JP4100463B2 - Method for producing sponge platinum - Google Patents

Method for producing sponge platinum Download PDF

Info

Publication number
JP4100463B2
JP4100463B2 JP36661799A JP36661799A JP4100463B2 JP 4100463 B2 JP4100463 B2 JP 4100463B2 JP 36661799 A JP36661799 A JP 36661799A JP 36661799 A JP36661799 A JP 36661799A JP 4100463 B2 JP4100463 B2 JP 4100463B2
Authority
JP
Japan
Prior art keywords
chlorine
sponge platinum
platinum
sponge
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36661799A
Other languages
Japanese (ja)
Other versions
JP2001181749A5 (en
JP2001181749A (en
Inventor
康勝 佐々木
倫永 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP36661799A priority Critical patent/JP4100463B2/en
Publication of JP2001181749A publication Critical patent/JP2001181749A/en
Publication of JP2001181749A5 publication Critical patent/JP2001181749A5/ja
Application granted granted Critical
Publication of JP4100463B2 publication Critical patent/JP4100463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塩化白金酸アンモニウムからスポンジ白金を製造するスポンジ白金の製造方法に係り、特に、スポンジ白金に付着した塩素を効率的に除去して高品位のスポンジ白金を得る技術に関する。
【0002】
【従来の技術】
従来、スポンジ白金の製造に際しては、塩化白金酸アンモニウムを400℃程度で加熱分解し、さらにそれを水素ガス中で800℃程度に加熱していた。この最後の加熱は、白金以外の成分特に塩素を水素で還元するとともに、スポンジを構成する白金フィラメントどうしを焼結させて取扱い易くするために行ってた。
【0003】
【発明が解決しようとする課題】
ところで、上記のような方法で製造されるスポンジ白金は、塩素を0.1〜0.5重量%含有しているが、塩素品位をもっと低くして商品価値を高めたいとの要請が強い。また、上記従来技術では、2回目の加熱を水素ガス雰囲気で行っているが、水素ガスは取扱いに注意を要するため使用を避けたいとの要請もあった。したがって、本発明は、水素還元をすることなく塩素品位を飛躍的に低くすることができ、例えば塩素品位を0.01重量%以下にすることが可能なスポンジ白金の製造方法を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明者等は、スポンジ白金に塩素が含有される原因について検討した結果、最終の加熱において蒸発した塩素がスポンジ白金のフィラメントの表面に再び付着するのが原因であるとの推論に達した。そこで、加熱後のスポンジ白金を水洗したところ、塩素品位が飛躍的に低下することを見い出した。
【0005】
本発明の第1のスポンジ白金製造方法は、上記知見に基づいてなされたもので、塩化白金酸アンモニウムを350〜450℃で加熱して塩素分およびアンモニア分を分解し、次いで、さらに昇温して750〜850℃で3〜6時間保持してスポンジ白金を加熱することで塩素分を蒸発させ、次いで、上記スポンジ白金を水洗することを特徴としている。
【0006】
本発明によれば、1回目の加熱で分解した塩素分およびアンモニア分が2回目の加熱で蒸発する。その際、蒸発した塩素がスポンジ白金のフィラメントに再付着するが、スポンジ白金を水洗することで塩素を効率的に除去することができる。ここで、スポンジ白金と水との比率は、300g/l以下であることが望ましい。比率が300g/lを超えると水洗の効果が十分でないからである。
なお、本発明では、スポンジ白金を水洗後に速やかに乾燥することが不純物の混入を防ぐ上で望ましい。
【0007】
次に、本発明者等は、2回目の加熱において蒸発した塩素がスポンジ白金のフィラメントに再付着するのを防止することについて検討した。その結果、2回目の加熱を真空中で行うと、塩素の再付着が効果的に防止できることを見い出した。
【0008】
本発明の第2のスポンジ白金の製造方法は、上記知見に基づいてなされたもので、塩化白金アンモニウムを350〜450℃で加熱して塩素分およびアンモニア分を分解し、次いで、さらに昇温して0.01〜0.1 Torr 真空中の炉内で750〜850℃で3〜6時間保持してスポンジ白金を加熱することで塩素分を蒸発させるとともに炉外へ排出することを特徴としている。
【0009】
上記スポンジ白金の製造方法では、真空度を0.01〜0.1Torrに保持して2回目の加熱を行う。具体的には、材料を真空炉に装入し、真空度が上記範囲に達したら加熱を開始する。この場合、炉内温度が塩素の溶融温度に達すると、塩素が蒸発することにより真空度が低下し始める。したがって、真空度が上記範囲に保たれるように真空引きを再開する。この真空引きにより、蒸発した塩素が炉外へ排出され、フィラメントへの付着が効果的に防止される。
【0010】
ここで、2回目の加熱を750℃以上としたのは、750℃未満では塩素の蒸発が不充分で除去率が低下するためである。また、850℃以下としたのは、850℃を超えても塩素の除去率はさほど向上せず、燃料費が割高になるためである。また、確実に塩素を蒸発させるために、2回目の加熱で750〜850℃で保持する時間は3〜6時間とする
【0011】
【実施例】
A.第1実施例
次に実施例を示して本発明をさらに詳細に説明する。
塩化白金酸アンモニウムを大気中400℃で3時間加熱し、次いで炉内温度を800℃に昇温して3時間保持した。こうして得たスポンジ白金から10gづつ採取して8個の試料を得た。次いで、ビーカに所定量の純水を注入し、その中にスポンジ白金を1個入れて攪拌法または超音波法のいずれかの方法で30分間水洗した。各試料に対する水洗液量、水洗方法および水洗回数を表1に示す。なお、複数回の水洗は、その都度水洗液を新しいものに取り替えて行った。
【0012】
【表1】

