖の混合等多くのものが挙げられる。しかしこれらの培地はいずれも不快な香味成分を生じさせた。例えば、これらの培地を発酵させた培養液の上澄液についてブライドによる官能検査(パネル数8名)を実施したところ、いずれの培養液について全てのパネルがダイアセチル様の不快な香味を指摘し、しかも高い抗菌活性も得られなかった。
【0007】
このような背景のもと本発明者等は、意外にも、Lactococcus lactisEnterococcus faecalis などの乳酸球菌類および Lactobacillus plantarumなどの乳酸桿菌を、大豆抽出物を主成分とする培地やスキムミルクを含有する培地で培養したところ、ナイシン様の抗菌活性物質が高濃度で製造でき、かつ培養物が香味に影響を与えないことを見出した。本発明はこの知見に基づくものである。
【0008】
本発明は、飲料や食品の香味に影響を及ぼさず、低濃度の添加が可能で、安全かつ高い抗菌活性を有する乳酸菌発酵生産物の製造方法の提供をその目的とする。
【0009】
本発明による抗菌活性物質の製造法は、抗菌活性物質生産性の乳酸菌を大豆抽出物および/またはスキムミルクを含む培地で培養することを含んでなる方法である。
【0010】
【発明の具体的説明】
以下、本発明を具体的に説明する。
【0011】
1.乳酸菌
本発明に用いることのできる抗菌活性物質生産性の乳酸菌は、ナイシン等の抗菌活性物質を生産する乳酸菌であれば特に限定されるものではないが、例えば、森地敏樹ら編「バイオプリザベーション」(2000)幸書房に記載のバクテリオシンを生産する属種の中から選抜することができる。乳酸菌は、例えば、対照区をMRS培地(DIFCO)やコーンスティープ培地(特開平5−268975号)とし、さらに試験区を豆乳培地やスキムミルク培地として試験菌を培養し、そのそれぞれの培養液をMayr-Harting.A.,et al.”Methods in Microbiology 7A.,Methods for studying Bacteriocins”(1976)p.327. Academic Press.に基づいたペーパーディスク法を実施することにより選抜できる。ペーパーディスク法は、培養液50μLをΦ6mmのペーパーディスクに染み込ませ、このディスクをStaphylococcus aureus FDA 209P(ATCC 6538P)を指標菌にして接種した標準寒天培地(栄研)表面に乗せて35℃、48時間培養することによってコロニー周辺のハロー(増殖阻止円)を形成するか否かを調べることにより、およびそのハローの大きさが対照区より大きいか否かを調べることにより実施することができる。
【0012】
抗菌活性物質生産性の乳酸菌の好ましい例としては、乳酸球菌のLactococcus lactis subsp. lactis IFO 12007、Lactococcus lactis subsp. lactis ATCC 19435、Enterococcus faecalis IFO 3938、Enterococcus faecalis ATCC 23655 、並びに乳酸桿菌のLactobacillus plantarum ATCC 8014 、Lactobacillus plantarum ATCC 14917、Lactobacillus plantarum JCM 1057、Lactobacillus plantarum JCM 1149、Lactobacillus plantarum JCM 1551が挙げられる。これらの菌株は、発酵研究所(IFO)やアメリカンタイプカルチャコレクション(ATCC)および理化学研究所(JCM)から容易に入手できる。
【0013】
2.培地
培養に当たっては、大豆抽出物やスキムミルクを、単独であるいは組み合わせて、培地として使用することができる。
【0014】
大豆抽出物を培地に使用する場合には、常法により得られるものでも市販されているもののいずれをも用いることができる。例えば、乾燥大豆や脱脂大豆をそのまま粉砕して水を加えたり或いは水浸漬して含水状態で摩砕したりしたものを濾過し、不溶性画分を除去したものや、市販されている無調製のもの(大豆成分以外のものを使用していないもの;例えば、豆乳)を培地として使用できる。
【0015】
大豆抽出物の濃度は、大豆固形分2%以上、好ましくは4%以上、さらに好ましくは5%以上15%以下、最も好ましくは8%以上12%以下であることができる。ここで大豆固形分濃度は、日本農林規格(JAS)で定義された、乾燥により水分を蒸発させて残った固形物残渣濃度で示す。
【0016】
スキムミルクを培地に使用する場合には、常法により得られるものでも市販されているもののいずれをも用いることができる。例えば、粉体の脱脂乳をそのまま水に溶解させたものをスキムミルク培地として用いることができる。
【0017】
スキムミルク培地の濃度は5%以上、20%以下、さらに好ましくは7%以上15%以下が望ましい。
【0018】
必要であれば、乳酸菌の生育を助けるような成分を培地に添加してもよい。添加成分は飲食品に添加した場合にその香味を損なわなわず、かつ食品として安全な成分が好ましい。
【0019】
3.培養条件
大豆抽出物を培地として用いる場合には、培地を通常の熱処理或いは濾過等で滅菌し、水を加え、必要な場合には、常法によりpH調整する。pHは乳酸菌の生育できる3以上9以下であればよく、好ましくは4以上8以下である。pH調整された培地に前培養した乳酸菌を添加し、20〜40℃、好ましくは25〜35℃、より好ましくは28〜32℃で、6〜48時間、好ましくは9〜48時間、培養することによって抗菌活性の高い培養物を得ることができる。
【0020】
スキムミルクを培地として用いる場合には、上記と同様に熱処理或いは濾過等で滅菌することができる。通常、スキムミルクは乳酸菌の生育に適しているのでpHは調整する必要はないが、必要に応じて、上記大豆抽出物の場合と同様にpH調整すればよい。前培養した当該乳酸菌を準備した培地に添加し、20〜40℃、好ましくは25〜35℃、より好ましくは28〜32℃で、6〜48時間、好ましくは9〜48時間、培養することによって抗菌活性の高い培養物を得ることができる。
【0021】
培養の終了はいずれの培地を用いた場合でも、10〜36時間を目処とすることができ、この時点で抗菌活性物質濃度が最も高くなる。具体的には、抗菌活性物質濃度は12,000〜20,000I.U./g(ナイシン換算)になる。抗菌活性物質濃度の値がこの範囲内にある時点を培養終了の目安とすることができる。なお、培養物をベースにした飲食品の種類等によっては、例えば抗菌活性物質濃度としてより低い3000〜12000I.U./g(ナイシン換算)であっても十分にその抗菌活性を発揮することができ、この場合には10〜24時間で培養を終了させることも可能である。
【0022】
培養物は森地敏樹ら編「バイオプリザベーション」(2000)幸書房)に記載のように耐熱性で、60〜121℃の加熱処理や殺菌処理を行うことも可能であり、加熱することにより抗菌活性を保持したまま乳酸菌の増殖を停止させ培養を終了させることもできる。
【0023】
4.培養物および抗菌活性物質並びにそれらの用途
本発明による培養物に含まれる抗菌活性物質は、優れた抗菌活性を有し、特に、飲料で問題となるBacillus 属やAlicyclobacillus 属やレトルト食品で問題となるBacillus 属やClostridium 属等の耐熱性芽胞性菌に対して優れた効果を有する。従って、本発明による培養物およびその上澄み液は飲食品への抗菌用添加物として、あるいは抗菌製剤として用いることができる。
【0024】
培養物およびその上澄み液は、そのまま飲食品に添加しても、培養物中の抗菌活性物質のみを取り出して飲食品に添加してもよい。また、得られた培養物およびその上澄み液は、そのまま、あるいは抗菌活性物質のみを取り出して、抗菌製剤として提供することもできる。抗菌活性物質の単離・精製は、例えば、培養物を分取HPLCに供することにより行うことができる。このような方法は周知であり、当業者であれば抗菌活性物質の分離・精製方法は自明であろう。抗菌活性物質の精製に当たっては、例えば、森地敏樹ら編「バイオプリザベーション」(2000)幸書房を参照をすることができる。
【0025】
本発明による方法により得られる培養物は抗菌活性物質濃度が高いことから、飲食品への添加に当たっては、例えば特開平5−268975号記載の従来の培養物の約10分の1相当の量で抗菌効果を得ることができる。具体的には、ナイシン換算で1I.U/g以上、好ましくは5〜300I.U/g、より好ましくは1〜100I.U/gの抗菌活性となるように飲食品に添加することができる。ナイシン換算の抗菌活性(I.U.)は、抗菌活性物質であるナイシン標準物質(シグマ社製、4%含有)の活性、1mg/kg=40I.U/gに換算した値を用いた。ここで「I.U.」は抗菌活性を表す国際単位であり、International Unitの略である(森池敏樹ら編「バイオプリザベーション」(2000)幸書房)。
【0026】
本発明による培養物は使用対象によりそのまま懸濁した状態で、あるいは遠心分離などの固液分離を行い上澄液部分を回収して使用することができる。また、前述のように耐熱性であるのでさらにこれらに凍結乾燥やスプレードライ等の加工を施して使用することも可能である。
【0027】
本発明による培養物が添加できる飲食品は特に限定されるものではないが、例えば、果汁飲料、野菜飲料、果汁と野菜の混合飲料、ニアウオーター飲料等の非アルコール飲料;麦酒、発泡酒、チューハイ、発泡性ワイン等のアルコール飲料;各種スープ、カレー、シチュー、和洋中華の各惣菜類、農水産加工食品、乳製品、食肉加工食品等の食品;マヨネーズ、ドレッシング、ソース、ケチャプ等の調味料が挙げられる。
【0028】
本発明による培養物はほぼ無味無臭であるため、添加した飲料や食品の本来の風味に影響はないので、商品設計上の制限が小さくなり、商品開発の面でのメリットも大きい。即ち、飲食品本来が有する独特の風味を損なわない新しい発酵商品の設計が可能となる。
【0029】
本発明による培養物はまた、抗菌活性物質濃度が高いので、重量比率でいえば、例えば1%以下、さらには0.1%程度の小さな添加率で使用することができる。更に、それ自体無味無臭に近いので添加対象となる飲料や食品に不快な香味や品質上の問題点を与える影響が小さい。例えば、果汁を用いた飲料の場合には、耐熱性芽胞菌による汚染を防ぐため必要に応じて加熱処理がなされているが、加熱により加熱臭が生じ、品質の低下が懸念される。この点、本発明による培養物を添加すれば抗菌効果と同時に加熱殺菌の低減や省略により品質の劣化防止という大きな効果が期待できる。
【0030】
【実施例】
本発明を下記例により更に詳細に説明するが、本発明はこれらに限定されるものではない。
【0031】
実施例1
豆乳培地(大豆固形分8%の市販豆乳(名酪)1L)、MRS培地(DIFCO)、コーンスティープ培地(特開平5−268975号に記載の組成の培地:グルコース1%、マッシュドポテト1%、コーンスティープリカー1%、酵母エキス1%を含む1L培地)および10%スキムミルク培地(DIFCO、1L培地)それぞれに、Lactococcus lactis subsp. lactis IFO 12007を、前培養液の添加率が0.5v/v%になるように接種し、30℃で12時間静置培養した。得られた培養液を80℃、20分間加熱処理後、遠心分離によって得られた上澄液をMayr-Harting.A. et al.,”Methods in Microbiology 7A.,Methods for studying Bacteriocins”(1976)p.327. Academic Press.に基づいたペーパーディスク法、即ち、培養液50μLをΦ6mmのペーパーディスクに染み込ませこれをよりStaphylococcus aureus FDA 209P(ATCC 6538P)を指標菌にして接種した標準寒天培地(栄研)表面に乗せて35℃、48時間培養し、これによって形成されるコロニー周辺のハロー(増殖阻止円)の大きさから、標準ナイシンの濃度とハローの大きさで検量線を書き、これに基づいてその抗菌活性物質濃度を、ナイシン(シグマ製)を対照として、ナイシン当りに換算したところ、スキムミルク培地で12,000I.U./gの、豆乳培地で20,000I.U./gの高い生産濃度を示した(表1)。
【0032】
【表1】

Figure 0004101553
【0033】
また他の乳酸菌株8種(Lactococcus lactis subsp. lactis ATCC 19435、Enterococcus faecalis IFO 3938、 Enterococcus faecalis ATCC 23655、Lactobacillus plantarum ATCC 8014、Lactobacillus plantarum ATCC 14917、Lactobacillus plantarum JCM 1057、Lactobacillus plantarum JCM 1149、およびLactobacillus plantarum JCM 1551)についても同様の試験を行った。試験条件はコーンスティープ培地を用いなかったこと以外実施例1に準じた。結果は表2に記載の通りである。
【0034】
【表2】
Figure 0004101553
【0035】
いずれの菌株においても対照区のMRS培地に比べて10%スキムミルク培地や豆乳培地を用いた場合により高い抗菌活性物質濃度を示した。
【0036】
尚、表1と表2から明らかなようにいずれの菌株を用いた場合でも培地の種別では豆乳培地を用いた場合により高い濃度の抗菌活性物質が生産された。
【0037】
実施例2
実施例1のLactococcus lactis subsp. lactis IFO12007株を用いて、豆乳培地中の大豆固形分濃度:4%、5%、8%、10%、12%、15%、或いはスキムミルク培地中のスキムミルク濃度:5%、7%、10%、15%、20%と抗菌活性物質生産濃度との関係につき、試験を行った。該株を上記培地の種類と濃度を別々に設定し、30℃、24時間静置培養した。他の培養条件及び試験方法は実施例1に準じた。
【0038】
その結果、豆乳培地中の大豆固形分濃度が8〜12%の時に最大の抗菌活性物質生産濃度:20,000I.U./gを示し(表3)、スキムミルク培地中のスキムミルク濃度が7〜15%の時に最大の抗菌活性物質生産濃度:12,000I.U./gを示した(表4)。
【0039】
【表3】
Figure 0004101553
【0040】
【表4】
Figure 0004101553
【0041】
実施例3
実施例1で調製した乳酸菌株9種の豆乳培養物の上澄液をそれぞれ1w/w%で、オレンジ果汁に添加した添加区(添加区)と上澄液を添加しない対照区(対照区)を設け、ブラインドによる12名のトライアングル試飲試験を行った。その結果、添加区と対照区とでオレンジ果汁の香味差を認めたのは各菌株ともコーンスティープリカー培地の培養物の上澄液を用いた場合であった。
【0042】
一方、豆乳の発酵物を用いた場合にはオレンジ果汁の香味差はないと10名以上が回答したことから、添加区と対照区とで有意な香味上の差は認められなかった。同様の実験を各乳酸菌株9種のスキムミルク培養物の上澄液で行ったところ、Enterococcusの2株の上澄液で差がないと回答したのが9名で、それ以外は10名以上が差がないと回答した。これらも同様に有意な香味上の差は認めらなかった。
【0043】
実施例4
実施例1で調製した乳酸菌株9種の豆乳培養物の上澄液をそれぞれ1w/w%で、オレンジ果汁に添加し、果汁の汚染菌として知られているAlicyclobacillus acidoterrestris DSM 3923を10細胞/mlになるように接種し、45℃で培養したところ3日後にはいずれの乳酸菌株の培養物の上澄液添加区でも生菌数は0細胞/mlとなり抗菌効果を示した。しかし、上澄液を添加しなかった対照区ではいずれも10細胞/mlに増殖していた。
【0044】
実施例5
実施例1で調製した乳酸菌株9種のスキムミルクおよび豆乳の培養物をそれぞれ1w/w%、市販のレトルトカレーに添加し、これに汚染耐熱指標細菌であるBacillus coagulans 1106(日本缶詰協会分譲株)を10細胞/mlになるように接種し、35℃で培養したところ3日後にはいずれの乳酸菌株の培養物の上澄液添加区でも生菌数は0細胞/mlとなり抗菌効果を示した。しかし、上澄液を添加しなかった対照区では10細胞/mlに増殖していた。[0001]
BACKGROUND OF THE INVENTION
Field of the Invention The present invention relates to a method for producing a fermented lactic acid bacterium product that does not affect the flavor of beverages and foods, can be added at a low concentration, and has a safe and high antibacterial activity.
[0002]
Background art Certain types of lactic acid bacteria produce an antibacterial active substance called bacteriocin. These have been well-known to be contained in fermented foods and have been improving the preservability of foods for a long time, and their safety has been evaluated from a long dietary experience. Nisin is stable to heat, and does not decompose even when heated at 100 ° C for 15 minutes. It is easy to use in foods and beverages, and it is known that it is easily decomposed by normal proteolytic enzymes such as digestive enzymes in the stomach. Has been proved (Toshiki Morichi et al., “Biopreservation” (2000) Koshobo).
[0003]
As a lactic acid bacterium producing bacteriocin, for example, a group of Lactococcucs lactis that produces nisin derived from a dairy product is famous. However, as described in the “Science and Technology of Lactic Acid Bacteria” published by the Society for the Study of Lactic Acid Bacteria (1996), lactic acid bacteria generally have a unique flavor, such as acidity represented by lactic acid and off-flavors such as diacetyl and aldehyde. To produce a fermented product. These flavors form an important flavor for certain fermented foods, but when bacteriocin contained in such fermented products is added to control the contamination of foods such as beverages and side dishes, the flavor and texture of the foods are added. Influence. Moreover, in order to avoid this, the concentration of the bacteriocin contained was low and sufficient antibacterial activity could not be obtained with a low addition amount that did not affect the flavor.
[0004]
Therefore, in order to obtain high antibacterial activity (hereinafter used to mean “bacteriostatic activity”) and to reduce the concentration of addition, nitrogen in corn steep liquor and yeast extract as described in JP-A-5-268975 A culture method using a medium in which a source and a sugar source of a potato component are combined has been proposed. However, this fermented product is less likely to have a defect in a flavorful food such as soup, but there is a problem in flavor when adding an amount for obtaining an antibacterial effect expected in a soft beverage or the like that is not rich in flavor. It has occurred and the flavor problem has not been solved.
[0005]
On the other hand, as described in Masahiro Nakano's “Fermented Foods” Kosaku Zensho 21 (1967), methods for fermenting soymilk with lactic acid bacteria and using them as foods are well known. There were improvements or new dairy-like drinks and foods. As a specific example of the former, there is an example described in JP-A No. 2001-340059 in which soybean isoflavone useful for living bodies is used as an aglycon. As a specific example of the latter, JP-A-2002-51720 includes an example of fermented soymilk in which a saccharide or sweetener that is easy to assimilate lactic acid bacteria is added to soymilk to improve the flavor. These techniques are methods for producing flavor and nutritionally superior products by fermentation of soy milk with lactic acid bacteria, and these fermented products have completely different purposes of use from those according to the present invention. Furthermore, the lactic acid bacteria used are also described in, for example, the “Science and Technology of Lactic Acid Bacteria” published by the Society for the Study of Lactic Acid Bacteria (1996) and Masahiro Nakano “Fermented Foods” Kosaku Zensho 21 (1967). In the genus Lactobacillus bulgaricus and Streptococcus , these do not produce bacteriocin such as nisin.
[0006]
SUMMARY OF THE INVENTION
In general, the basic medium suitable for the growth of lactic acid bacteria is skim milk, milk component whey protein, tomato juice, malt extract, yeast described in “Lactic Acid Bacteria Science and Technology” published by the Society of Science and Technology of Lactic Acid Bacteria (1996). There are many things such as a mixture of extract and sugar. However, all of these media produced unpleasant flavor components. For example, when the broth was subjected to a sensory test (number of panels: 8) on the supernatant of the culture broth fermented with these media, all panels pointed out unpleasant flavors like diacetyl. Moreover, high antibacterial activity was not obtained.
[0007]
Under these circumstances, the present inventors unexpectedly contain lactic acid cocci such as Lactococcus lactis and Enterococcus faecalis and lactobacilli such as Lactobacillus plantarum , medium containing soy extract and skim milk. When cultured in a medium, it was found that a nisin-like antibacterial active substance can be produced at a high concentration, and the culture does not affect the flavor. The present invention is based on this finding.
[0008]
An object of the present invention is to provide a method for producing a fermented lactic acid bacterium product that does not affect the flavor of beverages and foods, can be added at a low concentration, and has a safe and high antibacterial activity.
[0009]
The method for producing an antibacterial active substance according to the present invention is a method comprising culturing an antibacterial active substance-producing lactic acid bacterium in a medium containing soybean extract and / or skim milk.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
[0011]
1. Lactic acid bacteria The antibacterial active substance-producing lactic acid bacteria that can be used in the present invention is not particularly limited as long as it is a lactic acid bacterium that produces an antibacterial active substance such as nisin. For example, “Biopreservation” edited by Toshiki Morichi et al. (2000) It can be selected from the genus species that produce bacteriocin described in Sachishobo. For example, lactic acid bacteria are cultured in MRS medium (DIFCO) or corn steep medium (Japanese Patent Laid-Open No. 5-268975) as the control group, and further, the test bacteria are cultured in the soy milk medium or skim milk medium. -Harting. A., et al. “Methods in Microbiology 7A., Methods for studying Bacteriocins” (1976) p. 327. Academic Press. In the paper disk method, 50 μL of a culture solution is soaked in a Φ6 mm paper disk, and this disk is placed on the surface of a standard agar medium (Eiken) inoculated with Staphylococcus aureus FDA 209P (ATCC 6538P) as an indicator fungus at 35 ° C., 48 It can be carried out by examining whether or not a halo (growth inhibition circle) around the colony is formed by culturing for a time period, and by examining whether or not the size of the halo is larger than the control group.
[0012]
Preferred examples of antimicrobial actives productivity of lactic acid bacteria, lactic acid cocci Lactococcus lactis subsp. Lactis IFO 12007, Lactococcus lactis subsp. Lactis ATCC 19435, Enterococcus faecalis IFO 3938, Enterococcus faecalis ATCC 23655, and Lactobacillus Lactobacillus plantarum ATCC 8014 Lactobacillus plantarum ATCC 14917, Lactobacillus plantarum JCM 1057, Lactobacillus plantarum JCM 1149, and Lactobacillus plantarum JCM 1551. These strains are readily available from the Fermentation Laboratory (IFO), American Type Culture Collection (ATCC) and RIKEN (JCM).
[0013]
2. In culturing the medium, soybean extract and skim milk can be used alone or in combination as a medium.
[0014]
When using a soybean extract for a culture medium, any of those obtained by a conventional method or commercially available can be used. For example, dried soybeans and defatted soybeans are crushed as they are, and water is added or water soaked and ground in a water-containing state is filtered to remove insoluble fractions. A thing (thing other than a soybean component is not used; for example, soy milk) can be used as a culture medium.
[0015]
The concentration of the soybean extract can be 2% or more, preferably 4% or more, more preferably 5% or more and 15% or less, and most preferably 8% or more and 12% or less of soybean solid content. Here, the soybean solid content concentration is defined by the concentration of solid residue remaining after evaporation of moisture by drying, as defined by the Japanese Agricultural Standards (JAS).
[0016]
When skim milk is used for the culture medium, any of those obtained by a conventional method or commercially available can be used. For example, powdered skim milk dissolved in water can be used as the skim milk medium.
[0017]
The concentration of the skim milk medium is preferably 5% or more and 20% or less, more preferably 7% or more and 15% or less.
[0018]
If necessary, components that assist the growth of lactic acid bacteria may be added to the medium. When added to food and drink, the additive component does not impair its flavor and is preferably a safe food component.
[0019]
3. Culture conditions When using a soybean extract as a medium, the medium is sterilized by ordinary heat treatment or filtration, water is added, and if necessary, pH is adjusted by a conventional method. The pH may be 3 or more and 9 or less, preferably 4 or more and 8 or less, in which lactic acid bacteria can grow. Pre-cultured lactic acid bacteria are added to a pH-adjusted medium, and cultured at 20 to 40 ° C., preferably 25 to 35 ° C., more preferably 28 to 32 ° C., for 6 to 48 hours, preferably 9 to 48 hours. A culture with high antibacterial activity can be obtained.
[0020]
When skim milk is used as a medium, it can be sterilized by heat treatment or filtration as described above. Usually, skim milk is suitable for the growth of lactic acid bacteria, so it is not necessary to adjust the pH, but if necessary, the pH may be adjusted in the same manner as in the case of the soybean extract. By adding the pre-cultured lactic acid bacteria to the prepared medium and culturing at 20 to 40 ° C., preferably 25 to 35 ° C., more preferably 28 to 32 ° C., for 6 to 48 hours, preferably 9 to 48 hours. A culture with high antibacterial activity can be obtained.
[0021]
The end of the culture can be targeted for 10 to 36 hours regardless of which medium is used, and the concentration of the antibacterial active substance becomes the highest at this point. Specifically, the antimicrobial active substance concentration is 12,000-20,000 I.D. U. / G (Nisin conversion). A point in time when the concentration of the antibacterial active substance is within this range can be used as a measure for ending the culture. Depending on the type of food or drink based on the culture, for example, the lower antibacterial active substance concentration is 3000 to 12000 I.D. U. The antibacterial activity can be sufficiently exhibited even at / g (Nisin conversion), and in this case, the culture can be completed in 10 to 24 hours.
[0022]
The culture is heat resistant as described in “Biopreservation” (2000) Koshobo) edited by Toshiki Morichi et al., And can be subjected to heat treatment or sterilization at 60 to 121 ° C. The culture can be terminated by stopping the growth of lactic acid bacteria while retaining the antibacterial activity.
[0023]
4). Cultures and antibacterial active substances and their uses The antibacterial active substances contained in the culture according to the present invention have excellent antibacterial activity, and are particularly problematic in the genus Bacillus , Alicyclobacillus genus and retort foods which are problematic in beverages. It has an excellent effect on heat-resistant spore-forming bacteria such as Bacillus and Clostridium . Therefore, the culture according to the present invention and the supernatant thereof can be used as an antibacterial additive to foods and drinks or as an antibacterial preparation.
[0024]
The culture and its supernatant may be added to the food or drink as they are, or only the antibacterial active substance in the culture may be taken out and added to the food or drink. Further, the obtained culture and the supernatant thereof can be provided as an antibacterial preparation as it is or by taking out only the antibacterial active substance. Isolation and purification of the antibacterial active substance can be performed, for example, by subjecting the culture to preparative HPLC. Such methods are well known, and those skilled in the art will understand how to separate and purify antimicrobial active substances. For purification of the antibacterial active substance, reference can be made, for example, to “Biopreservation” (2000) Koshobo edited by Toshiki Morichi et al.
[0025]
Since the culture obtained by the method according to the present invention has a high antibacterial active substance concentration, for example, in addition to foods and drinks, it is an amount equivalent to about 1/10 of the conventional culture described in JP-A-5-268975. Antibacterial effect can be obtained. Specifically, it is 1I. U / g or more, preferably 5 to 300 I.V. U / g, more preferably 1 to 100 I.V. It can add to food-drinks so that it may become U / g antibacterial activity. The antibacterial activity (I.U.) in terms of nisin is the activity of a nisin standard substance (manufactured by Sigma Co., 4%) which is an antibacterial active substance, 1 mg / kg = 40 The value converted into U / g was used. Here, “I.U.” is an international unit representing antibacterial activity and is an abbreviation of International Unit (edited by Toshiki Moriike et al., “Biopreservation” (2000) Koshobo).
[0026]
The culture according to the present invention can be used in a state of being suspended as it is depending on the object of use or by recovering the supernatant by performing solid-liquid separation such as centrifugation. In addition, since it is heat resistant as described above, it can be used after being subjected to processing such as freeze drying or spray drying.
[0027]
The food and drink to which the culture according to the present invention can be added is not particularly limited, and examples thereof include non-alcoholic beverages such as fruit juice beverages, vegetable beverages, fruit juice and vegetable mixed beverages, and near water beverages; , Alcoholic beverages such as sparkling wine; foods such as various soups, curry, stew, Japanese and Chinese side dishes, agricultural and fishery processed foods, dairy products, meat processed foods; seasonings such as mayonnaise, dressing, sauce, ketchup Can be mentioned.
[0028]
Since the culture according to the present invention is almost tasteless and odorless, there is no influence on the original flavor of the added beverage or food, so the restrictions on the product design are reduced, and the merit in terms of product development is great. That is, it becomes possible to design a new fermented product that does not impair the unique flavor inherent to food and drink.
[0029]
The culture according to the present invention also has a high antibacterial active substance concentration, so that it can be used at a small addition rate of, for example, 1% or less, or about 0.1% in terms of weight ratio. Furthermore, since it is close to tasteless and odorless per se, it has little influence on unpleasant flavors and quality problems on beverages and foods to be added. For example, in the case of a beverage using fruit juice, heat treatment is performed as necessary to prevent contamination by heat-resistant spore bacteria. In this regard, if the culture according to the present invention is added, a great effect of preventing deterioration of the quality can be expected by reducing or omitting the heat sterilization as well as the antibacterial effect.
[0030]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
[0031]
Example 1
Soy milk medium (1 L of commercially available soy milk (named dairy) with a solid content of 8%), MRS medium (DIFCO), corn steep medium (medium having the composition described in JP-A-5-268975: glucose 1%, mashed potato 1% Lactococcus lactis subsp. Lactis IFO 12007 is added to each of 10% skim milk medium (DIFCO, 1 L medium) and 0.5% It inoculated so that it might become v%, and statically cultured at 30 degreeC for 12 hours. The obtained culture broth was heated at 80 ° C. for 20 minutes, and the supernatant obtained by centrifugation was treated with Mayr-Harting. A. et al., “Methods in Microbiology 7A., Methods for studying Bacteriocins” (1976). p.327. Academic Press. Based on the paper disc method, that is, a standard agar medium (Sakae) inoculated with 50 μL of culture medium into a Φ6 mm paper disc and inoculated with Staphylococcus aureus FDA 209P (ATCC 6538P) as an indicator. Ken) It was placed on the surface and cultured at 35 ° C for 48 hours. Based on the size of the halo (growth inhibition circle) around the colony formed by this, write a calibration curve with the concentration of standard nisin and the size of the halo. Based on nisin (manufactured by Sigma) as a control, the antibacterial active substance concentration was converted to nisin per 12,000 I.Skim milk medium. U. / G, 20,000 I.S. U. A high production concentration of / g was shown (Table 1).
[0032]
[Table 1]
Figure 0004101553
[0033]
The other lactic acid bacteria strains eight (Lactococcus lactis subsp. Lactis ATCC 19435 , Enterococcus faecalis IFO 3938, Enterococcus faecalis ATCC 23655, Lactobacillus plantarum ATCC 8014, Lactobacillus plantarum ATCC 14917, Lactobacillus plantarum JCM 1057, Lactobacillus plantarum JCM 1149, and Lactobacillus plantarum JCM A similar test was conducted for 1551). The test conditions were the same as in Example 1 except that corn steep medium was not used. The results are as shown in Table 2.
[0034]
[Table 2]
Figure 0004101553
[0035]
In any of the strains, the antibacterial active substance concentration was higher when 10% skim milk medium or soy milk medium was used than the MRS medium of the control group.
[0036]
As is clear from Tables 1 and 2, even when any strain was used, a higher concentration of antibacterial active substance was produced in the type of medium when soymilk medium was used.
[0037]
Example 2
With Lactococcus lactis subsp lactis IFO12007 strain of Example 1, soybean solid content of the soy milk medium:. 4%, 5%, 8%, 10%, 12%, 15%, or skim milk concentration in skim milk medium: Tests were conducted on the relationship between 5%, 7%, 10%, 15%, 20% and antimicrobial active substance production concentration. The strains were statically cultured at 30 ° C. for 24 hours, with the type and concentration of the medium set separately. Other culture conditions and test methods were the same as in Example 1.
[0038]
As a result, when the soybean solid concentration in the soymilk medium is 8 to 12%, the maximum antimicrobial active substance production concentration: 20,000 I.D. U. / G (Table 3), the maximum antimicrobial active substance production concentration when the skim milk concentration in the skim milk medium is 7-15%: 12,000 I. U. / G (Table 4).
[0039]
[Table 3]
Figure 0004101553
[0040]
[Table 4]
Figure 0004101553
[0041]
Example 3
The supernatant of nine soymilk cultures prepared in Example 1 at 1 w / w% each was added to orange juice (addition) and the control without addition of the supernatant (control) A 12-person triangle tasting test was conducted using blinds. As a result, the difference in flavor of orange juice was observed between the added group and the control group when the supernatant of the culture of corn steep liquor medium was used for each strain.
[0042]
On the other hand, when fermented soymilk was used, 10 or more respondents said that there was no difference in flavor of orange juice, so no significant difference in flavor was observed between the added group and the control group. When the same experiment was conducted on the supernatant of nine skim milk cultures of each lactic acid bacterial strain, nine respondents said that there was no difference between the supernatants of the two Enterococcus strains, and more than 10 others. Answered no difference. Similarly, no significant difference in flavor was observed.
[0043]
Example 4
The supernatant of 9 kinds of soymilk cultures prepared in Example 1 was added to orange juice at 1 w / w%, and 10 3 cells / ml of Alicyclobacillus acidoterrestris DSM 3923, which is known as a contaminant of fruit juice. After inoculating to 45 ml and culturing at 45 ° C., the number of viable bacteria became 0 cells / ml in any of the lactic acid bacterial culture supernatants after 3 days and showed antibacterial effect. However, in the control group to which no supernatant was added, all cells grew to 10 8 cells / ml.
[0044]
Example 5
Cultures of 9 types of skim milk and soy milk prepared in Example 1 were added to a commercially available retort curry at 1 w / w%, respectively, and Bacillus coagulans 1106 (contained by the Japan Canning Association), which is a contamination heat resistant indicator bacterium. Was inoculated at 10 4 cells / ml and cultured at 35 ° C. After 3 days, the number of viable cells was 0 cells / ml in any of the lactic acid bacterial cultures, and showed an antibacterial effect. It was. However, in the control group that was not added to the supernatant it had grown to 10 9 cells / ml.

Claims (4)

ラクトコッカス属、エンテロコッカス属、およびラクトバチルス属からなる群から選択される属に属する、ナイシン生産性の乳酸菌を豆乳培地もしくはスキムミルク培地、またはこれらの組み合わせからなる培地で培養することを含んでなる、ナイシンの製造法。 Lactococcus, Enterococcus, and belongs to a genus selected from the group consisting of Lactobacillus, comprising nisin productivity of lactic acid bacteria, milk medium or skim milk medium, or include culturing in a medium comprising a combination thereof Nisin manufacturing method. 乳酸菌が、Lactococcus lactis subsp. lactis IFO 12007、Lactococcus lactis subsp. lactis ATCC 19435、Enterococcus faecalis ATCC 23655、Lactobacillus plantarum ATCC 8014 、Lactobacillus plantarum ATCC 14917、Lactobacillus plantarum JCM 1057、Lactobacillus plantarum JCM 1149、またはLactobacillus plantarum JCM 1551である、請求項に記載の製造法。Lactic acid bacteria are available from Lactococcus lactis subsp. lactis IFO 12007, Lactococcus lactis subsp. lactis ATCC 19435, Enterococcus faecalis ATCC 23655 , Lactobacillus plantarum ATCC 8014, Lactobacillus plantarum ATCC 14917, Lactobacillus plantarum JCM 1057, Lactobacillus plantarum JCM 1149, or Lactobacillus plantarum JCM 1551, The process of claim 1. 培地中の大豆固形分濃度が、8〜12%である、請求項1に記載の製造法。  The manufacturing method of Claim 1 whose soybean solid content concentration in a culture medium is 8-12%. 培地中のスキムミルク濃度が、7〜15%である、請求項1に記載の製造法。  The manufacturing method of Claim 1 whose skim milk density | concentration in a culture medium is 7 to 15%.
JP2002135266A 2002-05-10 2002-05-10 Method for producing antibacterial active substance Expired - Fee Related JP4101553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135266A JP4101553B2 (en) 2002-05-10 2002-05-10 Method for producing antibacterial active substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135266A JP4101553B2 (en) 2002-05-10 2002-05-10 Method for producing antibacterial active substance

Publications (2)

Publication Number Publication Date
JP2003325193A JP2003325193A (en) 2003-11-18
JP4101553B2 true JP4101553B2 (en) 2008-06-18

Family

ID=29697635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135266A Expired - Fee Related JP4101553B2 (en) 2002-05-10 2002-05-10 Method for producing antibacterial active substance

Country Status (1)

Country Link
JP (1) JP4101553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913521A (en) * 2019-04-24 2019-06-21 仲恺农业工程学院 The application of the method for extraction polypeptide, application, extraction obtain from shaddock core polypeptide and Responds Surface Methodology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014872B1 (en) * 2008-08-12 2011-02-15 두두원발효(주) A compound for treating or preventing intestinal disease comprising a soybean compound fermented by kimchi lactic acid bacteria complex
JP7462868B2 (en) 2018-10-26 2024-04-08 炭プラスラボ株式会社 Composition containing lactic acid bacteria production substance, method for producing equol, and method for producing composition containing lactic acid bacteria production substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913521A (en) * 2019-04-24 2019-06-21 仲恺农业工程学院 The application of the method for extraction polypeptide, application, extraction obtain from shaddock core polypeptide and Responds Surface Methodology

Also Published As

Publication number Publication date
JP2003325193A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
Behera et al. Lactobacillus plantarum with functional properties: an approach to increase safety and shelf‐life of fermented foods
Oyewole Lactic fermented foods in Africa and their benefits
JP5044769B2 (en) Lactic acid bacteria Lactobacillus sakei strain, beverage manufacturing method, food manufacturing method, pickled bed manufacturing method, bread making raw material manufacturing method
KR101363735B1 (en) Agent for enhancing growth and improving viability of lactic acid bacterium
CN102971413A (en) Novel lactobacillus classified as lactobacillus plantarum, and use thereof
KR101106668B1 (en) The preparing method for natural GABA using serial fermentation of plant originated lactic acid bacteria with GABA-producing ability and protease-producing ability
JP5467433B2 (en) Seaweed fermentation composition and method for producing the same
TWI520685B (en) Lactic acid bacteria proliferation promoter
AU2005233240A1 (en) Method for reducing the content of pathogenic organisms present in food materials
Benkerroum et al. Development and use of a selective medium for isolation of Leuconostoc spp. from vegetables and dairy products
JP2004215529A (en) Method for producing lactic acid bacterium fermentation food product, beverage product, and seasoned food product all having good flavor and high gaba content
JP5011543B2 (en) Method for producing fermented material containing GABA
KR20110094601A (en) Fermented soybean milk beverage using lactic acid bacteria and preparing method thereof
KR101234921B1 (en) Helicobacter pylori GROWTH INHIBITOR AND METHOD FOR PRODUCTION THEREOF
JP4734060B2 (en) New microorganism, fermented product of the new microorganism, and food and drink containing the fermented product
KR101451810B1 (en) Novel Strains of Lactobacillus plantarum K255 with High Productivity of Gamma-Aminobutyric Acid
JP4883919B2 (en) Fermentation promoter for lactic acid bacteria
JPWO2005080550A1 (en) Nisin high production lactic acid bacteria and its selection method
JP4101553B2 (en) Method for producing antibacterial active substance
KR100945310B1 (en) Lactic acid bacteria separated from kimchi and ?-aminobutyric acid produced thereby
JP2017209021A (en) Novel plant lactic acid bacteria
KR101302465B1 (en) Lactic acid bacterium separated from kimchii and fermented food using the strain
JP2002369678A (en) Method for preventing sundry germs for malted rice
JP2010246398A (en) New antibacterial peptide
JP2002330740A (en) Method for spore bearing bacterium sterilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150328

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees