JP4101267B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP4101267B2
JP4101267B2 JP2006073861A JP2006073861A JP4101267B2 JP 4101267 B2 JP4101267 B2 JP 4101267B2 JP 2006073861 A JP2006073861 A JP 2006073861A JP 2006073861 A JP2006073861 A JP 2006073861A JP 4101267 B2 JP4101267 B2 JP 4101267B2
Authority
JP
Japan
Prior art keywords
circuit
current
detection circuit
ground fault
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006073861A
Other languages
Japanese (ja)
Other versions
JP2007252123A (en
Inventor
昭憲 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2006073861A priority Critical patent/JP4101267B2/en
Publication of JP2007252123A publication Critical patent/JP2007252123A/en
Application granted granted Critical
Publication of JP4101267B2 publication Critical patent/JP4101267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Power Conversion In General (AREA)

Description

本発明は、出力電圧が変動する直流電源の直流地絡電流を検出する直流地絡検出回路を備えた電力変換装置に関するものである。   The present invention relates to a power conversion device including a DC ground fault detection circuit that detects a DC ground fault current of a DC power supply whose output voltage varies.

交流電源の地絡電流を検出する交流地絡検出回路は、既に提案されている(例えば、特許文献1参照。)。   An AC ground fault detection circuit that detects a ground fault current of an AC power supply has already been proposed (see, for example, Patent Document 1).

しかしながら、このような交流地絡検出回路は、直流電源の地絡電流を検出する直流地絡検出回路としては使用できない。   However, such an AC ground fault detection circuit cannot be used as a DC ground fault detection circuit that detects a ground fault current of a DC power supply.

そこで出願人は、図6に示すような直流地絡検出回路を備えた電力変換装置を検討している。   Therefore, the applicant is examining a power conversion device including a DC ground fault detection circuit as shown in FIG.

この直流地絡検出回路を備えた電力変換装置1は、太陽電池等の直流電源3から出力される直流電力を交流電力に変換するインバータのような電力変換器5を備えている。電力変換器5と図示しない交流負荷との間には、電力変換器5の出力電圧を交流負荷が要求している所要の電圧に変換する絶縁トランス9が設けられている。絶縁トランス9と図示しない交流負荷との間には、常開の開閉器11が設けられている。開閉器11は、開閉器駆動回路13で開閉駆動が行われるようになっている。電力変換器5は制御信号発生回路7を備えている。該制御信号発生回路7は、電力変換器5と、開閉器11を開閉制御する開閉器制御回路13に制御信号を出力する。電力変換器5は制御信号発生回路7から制御信号が与えられて直流電力を交流電力に変換するようになっている。   The power converter 1 provided with this DC ground fault detection circuit includes a power converter 5 such as an inverter that converts DC power output from a DC power source 3 such as a solar battery into AC power. An insulating transformer 9 is provided between the power converter 5 and an AC load (not shown) for converting the output voltage of the power converter 5 into a required voltage required by the AC load. A normally open switch 11 is provided between the insulating transformer 9 and an AC load (not shown). The switch 11 is configured to be opened and closed by a switch drive circuit 13. The power converter 5 includes a control signal generation circuit 7. The control signal generation circuit 7 outputs a control signal to the power converter 5 and a switch control circuit 13 that controls opening / closing of the switch 11. The power converter 5 is supplied with a control signal from the control signal generating circuit 7 and converts DC power into AC power.

このような電力変換装置1は、運転が始まると開閉器11が閉となる。太陽電池等の直流電源3の出力側で直流地絡が発生したことを検出すると、制御信号発生回路7に制御指令の出力を停止させ且つ開閉器11の開閉器駆動回路13に対して開指令を与える直流地絡検出回路15を備えている。
直流地絡検出回路15は、第1の電流制限用抵抗Raを備えて、出力電圧が変動する太陽電池等の直流電源3の正極端子Pと接地点Eとの間に設けられた第1の電流検出回路17を備えている。また、第2の電流制限用抵抗Rbを備えて、直流電源3の負極端子Nと接地点Eとの間に設けられた第2の電流検出回路19を備えている。本例では、接地点E側で第1の電流検出回路17と第2の電流検出回路19を相互に接続している接続点20に接地点Eが設けられている。これら第1の電流検出回路17と第2の電流検出回路19とには、正極端子P→第1の電流検出回路17→接地点E→第2の電流検出回路19→負極端子Nの向きで電流が流れるようになっている。これは、電力変換器5の負荷側に絶縁トランス9が接続されているためと、太陽電池等の直流電源3の出力端における正極端子Pまたは負極端子Nに地絡が発生しない限り実際上の回路が形成されないためであって、直流電源3の出力電流はその流路の途中に接地点Eがあってこの接地点Eが接地されていても電流の帰路とはなり得ず、直流電源3の負極端子Nに電流が戻るためである。また、これら第1の電流検出回路17を流れる第1の検出電流Iaと第2の電流検出回路19を流れる第2の検出電流Ibとの差電流ΔIを検出する零相電流検出回路21が、これら回路の途中に設けられている。この場合、第1及び第2の電流制限用抵抗Ra,Rbは、直流電源の端子P,N側に直流地絡が発生していない場合、等しい電流が流れる。さらに、この直流地絡検出回路15は、差電流ΔIが予め定めた基準値を超えると、直流地絡が発生したと判定する地絡判定回路23を備えている。
In such a power conversion device 1, the switch 11 is closed when the operation starts. When it is detected that a DC ground fault has occurred on the output side of the DC power source 3 such as a solar battery, the control signal generating circuit 7 stops outputting the control command and the switch drive circuit 13 of the switch 11 is opened. A DC ground fault detection circuit 15 is provided.
The DC ground fault detection circuit 15 includes a first current limiting resistor Ra, and is provided between a positive terminal P of a DC power source 3 such as a solar cell whose output voltage varies and a ground point E. A current detection circuit 17 is provided. In addition, a second current detection circuit 19 provided with a second current limiting resistor Rb and provided between the negative terminal N of the DC power supply 3 and the ground point E is provided. In this example, the ground point E is provided at a connection point 20 that connects the first current detection circuit 17 and the second current detection circuit 19 to each other on the ground point E side. These first current detection circuit 17 and second current detection circuit 19 are arranged in the direction of positive terminal P → first current detection circuit 17 → ground point E → second current detection circuit 19 → negative terminal N. A current flows. This is because the insulation transformer 9 is connected to the load side of the power converter 5 and is practical unless a ground fault occurs at the positive terminal P or the negative terminal N at the output terminal of the DC power source 3 such as a solar battery. This is because a circuit is not formed, and the output current of the DC power supply 3 cannot be a return path of the current even if the grounding point E is in the middle of the flow path and the grounding point E is grounded. This is because the current returns to the negative terminal N. Further, a zero-phase current detection circuit 21 for detecting a difference current ΔI between the first detection current Ia flowing through the first current detection circuit 17 and the second detection current Ib flowing through the second current detection circuit 19 includes: It is provided in the middle of these circuits. In this case, equal current flows through the first and second current limiting resistors Ra and Rb when no DC ground fault occurs on the terminals P and N side of the DC power supply. The DC ground fault detection circuit 15 further includes a ground fault determination circuit 23 that determines that a DC ground fault has occurred when the difference current ΔI exceeds a predetermined reference value.

このような電力変換装置1は、太陽電池等の直流電源3の正極端子P,負極端子Nの側で直流地絡が発生しない場合、第1の電流制限用抵抗Raと第2の電流制限用抵抗Rbに等しい第1の検出電流Iaと第2の検出電流Ibが前述したように流れている。これら電流Ia,Ibが零相電流検出回路21に入力されると、該零相電流検出回路21からは差電流ΔI(=Ia−Ib)が出力される。この差電流ΔIは、地絡判定回路23に入力される。地絡判定回路23は、差電流ΔIが基準値未満のため直流地絡が発生していないと判定する。直流地絡が発生していない場合は、地絡判定回路23は制御信号発生回路7に制御指令を出力しないので、制御信号発生回路7は電力変換器5に制御信号を与え、電力変換器5は直流電力を交流電力に変換する。またこのときには、制御信号発生回路7は開閉器駆動回路13に開指令を与えないので、開閉器11は閉状態のままであり、図示しない交流負荷に交流電力を供給している。   When such a power converter 1 does not generate a DC ground fault on the side of the positive terminal P and the negative terminal N of the DC power source 3 such as a solar cell, the first current limiting resistor Ra and the second current limiting resistor The first detection current Ia and the second detection current Ib that are equal to the resistor Rb flow as described above. When these currents Ia and Ib are input to the zero-phase current detection circuit 21, the difference current ΔI (= Ia−Ib) is output from the zero-phase current detection circuit 21. This difference current ΔI is input to the ground fault determination circuit 23. The ground fault determination circuit 23 determines that no DC ground fault has occurred because the difference current ΔI is less than the reference value. When a DC ground fault has not occurred, the ground fault determination circuit 23 does not output a control command to the control signal generation circuit 7, so the control signal generation circuit 7 gives a control signal to the power converter 5, and the power converter 5 Converts DC power to AC power. At this time, since the control signal generation circuit 7 does not give an open command to the switch drive circuit 13, the switch 11 remains closed and supplies AC power to an AC load (not shown).

しかし、図7に示すように直流電源3の負極端子Nに直流地絡が発生した場合は、地絡点に接地抵抗Rxが現れる。この場合には、直流電源3の負極端子Nが接地されるので、接地点Eは電流の帰路となり、途中までは正極端子P→第1の電流検出回路17→接地点Eの向きで電流が流れる。接地点Eで電流は2分岐され、一方は接地点E→第2の電流検出回路19→負極端子Nと流れ、他方は接地点E→接地抵抗Rx→負極端子Nと流れる。   However, when a DC ground fault occurs at the negative terminal N of the DC power source 3 as shown in FIG. 7, a grounding resistance Rx appears at the ground fault point. In this case, since the negative terminal N of the DC power source 3 is grounded, the ground point E becomes a return path of the current, and the current flows in the direction of the positive terminal P → the first current detection circuit 17 → the ground point E until halfway. Flowing. The current is branched into two at the ground point E, one flows from the ground point E → the second current detection circuit 19 → the negative terminal N, and the other flows from the ground point E → the ground resistance Rx → the negative terminal N.

このとき接地抵抗Rxに流れる電流をIx、第1の電流制限用抵抗Raと第2の電流制限用抵抗Rbとに流れる電流をIa,Ibとすると、Ia=Ib+Ixとなって電流Ia,Ibの平衡がくずれて電流Iaが電流Ibより大きくなり(Ia>Ib)、零相電流検出回路21に発生する差電流ΔIは基準値を超える。このため地絡判定回路23が直流地絡を判定する。地絡判定回路23が直流地絡を判定すると、該地絡判定回路23は制御信号発生回路7に制御指令を与える。これにより制御信号発生回路7は、開閉器駆動回路13に開指令を与えて開閉器11を開とし、また電力変換器5に制御指令の供給を停止し、電力変換器5は電力変換を停止する。このため直流電源の異常状態を検出し、安全に図示しない交流負荷への給電を停止することができる。
特開昭61−150615号公報
At this time, if the current flowing through the ground resistor Rx is Ix, and the currents flowing through the first current limiting resistor Ra and the second current limiting resistor Rb are Ia and Ib, then Ia = Ib + Ix and the currents Ia and Ib The balance is lost, the current Ia becomes larger than the current Ib (Ia> Ib), and the difference current ΔI generated in the zero-phase current detection circuit 21 exceeds the reference value. For this reason, the ground fault determination circuit 23 determines a DC ground fault. When the ground fault determination circuit 23 determines a DC ground fault, the ground fault determination circuit 23 gives a control command to the control signal generation circuit 7. As a result, the control signal generation circuit 7 gives an open command to the switch drive circuit 13 to open the switch 11, stops supply of the control command to the power converter 5, and the power converter 5 stops power conversion. To do. For this reason, it is possible to detect an abnormal state of the DC power supply and safely stop power supply to an AC load (not shown).
JP-A-61-150615

太陽電池等の直流電源3では、日射量や温度により太陽電池の直流発電出力の電圧変動が例えばDC200V〜DC500Vと大きい。そのために図6に示す電力変換装置1では、図4に示すように運転可能な下限の太陽電池の直流出力電圧をDC250Vと設定すると、日射量や温度が大きく、使用負荷率が小さい場合には、太陽電池の直流出力電圧がDC500Vに上昇し、第1の電流制限用抵抗Raと第2の電流制限用抵抗Rbとに流れる電流が2倍となるため、零相電流検出回路21から出力する差電流ΔIが2倍となり、このため図4に示すように地絡が発生していないにも拘わらず地絡発生時の基準値を超えてしまい、地絡判定回路23で誤判定や誤動作を招く問題点がある。   In the DC power source 3 such as a solar battery, the voltage fluctuation of the DC power generation output of the solar battery is large, for example, from DC 200 V to DC 500 V depending on the amount of solar radiation and the temperature. Therefore, in the power conversion device 1 shown in FIG. 6, when the DC output voltage of the lower limit solar cell that can be operated is set to DC 250 V as shown in FIG. 4, when the amount of solar radiation and temperature are large and the load factor used is small. The direct current output voltage of the solar cell rises to DC500V, and the current flowing through the first current limiting resistor Ra and the second current limiting resistor Rb is doubled, so that it is output from the zero-phase current detection circuit 21. The difference current ΔI is doubled. Therefore, as shown in FIG. 4, although the ground fault does not occur, the reference value at the time of the occurrence of the ground fault is exceeded. There is an inviting problem.

また、DC500Vで誤動作を起こさないために、地絡発生時の基準値を図4に示す値より上げると、地絡判定回路23の検出感度が低下する問題点がある。   Further, in order not to cause a malfunction at DC500V, if the reference value at the time of occurrence of the ground fault is increased from the value shown in FIG.

本発明の目的は、地絡判定回路での誤判定や誤動作を防止でき、且つ地絡判定回路の検出感度の低下を防止できる電力変換装置を提供することにある。   The objective of this invention is providing the power converter device which can prevent the misjudgment and malfunction by a ground fault determination circuit, and can prevent the fall of the detection sensitivity of a ground fault determination circuit.

本発明の他の目的は、第1及び第2の電流制限用抵抗に対する第1及び第2の付加抵抗の直列接続と非接続状態を容易に得ることができる電力変換装置を提供することにある。   Another object of the present invention is to provide a power conversion device that can easily obtain a series connection and non-connection state of first and second additional resistors with respect to the first and second current limiting resistors. .

本発明に係る電力変換装置は、太陽電池等の直流電源から出力される直流電力を交流電力に変換する電力変換器と、該電力変換器と負荷との間に設けられた絶縁トランスと、電力変換器に制御信号を出力する制御信号発生回路と、直流電源の出力側で直流地絡が発生したことを検出すると制御信号発生回路からの制御指令の出力の停止を行わせる直流地絡検出回路とを備えている。直流地絡検出回路は、第1の電流制限用抵抗を備えて、出力電圧が変動する直流電源の正極端子と接地点との間に設けられた第1の電流検出回路と、第2の電流制限用抵抗を備えて、直流電源の負極端子と接地点との間に設けられた第2の電流検出回路と、第1の電流検出回路を流れる第1の検出電流と第2の電流検出回路を流れる第2の検出電流との差電流を検出する零相電流検出回路と、差電流が予め定めた基準値を超えると、直流地絡が発生したと判定する地絡判定回路とを備えている。   A power conversion device according to the present invention includes a power converter that converts DC power output from a DC power source such as a solar battery into AC power, an insulation transformer provided between the power converter and a load, A control signal generation circuit that outputs a control signal to the converter, and a DC ground fault detection circuit that stops the output of a control command from the control signal generation circuit when it detects that a DC ground fault has occurred on the output side of the DC power supply And. The DC ground fault detection circuit has a first current limiting resistor, a first current detection circuit provided between a positive terminal of a DC power source whose output voltage varies and a ground point, and a second current A second current detection circuit including a limiting resistor and provided between the negative terminal of the DC power supply and the ground; a first detection current flowing through the first current detection circuit; and a second current detection circuit A zero-phase current detection circuit that detects a difference current from the second detection current flowing through the ground, and a ground fault determination circuit that determines that a DC ground fault has occurred when the difference current exceeds a predetermined reference value. Yes.

特に本発明の電力変換装置では、直流地絡検出回路が、第1の電流制限用抵抗に対して、選択的に所定の値の第1の付加抵抗を直列に接続することができるように構成された第1の抵抗付加回路を備えている。また、第2の電流制限用抵抗に対して、選択的に所定の値の第2の付加抵抗を直列に接続することができるように構成された第2の抵抗付加回路を備えている。また、直流電源の直流出力電圧を検出する電圧検出回路を備えている。また、直流出力電圧が予め定めた基準電圧を超えているか否かを判定する電圧判定回路を備えている。さらに、直流出力電圧が基準電圧を超えている状態を電圧判定回路が検出しているときには、第1及び第2の付加抵抗を第1及び第2の電流制限用抵抗に対してそれぞれ直列接続する指令を第1及び第2の抵抗付加回路に出力し、直流出力電圧が基準電圧を超えていない状態を検出しているときには、第1及び第2の付加抵抗を第1及び第2の電流制限用抵抗に対して直列接続しない指令を第1及び第2の抵抗付加回路に出力する指令発生回路を備えている。   In particular, in the power converter of the present invention, the DC ground fault detection circuit is configured so that the first additional resistor having a predetermined value can be selectively connected in series to the first current limiting resistor. The first resistance adding circuit is provided. Further, a second resistance addition circuit configured to selectively connect a second additional resistance having a predetermined value in series with the second current limiting resistance is provided. Further, a voltage detection circuit for detecting a DC output voltage of the DC power supply is provided. In addition, a voltage determination circuit that determines whether or not the DC output voltage exceeds a predetermined reference voltage is provided. Further, when the voltage determination circuit detects that the DC output voltage exceeds the reference voltage, the first and second additional resistors are connected in series to the first and second current limiting resistors, respectively. When the command is output to the first and second resistance adding circuits and the state where the DC output voltage does not exceed the reference voltage is detected, the first and second additional resistors are connected to the first and second current limiting circuits. There is provided a command generation circuit for outputting a command not connected in series to the resistor for use to the first and second resistance addition circuits.

このような電力変換装置の直流地絡検出回路では、直流電源の直流出力電圧を電圧検出回路で検出し、直流電源の直流出力電圧が予め定めた基準電圧を超えていると、第1及び第2の付加抵抗を第1及び第2の電流制限用抵抗に対してそれぞれ直列接続するので、直流出力電圧が大きく上昇した場合であっても、第1及び第2の電流制限用抵抗に流れる電流の増加を抑えることができる。それゆえ、直流地絡検出の直流出力電圧の下限を例えばDC250Vと考えて零相電流検出回路の基準値を設定した場合でも、本発明によれば、直流出力電圧が例えばDC500Vに上昇したときに、零相電流検出回路から出力される差電流ΔIが2倍とならず、地絡判定回路で誤判定や誤動作を招くことはない。また、この直流地絡検出回路では、直流出力電圧が例えばDC500Vに上昇しても、零相電流検出回路から出力する差電流ΔIは電圧の上昇に比例し大きくならないため、地絡判定回路の検出感度が低下することはない。一方、直流電源の出力電圧が高くならないときには、第1及び第2の電流制限用抵抗に対して第1及び第2の付加抵抗を直列接続しないので、第1及び第2の付加抵抗が影響を与えることがない。   In such a DC ground fault detection circuit of the power conversion device, the DC output voltage of the DC power supply is detected by the voltage detection circuit, and if the DC output voltage of the DC power supply exceeds a predetermined reference voltage, the first and first Since the two additional resistors are connected in series to the first and second current limiting resistors, the current flowing through the first and second current limiting resistors even when the DC output voltage is greatly increased. Can be suppressed. Therefore, even when the lower limit of the DC output voltage for DC ground fault detection is considered to be DC250V, for example, and the reference value of the zero-phase current detection circuit is set, according to the present invention, when the DC output voltage rises to DC500V, for example. The difference current ΔI output from the zero-phase current detection circuit does not double, and the ground fault determination circuit does not cause erroneous determination or malfunction. Also, in this DC ground fault detection circuit, even if the DC output voltage rises to, for example, DC 500 V, the difference current ΔI output from the zero-phase current detection circuit does not increase in proportion to the voltage rise. Sensitivity is not reduced. On the other hand, when the output voltage of the DC power supply does not increase, the first and second additional resistors are not connected in series with the first and second current limiting resistors, so that the first and second additional resistors have an influence. Never give.

この発明は、絶縁トランスの二次側に開閉器を設け、この開閉器を駆動する開閉器駆動回路を設けた電力変換装置にも適用することができる。この開閉器を有する電力変換装置に本発明を適用した場合、直流地絡が発生した場合、開閉器が開いて異常な電力が負荷に与えられるのを防止できる。   The present invention can also be applied to a power conversion device in which a switch is provided on the secondary side of an insulating transformer and a switch drive circuit for driving the switch is provided. When the present invention is applied to a power converter having this switch, when a DC ground fault occurs, it is possible to prevent the switch from being opened and supplying abnormal power to the load.

また、直流地絡検出回路は、具体的には次のように構成することができる。即ち、直流地絡検出回路は、第1の電流制限用抵抗に対して直列に接続された所定の値の第1の付加抵抗と、前記第1の付加抵抗に対して並列接続されて指令に応じて開閉制御可能な第1のスイッチを有する第1の短絡回路とを備えた第1の抵抗付加回路を備えている。また、第2の電流制限用抵抗に対して直列に接続された所定の値の第2の付加抵抗と、該第2の付加抵抗に対して並列接続されて指令に応じて開閉制御可能な第2のスイッチとを有する第2の短絡回路とを備えた第2の抵抗付加回路を備えている。また、直流電源の直流出力電圧を検出する電圧検出回路を備えている。また、直流出力電圧が予め定めた基準電圧を超えているか否かを判定する電圧判定回路を備えている。さらに、直流出力電圧が基準電圧を超えている状態を電圧判定回路が検出しているときには、第1及び第2の付加抵抗を第1及び第2の電流制限用抵抗に対してそれぞれ直列接続した状態を維持するように第1及び第2の短絡回路の第1及び第2のスイッチを開く指令を第1及び第2の抵抗付加回路に出力し、直流出力電圧が基準電圧を超えていない状態を検出しているときには、第1及び第2の電流制限用抵抗に対して直列接続されている第1及び第2の付加抵抗を短絡するように第1及び第2の短絡回路の第1及び第2のスイッチを閉じる指令を第1及び第2の抵抗付加回路に出力する指令発生回路を備えている。   Further, the DC ground fault detection circuit can be specifically configured as follows. That is, the DC ground fault detection circuit is connected in parallel to the first additional resistor having a predetermined value connected in series with the first current limiting resistor and in parallel with the first additional resistor. And a first resistance adding circuit including a first short circuit having a first switch that can be controlled to open and close accordingly. A second additional resistor having a predetermined value connected in series to the second current limiting resistor and a second additional resistor connected in parallel to the second additional resistor and capable of opening and closing in accordance with a command. A second resistance adding circuit including a second short circuit having two switches. Further, a voltage detection circuit for detecting a DC output voltage of the DC power supply is provided. In addition, a voltage determination circuit that determines whether or not the DC output voltage exceeds a predetermined reference voltage is provided. Further, when the voltage determination circuit detects that the DC output voltage exceeds the reference voltage, the first and second additional resistors are connected in series to the first and second current limiting resistors, respectively. A command to open the first and second switches of the first and second short circuit so as to maintain the state is output to the first and second resistance adding circuits, and the DC output voltage does not exceed the reference voltage Is detected, the first and second short-circuits of the first and second short-circuits are short-circuited so as to short-circuit the first and second additional resistors connected in series to the first and second current-limiting resistors. A command generation circuit is provided for outputting a command to close the second switch to the first and second resistance adding circuits.

このような電力変換装置の直流地絡検出回路では、直流電源の直流出力電圧を電圧検出回路で検出し、直流電源の直流出力電圧が予め定めた基準電圧を超えていると、第1及び第2のスイッチを開いて、第1及び第2の付加抵抗を第1及び第2の電流制限用抵抗に対してそれぞれ直列接続するので、直流出力電圧が大きく上昇した場合であっても、第1及び第2の電流制限用抵抗に流れる電流の増加を抑えることができる。それゆえ、直流地絡検出の直流出力電圧の下限を例えばDC250Vと考えて零相電流検出回路の基準値を設定した場合でも、本発明によれば、直流出力電圧が例えばDC500Vに上昇したときに、零相電流検出回路から出力される差電流ΔIが2倍とならず、地絡判定回路で誤判定や誤動作を招くことはない。また、この直流地絡検出回路では、直流出力電圧が例えばDC500Vに上昇しても、零相電流検出回路から出力する差電流ΔIは電圧の上昇に比例し大きくならないため、地絡判定回路の検出感度が低下することはない。一方、直流電源の出力電圧が高くならないときには、第1及び第2のスイッチを閉じて、第1及び第2の電流制限用抵抗に対して第1及び第2の付加抵抗を直列接続しないので、第1及び第2の付加抵抗が影響を与えることがない。   In such a DC ground fault detection circuit of the power conversion device, the DC output voltage of the DC power supply is detected by the voltage detection circuit, and if the DC output voltage of the DC power supply exceeds a predetermined reference voltage, the first and first 2 is opened, and the first and second additional resistors are connected in series to the first and second current limiting resistors, respectively. Therefore, even if the DC output voltage rises greatly, the first In addition, an increase in current flowing through the second current limiting resistor can be suppressed. Therefore, even when the lower limit of the DC output voltage for DC ground fault detection is considered to be DC250V, for example, and the reference value of the zero-phase current detection circuit is set, according to the present invention, when the DC output voltage rises to DC500V, for example. The difference current ΔI output from the zero-phase current detection circuit does not double, and the ground fault determination circuit does not cause erroneous determination or malfunction. Also, in this DC ground fault detection circuit, even if the DC output voltage rises to, for example, DC 500 V, the difference current ΔI output from the zero-phase current detection circuit does not increase in proportion to the voltage rise. Sensitivity is not reduced. On the other hand, when the output voltage of the DC power supply does not increase, the first and second switches are closed and the first and second additional resistors are not connected in series with the first and second current limiting resistors. The first and second additional resistors are not affected.

零相電流検出回路が、第1の電流検出回路に流れる電流による磁束と第2の電流検出回路に流れる電流による磁束とが流れる検出コアと、該検出コアに巻装された検出コイルと、検出コアと鎖交するように配置された励磁コアと、該励磁コアに周波数fの励磁電流Iexによる交流磁束を流す励磁コイルとを備えていると、第1の電流検出回路と第2の電流検出回路とに直流電流が流れていても差電流の検出を行うことができる。   A zero-phase current detection circuit includes a detection core in which a magnetic flux due to a current flowing in the first current detection circuit and a magnetic flux due to a current flowing in the second current detection circuit flow, a detection coil wound around the detection core, and a detection A first current detection circuit and a second current detection are provided when an excitation core arranged so as to be linked to the core and an excitation coil for passing an alternating magnetic flux by an excitation current Iex having a frequency f are provided in the excitation core. Even if a direct current flows through the circuit, the difference current can be detected.

本発明に係る電力変換装置では、直流電源の直流出力電圧を電圧検出回路で検出し、直流電源の直流出力電圧が予め定めた基準電圧を超えていると、第1及び第2の付加抵抗を第1及び第2の電流制限用抵抗に対してそれぞれ直列接続するので、直流出力電圧が大きく上昇した場合であっても、第1及び第2の電流制限用抵抗に流れる電流の増加を抑えることができる。それゆえ、直流地絡検出の直流出力電圧の下限を例えばDC250Vと考えて零相電流検出回路の基準値を設定した場合でも、本発明によれば、直流出力電圧が例えばDC500Vに上昇したときに、零相電流検出回路から出力される差電流ΔIが2倍とならず、地絡判定回路で誤判定や誤動作を招くことはない。また、この直流地絡検出回路では、直流出力電圧が例えばDC500Vに上昇しても、零相電流検出回路から出力する差電流ΔIは電圧の上昇に比例し大きくならないため、地絡判定回路の検出感度が低下することはない。一方、直流電源の出力電圧が高くならないときには、第1及び第2の電流制限用抵抗に対して第1及び第2の付加抵抗を直列接続しないので、第1及び第2の付加抵抗が影響を与えることがない。   In the power converter according to the present invention, when the DC output voltage of the DC power supply is detected by the voltage detection circuit and the DC output voltage of the DC power supply exceeds a predetermined reference voltage, the first and second additional resistors are added. Since each of the first and second current limiting resistors is connected in series, the increase in the current flowing through the first and second current limiting resistors can be suppressed even when the DC output voltage is greatly increased. Can do. Therefore, even when the lower limit of the DC output voltage for DC ground fault detection is considered to be DC250V, for example, and the reference value of the zero-phase current detection circuit is set, according to the present invention, when the DC output voltage rises to DC500V, for example. The difference current ΔI output from the zero-phase current detection circuit does not double, and the ground fault determination circuit does not cause erroneous determination or malfunction. Also, in this DC ground fault detection circuit, even if the DC output voltage rises to, for example, DC 500 V, the difference current ΔI output from the zero-phase current detection circuit does not increase in proportion to the voltage rise. Sensitivity is not reduced. On the other hand, when the output voltage of the DC power supply does not increase, the first and second additional resistors are not connected in series with the first and second current limiting resistors, so that the first and second additional resistors have an influence. Never give.

以下、本発明に係る直流地絡検出回路を用いた電力変換装置を実施するための最良の形態の一例を図1乃至図3を参照して詳細に説明する。図1は本例の直流地絡検出回路を用いた電力変換装置のブロック図、図2は本例で用いている零相電流検出回路の概略構成図、図3(A)、(B)及び(C)は図2の動作説明図である。なお、前述した図6と対応する部分には、同一符号を付けて示している。   Hereinafter, an example of the best mode for carrying out a power conversion apparatus using a DC ground fault detection circuit according to the present invention will be described in detail with reference to FIGS. 1 to 3. FIG. 1 is a block diagram of a power converter using the DC ground fault detection circuit of this example, FIG. 2 is a schematic configuration diagram of a zero-phase current detection circuit used in this example, and FIGS. (C) is an operation explanatory view of FIG. Note that portions corresponding to those in FIG. 6 described above are denoted by the same reference numerals.

本例の直流地絡検出回路15を用いた電力変換装置1では、直流地絡検出回路15が、第1の電流制限用抵抗Raに対して、選択的に所定の値の第1の付加抵抗Rcを直列に接続することができるように構成された第1の抵抗付加回路25と、第2の電流制限用抵抗Rbに対して、選択的に所定の値の第2の付加抵抗Rdを直列に接続することができるように構成された第2の抵抗付加回路27とを備えている。   In the power conversion device 1 using the DC ground fault detection circuit 15 of this example, the DC ground fault detection circuit 15 selectively selects a first additional resistor having a predetermined value with respect to the first current limiting resistor Ra. A second additional resistor Rd having a predetermined value is selectively connected in series to the first resistance adding circuit 25 configured to connect Rc in series and the second current limiting resistor Rb. And a second resistance adding circuit 27 configured to be able to be connected.

第1及び第2の抵抗付加回路25,27は、第1及び第2の付加抵抗Rc,Rdと、これら第1及び第2の付加抵抗Rc,Rdに対して並列接続されて指令に応じて開閉制御可能な第1及び第2のスイッチ29,31を有する第1及び第2の短絡回路33,35とを備えた並列回路から構成されて、第1及び第2の電流制限用抵抗Ra,Rbに対して直列接続されている。   The first and second resistance addition circuits 25 and 27 are connected in parallel to the first and second addition resistances Rc and Rd and to the first and second addition resistances Rc and Rd in response to a command. The first and second current limiting resistors Ra, comprising a parallel circuit having first and second short circuits 33, 35 having first and second switches 29, 31 that can be opened and closed. It is connected in series with Rb.

また直流地絡検出回路15は、直流電源3の直流出力電圧を検出する電圧検出回路37と、直流出力電圧が基準電圧発生回路39に予め定めた基準電圧を超えているか否かを判定する電圧判定回路41とを備えている。更に、直流出力電圧が基準電圧を超えている状態を電圧判定回路41が検出しているときには、第1及び第2の付加抵抗Rc,Rdを第1及び第2の電流制限用抵抗Ra,Rbに対してそれぞれ直列接続する指令を第1及び第2の抵抗付加回路25,27に出力し、直流出力電圧が基準電圧を超えていない状態を検出しているときには、第1及び第2の付加抵抗Rc,Rdを第1及び第2の電流制限用抵抗Ra,Rbに対して直列接続しない指令を第1及び第2の抵抗付加回路25,27に出力する指令発生回路43とを備えている。   The DC ground fault detection circuit 15 includes a voltage detection circuit 37 that detects the DC output voltage of the DC power supply 3 and a voltage that determines whether or not the DC output voltage exceeds a reference voltage predetermined in the reference voltage generation circuit 39. And a determination circuit 41. Further, when the voltage determination circuit 41 detects that the DC output voltage exceeds the reference voltage, the first and second additional resistors Rc and Rd are connected to the first and second current limiting resistors Ra and Rb. Are output to the first and second resistance adding circuits 25 and 27, respectively, and when it is detected that the DC output voltage does not exceed the reference voltage, the first and second addition A command generation circuit 43 that outputs a command not to connect the resistors Rc and Rd in series to the first and second current limiting resistors Ra and Rb to the first and second resistance adding circuits 25 and 27; .

開閉制御可能な第1及び第2のスイッチ29,31は、常閉接点を有する電磁リレースイッチの接点で構成することができる。また、指令発生回路43は電磁リレースイッチの励磁回路で構成することができる。このようにすると、電磁リレースイッチの励磁回路に励磁電流が流れていない状態が、指令発生回路43から直列接続しない指令が出力されている状態であり、電磁リレースイッチの励磁回路に励磁電流が流れている状態が、指令発生回路43から直列接続する指令が出力されている状態である。   The first and second switches 29 and 31 that can be controlled to be opened and closed can be configured by contacts of an electromagnetic relay switch having a normally closed contact. The command generation circuit 43 can be constituted by an electromagnetic relay switch excitation circuit. In this case, a state where no excitation current flows in the excitation circuit of the electromagnetic relay switch is a state where a command not connected in series is output from the command generation circuit 43, and an excitation current flows in the excitation circuit of the electromagnetic relay switch. Is a state in which a command for series connection is output from the command generation circuit 43.

この場合、零相電流検出回路21は、図2に示すようにして構成することができる。即ち、第1の電流検出回路17に流れる電流による磁束と第2の電流検出回路19に流れる電流による磁束とが流れる検出コア21aと、該検出コア21aに巻装された検出コイル21eと、検出コア21aと鎖交するように配置された励磁コア21bと、該励磁コア21bに周波数fの励磁電流Iexによる交流磁束を流す励磁コイル21dとを備えて構成されている。検出コイル21eの出力が地絡判定回路23に与えられるようになっている。   In this case, the zero-phase current detection circuit 21 can be configured as shown in FIG. That is, a detection core 21a in which a magnetic flux caused by a current flowing in the first current detection circuit 17 and a magnetic flux caused by a current flowing in the second current detection circuit 19 flow, a detection coil 21e wound around the detection core 21a, and a detection The exciting core 21b is arranged so as to be linked to the core 21a, and the exciting coil 21d is configured to flow an alternating magnetic flux with an exciting current Iex having a frequency f through the exciting core 21b. The output of the detection coil 21e is supplied to the ground fault determination circuit 23.

このような零相電流検出回路21では、第1の電流検出回路17と第2の電流検出回路19には直流が流れているので、図3(A)に示すように磁束の時間変化がない。そこで、図2に示すように検出コア21aに直交する励磁コア21bを設け、この励磁コア21bに巻装した励磁コイル21dに交流電源21cから周波数fの励磁電流Iexを流す。励磁コア21bに対する検出コア21aの直交部(ハッチング部分)に注目すると、励磁電流Iexの増加につれて磁化の方向は周方向から徐々に直角(幅)方向へ回転し、ついには完全に直角方向に揃う。このとき、周方向の磁気抵抗は極端に増加し、検出コア21aの磁束はほぼ零になる。   In such a zero-phase current detection circuit 21, since direct current flows through the first current detection circuit 17 and the second current detection circuit 19, there is no time variation of the magnetic flux as shown in FIG. . Therefore, as shown in FIG. 2, an excitation core 21b orthogonal to the detection core 21a is provided, and an excitation current Iex having a frequency f is supplied from the AC power supply 21c to the excitation coil 21d wound around the excitation core 21b. When attention is paid to the orthogonal portion (hatched portion) of the detection core 21a with respect to the excitation core 21b, the magnetization direction gradually rotates from the circumferential direction to the right angle (width) direction as the excitation current Iex increases, and finally completely aligns in the right angle direction. . At this time, the magnetic resistance in the circumferential direction increases extremely, and the magnetic flux of the detection core 21a becomes almost zero.

従って、磁束は図3(C)に示すように周波数2fで変化することになり、検出コイル21eには差電流ΔIに相当する交流の誘起電圧が発生する。   Accordingly, the magnetic flux changes at a frequency 2f as shown in FIG. 3C, and an alternating induced voltage corresponding to the difference current ΔI is generated in the detection coil 21e.

この誘起電圧は、地絡判定回路23に与えられる。   This induced voltage is given to the ground fault determination circuit 23.

このような構成の電力変換装置1では、直流地絡検出回路15が、太陽電池からなる直流電源3の直流出力電圧を電圧検出回路37で検出し、直流電源3の直流出力電圧が予め定めた基準電圧を超えていると、指令発生回路43が第1及び第2の付加抵抗Rc,Rdを第1及び第2の電流制限用抵抗Ra,Rbに対してそれぞれ直列接続する指令を第1及び第2の抵抗付加回路25,27に出力して第1及び第2の電流制限用抵抗Ra,Rbにそれぞれ第1及び第2の付加抵抗Rc,Rdを直列接続するので、第1及び第2の電流制限用抵抗Ra,Rbに流れる電流の増加を抑えることができる。その結果、太陽電池の直流出力電圧の下限を例えばDC250Vのときを基準にして、零相電流検出回路21の基準値を定めた場合であっても、日射量が大きくなって太陽電池の直流出力電圧が例えばDC500Vに上昇したときには、第1及び第2の抵抗付加回路25,27が付加されることにより、零相電流検出回路21から出力される差電流ΔIが極端に大きくなることはない。それゆえ、地絡判定回路23で誤判定や誤動作が発生することはない。一方、直流電源3の出力電圧が高くならないときには、第1の電流制限用抵抗Raに対して直列に付加抵抗Rcが接続されることがなく、また第2の電流制限用抵抗Rbに対しても直列に付加抵抗Rdが接続されることがない。したがって、このような場合に、付加抵抗Rc,Rdの存在が誤判定や誤動作を引き起こすことはない。   In the power conversion device 1 having such a configuration, the DC ground fault detection circuit 15 detects the DC output voltage of the DC power source 3 made of a solar battery with the voltage detection circuit 37, and the DC output voltage of the DC power source 3 is predetermined. When the reference voltage is exceeded, the command generation circuit 43 issues a command to connect the first and second additional resistors Rc and Rd in series with the first and second current limiting resistors Ra and Rb, respectively. Since the first and second additional resistors Rc and Rd are connected in series to the first and second current limiting resistors Ra and Rb, which are output to the second resistor adding circuits 25 and 27, respectively, the first and second Increase in current flowing through the current limiting resistors Ra and Rb can be suppressed. As a result, even if the reference value of the zero-phase current detection circuit 21 is determined based on the lower limit of the DC output voltage of the solar cell being, for example, DC 250 V, the amount of solar radiation is increased and the DC output of the solar cell is increased. When the voltage rises to, for example, DC 500 V, the first and second resistance addition circuits 25 and 27 are added, so that the difference current ΔI output from the zero-phase current detection circuit 21 does not become extremely large. Therefore, no erroneous determination or malfunction occurs in the ground fault determination circuit 23. On the other hand, when the output voltage of the DC power supply 3 does not increase, the additional resistor Rc is not connected in series to the first current limiting resistor Ra, and also to the second current limiting resistor Rb. The additional resistor Rd is not connected in series. Therefore, in such a case, the presence of the additional resistors Rc and Rd does not cause erroneous determination or malfunction.

本例では、第1及び第2の抵抗付加回路25,27を、付加抵抗Rc,Rdと該付加抵抗Rc,Rdに対して並列接続されて指令に応じて開閉制御可能なスイッチ29,31を有する短絡回路33,35とを備えた並列回路で構成している。そしてこの並列回路を、第1及び第2の電流制限用抵抗Ra,Rbに対して直列接続している。このような構成を採用すると、スイッチ9,31の開閉だけで、第1及び第2の電流制限用抵抗Ra,Rbに対する付加抵抗Rc,Rdの直列接続と非接続状態を容易に得ることができる。   In this example, the first and second resistance addition circuits 25 and 27 are connected in parallel to the additional resistances Rc and Rd and the additional resistances Rc and Rd, and switches 29 and 31 that can be controlled to open and close according to commands. It is comprised with the parallel circuit provided with the short circuit 33,35 which has. The parallel circuit is connected in series to the first and second current limiting resistors Ra and Rb. By adopting such a configuration, it is possible to easily obtain a series connection and a non-connection state of the additional resistors Rc and Rd with respect to the first and second current limiting resistors Ra and Rb only by opening and closing the switches 9 and 31. .

図4は、直流入力電圧と、差電流との関係を示す図である。この図は、直流出力電圧が設定値より上昇した場合の本例の構成と従来の構成の場合の差異を説明したものである。   FIG. 4 is a diagram illustrating the relationship between the DC input voltage and the difference current. This figure explains the difference between the configuration of this example when the DC output voltage rises above the set value and the conventional configuration.

従来の構成の場合は、太陽電池の直流出力電圧を例えばDC250Vと設定した場合、日射量や温度が大きくなって太陽電池の直流出力電圧が例えばDC500Vに上昇すると、差電流ΔIが地絡が発生していないにも拘わらず基準値を超えて大きくなり、誤検出を招く問題点がある。しかし、本発明の構成の場合には、太陽電池の直流出力電圧が例えばDC500Vに上昇すると、第1及び第2の電流制限用抵抗Ra,Rbに付加抵抗Rc,Rdが直列接続され、差電流ΔIが2倍程度に大きくなることはなく、誤検出を招くことはない。   In the case of the conventional configuration, when the DC output voltage of the solar cell is set to DC250V, for example, if the solar radiation amount or the temperature increases and the DC output voltage of the solar cell rises to DC500V, for example, the difference current ΔI causes a ground fault. In spite of this, there is a problem that it becomes larger than the reference value and causes erroneous detection. However, in the case of the configuration of the present invention, when the DC output voltage of the solar cell rises to, for example, DC500V, the additional resistors Rc and Rd are connected in series to the first and second current limiting resistors Ra and Rb, and the differential current ΔI does not increase by a factor of about 2, and erroneous detection is not caused.

図5は本発明に係る直流地絡検出回路を用いた電力変換装置を実施する他の例のブロック図である。なお、図1と対応する部分には、図1で用いた符号に100を加えた符号を用いて示している。本例の直流地絡検出回路115を用いた電力変換装置101は、太陽電池等の直流電源103から出力される直流電力を交流電力に変換する電力変換器105と、この電力変換器105と図示ない交流負荷との間に設けられた絶縁トランス109と、電力変換器105に制御信号を出力する制御信号発生回路107と、直流電源103の出力側で直流地絡が発生したことを検出すると制御信号発生回路107からの制御指令の出力の停止を行わせる直流地絡検出回路105とを備えている。   FIG. 5 is a block diagram of another example implementing a power converter using a DC ground fault detection circuit according to the present invention. Note that portions corresponding to those in FIG. 1 are indicated by using reference numerals obtained by adding 100 to the reference numerals used in FIG. A power conversion device 101 using the DC ground fault detection circuit 115 of the present example includes a power converter 105 that converts DC power output from a DC power source 103 such as a solar battery into AC power, and the power converter 105 illustrated in the figure. Control is performed when it is detected that a DC ground fault has occurred on the output side of the DC power supply 103, and an isolation transformer 109 provided between the DC power supply 103 and the isolation transformer 109 provided between the DC power supply 103 and the insulation transformer 109. A DC ground fault detection circuit 105 for stopping output of a control command from the signal generation circuit 107.

直流地絡検出回路115は、第1の電流制限用抵抗Raと、この第1の電流制限用抵抗Raに対して、選択的に所定の値の第1の付加抵抗Rcを直列に接続することができるように構成された第1の抵抗付加回路125とを備えて、出力電圧が変動する直流電源103の正極端子Pと接地点Eとの間に設けられた第1の電流回路117を備えている。また、第2の電流制限用抵抗Rbと、この第2の電流制限用抵抗Rbに対して、選択的に所定の値の第2の付加抵抗Rdを直列に接続することができるように構成された第2の抵抗付加回路127とを備えて、直流電源103の負極端子Nと接地点Eとの間に設けられた第2の電流回路119を備えている。また、直流電源103の直流出力電圧を検出する電圧検出回路137と、直流出力電圧が予め定めた基準電圧を超えているか否かを判定する電圧判定回路141とを備えている。また、直流出力電圧が基準電圧を超えている状態を電圧判定回路141が検出しているときには、第1及び第2の付加抵抗Rc,Rdを第1及び第2の電流制限用抵抗Ra,Rbに対してそれぞれ直列接続する指令を第1及び第2の抵抗付加回路125,127に出力し、直流出力電圧が基準電圧を超えていない状態を検出しているときには、第1及び第2の付加抵抗Rc,Rdを第1及び第2の電流制限用抵抗Ra,Rbに対して直列接続しない指令を第1及び第2の抵抗付加回路125,127に出力する指令発生回路143を備えている。また、第1及び第2の電流回路117,119と接地点Eとの間に設けられた零相電流検出回路121を備えている。本例では、接地点E側で第1及び第2の電流回路117,119を相互に接続している接続点120と接地点Eとをつなぐ接地電路144に零相電流検出回路121が設けられている。さらに、零相電流検出回路121の出力に基づいて直流地絡が発生したと判定する地絡判定回路123を備えている。   The DC ground fault detection circuit 115 selectively connects a first current limiting resistor Ra and a first additional resistor Rc having a predetermined value in series to the first current limiting resistor Ra. And a first current circuit 117 provided between the positive terminal P of the DC power supply 103 whose output voltage varies and the ground point E. ing. In addition, the second current limiting resistor Rb and the second additional resistor Rd having a predetermined value can be selectively connected in series to the second current limiting resistor Rb. And a second current adding circuit 127, and a second current circuit 119 provided between the negative terminal N of the DC power source 103 and the ground point E. In addition, a voltage detection circuit 137 that detects a DC output voltage of the DC power supply 103 and a voltage determination circuit 141 that determines whether or not the DC output voltage exceeds a predetermined reference voltage. When the voltage determination circuit 141 detects that the DC output voltage exceeds the reference voltage, the first and second additional resistors Rc and Rd are connected to the first and second current limiting resistors Ra and Rb. Are output to the first and second resistance adding circuits 125 and 127, respectively, and when it is detected that the DC output voltage does not exceed the reference voltage, the first and second addition A command generation circuit 143 is provided for outputting a command to the first and second resistance adding circuits 125 and 127 that the resistors Rc and Rd are not connected in series to the first and second current limiting resistors Ra and Rb. Further, a zero-phase current detection circuit 121 provided between the first and second current circuits 117 and 119 and the ground point E is provided. In this example, a zero-phase current detection circuit 121 is provided on the grounding circuit 144 that connects the grounding point E and the connection point 120 that connects the first and second current circuits 117 and 119 to each other on the grounding point E side. ing. Furthermore, a ground fault determination circuit 123 that determines that a DC ground fault has occurred based on the output of the zero-phase current detection circuit 121 is provided.

この場合、直流電源103の負極端子Nに直流地絡が発生した場合の回路構成を破線で示している。   In this case, the circuit configuration when a DC ground fault occurs at the negative terminal N of the DC power supply 103 is indicated by a broken line.

このような電力変換装置101でも、直流地絡が発生したときのみ接地電路144に地絡電流が流れ、零相電流検出回路121がこれを検出し、この零相電流検出回路121の出力に基づいて地絡判定回路123が直流地絡が発生したと判定する。このとき太陽電池等の直流電源103の出力電圧が下限の直流出力電圧DC250Vより高いDC500Vに上昇していると、電圧検出回路137を経て電圧判定回路141がこれを判定し、指令発生回路143の指令で第1の電流制限用抵抗Raに第1の付加抵抗Rcが直列接続され、また第2の電流制限用抵抗Rbに第2の付加抵抗Rdが直列接続された状態になる。これにより地絡電流を減少させることができる。   Even in such a power converter 101, a ground fault current flows through the grounding circuit 144 only when a DC ground fault occurs, and the zero phase current detection circuit 121 detects this, and based on the output of the zero phase current detection circuit 121. The ground fault determination circuit 123 determines that a DC ground fault has occurred. At this time, if the output voltage of the DC power source 103 such as a solar cell has risen to DC500V higher than the lower limit DC output voltage DC250V, the voltage determination circuit 141 determines this via the voltage detection circuit 137, and the command generation circuit 143 According to the command, the first additional resistor Rc is connected in series to the first current limiting resistor Ra, and the second additional resistor Rd is connected in series to the second current limiting resistor Rb. As a result, the ground fault current can be reduced.

また、出力電圧が変動する直流電源3,103は太陽電池に限らず、出力電圧が変動する直流電源3,103であれば同様に本発明を適用することができる。   The DC power sources 3 and 103 whose output voltage fluctuates are not limited to solar cells, and the present invention can be applied to any DC power sources 3 and 103 whose output voltage fluctuates.

本発明に係る直流地絡検出回路を用いた電力変換装置の一例を示すブロック図である。It is a block diagram which shows an example of the power converter device using the direct-current ground fault detection circuit which concerns on this invention. 本例で用いている零相電流検出回路の動作を示す概略構成図である。It is a schematic block diagram which shows operation | movement of the zero phase current detection circuit used in this example. (A)、(B)及び(C)は図2の動作説明図である。(A), (B), and (C) are operation | movement explanatory drawings of FIG. 従来例と本発明例との直流入力電圧と、差電流との関係を示す図である。It is a figure which shows the relationship between the DC input voltage of a prior art example and this invention example, and a difference current. 本発明に係る直流地絡検出回路を用いた電力変換装置の他の例を示すブロック図である。It is a block diagram which shows the other example of the power converter device using the direct-current ground fault detection circuit which concerns on this invention. 従来の直流地絡検出回路を用いた電力変換装置を示すブロック図である。It is a block diagram which shows the power converter device using the conventional DC ground fault detection circuit. 従来の直流地絡検出回路を用いた電力変換装置で直流地絡が発生した状態を示すブロック図である。It is a block diagram which shows the state in which the DC ground fault generate | occur | produced with the power converter device using the conventional DC ground fault detection circuit.

符号の説明Explanation of symbols

1 電力変換装置
3 直流電源
5 電力変換器
7 制御信号発生回路
9 絶縁トランス
11 開閉器
13 開閉器駆動回路
15 直流地絡検出回路
17 第1の電流検出回路
19 第2の電流検出回路
21 零相電流検出回路
23 地絡判定回路
25 第1の抵抗付加回路
27 第2の抵抗付加回路
29,31 第1及び第2のスイッチ
33,35 第1及び第2の短絡回路
37 電圧検出回路
39 基準電圧発生回路
41 電圧判定回路
43 指令発生回路
Ra,Rb 第1及び第2の電流制限用抵抗
Rc,Rd 第1及び第2の付加抵抗
DESCRIPTION OF SYMBOLS 1 Power converter 3 DC power supply 5 Power converter 7 Control signal generation circuit 9 Isolation transformer 11 Switch 13 Switch drive circuit 15 DC ground fault detection circuit 17 1st current detection circuit 19 2nd current detection circuit 21 Zero phase Current detection circuit 23 Ground fault determination circuit 25 First resistance addition circuit 27 Second resistance addition circuit 29, 31 First and second switches 33, 35 First and second short circuit 37 Voltage detection circuit 39 Reference voltage Generating circuit 41 Voltage determining circuit 43 Command generating circuit Ra, Rb First and second current limiting resistors Rc, Rd First and second additional resistors

Claims (5)

太陽電池等の直流電源から出力される直流電力を交流電力に変換する電力変換器と、前記電力変換器と負荷との間に設けられた絶縁トランスと、前記電力変換器に制御信号を出力する制御信号発生回路と、前記直流電源の出力側で直流地絡が発生したことを検出すると前記制御信号発生回路からの前記制御指令の出力の停止を行わせる直流地絡検出回路とを備え、
前記直流地絡検出回路が、
第1の電流制限用抵抗を備えて、出力電圧が変動する前記直流電源の正極端子と接地点との間に設けられた第1の電流検出回路と、
第2の電流制限用抵抗を備えて、前記直流電源の負極端子と前記接地点との間に設けられた第2の電流検出回路と、
前記第1の電流検出回路を流れる第1の検出電流と前記第2の電流検出回路を流れる第2の検出電流との差電流を検出する零相電流検出回路と、
前記差電流が予め定めた基準値を超えると、直流地絡が発生したと判定する地絡判定回路とを備えている電力変換装置であって、
前記直流地絡検出回路が、
前記第1の電流制限用抵抗に対して、選択的に所定の値の第1の付加抵抗を直列に接続することができるように構成された第1の抵抗付加回路と、
前記第2の電流制限用抵抗に対して、選択的に所定の値の第2の付加抵抗を直列に接続することができるように構成された第2の抵抗付加回路と、
前記直流電源の直流出力電圧を検出する電圧検出回路と、
前記直流出力電圧が予め定めた基準電圧を超えているか否かを判定する電圧判定回路と、
前記直流出力電圧が前記基準電圧を超えている状態を前記電圧判定回路が検出しているときには、前記第1及び第2の付加抵抗を前記第1及び第2の電流制限用抵抗に対してそれぞれ直列接続する指令を前記第1及び第2の抵抗付加回路に出力し、前記直流出力電圧が前記基準電圧を超えていない状態を検出しているときには、前記第1及び第2の付加抵抗を前記第1及び第2の電流制限用抵抗に対して直列接続しない指令を前記第1及び第2の抵抗付加回路に出力する指令発生回路とを備えていることを特徴とする電力変換装置。
A power converter that converts DC power output from a DC power source such as a solar battery into AC power, an isolation transformer provided between the power converter and a load, and a control signal is output to the power converter A control signal generation circuit, and a DC ground fault detection circuit for stopping the output of the control command from the control signal generation circuit when detecting that a DC ground fault has occurred on the output side of the DC power supply,
The DC ground fault detection circuit is
A first current detection circuit comprising a first current limiting resistor and provided between the positive terminal of the DC power supply and the ground point, the output voltage of which varies;
A second current detection circuit comprising a second current limiting resistor and provided between the negative terminal of the DC power supply and the ground point;
A zero-phase current detection circuit for detecting a difference current between a first detection current flowing through the first current detection circuit and a second detection current flowing through the second current detection circuit;
When the difference current exceeds a predetermined reference value, a power converter including a ground fault determination circuit that determines that a DC ground fault has occurred,
The DC ground fault detection circuit is
A first resistance adding circuit configured to selectively connect a first additional resistor having a predetermined value in series with the first current limiting resistor;
A second resistance addition circuit configured so that a second additional resistance having a predetermined value can be selectively connected in series to the second current limiting resistance;
A voltage detection circuit for detecting a DC output voltage of the DC power supply;
A voltage determination circuit for determining whether or not the DC output voltage exceeds a predetermined reference voltage;
When the voltage determination circuit detects a state where the DC output voltage exceeds the reference voltage, the first and second additional resistors are respectively connected to the first and second current limiting resistors. A command for series connection is output to the first and second resistance adding circuits, and when it is detected that the DC output voltage does not exceed the reference voltage, the first and second additional resistors are A power conversion apparatus comprising: a command generation circuit that outputs a command not connected in series to the first and second current limiting resistors to the first and second resistance addition circuits.
太陽電池等の直流電源から出力される直流電力を交流電力に変換する電力変換器と、前記電力変換器と負荷との間に設けられた絶縁トランスと、前記絶縁トランスの二次側に設けられた開閉器と、前記開閉器を駆動する開閉器駆動回路と、前記電力変換器と前記開閉器駆動回路に制御信号を出力する制御信号発生回路と、前記直流電源の出力側で直流地絡が発生したことを検出すると前記制御信号発生回路からの前記制御指令の出力の停止と前記開閉器駆動回路からの開指令の送出を行わせる直流地絡検出回路とを備え、
前記直流地絡検出回路が、
第1の電流制限用抵抗を備えて、出力電圧が変動する前記直流電源の正極端子と接地点との間に設けられた第1の電流検出回路と、
第2の電流制限用抵抗を備えて、前記直流電源の負極端子と前記接地点との間に設けられた第2の電流検出回路と、
前記第1の電流検出回路を流れる第1の検出電流と前記第2の電流検出回路を流れる第2の検出電流との差電流を検出する零相電流検出回路と、
前記差電流が予め定めた基準値を超えると、直流地絡が発生したと判定する地絡判定回路とを備えている電力変換装置であって、
前記直流地絡検出回路が、
前記第1の電流制限用抵抗に対して、選択的に所定の値の第1の付加抵抗を直列に接続することができるように構成された第1の抵抗付加回路と、
前記第2の電流制限用抵抗に対して、選択的に所定の値の第2の付加抵抗を直列に接続することができるように構成された第2の抵抗付加回路と、
前記直流電源の直流出力電圧を検出する電圧検出回路と、
前記直流出力電圧が予め定めた基準電圧を超えているか否かを判定する電圧判定回路と、
前記直流出力電圧が前記基準電圧を超えている状態を前記電圧判定回路が検出しているときには、前記第1及び第2の付加抵抗を前記第1及び第2の電流制限用抵抗に対してそれぞれ直列接続する指令を前記第1及び第2の抵抗付加回路に出力し、前記直流出力電圧が前記基準電圧を超えていない状態を検出しているときには、前記第1及び第2の付加抵抗を前記第1及び第2の電流制限用抵抗に対して直列接続しない指令を前記第1及び第2の抵抗付加回路に出力する指令発生回路とを備えていることを特徴とする電力変換装置。
A power converter that converts DC power output from a DC power source such as a solar battery into AC power, an insulating transformer provided between the power converter and a load, and a secondary side of the insulating transformer A switch, a switch drive circuit for driving the switch, a control signal generating circuit for outputting a control signal to the power converter and the switch drive circuit, and a DC ground fault on the output side of the DC power supply. A DC ground fault detection circuit for stopping the output of the control command from the control signal generating circuit and sending the open command from the switch drive circuit when detecting that it has occurred,
The DC ground fault detection circuit is
A first current detection circuit comprising a first current limiting resistor and provided between the positive terminal of the DC power supply and the ground point, the output voltage of which varies;
A second current detection circuit comprising a second current limiting resistor and provided between the negative terminal of the DC power supply and the ground point;
A zero-phase current detection circuit for detecting a difference current between a first detection current flowing through the first current detection circuit and a second detection current flowing through the second current detection circuit;
When the difference current exceeds a predetermined reference value, a power converter including a ground fault determination circuit that determines that a DC ground fault has occurred,
The DC ground fault detection circuit is
A first resistance adding circuit configured to selectively connect a first additional resistor having a predetermined value in series with the first current limiting resistor;
A second resistance addition circuit configured so that a second additional resistance having a predetermined value can be selectively connected in series to the second current limiting resistance;
A voltage detection circuit for detecting a DC output voltage of the DC power supply;
A voltage determination circuit for determining whether or not the DC output voltage exceeds a predetermined reference voltage;
When the voltage determination circuit detects a state where the DC output voltage exceeds the reference voltage, the first and second additional resistors are respectively connected to the first and second current limiting resistors. A command for series connection is output to the first and second resistance adding circuits, and when it is detected that the DC output voltage does not exceed the reference voltage, the first and second additional resistors are A power conversion apparatus comprising: a command generation circuit that outputs a command not connected in series to the first and second current limiting resistors to the first and second resistance addition circuits.
太陽電池等の直流電源から出力される直流電力を交流電力に変換する電力変換器と、前記電力変換器と負荷との間に設けられた絶縁トランスと、前記電力変換器に制御信号を出力する制御信号発生回路と、前記直流電源の出力側で直流地絡が発生したことを検出すると前記制御信号発生回路からの前記制御指令の出力の停止を行わせる直流地絡検出回路とを備え、
前記直流地絡検出回路が、
第1の電流制限用抵抗を備えて、出力電圧が変動する直流電源の正極端子と接地点との間に設けられた第1の電流検出回路と、
第2の電流制限用抵抗を備えて、前記直流電源の負極端子と前記接地点との間に設けられた第2の電流検出回路と、
前記第1の電流検出回路を流れる第1の検出電流と前記第2の電流検出回路を流れる第2の検出電流との差電流を検出する零相電流検出回路と、
前記差電流が予め定めた基準値を超えると、直流地絡が発生したと判定する地絡判定回路とを備えている電力変換装置であって、
前記直流地絡検出回路が、
前記第1の電流制限用抵抗に対して直列に接続された所定の値の第1の付加抵抗と、前記第1の付加抵抗に対して並列接続されて指令に応じて開閉制御可能な第1のスイッチを有する第1の短絡回路とを備えた第1の抵抗付加回路と、
前記第2の電流制限用抵抗に対して直列に接続された所定の値の第2の付加抵抗と、前記第2の付加抵抗に対して並列接続されて指令に応じて開閉制御可能な第2のスイッチとを有する第2の短絡回路とを備えた第2の抵抗付加回路と、
前記直流電源の直流出力電圧を検出する電圧検出回路と、
前記直流出力電圧が予め定めた基準電圧を超えているか否かを判定する電圧判定回路と、
前記直流出力電圧が前記基準電圧を超えている状態を前記電圧判定回路が検出しているときには、前記第1及び第2の付加抵抗を前記第1及び第2の電流制限用抵抗に対してそれぞれ直列接続した状態を維持するように前記第1及び第2の短絡回路の前記第1及び第2のスイッチを開く指令を前記第1及び第2の抵抗付加回路に出力し、前記直流出力電圧が前記基準電圧を超えていない状態を検出しているときには、前記第1及び第2の電流制限用抵抗に対して直列接続されている前記第1及び第2の付加抵抗を短絡するように前記第1及び第2の短絡回路の前記第1及び第2のスイッチを閉じる指令を前記第1及び第2の抵抗付加回路に出力する指令発生回路とを備えていることを特徴とする電力変換装置。
A power converter that converts DC power output from a DC power source such as a solar battery into AC power, an isolation transformer provided between the power converter and a load, and a control signal is output to the power converter A control signal generation circuit, and a DC ground fault detection circuit for stopping the output of the control command from the control signal generation circuit when detecting that a DC ground fault has occurred on the output side of the DC power supply,
The DC ground fault detection circuit is
A first current detection circuit including a first current limiting resistor and provided between a positive terminal of a direct current power source and a ground point, the output voltage of which varies;
A second current detection circuit comprising a second current limiting resistor and provided between the negative terminal of the DC power supply and the ground point;
A zero-phase current detection circuit that detects a difference current between a first detection current flowing through the first current detection circuit and a second detection current flowing through the second current detection circuit;
When the difference current exceeds a predetermined reference value, a power converter including a ground fault determination circuit that determines that a DC ground fault has occurred,
The DC ground fault detection circuit is
A first additional resistor having a predetermined value connected in series to the first current limiting resistor and a first additional resistor connected in parallel to the first additional resistor and capable of opening and closing in response to a command. A first resistance adding circuit comprising: a first short circuit having a switch;
A second additional resistor having a predetermined value connected in series to the second current limiting resistor and a second additional resistor connected in parallel to the second additional resistor and capable of opening and closing in response to a command. A second short circuit having a second switch, and a second resistance adding circuit,
A voltage detection circuit for detecting a DC output voltage of the DC power supply;
A voltage determination circuit for determining whether or not the DC output voltage exceeds a predetermined reference voltage;
When the voltage determination circuit detects a state where the DC output voltage exceeds the reference voltage, the first and second additional resistors are respectively connected to the first and second current limiting resistors. A command to open the first and second switches of the first and second short circuit so as to maintain the state of being connected in series is output to the first and second resistance adding circuits, and the DC output voltage is When detecting a state in which the reference voltage is not exceeded, the first and second additional resistors connected in series with the first and second current limiting resistors are short-circuited. And a command generation circuit for outputting a command to close the first and second switches of the first and second short circuit to the first and second resistance adding circuits.
前記零相電流検出回路は、前記第1の電流検出回路に流れる電流による磁束と前記第2の電流検出回路に流れる電流による磁束とが流れる検出コアと、該検出コアに巻装された検出コイルと、前記検出コアと鎖交するように配置された励磁コアと、前記励磁コアに周波数fの励磁電流Iexによる交流磁束を流す励磁コイルとを備えている請求項1に記載の電力変換装置。   The zero-phase current detection circuit includes a detection core through which a magnetic flux caused by a current flowing through the first current detection circuit and a magnetic flux caused by a current flowing through the second current detection circuit, and a detection coil wound around the detection core The power conversion device according to claim 1, further comprising: an excitation core disposed so as to interlink with the detection core; and an excitation coil that causes an alternating magnetic flux generated by an excitation current Iex having a frequency f to flow through the excitation core. 太陽電池等の直流電源から出力される直流電力を交流電力に変換する電力変換器と、前記電力変換器と負荷との間に設けられた絶縁トランスと、前記電力変換器に制御信号を出力する制御信号発生回路と、前記直流電源の出力側で直流地絡が発生したことを検出すると前記制御信号発生回路からの前記制御指令の出力の停止を行わせる直流地絡検出回路とを備えた電力変換装置であって、
前記直流地絡検出回路が、
第1の電流制限用抵抗と、前記第1の電流制限用抵抗に対して、選択的に所定の値の第1の付加抵抗を直列に接続することができるように構成された第1の抵抗付加回路とを備えて、出力電圧が変動する前記直流電源の正極端子と接地点との間に設けられた第1の電流回路と、
第2の電流制限用抵抗と、前記第2の電流制限用抵抗に対して、選択的に所定の値の第2の付加抵抗を直列に接続することができるように構成された第2の抵抗付加回路とを備えて、前記直流電源の負極端子と前記接地点との間に設けられた第2の電流回路と、
前記直流電源の直流出力電圧を検出する電圧検出回路と、
前記直流出力電圧が予め定めた基準電圧を超えているか否かを判定する電圧判定回路と、
前記直流出力電圧が前記基準電圧を超えている状態を前記電圧判定回路が検出しているときには、前記第1及び第2の付加抵抗を前記第1及び第2の電流制限用抵抗に対してそれぞれ直列接続する指令を前記第1及び第2の抵抗付加回路に出力し、前記直流出力電圧が前記基準電圧を超えていない状態を検出しているときには、前記第1及び第2の付加抵抗を前記第1及び第2の電流制限用抵抗に対して直列接続しない指令を前記第1及び第2の抵抗付加回路に出力する指令発生回路と、
前記第1及び第2の電流回路と前記接地点との間に設けられた零相電流検出回路と、
前記零相電流検出回路の出力に基づいて直流地絡が発生したと判定する地絡判定回路とを備えていることを特徴とする電力変換装置。
A power converter that converts DC power output from a DC power source such as a solar battery into AC power, an isolation transformer provided between the power converter and a load, and a control signal is output to the power converter A power comprising: a control signal generation circuit; and a DC ground fault detection circuit that stops the output of the control command from the control signal generation circuit upon detecting that a DC ground fault has occurred on the output side of the DC power supply A conversion device,
The DC ground fault detection circuit is
A first resistor configured such that a first additional resistor having a predetermined value can be selectively connected in series to the first current limiting resistor and the first current limiting resistor. A first current circuit provided between the positive terminal of the DC power supply and the ground point, the output voltage of which varies,
A second resistor configured such that a second additional resistor having a predetermined value can be selectively connected in series to the second current limiting resistor and the second current limiting resistor. A second current circuit provided between the negative terminal of the DC power supply and the ground point, and an additional circuit;
A voltage detection circuit for detecting a DC output voltage of the DC power supply;
A voltage determination circuit for determining whether or not the DC output voltage exceeds a predetermined reference voltage;
When the voltage determination circuit detects a state in which the DC output voltage exceeds the reference voltage, the first and second additional resistors are respectively connected to the first and second current limiting resistors. A command for series connection is output to the first and second resistance adding circuits, and when it is detected that the DC output voltage does not exceed the reference voltage, the first and second additional resistors are A command generating circuit for outputting a command not connected in series to the first and second current limiting resistors to the first and second resistance adding circuits;
A zero-phase current detection circuit provided between the first and second current circuits and the ground point;
A power converter comprising: a ground fault determination circuit that determines that a DC ground fault has occurred based on an output of the zero-phase current detection circuit.
JP2006073861A 2006-03-17 2006-03-17 Power converter Active JP4101267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073861A JP4101267B2 (en) 2006-03-17 2006-03-17 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073861A JP4101267B2 (en) 2006-03-17 2006-03-17 Power converter

Publications (2)

Publication Number Publication Date
JP2007252123A JP2007252123A (en) 2007-09-27
JP4101267B2 true JP4101267B2 (en) 2008-06-18

Family

ID=38595842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073861A Active JP4101267B2 (en) 2006-03-17 2006-03-17 Power converter

Country Status (1)

Country Link
JP (1) JP4101267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100548598C (en) * 2004-01-13 2009-10-14 埃奇克拉夫特公司 Efficient food slicer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5507297B2 (en) * 2010-03-10 2014-05-28 中国電力株式会社 Ground fault detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100548598C (en) * 2004-01-13 2009-10-14 埃奇克拉夫特公司 Efficient food slicer

Also Published As

Publication number Publication date
JP2007252123A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
AU2008280932B2 (en) Charging monitor
JP5021789B2 (en) Abnormal current detection circuit for circuit breaker
CN102395891B (en) Method and device for the isolation monitoring of an it network
EP2632010B1 (en) Leakage current detector for AC and DC systems
JP6173118B2 (en) Earth leakage breaker
CN104488183A (en) System for measuring soft starter current and method of making same
US10014679B2 (en) Electrical switching apparatus including alternating current electronic trip circuit with arc fault detection circuit and power supply
CN103026578A (en) Charger for electric propulsion vehicles and leakage confirmation method applied to same
JP2009089574A (en) Ground-fault circuit interrupter
JP4101267B2 (en) Power converter
JP6362837B2 (en) Zero-phase current transformer, ground fault current detection device, power conditioner, and zero-phase current transformer failure detection method
JP4742232B2 (en) Earth leakage breaker
JP2009033789A (en) Charging monitor
JP2009033790A (en) Charging monitor
JP4129276B2 (en) How to detect thyristor turn-off
JP4948316B2 (en) limiter
JP6003691B2 (en) Power supply
EP2738784A1 (en) Magnetizing inrush current suppression device
JP4996908B2 (en) Magnetic contactor for adjustment
JP2008181748A (en) Electric power limiter
JP2011253744A (en) Circuit breaker capable of detecting poor contact
CN110058153B (en) Relay monitoring device
JP2011135685A (en) Vehicle power converter
JP5021420B2 (en) 3-phase earth leakage circuit breaker
JP2020112386A (en) Sensor abnormality detection device and method, distributed power supply unit, and computer program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4101267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250