Figure 0004100463
【0013】
次に、水洗後のビーカの内容物を濾過して濾過液の一部を分析試料液とし、その採取液の塩素品位を分析した。その塩素品位からスポンジ白金から除去された塩素量を算出し、この塩素量と水洗前のスポンジ白金中に含有する塩素量とから塩素の除去率を算出した。また、水洗後のスポンジ白金の塩素量も分析した。各試料における塩素の除去量、塩素の除去率およびスポンジ白金の塩素品位を表2に示す。また、水洗を行っていないスポンジ白金の塩素品位をNo.9として併記した。
【0014】
【表2】
Figure 0004100463
【0015】
表1および表2に示すように、本発明におけるスポンジ白金中の塩素品位はいずれも0.01重量%未満であり、十分な品位を備えている。また、水洗方法として超音波洗浄と攪拌洗浄とを行ったが、両者の差異は殆どなかった。また、水洗回数による塩素除去率にも殆ど差異がなかったことから、水洗回数は1回で良いことが判った。これに対して水洗を行わない場合には、スポンジ白金の塩素品位は0.15重量%であり、本発明と比較してかなり低品位であった。
【0016】
B.第2実施例
塩化白金酸アンモニウムを大気中400℃で3時間加熱し、次いで炉内温度を800℃に昇温して3時間保持した。こうして得たスポンジ白金から100g、200g、600g、1000g採取し、4個の試料を得た。次いで、ビーカに純水を2l注入し、その中にスポンジ白金を1個入れて30分間攪拌水洗した。
【0017】
水洗後のビーカの内容物を濾過して濾過液の一部を分析試料とし、その採取液の塩素品位を分析した。その塩素品位からスポンジ白金から除去された塩素量を算出し、この塩素量と水洗前のスポンジ白金中に含有する塩素量とから塩素の除去率を算出した。また、水洗後のスポンジ白金の塩素量も分析した。各試料における洗浄水中のスポンジ白金濃度(パルプ濃度)、除去塩素量、塩素除去率およびスポンジ白金の塩素品位を表3に示す。また、水洗を行っていないスポンジ白金の塩素品位をNo.5として併記した。
【0018】
【表3】
Figure 0004100463
【0019】
表3から明らかなように、パルプ濃度が300g/l以下ではスポンジ白金中の塩素品位は0.01重量%未満であるが、500g/lになると目標の0.01重量%を達成することができない。
【0020】
C.第3実施例
塩化白金酸アンモニウムを大気中400℃で3時間加熱して塩素分およびアンモニア分を分解した。このスポンジ白金から70gづつ採取して複数の試料とし、各試料を真空誘導炉(株式会社モトヤマ製 MBK2095)に装入し、表4に示す条件で加熱処理を行った。なお、表4に示す真空度にしてから炉内の昇温を開始した。また、表4において保持時間とは、炉内温度が処理温度に達してからの保持時間である。また、各試料の加熱処理後の塩素品位を分析し、その結果を表5に示した。なお、比較のために加熱処理を行っていない試料(No.10)の塩素品位も表5に併記した。
【0021】
【表4】
Figure 0004100463
【0022】
表4および表5から明らかなように、加熱処理温度を750℃以上とした本発明例(No.6〜9)では、スポンジ白金の塩素品位が0.01重量%未満であり、十分な高品位を示した。また、加熱温度が400℃のNo.1〜3では加熱時間に関係なく品位の向上は見られなかった。また、加熱温度が700℃の場合でも目的とする品位には達しなかった。
【0023】
【表5】
Figure 0004100463
【0024】
【発明の効果】
以上のように、本発明のスポンジ白金の製造方法においては、塩化白金酸アンモニウムを350〜450℃で加熱して塩素分およびアンモニア分を分解し、次いで、さらに昇温して750〜850℃で3〜6時間保持してスポンジ白金を加熱し、次いで、上記スポンジ白金を水洗するから、水素還元を行うことなく塩素品位の低い高品位のスポンジ白金を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a sponge platinum for producing sponge platinum ammonium chloroplatinic acid, in particular, to efficiently remove to obtain a high-quality sponge platinum technique chlorine adhering to the sponge platinum.
[0002]
[Prior art]
Conventionally, in the production of sponge platinum, ammonium chloroplatinate was thermally decomposed at about 400 ° C. and further heated to about 800 ° C. in hydrogen gas. This last heating was performed to reduce components other than platinum, particularly chlorine, with hydrogen and to sinter platinum filaments constituting the sponge for easy handling.
[0003]
[Problems to be solved by the invention]
By the way, the sponge platinum produced by the above method contains 0.1 to 0.5% by weight of chlorine, but there is a strong demand for further lowering the chlorine quality and increasing the commercial value. In the above prior art, the second heating is performed in a hydrogen gas atmosphere. However, there is a demand for avoiding the use of hydrogen gas because it requires handling. Therefore, the present invention provides a method for producing sponge platinum which can dramatically reduce the chlorine quality without hydrogen reduction, for example, the chlorine quality can be 0.01% by weight or less. It is aimed.
[0004]
[Means for Solving the Problems]
As a result of examining the cause of the chlorine contained in the sponge platinum, the present inventors have reached the inference that the chlorine evaporated in the final heating is again attached to the surface of the sponge platinum filament. Therefore, when the sponge platinum after heating was washed with water, it was found that the chlorine quality was drastically lowered.
[0005]
The first method for producing sponge platinum according to the present invention is based on the above knowledge, and heats ammonium chloroplatinate at 350 to 450 ° C. to decompose chlorine and ammonia, and then further raises the temperature. Then, it is characterized by evaporating chlorine content by heating sponge platinum while maintaining at 750 to 850 ° C. for 3 to 6 hours , and then washing the sponge platinum with water.
[0006]
According to the present invention, the chlorine and ammonia components decomposed by the first heating evaporate by the second heating. At that time, the evaporated chlorine reattaches to the sponge platinum filament, but the chlorine can be efficiently removed by washing the sponge platinum with water. Here, the ratio of sponge platinum to water is desirably 300 g / l or less. This is because the effect of washing with water is not sufficient when the ratio exceeds 300 g / l.
In the present invention, it is desirable to dry the sponge platinum immediately after washing with water in order to prevent contamination with impurities.
[0007]
Next, the present inventors studied to prevent chlorine evaporated in the second heating from reattaching to the sponge platinum filament. As a result, it has been found that when the second heating is performed in a vacuum, the reattachment of chlorine can be effectively prevented.
[0008]
The second method of producing sponge platinum according to the present invention is based on the above knowledge, and heats platinum ammonium chloride at 350 to 450 ° C. to decompose chlorine and ammonia, and then further raises the temperature. It is characterized in that the chlorine content is evaporated and discharged outside the furnace by heating the sponge platinum by holding it at 750 to 850 ° C. for 3 to 6 hours in a vacuum furnace of 0.01 to 0.1 Torr. Yes.
[0009]
In the sponge platinum manufacturing method, the second heating is performed while maintaining the degree of vacuum at 0.01 to 0.1 Torr. Specifically, the material is charged into a vacuum furnace, and heating is started when the degree of vacuum reaches the above range. In this case, when the furnace temperature reaches the melting temperature of chlorine, the degree of vacuum starts to decrease due to the evaporation of chlorine. Therefore, the degree of vacuum to resume vacuuming so as to maintain the above range. By this evacuation, the evaporated chlorine is discharged out of the furnace, and adhesion to the filament is effectively prevented.
[0010]
Here, the reason why the second heating is set to 750 ° C. or more is that if it is less than 750 ° C., the evaporation of chlorine is insufficient and the removal rate decreases. Further, the reason why the temperature is set to 850 ° C. or lower is that even if the temperature exceeds 850 ° C., the removal rate of chlorine is not improved so much and the fuel cost becomes high. Also, certainly to evaporate chlorine, time for holding at 750 to 850 ° C. in the second heating and 3-6 hours.
[0011]
【Example】
A. First Example Next, the present invention will be described in more detail with reference to examples.
Ammonium chloroplatinate was heated in the atmosphere at 400 ° C. for 3 hours, and then the furnace temperature was raised to 800 ° C. and held for 3 hours. Ten samples were collected from the sponge platinum thus obtained to obtain eight samples. Next, a predetermined amount of pure water was poured into a beaker, and one sponge platinum was put therein and washed with water for 30 minutes by either a stirring method or an ultrasonic method. Table 1 shows the amount of washing liquid, the washing method, and the number of washings for each sample. In addition, the washing was performed several times by replacing the washing solution with a new one each time.
[0012]
[Table 1]
Figure 0004100463
[0013]
Next, the contents of the beaker after washing were filtered, and a part of the filtrate was used as an analysis sample liquid, and the chlorine quality of the collected liquid was analyzed. The amount of chlorine removed from sponge platinum was calculated from the chlorine quality, and the chlorine removal rate was calculated from the amount of chlorine and the amount of chlorine contained in the sponge platinum before washing. In addition, the chlorine content of sponge platinum after washing with water was also analyzed. Table 2 shows the chlorine removal amount, chlorine removal rate and chlorine quality of sponge platinum in each sample. The chlorine quality of sponge platinum that has not been washed with water is No. Also shown as 9.
[0014]
[Table 2]
Figure 0004100463
[0015]
As shown in Tables 1 and 2, the chlorine quality in the sponge platinum in the present invention is less than 0.01% by weight, which is sufficient. In addition, ultrasonic cleaning and stirring cleaning were performed as water washing methods, but there was almost no difference between the two. Moreover, since there was almost no difference in the chlorine removal rate depending on the number of times of water washing, it was found that the number of times of water washing may be one. On the other hand, when water washing was not performed, the chlorine quality of sponge platinum was 0.15% by weight, which was considerably lower than that of the present invention.
[0016]
B. Second Example Ammonium chloroplatinate was heated in the atmosphere at 400 ° C. for 3 hours, and then the furnace temperature was raised to 800 ° C. and held for 3 hours. 100 g, 200 g, 600 g, and 1000 g of the sponge platinum thus obtained were collected to obtain four samples. Next, 2 l of pure water was poured into the beaker, and one sponge platinum was put therein and washed with stirring water for 30 minutes.
[0017]
The contents of the beaker after washing with water were filtered, a part of the filtrate was used as an analysis sample, and the chlorine quality of the collected liquid was analyzed. The amount of chlorine removed from sponge platinum was calculated from the chlorine quality, and the chlorine removal rate was calculated from the amount of chlorine and the amount of chlorine contained in the sponge platinum before washing. In addition, the chlorine content of sponge platinum after washing with water was also analyzed. Table 3 shows the sponge platinum concentration (pulp concentration), the amount of chlorine removed, the chlorine removal rate, and the chlorine quality of sponge platinum in each sample. The chlorine quality of sponge platinum that has not been washed with water is No. Also shown as 5.
[0018]
[Table 3]
Figure 0004100463
[0019]
As is apparent from Table 3, the chlorine quality in the sponge platinum is less than 0.01% by weight when the pulp concentration is 300 g / l or less, but the target 0.01% by weight can be achieved at 500 g / l. Can not.
[0020]
C. Example 3 Ammonium chloroplatinate was heated in the atmosphere at 400 ° C. for 3 hours to decompose chlorine and ammonia. 70 g of this sponge platinum was sampled and used as a plurality of samples. Each sample was placed in a vacuum induction furnace (MBK2095 manufactured by Motoyama Co., Ltd.), and heat-treated under the conditions shown in Table 4. The temperature inside the furnace was started after the degree of vacuum shown in Table 4 was reached. In Table 4, the holding time is the holding time after the furnace temperature reaches the processing temperature. Moreover, the chlorine quality after the heat treatment of each sample was analyzed, and the results are shown in Table 5. For comparison, the chlorine quality of the sample (No. 10) not subjected to heat treatment is also shown in Table 5.
[0021]
[Table 4]
Figure 0004100463
[0022]
As is apparent from Tables 4 and 5, in the present invention examples (Nos. 6 to 9) in which the heat treatment temperature was 750 ° C. or higher, the chlorine quality of sponge platinum was less than 0.01% by weight, which was sufficiently high. Shows quality. No. No. having a heating temperature of 400 ° C. In 1-3, the improvement of the quality was not seen irrespective of the heating time. Further, even when the heating temperature was 700 ° C., the intended quality was not achieved.
[0023]
[Table 5]
Figure 0004100463
[0024]
【The invention's effect】
As described above, in the method for producing sponge platinum of the present invention, ammonium chloroplatinate is heated at 350 to 450 ° C. to decompose chlorine and ammonia, and then further heated to 750 to 850 ° C. The sponge platinum is heated by holding for 3 to 6 hours , and then washed with water. Therefore, high-grade sponge platinum having a low chlorine quality can be obtained without performing hydrogen reduction.

Claims (2)

塩化白金酸アンモニウムを350〜450℃で加熱して塩素分およびアンモニア分を分解し、次いで、さらに昇温して750〜850℃で3〜6時間保持してスポンジ白金を加熱することで塩素分を蒸発させ、次いで、上記スポンジ白金を水洗することを特徴とするスポンジ白金の製造方法。 Ammonium chloroplatinate is heated at 350 to 450 ° C. to decompose chlorine and ammonia, and then further heated up and held at 750 to 850 ° C. for 3 to 6 hours to heat the sponge platinum, thereby increasing the chlorine content. was evaporated, then the manufacturing method of the sponge platinum, characterized in that the washing the sponge platinum. 塩化白金アンモニウムを350〜450℃で加熱して塩素分およびアンモニア分を分解し、次いで、さらに昇温して0.01〜0.1 Torr 真空中の炉内で750〜850℃で3〜6時間保持してスポンジ白金を加熱することで塩素分を蒸発させるとともに炉外へ排出することを特徴とするスポンジ白金の製造方法。Heating the chloroplatinic ammonium at 350 to 450 ° C. to decompose the chlorine and ammonia partial, then 3 at 750 to 850 ° C. Further in a furnace in vacuum in the temperature was raised 0.01 to 0.1 Torr A method for producing sponge platinum, characterized by evaporating the chlorine content by heating the sponge platinum for 6 hours and discharging it to the outside of the furnace .
JP36661799A 1999-12-24 1999-12-24 Method for producing sponge platinum Expired - Fee Related JP4100463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36661799A JP4100463B2 (en) 1999-12-24 1999-12-24 Method for producing sponge platinum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36661799A JP4100463B2 (en) 1999-12-24 1999-12-24 Method for producing sponge platinum

Publications (3)

Publication Number Publication Date
JP2001181749A JP2001181749A (en) 2001-07-03
JP2001181749A5 JP2001181749A5 (en) 2005-11-10
JP4100463B2 true JP4100463B2 (en) 2008-06-11

Family

ID=18487231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36661799A Expired - Fee Related JP4100463B2 (en) 1999-12-24 1999-12-24 Method for producing sponge platinum

Country Status (1)

Country Link
JP (1) JP4100463B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604221B2 (en) * 2004-09-24 2011-01-05 Jx日鉱日石金属株式会社 Sponge platinum deoxygenation method, hydrogen reduction furnace used in said method, and sponge platinum pulverization method
KR101226946B1 (en) 2010-09-06 2013-01-28 한국화학연구원 Method for recycling platinum from platinum based catalysts
JP5556681B2 (en) * 2011-01-25 2014-07-23 住友金属鉱山株式会社 Method for producing readily soluble sponge platinum
DE102013203743A1 (en) 2013-03-05 2014-09-11 Heraeus Precious Metals Gmbh & Co. Kg Process for the preparation of high purity platinum powder and platinum powder obtainable by this process and use
CN115198101A (en) * 2022-06-23 2022-10-18 浙江微通催化新材料有限公司 Platinum refining method

Also Published As

Publication number Publication date
JP2001181749A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
CN1088761C (en) Tantalum powder, method for producing same powder and sintered anodes obtained from it
JP5427330B2 (en) Polycrystalline silicon lump of silicon for semiconductor materials
KR101557216B1 (en) Method for producing highly pure platinum powder, as well as platinum powder that can be obtained according to said method, and use thereof
JP4100463B2 (en) Method for producing sponge platinum
EP3617144A1 (en) Method for manufacturing polycrystalline silicon fragment and method for managing surface metal concentration of polycrystalline silicon fragment
EP0100846B1 (en) Ceramic fiber board
WO2001047813A1 (en) Method for producing fluorinated potassium tantalate crystal and fluorinated potassium tantalate crystal
JPS6245164B2 (en)
WO2002044087A1 (en) Process for producing potassium fluoroniobate crystal and potassium fluoroniobate crystal
US4101309A (en) Method for preparing tungsten materials
JP2002180140A (en) Method for refining sponge platinum
CN216855927U (en) Waste glaze recovery system
JP4703803B2 (en) Method for electrolytic polishing of aluminum material
JP4265697B2 (en) Method for purifying metal silicon and method for producing silicon lump
JPH07201673A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JP2648822B2 (en) Manufacturing method of sintered Ti alloy
US1278744A (en) Alloy and method of purifying same.
JP4094835B2 (en) Methods for producing low oxygen potassium fluorinated tantalate crystals and low oxygen potassium fluorinated niobate crystals, low oxygen potassium fluorinated niobate crystals obtained by these production methods, potassium fluorinated tantalate crystals, and fluorinated niobic acid Method for oxygen analysis of potassium crystals
JP2001026481A (en) Method for regenerating carbon member used for producing semiconductor silicon
JP3144906B2 (en) Method for removing fluorine ions from zinc electrolyte
JP2014162687A (en) Method for purifying polycrystalline silicon obtained by the zinc reduction method
EP0463905B1 (en) Process for separating silicon compounds from pickling baths and apparatus therefor
SU1675388A1 (en) Method of cleaning products
DE10239775B3 (en) Production of a silicon wafer used in the production of a semiconductor component comprises treating the cleaned wafer with an aqueous ozone solution, coating with polycrystalline silicon, finely grinding, and epitaxially growing the wafer
JPH0797263A (en) Graphite vessel and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees